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On the Number of Mutually Touching Cylinders

ANDRÁS BEZDEK

Abstract. In a three-dimensional arrangement of 25 congruent nonover-

lapping infinite circular cylinders there are always two that do not touch

each other.

1. Introduction

The following problem was posed by Littlewood [1968]:

What is the maximum number of congruent infinite circular cylinders that can

be arranged in R
3 so that any two of them are touching? Is it 7?

This problem is still open. The analogous problem concerning circular cylin-

ders of finite length became known as a mathematical puzzle due to a the popular

book [Gardner 1959]: Find an arrangement of 7 cigarettes so that any two touch

each other. The question whether 7 is the largest such number is open. For

constructions and for a more detailed account on both of these problems see the

research problem collection [Moser and Pach ≥ 2005].

A very large bound for the maximal number of cylinders in Littlewood’s orig-

inal problem was found by the author in 1981 (an outline proof was presented

at the Discrete Geometry meeting in Oberwolfach in that year). The bound

was expressed in terms of various Ramsey constants, and so large that it merely

showed the existence of a finite bound. In this paper we use a different approach

to show that at most 24 cylinders can be arranged so that any two of them are

touching:

Theorem 1. In an arrangement of 25 congruent nonoverlaping infinite circular

cylinders there are always two that do not touch each other .
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In Section 2, we introduce the necessary terminology to talk about relative po-

sitions of the cylinders. In Section 3 we prove Theorem 1. We will describe a

four-cylinder arrangement in which the cylinders cannot be mutually touching

and show that in a family of 25 mutually touching cylinders there are always

four cylinders of this type.

One of the needed lemmas can be stated and proved independently from the

cylinder problem. To ease the description of the proof of Theorem 1 we place

this lemma separately, in Section 4.

2. Terminology

The term cylinder will always refer to a circular cylinder infinite at both ends.

More precisely, the cylinder of radius r and axis l is the set of those points in

R
3 that are at a distance of at most r from a given line l. If r = 1, we speak of

unit cylinders. Two cylinders are nonoverlapping if they do not have common

interior points. Two cylinders are touching if they do not overlap, but have at

least one common boundary point.

Consider a family of mutually touching cylinders. For reference choose one

of the cylinders, say c, and assign a positive direction to its axis l. We say that

a cylinder lies in front of another cylinder with respect to the directed axis l if

the first cylinder can be shifted parallel to l in the positive direction to infinity

without crossing the other cylinder. This relation is not transitive, so it does not

give rise to an ordering among the cylinders.

There is another natural way of describing a relative position among mutually

touching cylinders. We say that a cylinder is (clockwise) to the right of another

if a clockwise rotation by α (with 0 < α ≤ π) around l takes the plane separating

the second cylinder from c to the plane separating the first cylinder from c. To

avoid ambiguity, we say that counterclockwise rotation around the axis l is the

one which matches the right-hand rule with the thumb pointing in the positive

direction of the axis l. The relation of “being to the right” clearly defines an

order among cylinders that are touching c, in such a way that their contact

points, if looked at from the direction of the axis of c, belong to a circular arc

less than π. We will refer to this order as the clockwise order with respect to l.

3. Proof of Theorem 1

Assume we have an arrangement of 25 mutually touching cylinders so that

one of the cylinders is c with directed axis l. Most likely the first thing one

notices while studying cylinder arrangements is that no two of the cylinders are

parallel. Otherwise the number of cylinders is at most four.

Most of our conclusions will come from studying the front view, which is what

we see by looking at the cylinder packing from the positive direction of l. We

intentionally use the term “front view” instead of “projection”, since we would
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like to keep track of the relation of “being in front”. Let the unit disc d be the

image of cylinder c. The images of the other cylinders are strips of width 2, all

touching disc d at different points. A simple integral averaging argument shows

that among these 24 contact points in the front view one can choose 5 along an

arc on the boundary of d with central angle at most π/3.

Label the corresponding cylinders c1, c2, c3, c4, c5 in clockwise order, so that

cylinder c5 is rightmost.

Lemma 1. In any oriented complete graph with vertices labelled 1, 2, 3, 4, 5 one

can choose three vertices i < j < k so that either i→ j → k or i← j ← k holds.

Proof. If the conclusion is not true, we may assume that 2 → 3 ← 4 or

2 ← 3 → 4 holds. Consider the first case: If 2 ← 4, then either 1 ← 2 ← 4 or

1→ 2→ 3 holds, a contradiction. If 2→ 4 then either 3← 4← 5 or 2→ 4→ 5

holds, a contradiction. The second case is handled in the same way. ˜

Consider the abstract complete graph whose vertices are the cylinders c1, c2, c3,

c4, c5. Orient the edges according to the “being in front” relation. According to

Lemma 1 three of the cylinders, say c1, c2, c3, are such that (i) c1 is in front of

c2 which is in front of c3, or (ii) c1 is behind c2 which is behind c3.

We will show that cylinders c, c1, c2 and c3 cannot be mutually touching. In

this respect case (ii) can be reduced to case (i) by reflecting the cylinders along

a plane passing through the axis of the cylinder c. Indeed such plane reflection

preserves the relation of “being in front”, but reverses the clockwise order. The

impossibility of case (i) is stated as a separate lemma below. Its proof completes

the proof of Theorem 1.

Lemma 2 (A forbidden arrangement of four cylinders). If a packing of

four cylinders c, c1, c2, c3 satisfies the conditions listed below , two of them must

be disjoint .

Contact condition : Cylinders c1, c2, c3 are touching c so that their contact

points if looked at from the direction of the axis of c belong to a circular arc of

length at most π/3.

Clockwise order condition : Cylinders c1, c2, c3 are labelled according to their

clockwise order with respect to the directed axis l of c so that c3 is the rightmost

one.

“Being in front” condition : Cylinder c1 is in front of cylinder c2 which is

in front of cylinder c3 with respect to the directed axis l of c.

Proof. Assume to the contrary that cylinders c, c1, c2, c3 are mutually touching

and satisfy all three conditions. Let strips s1, s2 and s3 be the images of cylinders

c1, c2 and c3 in front view. Assume that strip s3 is horizontal. Let the unit disc d

with center O be the image of cylinder c. According to the contact condition and

the clockwise order condition, the elevation angle of s2 is positive and smaller

than π/3. See Figure 1, left.
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Figure 1.

Denote by P the contact point of cylinders c1 and c3, and by P ∗ the image

of P in front view. P ∗ certainly belongs to both s1 and s3, but not to strip s2,

since c2 is in front of c3. Since strip s1 is obtained from s2 by a counterclockwise

rotation around O, P ∗ lies to the left of strip s2.

Let the unit discs d∗ and d∗∗ with centers O∗ and O∗∗ be the images in front

view of the unit spheres inscribed in c1 and c3 respectively and containing P.

Strip s1 contains d∗, and is tangent to d. There are two such strips, but since P ∗

does not belong to s2, the strip that is clockwise to the right of the other must

be also to the right of s2, thus it cannot be the same as s1. Thus the position of

d∗ determines s1.

Discs d∗ and d∗∗ are symmetrical with respect to point P ∗. First fix P ∗ and

move d∗ horizontally to the right so that it has P ∗ on its boundary. Simulta-

neously move d∗∗ so that P ∗ remains the symmetry center of d∗ and d∗∗. Then

move P ∗, along with d∗ and d∗∗ horizontally to the right until P ∗ gets onto the

circle centered at O of radius 3 (see Figure 1, right).

Notice that in the new position, (i) distance O∗O∗∗ is 2 and the distance P ∗O

is 3, (ii) P ∗ is the midpoint of O∗O∗∗ and (iii) O∗∗ is on the left of the vertical

line through O. Let e be the support line of d whose slope is
√

3. Lemma 3 of

Section 4 states that in this new position, d∗ lies to the left of line e, without

touching e (except when O∗∗O = 4). This means that d∗, before it was moved,

was to the left of line e, without touching e. Thus strip s1 is obtained from s3 by

a counterclockwise rotation by an angle greater than π/3, contradicting Contact

condition of Lemma 3. ˜
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4. T-linkages

By a T-linkage we will mean a mobile structure consisting of a bar of length 3

connected at its endpoint to the midpoint of a bar of length 2, so they can rotate

about the contact point.

Lemma 3. Let AOB be an equilateral triangle of side length 4. Assume that

a T -linkage is attached to O by the free endpoint of its longer bar (see Figure

2, left). As one endpoint of the shorter bar moves along the interior of median

AA′, the other endpoint of the shorter bar and A stay in the same open halfplane

bounded by the line of median BB′.

Proof. Denote by H the open halfplane bounded by line BB′ and containing

A. Denote by M the intersection of AA′ and BB′. A simple computation shows

that when one endpoint of the shorter bar of the T -linkage coincides with M then

the other one belongs to H. Thus, if Lemma 3 were not true then by a continuity

argument the T -linkage would have a position with endpoints of the shorter bar

on lines AA′ and BB′ respectively. We will prove that such a position does not

exists. In fact we show more:

Claim. If X is a point on line AA′ different from both A and A′ and if Y is

a point on line BB′ such that XY = 2, the distance from O to the midpoint of

XY is smaller than 3.

We distinguish four cases depending on which of the angles determined by lines

of AA′ and BB′ contains the segment XY . Figure 2, right, shows how the

angles are labelled I, II, III, IV. It suffices to check the cases when XY belongs

to angles I or II. Indeed the cases of angles II and IV are the same by symmetry.

Furthermore, if segment XY belongs to the angle III then reflecting XY around

M we get a segment whose midpoint is farther from O than the midpoint of XY .

Case 1: XY lies in angle I. Let k be the circumcircle of the triangle XMY (see

Figure 3, left). Since MO is the angle bisector of \B′MA′ the line of MO and
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the perpendicular bisector of XY intersect each other on k, say at E. Denote

by F the diagonally opposite point of E on k.

Let G be the perpendicular projection of O onto line EF . Denote by P the

midpoint of XY. We will express PO2 in terms of the angle α = \PEM (with

−π/6 ≤ α ≤ π/6) and show that PO2 is smaller than 9. Since \XMY = 2π/3

we have EF = 4/
√

3. Since EP =
√

3 and MO = 4/
√

3 we get

OE = EF cosα + MO =
4
√

3
(cos α + 1).

Computing the parallel and perpendicular components of PO with respect to

line EF we get

PO2 = OE2 sin2 α + (OE2 cosα− EP )2 = OE2 − 2OE cos α
√

3 + 3

= 16

3
(cos α + 1)2 − 8(cosα + 1) cos α + 3 = 1

3
(−8 cos2 α + 8 cos α + 25)

= − 1

24

(

cos α− 1

2

)2
+ 9 < 9,

as claimed.

Case 2: XY lies in angle II. Let k be the circumcircle of triangle XMY (see

Figure 3, right). The line perpendicular to MO and the perpendicular bisector

of XY intersect each other on k, say at E. Let L be the perpendicular projection

of M onto line XY . Let G be the perpendicular projection of O onto line LM .

Denote by P the midpoint of XY. We will express PO2 in terms of the directed

angle α = \PEM = \EML = \GOM (with −π/3 ≤ α ≤ π/3) and show that

PO2 is smaller than 9. It is easy to see that MO = 4/
√

3, EM = 4/
√

3 cosα

and EP = 1/
√

3 . Computing the parallel and perpendicular components of PO

with respect to line XY we get
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PO2 = (EM cos α−EP + MO sin α)2 + (−EM sin α + MO cosα)2

= 1

3

(

(4 cos2 α− 1 + 4 sin α)2 + (−4 cos α sin α + 4 cos α)2
)

= 1

3
(17 + 8 cos2 α− 8 sin α) = 1

3
(25− 8 sin2 α− 8 sin α)

= − 2

3
(1 + 2 sin α)2 + 9 ≤ 9.

Equality holds only if α = −π/6, that is, when X coincides with A. Thus the

Claim holds. ˜
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Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest H-1053
Hungary

bezdean@auburn.edu




