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Betti Number Bounds, Applications and
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Abstract. Topological complexity of semialgebraic sets in R
k has been

studied by many researchers over the past fifty years. An important mea-
sure of the topological complexity are the Betti numbers. Quantitative
bounds on the Betti numbers of a semialgebraic set in terms of various pa-
rameters (such as the number and the degrees of the polynomials defining
it, the dimension of the set etc.) have proved useful in several applications
in theoretical computer science and discrete geometry. The main goal of
this survey paper is to provide an up to date account of the known bounds
on the Betti numbers of semialgebraic sets in terms of various parameters,
sketch briefly some of the applications, and also survey what is known about
the complexity of algorithms for computing them.

1. Introduction

Let R be a real closed field and S a semialgebraic subset of Rk, defined by

a Boolean formula, whose atoms are of the form P = 0, P > 0, P < 0, where

P ∈ P for some finite family of polynomials P ⊂ R[X1, . . . , Xk]. It is well known

[Bochnak et al. 1987] that such sets are finitely triangulable. Moreover, if the

cardinality of P and the degrees of the polynomials in P are bounded, then

the number of topological types possible for S is finite [Bochnak et al. 1987].

(Here, two sets have the same topological type if they are semialgebraically

homeomorphic). A natural problem then is to bound the topological complexity

of S in terms of the various parameters of the formula defining S.

One measure of topological complexity are the various Betti numbers of S.

The i-th Betti number of S (which we will denote by bi(S)) is the rank of

Hi(S, Z). In case, R happens to be R then Hi(S, Z) denotes the i-th singular

homology group of S with integer coefficients. For semialgebraic sets defined
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over general real closed fields the definition of homology groups requires more

care and several possibilities exists. For instance, if S is closed and bounded,

then using the fact that S is finitely triangulable, Hi(S, Z) can be taken to be the

i-th simplicial homology group of S, and this definition agrees with the previous

definition in case R = R. For a general locally closed semialgebraic set, one

can take for Hi(S, Z) the i-th Borel–Moore homology groups, which are defined

in terms of the simplicial homology groups of the one-point compactification of

S, and which are known to be invariants under semialgebraic homeomorphisms

[Bochnak et al. 1987]. Note that, even though some of the early results on

bounding the Betti numbers of semialgebraic sets were stated only over R, the

bounds can be shown to hold over any real closed field by judicious applications

of the Tarski–Seidenberg transfer principle. We refer the reader to [Basu et al.

2003] (Chapter 7) for more details.

2. Early Bounds

For a polynomial P ∈ R[X1, . . . , Xk], we denote by Z(P,Rk) the set of zeros

of P in Rk. The first results on bounding the Betti numbers of algebraic sets are

due to Oleinik and Petrovsky [1949; 1951; 1949a; 1949b]. They considered the

problem of bounding the Betti numbers of a nonsingular real algebraic hypersur-

face in R
k defined by a single polynomial equation of degree d. More precisely,

they prove that the sum of the even Betti numbers, as well as the sum of the odd

Betti numbers, of a nonsingular real algebraic hypersurface in Rk defined by a

polynomial of degree d are each bounded by 1
2dk + lower order terms. Indepen-

dently, Thom [1965] proved a similar bound of 1
2d(2d − 1)k−1 on the sum of all

the Betti numbers of Z(P, R
k), where P is only assumed to be nonnegative over

R
k without the assumption that Z(P, R

k) is a nonsingular hypersurface. Milnor

[1964] also proved the same bound in the case Z(P, R
k) is an arbitrary real alge-

braic subset. Moreover, he proved a bound of (sd)(2sd−1)k−1 on the sum of the

Betti numbers of a basic semialgebraic set defined by the conjunction of s weak

inequalities P1 ≥ 0, . . . , Ps ≥ 0, with Pi ∈ R[X1, . . . , Xk],deg(Pi) ≤ d. Note

that there is a cost for generality: the bounds of Thom and Milnor are slightly

weaker (in the leading constant) than those proved by Oleinik and Petrovsky.

Note also that these bounds on the sum of the Betti numbers of an algebraic set

are tight, since the solutions to the system of equations,

(X1 − 1)(X1 − 2) · · · (X1 − d) = · · · = (Xk − 1)(Xk − 2) · · · (Xk − d) = 0,

or equivalently of the single equation

(

(X1 − 1)(X1 − 2) · · · (X1 − d)
)2

+ · · · +
(

(Xk − 1)(Xk − 2) · · · (Xk − d)
)2

= 0,

consist of dk isolated points and the only nonzero Betti number of this set is

b0 = dk.
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The method used to obtain these bounds is based on a basic fact from Morse

theory – that the sum of the Betti numbers of a compact, nonsingular, hyper-

surface in R
k is at most the number of critical points of a well chosen projection.

In case of a nonsingular real algebraic variety, the critical points of a projection

map satisfy a simple system of algebraic equations obtaining by setting the poly-

nomial defining the hypersurface, as well as k − 1 different partial derivatives to

zero. The number of solutions to such a system can be bounded from above by

Bezout’s theorem. The case of an arbitrary real algebraic variety (not neces-

sarily compact and nonsingular) is reduced to the compact, nonsingular case by

carefully using perturbation arguments.

Even though the bounds mentioned above are bounds on the sum of all the

Betti numbers, in different combinatorial applications it suffices to have bounds

only on the zero-th Betti number (that is the number of connected components).

For instance, given a finite set of polynomials P ⊂ R[X1, . . . , Xk], a natural

question is how many of the 3s sign conditions in {0, 1,−1}P are actually realized

at points in Rk. We define






sign x = 0 if and only if x = 0,

sign x = 1 if and only if x > 0,

sign x = −1 if and only if x < 0.

Let P ⊂ R[X1, . . . , Xk]. A sign condition on P is an element of {0, 1,−1}P. A

strict sign condition on P is an element of {1,−1}P. We say that P realizes the

sign condition σ at x ∈ Rk if

∧

P∈P

sign P (x) = σ(P ).

The realization of the sign condition σ is

R(σ) =
{

x ∈ Rk

∣

∣

∣

∧

P∈P

sign P (x) = σ(P )
}

.

The sign condition σ is realizable if R(σ) is nonempty.

Warren [1968] proved a bound of (4esd/k)k on the number of strict sign

conditions realized by a set of s polynomials in R
k whose degrees are bounded

by d. Alon [1995] extended this result to all sign conditions by proving a bound

of (8esd/k)k. The fact that these bounds are polynomial in s (for fixed values

of k) is important in many applications. Note that this bound is tight since it is

an easy exercise to prove that the number of sign conditions realized by a family

of linear polynomials in general position is

k
∑

i=0

k−i
∑

j=0

(

s

i

)(

s − i

j

)

; (2–1)

see for example [Basu et al. 2003].
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3. Early Applications

One of the first applications of the bounds of Oleinik–Petrovsky, Thom and

Milnor, was in proving lower bounds in theoretical computer science. The model

for computation was taken to be algebraic decision trees. Given an input x ∈ R
k,

an algebraic decision tree decides membership of x in a certain fixed semialgebraic

set S ⊂ R
k. Starting from the root of the tree, at each internal node, v, of the

tree, it evaluates a polynomial fv ∈ R[X1, . . . , Xk] (where deg(fv) ≤ d, for some

fixed constant d), at the point (x1, . . . , xk) and branches according to the sign of

the result. The leaf nodes of the tree are labelled as accepting or rejecting. On an

input x ∈ R
k, the algebraic decision tree accepts x if and only if the computation

terminates at an accepting leaf node. Moreover, an algebraic decision tree tests

membership in S, if it accepts x if and only if x ∈ S. The main idea behind

using the Oleinik–Petrovsky, Thom and Milnor bounds in proving lower bounds

for the problem of testing membership in a certain semialgebraic set S ⊂ R
k

is that if the set S is topologically complicated, then an algebraic decision tree

testing membership in it has to have large depth.

Ben-Or [1983] proved that the depth of an algebraic computation tree testing

membership in S must be Ω(log b0(S)). Several extensions of this result were

proved by Yao [1995; 1997]. He proved that instead of b0(S) one could use

in fact the Euler characteristic of S (which is the alternating sum of the Betti

numbers), as well as the sum of the Betti numbers of S. This made the theorem

useful for proving lower bounds for a wider class of problems by including sets

with a single connected component but complicated topology [Montaña et al.

1991]. Another early application of the Oleinik–Petrovsky, Thom and Milnor

bounds was in proving upper bounds on the number of order types of simple

configurations of points in R
k. Given an ordered set, S, of s points in R

k, the

order type of S is determined by the
(

s
k+1

)

orientations of the
(

s
k+1

)

oriented

simplices spanned by (k + 1)-tuples of points. A point configuration is simple

if no k + 1 of them are affinely dependent. Using Milnor’s bound on the Betti

numbers of basic semialgebraic sets Goodman and Pollack [1986b] proved an

upper bound of sk2

on the number of realizable simple order types of s points in

R
k [Goodman and Pollack 1986a] rather than the trivial bound of 2s. as well as

on the number of combinatorial types of simple polytopes with s vertices in R
k

[Goodman and Pollack 1986a]. In fact, Milnor’s bound actually yields a bound

on the number of isotopy classes of simple configurations of s points in R
k. The

isotopy class of a point configuration in R
k consists of all point configurations

in R
k having the same order type which are reachable by continuous order type

preserving deformations of the original point configuration. Alon [1995] extended

these bounds to all configurations – not necessarily simple ones.

All of these applications are based on the simple observation that different

strict sign conditions must belong to different connected components. Any sit-

uation where geometric types can be characterized by a sign condition gives an
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application of this type. Two other application in this spirit are bounds on the

number of weaving patterns of lines [Pach et al. 1993] and the size of a grid which

will support all order types of s points in the plane [Goodman et al. 1989; 1990].

4. Modern Bounds

Pollack and Roy [1993] proved a bound of
(

s
k

)

O(d)k on the number of con-

nected components of the realizations of all realizable sign conditions of a family

of s polynomials of degrees bounded by d. The proof was based on Oleinik–

Petrovsky, Thom and Milnor’s results for algebraic sets, as well as with defor-

mation techniques and general position arguments.

From this bound one can deduce a tight bound on the number of isotopy

classes of all point configurations in R
k (not just the simple ones). Note that

Warren’s bound mentioned before is a bound on the number of realizable strict

sign conditions (extended by Alon to all sign conditions) but not on the number of

connected components of their realizations. Thus, Warren’s (or Alon’s) bounds

cannot be used to bound the number of isotopy classes (of simple or nonsimple

configurations).

In some applications, notably in geometric transversal theory as well in bound-

ing the complexity of the configuration space in robotics, it is useful to study

the realizations of sign conditions of a family of s polynomials in R[X1, . . . , Xk]

restricted to a real variety Z(Q,Rk) where the real dimension of the variety

Z(Q,Rk) can be much smaller than k. In [Basu et al. 1996] it was shown that

the number of connected components of the realizations of all realizable sign

condition of a family, P ⊂ R[X1, . . . , Xk] of s polynomials, restricted to a real

variety of dimension k′, where the degrees of the polynomials in P ∪ {Q} are all

bounded by d, is bounded by
(

s
k′

)

O(d)k.

There are also results bounding the sum of the Betti numbers of semialgebraic

sets defined by a conjunction of weak inequalities. Milnor [1964] proved a bound

of (sd)(2sd − 1)k−1 on the sum of the Betti numbers of a basic semialgebraic

set defined by the conjunction of s weak inequalities P1 ≥ 0, . . . , Ps ≥ 0,

with Pi ∈ R[X1, . . . , Xk] such that deg(Pi) ≤ d. In another direction, Barvinok

[1997] proved a bound of kO(s) on the sum of the Betti numbers of a basic, closed

semialgebraic set defined by polynomials of degree at most 2. Unlike all previous

bounds, this bound is polynomial in k for fixed values of s.

Extending such bounds to arbitrary semialgebraic sets is not trivial, because

Betti numbers are not additive and the union of two topologically trivial semial-

gebraic sets can clearly have arbitrarily large higher Betti numbers. Basu [1999]

proved a bound on the sum of the Betti numbers of a P-closed semialgebraic set

on a variety. A P-closed semialgebraic set is one defined by a Boolean formula

without negations whose atoms are of the form P ≥ 0 or P ≤ 0 with P ∈ P. The

bound is sk′

O(d)k. Very recently Gabrielov and Vorobjov [≥ 2005], succeeded

in removing even the P-closed assumption at the cost of a slightly worse bound.
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They showed that the sum of the Betti numbers of an arbitrary semialgebraic

set defined by a Boolean formula whose atoms are of the form P = 0, P > 0 or

P < 0 with P ∈ P, is bounded by O(s2d)k.

There have been recent refinements of the bounds on the Betti numbers of

semialgebraic sets in another direction. All the bounds mentioned above are

either bounds on the number of connected components or on the sums of all (or

even or odd) Betti numbers. Basu [2003] proved different bounds (for each i)

on the i-th Betti number of a basic, closed semialgebraic set on a variety. If S

is a basic closed semialgebraic set defined by s polynomials in R[X1, . . . , Xk] of

degree d, restricted to a real variety of dimension k′ and defined by a polynomial

of degree bounded by d, then bi(S) is bounded by
(

s
k′−i

)

O(d)k. In the same

paper, a bound of s`kO(`) on the (k − `)-th Betti number of a basic, closed

semialgebraic set defined by polynomials of degree at most 2 is proved. For

fixed ` this bound is polynomial in both s and k. More recently, in [Basu et al.

2005] the authors bound (for each i) the sum of the i-th Betti number over all

realizations of realizable sign conditions of a family of polynomials restricted to

a variety of dimension k′ by

∑

1≤j≤k′−i

(

s

j

)

4jd(2d − 1)k−1.

This generalizes and makes more precise the bound in [Basu et al. 1996] which

is the special case with i = 0. The technique of the proof uses a generalization

of the Mayer–Vietoris exact sequence.

All the bounds on the Betti numbers of semialgebraic sets described above,

depend on the degrees of the polynomials used in describing the semialgebraic

set. However, it is well known that in the case of real polynomials of one variable,

the number of real zeros can be bounded in terms of the number of monomials

appearing in the polynomial (independent of the degree). This is an easy con-

sequence of Descartes’ law of signs [Basu et al. 2003]. Hence, it is natural to

hope for a similar result in higher dimensions. Khovansky [1991] proved a bound

of 2m2

(mk)k on the number of isolated real solutions of a system of k polyno-

mial equations in k variables in which the number of monomials appearing with

nonzero coefficients is bounded by m. Using this, one can obtain similar bounds

on the sum of the Betti numbers of an algebraic set defined by a polynomial

with at most m monomials in its support. The semialgebraic case requires some

additional technique and it was shown in [Basu 1999] that the sum of the Betti

numbers of a P-closed semialgebraic set on a variety, is bounded by sk′

2O(km2),

where m is a bound on the number of monomials.

5. Modern Applications

Using [Pollack and Roy 1993] one immediately obtains reasonably tight bounds

on the number of isotopy classes of not necessarily simple geometric objects such
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as the number of isotopy classes (with respect to order type) of configurations of

n points in Rk or the number of isotopy classes (with respect to combinatorial

type) of k−polytopes with n vertices.

Using [Basu et al. 1996], Goodman, Pollack, and Wenger [Goodman et al.

1996] were able to extend the known bounds on the number of geometric per-

mutations (1-order types) induced by line transversals (` = 1) to the number of

`-order types induced by `-flat transversals to n convex sets in R3. As is the case

for line transversals in R
3, the lower bounds are about the square root of the

upper bounds (in the plane, the corresponding result is tight [Edelsbrunner and

Sharir 1990]). A much fuller discussion of Geometric Transversal Theory can be

found in [Goodman et al. 1993].

6. Algorithms

A natural algorithmic problem is to design efficient algorithms for computing

the Betti numbers of a given semialgebraic set. Clearly the problem of deciding

whether a given semialgebraic set is empty is NP-hard, and counting its number

of connected component is #P-hard. However, in view of the bounds described

above we could hope for an algorithm having complexity polynomial in the num-

ber of polynomials and their degrees and singly exponential in the number of

variables. This seems to be a very difficult problem in general and only partial

results exist in this direction.

The cylindrical algebraic decomposition [Collins 1975] makes it possible to

compute triangulations, and thus the number of connected components [Schwartz

and Sharir 1983] as well as the higher Betti numbers in time polynomial in the

number of polynomials and their degrees and doubly exponential in the number

of variables (see [Basu et al. 2003]).

Various singly exponential time algorithms have been obtained for finding a

point in every connected component of an algebraic set [Canny 1988b; Renegar

1992], of a semialgebraic set [Grigor’ev and Vorobjov 1988; Canny 1988b; Heintz

et al. 1989; Renegar 1992], in every connected component of the sign conditions

defined by a family of polynomials on a variety [Basu et al. 1997].

Computing the exact number of connected components in singly exponential

time is a more difficult problem. The notion of a roadmap introduced by Canny

[1988a] is the key to the solution. The basic algorithm has since been generalized

and refined in several papers [Canny 1988a; 1993; Grigor’ev and Vorobjov 1992;

Heintz et al. 1994; Gournay and Risler 1993; Basu et al. 2000] (see [Basu et al.

2003] for more details). Single exponential algorithms for computing the Euler–

Poincaré characteristic (which is the alternating sum of the Betti numbers) of

algebraic (as well as P-closed semialgebraic) sets are described in [Basu 1999].

However, the problem of computing all the Betti numbers in single exponential

time remains open.
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