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On the Size of Higher-Dimensional
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Abstract. I show that there are sets of n points in three dimensions,
in general position, such that any triangulation of these points has only
O(n5/3) simplices. This is the first nontrivial upper bound on the MinMax
triangulation problem posed by Edelsbrunner, Preparata and West in 1990:
What is the minimum over all general-position point sets of the maximum
size of any triangulation of that set? Similar bounds in higher dimensions
are also given.

1. Introduction

In the plane, all triangulations of a set of points use the same number of

triangles. This is a simple consequence of each triangle having an interior angle

sum of π, and each interior point of the convex hull contributing an angle sum

of 2π, which must be used up by the triangles.

Neither the constant size of triangulations nor the constant angle sum of sim-

plices holds in higher dimensions. A classic example is the cube, which can be

decomposed in two ways: into five simplices (cutting off alternate vertices) or into

six simplices (which are even congruent; it is a well-known simple geometric puz-

zle to assemble six congruent simplices, copies of conv
(

(000), (100), (010), (011)
)

,

into a cube).

For higher-dimensional cubes, the same problem was studied in a number

of papers [Böhm 1989; Broadie and Cottle 1984; Haiman 1991; Hughes 1993;

Hughes 1994; Lee 1985; Marshall 1998; Orden and Santos 2003; Sallee 1984;

Smith 2000]. This suggest that one should be interested in the possible values

of the numbers of simplices for arbitrary point sets.

It is well known that a triangulation of n points in d-dimensional space has

size Ω(n) and O(ndd/2e). The lower bound is obvious (each point must go some-

where); and, at least in three-dimensional space, as upper bound one can use that
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Figure 1. A cube can be triangulated with five or six simplices.

from each point the outer facets of the incident simplices can be viewed as faces

of a starshaped polytope with at most n−1 vertices, which is combinatorially

isomorphic to a convex polytope.

In more detail this problem was solved by Rothschild and Straus [1985], who

showed that the minimum number of simplices in any triangulation of any full-

dimensional set of n points in d-dimensional space is n−d. This is reached by

gluing simplices together along faces, such that each additional simplex generates

a new vertex, and all vertices are in convex position. Another method, without

the general position, would be to place n−d+1 points on a line, and d−1 points

off that line. They also showed that the maximum number of simplices in any

triangulation of any full-dimensional set of n points in d-dimensional space is

cyc poly(n+1, d, d+1)−(d+1) = Θ(ndd/2e), where cyc poly(n+1, d, d+1) is the

number of d-faces of the d+1-dimensional cyclic polytope on n+1 vertices. This

is a consequence of the upper bound theorem for simplicial d-spheres [Stanley

1983].

These were the maximum and minimum triangulation size, taken over all

sets of n points in d-dimensional space. As a next step, it would be interesting

to give bounds on the maximum and minimum triangulation size of a fixed

set [Rothschild and Straus 1985, Problem 6.2]. For that we have to make some

general-position assumption, no d+1 points collinear, otherwise there are always

point sets for which there is only a unique triangulation. The questions are:

MaxMin Problem. What is the smallest number fMaxMin
d (n), such that each

set of n points in d-dimensional space, no d+ 1 collinear , has a triangulation

with at most fMaxMin
d (n) simplices?

MinMax Problem. What is the largest number fMinMax
d (n), such that each set

of n points in d-dimensional space, no d+1 collinear , has a triangulation with

at least fMinMax
d (n) simplices?

This problem was considered in three-dimensional space by Edelsbrunner, Prepa-

rata and West [Edelsbrunner et al. 1990], who showed that fMaxMin
3 (n) ≤ 3n−11,

so every set of n point in general position in three-dimensional space has a
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small triangulation. They also gave some bounds, if additionally the number of

points of the convex hull is given. Together with the lower bound of Sleator,

Tarjan and Thurston [Sleator et al. 1988], who constructed a convex polyhedron

which requires 2n−10 simplices in any triangulation, this determines the exact

minimum for point sets in convex position, and leaves only a linear-sized gap in

general.

For higher dimensions, the vertices of a cyclic polytope give a lower bound for

fMaxMin
d (n), since in any triangulation of the cyclic polytope, each facet must be

facet of some simplex, and each simplex has only d+1 facets. Together with the

above-mentioned general upper bound of [Rothschild and Straus 1985] on any

triangulation this shows

Ω
(

cyc poly(n, d−1, d)
)

≤ fMaxMin
d (n) ≤ O

(

cyc poly(n+1, d, d+1)
)

,

so

Ω
(

nbd/2c
)

≤ fMaxMin
d (n) ≤ O

(

ndd/2e
)

.

For the MinMax-Problem, the situation is much worse, only constant-factor

improvements for the trivial lower and upper bounds are known [Edelsbrunner

et al. 1990; Urrutia 2003], so Ω(n) ≤ fMinMax
3 (n) ≤ O(n2); and although some

other problems raised in [Edelsbrunner et al. 1990] were solved [Bern 1993], no

progress on the growth rate of fMinMax
3 (n) was made since then. It is the aim of

this paper to prove the first nontrivial upper bound.

Theorem 1. fMinMax
3 (n) = O(n5/3).

This follows from

Lemma 2. Any triangulation of a point set in three-dimensional space that arises

by a small perturbation from the n1/3×n1/3×n1/3 lattice cube contains at most

O(n5/3) simplices.

This upper bound is probably not sharp even in that class of perturbed lattice

cubes. It is easy to construct a perturbed lattice cube that allows a triangulation

of size Ω(n4/3), and that is probably the true maximum in that class.

The same argument works also in higher dimensions, unfortunately the im-

provement over the general upper bound of O(ndd/2e) on the number of simplices

in any d-dimensional triangulation is very small, especially if compared with the

only known (trivial) lower bound fMinMax
d (n) = Ω(n).

Theorem 3. fMinMax
d (n) = O

(

n(1/d)+(d−1)dd/2e/d
)

for fixed dimension d.

The improvement in the exponent is thus

1

d

(⌈

d

2

⌉

−1
)

≈ 1

2
.
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2. The Proof

Let Xn be a set of n points, which is obtained from the lattice cube

X∗
n =

{

(x1, x2, x3) | xi ∈ {1, . . . , n1/3}
}

by a small perturbation. Any point p ∈ X has a unique preimage p∗ ∈ X∗

before the perturbation was applied, and any simplex {p1, p2, p3, p4} ⊂ X has a

preimage {p∗1, p∗2, p∗3, p∗4} ⊂ X∗, which is a possibly degenerate simplex (points

coplanar or even collinear). Let T be the triangulation of X, then we partition

T = T3∪T≤2 by classifying the simplices T ∈ T according to the affine dimension

of their preimage T ∗; a simplex T ∈ T3 has a nondegenerate simplex T ∗ as

preimage, a simplex T ∈ T≤2 has a coplanar, or even collinear, fourtuple T ∗

(degenerate simplex) as preimage.

We have less than 6n simplices in T3, since any nondegenerate simplex in X∗

is a nondegenerate simplex with integer coordinates, so it has volume at least 1
6 ;

and the volume of conv(X∗) is less than n.

The preimages T ∗ of simplices T ∈ T3 together partition the cube conv(X∗)

into nondegenerate simplices, and the vertices of these simplices are points of

X∗ so we can refine this partition to a triangulation S
∗ of X∗. Each face of a

simplex T ∗, T ∈ T3 of the partition is a union of faces of simplices from the

triangulation S
∗. The triangulation S

∗ still contains at most 6n simplices.

The main problem is to bound |T≤2|, the number of almost-degenerate sim-

plices in T. Consider a simplex T ∈ T≤2, its preimage T ∗ is some coplanar

fourtuple of points in X∗. Now T ∗ cannot intersect the interior of the preimage

S∗ of any of the full-dimensional simplices S ∈ T3. So each T ∈ T≤2 has a

preimage T ∗ that is contained in the union of the faces of the S∗, S ∈ T3, so

also in the union of faces of the S∗, S∗ ∈ S
∗. Therefore each T ∈ T≤2 has a

preimage T ∗ that is contained in a lattice plane of X∗ spanned by a face of some

S∗ of the triangulation S∗. Let {Ei}i∈I be the set of planes spanned by faces

of simplices of the triangulation S∗ ∈ S
∗, and let ai be the number of simplices

S∗ ∈ S∗ which have a face contained in the plane Ei. Since each of the S∗ ∈ S∗

contributes four faces, we have
∑

i∈I

ai < 24n.

Since T ∗ is contained in the union of faces of simplices S∗ ∈ S
∗, this holds also

for the vertices of T ∗; so they are either vertices of faces of the triangulation

S
∗, or contained in the sides or relative interior of faces, which is not possible

in a triangulation S∗ of X∗. So each vertex of T ∗ is a vertex of some simplex

S∗, and therefore the numbers bi of points from X∗∩Ei that are vertices of T ∗

contained in Ei satisfies
∑

i∈I bi < 72n. But also each bi is at most |X∗∩Ei|, so

we have bi ≤ n2/3 for each i. But these bi points contained in Ei can generate

only less than O(b2
i ) simplices, since any set of bi points can span at most O(b2

i )
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nonoverlapping simplices. So the total number of simplices in T≤2 is less than
∑

i∈I Cb2
i for some C. Thus

|T≤2| ≤ max

{

∑

i∈I

Cb2
i

∣

∣

∣

∣

∑

i∈I

bi < 72n, 0 < bi ≤ n2/3

}

= O(n5/3).

The d-dimensional version is proved in exactly the same way: the point set

Xn,d is any perturbation of the n1/d×· · ·×n1/d-lattice cube. Any triangulation

Tn,d of such a set will contain at most O(n) simplices with a full-dimensional

preimage in the unperturbed lattice X∗
n,d, since any nondegenerate simplex with

integer vertices has a volume at least 1
d! . All the remaining simplices of the tri-

angulation are near-degenerate, they have preimages which are contained in the

union of faces of the full-dimensional simplices. The full-dimensional preimages

of simplices partition the cube into nondegenerate simplices with vertices from

X∗
n,d, and we can refine this to a triangulation S

∗
n,d of X∗

n,d with O(n) simplices.

The faces of this triangulation span a set of affine lattice subspaces. Each near-

degenerate simplex has a preimage in one of these subspaces, and each vertex of

that near-degenerate simplex has a preimage that is in S
∗
n,d vertex of a simplex

with a face that spans that affine subspace. The total number of pairs of vertices

and incident faces in S
∗
n,d is O(n) and each of these pairs belongs to an affine

lattice subspace, and can belong to the preimages of near-degenerate simplices

only in that subspace. We sum now over all such subspaces, and count each

point only for those subspaces where it is vertex with an incident face that spans

the subspace. A subspace s that contains bs points can contain only O(b
dd/2e
s )

preimages of near-degenerate simplices, since that is the maximum number of

simplices that these bs points can span. And each subspace contains at most

n(d−1)/d points, since that is the maximum intersection of a proper affine sub-

space with the lattice cube. We now consider this just as an abstract optimization

problem for the variables bs, and get an upper bound of

max

{

∑

s

O(bdd/2e
s )

∣

∣

∣

∣

∑

s

bs = O(n), 0 < bs ≤ n(d−1)/d

}

.

This maximum is again reached if each nonvanishing bs is as large as possible,

so bs = n(d−1)/d for O(n1/d) variables bs, which is the claimed bound.

3. Related Problems

The most important problem would be to get a nontrivial lower bound for

fMinMax
d (n). It is still possible that there are point sets which allow only linear-

sized triangulations. Perhaps it might help to compute some exact values and

extremal configurations for small n; the first nontrivial values seem to be

fMinMax
3 (5) = 3 and fMinMax

3 (6) = 5,
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both realized by points in convex position.

A good lower bound on fMinMax
d (n) would also be interesting since it would

imply an upper bound for the d-dimensional Heilbronn triangle problem. Let

gMinVol
d (n) be the maximum over all choices of n points from the unit cube of

the minimum volume of a simplex spanned by this set, then

gMinVol
d (n) ≤ 1

fMinMax
d (n)

.

For d ≥ 3, the best upper bound we have on gMinVol
d (n) is only slightly better than

the trivial bound [Brass 2005]; for lower bounds see [Barequet 2001; Lefmann

2000].

It should be possible to determine the exact function for fMaxMin
3 (n), or at

least the right multiplicative constant.

The problem of triangulating the d-cube with minimal number of simplices

was already mentioned in the beginning. It does not quite fall in the model here,

since the vertices of the cube are not in general position. The maximum number

of simplices in any triangulation of the d-cube are d!, by the volume argument

used above, and this number can be reached easily. The minimum number of

simplices is known to be between

1

2
√

d+1

(

6

d+1

)d/2

d! and (0.816)dd!

(see [Smith 2000] and [Orden and Santos 2003], respectively); so the gap between

upper an lower bound is still enormous, of order 2Θ(d log d).
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Geom. no. 29 (1989), 195–218.

[Brass 2005] P. Brass, “An upper bound for the d-dimensional Heilbronn triangle
problem”, SIAM J. Discrete Math (2005). To appear.

[Broadie and Cottle 1984] M. N. Broadie and R. W. Cottle, “A note on triangulating
the 5-cube”, Discrete Math. 52:1 (1984), 39–49.

[Edelsbrunner et al. 1990] H. Edelsbrunner, F. P. Preparata, and D. B. West, “Tetra-
hedrizing point sets in three dimensions”, J. Symbolic Comput. 10:3-4 (1990), 335–
347.

[Haiman 1991] M. Haiman, “A simple and relatively efficient triangulation of the n-
cube”, Discrete Comput. Geom. 6:4 (1991), 287–289.



ON THE SIZE OF HIGHER-DIMENSIONAL TRIANGULATIONS 153

[Hughes 1993] R. B. Hughes, “Minimum-cardinality triangulations of the d-cube for
d = 5 and d = 6”, Discrete Math. 118:1-3 (1993), 75–118.

[Hughes 1994] R. B. Hughes, “Lower bounds on cube simplexity”, Discrete Math.

133:1-3 (1994), 123–138.

[Lee 1985] C. W. Lee, “Triangulating the d-cube”, pp. 205–211 in Discrete geometry

and convexity (New York, 1982), edited by J. E. Goodman et al., Ann. New York
Acad. Sci. 440, New York Acad. Sci., New York, 1985.

[Lefmann 2000] H. Lefmann, “On Heilbronn’s problem in higher dimension”, pp.
60–64 in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete

Algorithms (San Francisco, 2000), ACM, New York, 2000.

[Marshall 1998] T. H. Marshall, “Volume formulae for regular hyperbolic cubes”,
Conform. Geom. Dyn. 2 (1998), 25–28.

[Orden and Santos 2003] D. Orden and F. Santos, “Asymptotically efficient triangula-
tions of the d-cube”, Discrete Comput. Geom. 30:4 (2003), 509–528.

[Rothschild and Straus 1985] B. L. Rothschild and E. G. Straus, “On triangulations of
the convex hull of n points”, Combinatorica 5:2 (1985), 167–179.

[Sallee 1984] J. F. Sallee, “The middle-cut triangulations of the n-cube”, SIAM J.

Algebraic Discrete Methods 5:3 (1984), 407–419.

[Sleator et al. 1988] D. D. Sleator, R. E. Tarjan, and W. P. Thurston, “Rotation
distance, triangulations, and hyperbolic geometry”, J. Amer. Math. Soc. 1:3 (1988),
647–681.

[Smith 2000] W. D. Smith, “A lower bound for the simplexity of the n-cube via
hyperbolic volumes”, European J. Combin. 21:1 (2000), 131–137.

[Stanley 1983] R. P. Stanley, Combinatorics and commutative algebra, Progress in
Mathematics 41, Birkhäuser, Boston, 1983.
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