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Applications of Graph and Hypergraph Theory

in Geometry

IMRE BÁRÁNY

Abstract. The aim of this survey is to collect and explain some geomet-

ric results whose proof uses graph or hypergraph theory. No attempt has

been made to give a complete list of such results. We rather focus on typi-

cal and recent examples showing the power and limitations of the method.

The topics covered include forbidden configurations, geometric construc-

tions, saturated hypergraphs in geometry, independent sets in graphs, the

regularity lemma, and VC-dimension.

1. Introduction

Among n distinct points in the plane the unit distance occurs at most O(n3/2)

times. The proof of this fact uses two things. The first is a theorem from graph

theory saying that a graph on n vertices containing no K2,3 can have at most

O(n3/2) edges. The second is a simple fact from plane geometry: the unit

distance graph contains no K2,3.

This is the first application of graph theory in geometry, and is contained in a

short and extremely influential paper of Paul Erdős [1946]. The first application

of hypergraph theory in geometry is even earlier: it is the use of Ramsey’s

theorem in the famous Erdős and Szekeres result from 1935 (see below in the

next section). Actually, Erdős and Szekeres proved Ramsey’s theorem (without

knowing it had been proved earlier) since they needed it for the geometric result.

The aim of this survey is to collect and explain some geometric results whose

proof uses graph or hypergraph theory. Such applications vary in depth and

difficulty. Often a very simple geometric statement adds an extra condition to

the combinatorial structure at hand, which helps in the proof. At other times,

the geometry is not so simple but is dictated by the combinatorics of the objects

in question.

I do not attempt to give a complete list of such results, but rather concen-

trate on typical or recent examples showing the power and limitations of such

methods. Instead of presenting complete proofs I have tried to give a sketch
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emphasizing the interaction between geometry and (hyper)graph theory. To

fill in the details the reader is advised to consult the original papers and the

excellent books [Matoušek 2002] and [Pach and Agarwal 1995]. Although I’ve

tried to incorporate every important result, the choice of material, of course,

reflects my personal preferences. Also, several further examples could have been

included: the Lovász Local Lemma, discrepancy results, planar graphs and geo-

metric graphs, etc. But in these cases I felt that either the method is more

probabilistic than combinatorial, or the question is not so much geometric.

Some remarks on notation are in place here: b, c, ci, C denote different con-

stants. The O( ) and o( ) notation is often used. Kn,m denotes the complete

bipartite graph with classes of size n and m. Kk(t) stands for the complete k-

partite k-uniform hypergraph with t vertices in each class. The set {1, 2, . . . , n}
will be denoted simply by [n]. A graph is denoted by G = (V,E) where V is

the set of vertices, and E the set of edges. The independence number α(G) of

a graph G is the maximum size independent set in G, and a subset W ⊂ V

is independent if there are no edges between vertices of W . A hypergraph, or

set system, is usually denoted by H, its ground set (or vertex set) by V , its

(hyper)edges are e ∈ H, or sometimes E ∈ H. A transversal of H is a set T ⊂ V

intersecting every edge in H.

2. Forbidden Configurations

This method is typically used for counting geometric objects. It is usually

based on a simple geometric fact (showing that some configuration cannot oc-

cur) combined with a graph or hypergraph theorem saying that, if certain con-

figuration is forbidden, then the number of edges is bounded. The case of the

unit distance graph in the introduction illustrates the method quite clearly; this

section gives a few more examples. We mention in passing that the unit distance

problem is still wide open: the maximal number of unit distances among n points

is somewhere between n1+(c/ ln ln n) and cn4/3.

The first example is counting point-line incidences: Given a set of lines, L,

and a set of points, P , both of them finite, how many incidences can there

be? We only assume that two lines have at most one point in common and

there is at most one line passing through two points. (So we are not working

in the Euclidean plane.) The setting immediately defines a bipartite graph with

bipartition classes L and P , with (`, p) ∈ L × P forming an edge if they are

incident. This is a bipartite graph containing no K2,2. Then a theorem of

Kővári, T. Sós, and Turán [Kővári et al. 1954] applies. We state the result for

the case when |L| = |P | = n: such a graph has at most

n

2
(1 +

√
4n − 3)

edges. This bound is asymptotically tight: the example of the projective plane

of order q (where q is a prime power) shows n = q2 + q + 1 points and the same
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number of lines while the number of incidences is exactly

(q2 + q + 1)(q + 1) =
n

2
(1 +

√
4n − 3).

A miracle has happened: of the whole point-line structure, only the bipartiteness

and the forbidden subgraph K2,2 are needed to obtain the exact bound. It

is worth mentioning that while this exact bound follows from the forbidden

subgraph theorem [Kővári et al. 1954], the sharpness of the forbidden subgraph

theorem is implied by the example of the projective plane. So geometry pays

back its due to combinatorics.

Remark. The situation is different when the points and lines belong to the

Euclidean plane (cf. the Szemerédi–Trotter theorem [1983]) but there, the struc-

ture is richer. The actual bound is O(|P |2/3|L|2/3+|P |+|L|) which is tight apart

from the implied constant. There are several proofs available now: the simplest

is by L. Székely [1997] based on the crossing lemma. The above forbidden sub-

graph argument, combined with the so-called cutting lemma, also provides a nice

proof, for details see [Matoušek 2002].

Remark. The original motivation for bounding the number of edges in a

(bipartite) graph with no K2,2 comes from number theory, see [Erdős 1938].

Erdős proves the weaker bound 3n3/2 on the number of edges but gives the

example of the finite projective plane (in disguise) to show that the bound is

quite good.

Examples of this type abound. Here is a less well known one due to Turán

[1970].

Theorem 1. If X ⊂ R
2 has n elements and is of diameter one, then there are

at least n2/6 − O(n) pairs x, y ∈ X whose distance is at most 1/
√

2.

The proof is simple. First a little geometry: Among any four points of X there

are two that are at distance 1/
√

2 or closer. (One cannot give a bound smaller

than 1/
√

2: see the square of diameter one.) So the graph G(X,E), whose

edges are the pairs with distance larger than 1/
√

2, contains no K4. By Turán’s

theorem [1941] the complementary graph has at least n2/6 − O(n) edges. This

proof also indicates which set of n points shows that the bound n2/6 − O(n) is

tight.

The classical Erdős–Szekeres theorem [1935] uses, in its proof, a certain for-

bidden configuration. We say that n points in the plane are in convex position

if they form the vertices of a convex n-gon. We now state the Erdős–Szekeres

theorem:

Theorem 2. For every n ≥ 3 there is N = N(n) such that every point set

X ⊂ R2 in general position with |X| ≥ N contains a subset of size n that is in

convex position.

For the proof one checks that N(4) = 5, that is, among 5 points in the plane

there are 4 in convex position. Now set N(n) = R4(5, n), the Ramsey number,
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which means that in every red-blue colouring of all quadruples of an R4(5, n)-set

either there are 5 points whose all quadruples are red or there are n points whose

all quadruples are blue. This number is finite (by the Ramsey theorem, [Ramsey

1930]). Now let X ⊂ R2 contain N or more elements. Colour its quadruples in

convex position Blue, and colour the rest Red. There are no 5 points whose all

quadruples are Red (since N(4) = 5), so there are n points in X with all of their

quadruples in convex position. It is very simple to see now that these n points

are also in convex position. Here the forbidden configuration was 5 points with

all of its quadruples nonconvex.

Our examples so far have shown forbidden subgraphs. Often other structures

are forbidden. Here comes the beautiful case of lower envelope of segments in

R2. The setting is this: given n line segments in the plane, none of them vertical,

what is the complexity of their lower envelope? That is, consider the segments

as linear functions, each defined on some interval, take the pointwise minimum,

f , of these functions. How many segments make up the graph of this minimum?

The answer is cnα(n), where α(n) is a very slowly increasing function, the inverse

of the Ackerman function. Without going into the details (which can be found

in [Hart and Sharir 1986] and [Matoušek 2002]), I explain what kind of forbidden

structure appears here.

Index the segments by 1, . . . , n. The function f(x) is piecewise linear. Assume

I1, I2, . . . , It are the intervals (in this order on the horizontal axis) where f is

linear. (So we want to estimate t, the number segments on the graph of f .)

Attach index i to the interval Ik if the graph of f coincides with the ith segment

on Ik. Writing the various indexes, as they appear on the horizontal axis from

left to right, we get a sequence a1, a2, . . . , at of numbers from [n] that has the

following properties:

• ai 6= ai+1,

• there are no indices i1 < i2 < i3 < i4 < i5 such that ai1 = ai3 = ai5 6= ai2 =

ai4 .

Only the second property (saying that a, b, a, b, a cannot be a subsequence of our

sequence) needs a proof, and we leave it to the reader. This is a forbidden subse-

quence condition. Sequences with these properties are called Davenport–Schinzel

sequences of order 3. Determining the maximal length of such a sequence on [n]

had been an open problem from 1965 until Hart and Sharir [1986] proved, by

combinatorial methods, that the maximal length is O(nα(n)). That this bound

is sharp was shown later (by Peter Shor; see [Matoušek 2002]). The ingenious

construction gives n segments whose lower envelope has cnα(n) segments. Once

again, combinatorics gives the upper bound in a geometric problem, and a geo-

metric construction shows that this bound is precise.

Further examples of forbidden configurations can be found in the books [Pach

and Agarwal 1995] and [Matoušek 2002].
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3. Constructions

Any hypergraph H on n vertices gives rise, in a natural way, to a point set

X(H) in Rn. Simply represent each S ∈ H by its characteristic vector x(S)

whose ith component is one if the ith element of the ground set is in S and

is zero otherwise. This set X(H) is, in fact, a subset of the vertices of the

unit cube. The properties of the hypergraph are reflected in the properties of

X(H) and vice versa. This simple connection, combined with powerful results

from extremal set theory, can have amazing results, like the counterexample to

Borsuk’s conjecture.

In 1933 Borsuk asked whether every set of diameter one in Rd can be parti-

tioned into d+1 sets of diameter smaller than one. One may immediately assume

that the sets in question are convex since taking convex hull does not increase

the diameter. Among convex sets, the regular simplex and the unit ball can in-

deed be partitioned into d + 1 sets of smaller diameter (but not into fewer sets).

This had been known for smooth convex bodies as well (with a fairly simple

proof), but for polytopes, despite many efforts, there had been no proof in sight.

Then, in 1992, an ingenious construction was found by Kahn and Kalai [1993]

showing that the conjecture is far from being true: the smallest number of sets

in a suitable partition must be at least 2c
√

d for some small positive c. Their

construction is based on the following, equally beautiful, result of Frankl and

Wilson [1981]:

Theorem 3. Let q be a prime power . Let F be a family of 2q-subsets of [4q] so

that no two sets in F have intersection of size q. Then

|F | ≤ 2

(

4q − 1

q − 1

)

.

How does one use this result to produce a counterexample? Consider the edges

of the complete graph K(V,E) whose vertex set is V = [4q]. For every partition

P = {A,B} of V let S(A,B) be the set of edges connecting a vertex in A to one

in B. Now define H to be the family of sets S(A,B) where |A| = |B| = 2q. So

H is a 4q2-uniform hypergraph on the set E, |E| = 2q(4q − 1), which gives rise

to a point set X(H) in R|E|. As is easy to see, the smallest intersection between

S1 = S(A1, B1) ∈ H and S2 = S(A2, B2) ∈ H occurs when |A1 ∩ A2| = q. It

follows that the Euclidean distance between x(S1) and x(S2) is the largest when

|A1 ∩ A2| = q. By the Frankl–Wilson theorem every subfamily of H with more

than 2
(

4q−1
q−1

)

sets contains two sets, S1 and S2 with |A1∩A2| = q. That is, when

partitioning H into fewer than

h(q) =

1
2

(

4q
2q

)

2
(

4q−1
q−1

)

subfamilies, one of them contains a pair S1 and S2 with |A1 ∩ A2| = q. The

same applies to X(H) which sits in d = 2q(4q − 1)-dimensional space: in any
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partition of X(H) into fewer than h(q) sets one of the sets has the same diameter

as X(H). It is easy to see that h(q) grows faster than 1.2
√

d > d + 1 if d is large

enough. This is the first counterexample to Borsuk’s conjecture. Several others

with direct proofs and better estimates are available now. For a comprehensive

survey, see [Răıgorodskĭı 2001].

The morale is that geometric intuition can be misleading in higher dimension.

Taking convex hulls may not help at all and the discrete structure of the point

set can be more important.

The Frankl–Wilson theorem has further geometric applications, many of them

given in the original paper [Frankl and Wilson 1981]. They show for instance

that the chromatic number, g(d), of Rd is exponential: g(d) > (1 + o(1))1.2d.

Here g(d) is defined as the smallest number n such that Rd can be coloured by

n colours so that no two points of the same colour are distance one apart. The

question of estimating g(2) and more generally g(d) goes back to E. Nelson, J.

Isbell, and P. Erdős; see [Hadwiger 1961]. Determining g(d) has turned out to

be hard. For instance, the value of g(2) is known to be either 4,5,6, or 7, but

which of these numbers it is remains a mystery, after 60 years. Larman and

Rogers [1972] proved that g(d) ≤ 3d. This, together with the Frankl–Wilson

theorem shows that the chromatic number of Rd is exponential in d.

Geometric intuition did not help in the following construction, which is based

on extremal hypergraph theory. Danzer and Grünbaum [1962] showed that

among 2d + 1 points in Rd there are three that form an acute triangle. (The

proof is beautiful!) This raised the question to determine the smallest N such

that among any set of N points in Rd, there are three that form an angle ≥ π/2.

It was conjectured that the smallest such N is 2d − 1. But this was soundly

refuted by Erdős and Füredi [1983] with the following example, which is quite

natural once you have seen it. Consider the vertices of the unit cube. Clearly,

no angle is larger than π/2. Three vertices a, b, c give angle π/2 at b if and only

if the vectors a − b and c − b are orthogonal. As a, b, c are 0-1 vectors, they are

characteristic vectors of sets A,B,C ⊂ [d]. The condition (a − b)(c − b) = 0

translates directly to A∩C ⊂ B ⊂ A∪C. Thus the target is to construct a large

family H of sets on the ground set [d] with no three sets A,B,C ∈ H satisfying

B ⊂ A ∪ C (a slightly weaker yet sufficient condition). A quite natural random

hypergraph with 1.13d edges has this property. In the corresponding set in Rd,

with 1.13d points, all angles are smaller than π/2. For details see [Erdős and

Füredi 1983], where the authors also prove, with similar methods, the existence

of a set in Rd of size exponential in d such that all distances between two points

of the set are between .99 and 1.01.

4. Saturated Hypergraphs

The saturated hypergraph theorem of Erdős and Simonovits [1983] says the

following:
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Theorem 4. For every positive integer k and t and every p > 0 there exists

δ > 0 with the following property . Let H be a k-uniform hypergraph on n vertices

and with at least p
(

n
k

)

edges. Then H contains at least

bδnktc

copies (not necessarily induced) of Kk(t).

One way to remember the statement is to assume that H is a random k-uniform

hypergraph with edge-probability p. Then the expected number of copies of

Kk(t) is ptk(

n
t,...,t

)

≥ const nkt. The saturated hypergraph theorem says that a

hypergraph with positive edge density behaves like a ”random hypergraph” of

the same edge density. It is not surprising then that the proof of Theorem 4 goes

by averaging.

This theorem is very useful when one has a family F of geometric objects and

happens to know that a positive fraction of the k element subfamilies of F have

a certain property, and one wants to show that, say, F has a large subfamily

with some other property. Our example is the following point-selection theorem

of Alon et al. [1992], a similar and earlier example is in [Bárány et al. 1990].

Theorem 5. Let X ⊂ R
d be an n-point set and let F be a family of some

(d + 1)-tuples of X with |F | = α
(

n
d+1

)

, where α ∈ (0, 1]. Then F contains a

subfamily F ′ of size

cdα
sd

(

n

d + 1

)

(where cd > 0 and sd are constants) such that
⋂

S∈F ′ conv S is nonempty .

In this theorem α may even depend on n, a case which is needed when bounding

the number of halving hyperplanes of a given n-set in Rd (see [Bárány et al.

1990] and [Alon et al. 1992]).

What is the way of proving such a result? The first (geometric) idea is to

use the fractional Helly theorem of [Katchalski and Liu 1979]. It says that if in

a family of N convex sets (in Rd) a positive fraction of the (d + 1)-tuples are

intersecting, then the family has a large, cN size intersecting subfamily. So we

call the convex hull of an edge in F a simplex of F , and try to show that a positive

fraction of the (d + 1)-tuples of the simplices of F are intersecting. Then comes

the second (combinatorial) idea: F is a (d+1)-uniform hypergraph with positive

edge density, thus the saturated hypergraph theorem stated above ensures that

there are many copies of Kd+1(t) for any fixed number t. So the next target

is to prove that such a Kd+1(t) contains (d + 1) vertex-disjoint simplices that

intersect, provided t is large enough. Actually one has the freedom of choosing t

as large as needed provided it depends only on d. Once this is proved, a routine

double-counting argument shows that a positive fraction of the (d + 1)-tuples

of simplices of F are intersecting. So what remains to be shown is a geometric

statement, called the Coloured Tverberg Theorem:
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Theorem 6. Given pairwise disjoint sets C1, . . . , Cd+1 ⊂ Rd each with |Ci| =

4d+3, there are pairwise disjoint sets S1, . . . , Sd+1 ⊂ Rd, each with |Sj | = d+1,

such that |Ci ∩ Sj | = 1 for all i, j and

d+1
⋂

i

conv Sj 6= ?.

Here the Ci are the classes (called colours) of Kd+1(t), the convex hull of each

edge of Kd+1(t) is a simplex of F , and the Sj are what we are after: an inter-

secting (d + 1)-tuple of pairwise vertex-disjoint simplices of F . The proof of this

theorem, which is due to Živaljević and Vrećica [1992], is difficult and unusual

since it is based on equivariant algebraic topology, although the statement is

from convex geometry, or linear algebra, if you wish. In fact, all proofs for d > 2

use algebraic topology.

Another example of this kind is a lattice-point version of the fractional Helly

theorem, due to Bárány and Matoušek [2003]. Assume that in a finite family

F of convex sets in Rd the intersection of every (d + 1) sets contains a lattice

point, i.e., a point all of whose coordinates are integral. Helly’s theorem says

that all the sets have a common point. But this may not be a lattice point: take,

for instance, the convex hull of all but one vertices of the unit cube in Rd, this

is one convex set for each (missing) vertex of the cube. They form a family F

where every 2d − 1 sets share a lattice point, but
⋂

F contains no lattice point

whatsoever. However, it is known (see [Doignon 1973] or [Scarf 1977]) that the

Helly number of lattice convex sets in Rd is 2d, that is, if in a finite family F of

convex sets in Rd every 2d or fewer sets have a lattice point in common, then
⋂

F contains a lattice point. In the given case this implies that the fractional

Helly number of lattice convex sets in Rd is (at most) 2d. (This fact is proved

in [Alon et al. 2002].) So what is the precise value of this number? The answer

is d + 1:

Theorem 7. For every d ≥ 1 and every α ∈ (0, 1] there is a β > 0 with

the following property . Let K1, . . . ,KN be convex sets in Rd such that
⋂

i∈I Ki

contains a lattice point for at least α
(

N
d+1

)

index sets I ⊂ [N ] of size (d + 1).

Then there is a lattice point common to at least βN sets among the Ki.

In the proof the application of the saturated hypergraph theorem leads to what

we call the coloured Helly theorem for convex lattice sets:

Theorem 8. For every integer d and r, there is an integer t such that the

following holds. Assume that for each vertex v of Kd+1(t) there is a convex set

Kv ∈ Rd, such that for each edge e of Kd+1(t), the intersection
⋂

v∈e Kv contains

a lattice point . Then there is a set R, of size r, in one of the classes of Kd+1(t)

such that the intersection
⋂

v∈R Kv contains a lattice point .

This is only needed for r = 2d, but that does not seem to make any difference

in the proof, which, besides using two distinct pieces of geometry, is technical,
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difficult, and combinatorial in nature. The method can be developed further

and, when combined with the Alon–Kleitman technique [1992], it shows what

can be saved from Helly’s theorem when every (d + 1) of the sets have a lattice

point in common:

Theorem 9. For every integer d ≥ 2 there is an integer H(d) such that the

following holds. Let F be a finite family of convex sets in Rd. Assume that the

intersection of every (d + 1) sets from F contains a lattice point . Then there is

a set S of lattice points with |S| ≤ H(d) such that S intersects every set in F .

For d = 2 this was proved by T. Hausel [1995] with H(2) = 2.

The applications of the saturated hypergraph theorem always lead to new, and

often difficult, problems in geometry. In such problems the vertices of a Kd+1(t)

are some geometric objects, the objects in each edge satisfy a certain property,

and one wants to find a special subfamily of these objects, like in Theorem 9 or

in the Coloured Tverberg Theorem.

5. Independent Sets in Graphs

Given a graph G(V,E) on n vertices and maximum degree d, the simplest

possible greedy algorithm produces an independent set W of size n/(d+1). (An

equally simple random choice gives an independent set of size n/4d.) In a seminal

paper [Ajtai et al. 1981], Ajtai, Komlós, and Szemerédi showed that this can be

improved for triangle-free graphs: if G is triangle free, then

α(G) ≥ cn log d

d

with some universal constant c > 0. Subsequently c = 1 + o(1) was shown

by Shearer [1983]. Here d is fixed and n goes to infinity. The original proof

goes via sequential random choices, and the difficulty is to ensure that after each

iteration, the remaining structure is still random, or behaves as if it were random.

According to his coauthors, Szemerédi’s philosophy, that random subgraphs of

a graph behave very regularly, and his vision that such a proof should work,

proved decisive. Since then, the method has been applied several times and with

great success.

This lower bound on α(G) has the immediate corollary (see [Ajtai et al. 1980])

that the Ramsey number R2(n, 3) is O(n2/ lnn) which turned out to be the right

order of magnitude (see [Kim 1995]). The result on α(G) has been generalized

from triangle-free graphs to “locally sparse” graphs and hypergraphs in various

ways. Locally sparse here means, for instance, that there are few edges connect-

ing the neighbours of every vertex, or that two vertices don’t have too many

common neighbours. We are going to explain two such cases: the problems

come from geometry and the solution, or the crucial step of the solution, from

hypergraph theory.
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The first concerns Heilbronn’s conjecture which says that every set of N points

in the unit disk B contains three points such that the triangle spanned by them

has area less then const/N2. In 1982 Komlós, Pintz, and Szemerédi [Komlós

et al. 1982] constructed a counterexample to this conjecture. In the next few

paragraphs I describe their construction, starting with the geometric part which

is simpler and perhaps more probabilistic than geometric.

Choose first n points randomly, independently, and uniformly from B, set

t = n0.1 and 4 = t2

100n2 . (N is going to be smaller than n.) Write V for the set

of these points and call a triangle with vertices from V small if its area less than

4. The small triangles define a hypergraph H on V . The target is to show that

H contains a large independent set W ⊂ V . The probability that three random

points span a small triangle is less than

∫ 2

0

84
r

2rπdr = 32π4 <
t2

n2
.

This can be seen by fixing two points at distance r, and then averaging over r.

The expected size of H is less than nt2/6. Hence by Markov’s inequality,

|H| < nt2/3

with probability at least 1/2.

A 2-cycle in H is e1, e2 ∈ H with |e1 ∩ e2| = 2, a 3-cycle is e1, e2, e3 ∈ H with

|ei∩ej | = 1 for all distinct i, j, and a 4-cycle is e1, e2, e3, e4 ∈ H with |ei∩ej | = 1

if j = i + 1 mod 4 and 0 if j = i + 2 mod 4. The following facts are checked

easily: with high probability

• the number of 2-cycles is less than n0.1,

• the number of 3-cycles is less than n0.7,

• the number of 4-cycles is less than n0.7.

Thus deleting all vertices in 2-,3-, or 4-cycles you get, with positive probability,

a new 3-uniform hypergraph H∗ on ground set V ∗ where |V ∗| = n(1 − o(1)).

The next, and crucial, step is plain hypergraph theory.

Lemma 10. Assume H is a 3-uniform hypergraph on [n] with at most nt2/3

edges, without cycles of length 2, 3, 4, and let t ≤ n0.1. Then H contains an

independent set W with

|W | > const
n

t

√
ln t.

Setting N = constn
t

√
ln t we have a point set W in the unit disk, of N points,

without small triangles; moreover 4 = ct2/n2 = c(lnN)/N2. This is the coun-

terexample to Heilbronn’s conjecture.

The crucial Lemma 10 is an improvement over the simple estimate α(H) >

n/(3t) which is true even if short cycles are not excluded. The proof is by

sequential random choices, validating, once more, Szemerédi’s philosophy. The
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short cycle condition guarantees that the hypergraph is locally sparse, in the

sense that the neighbourhoods of two distinct vertices are “independent”.

Although Lemma 10 is often very useful, it typically improves an existing

estimate by a log-factor. In the Heilbronn case, for instance, it is not at all

clear where the truth lies. To decide where it lies, most probably, quite different

methods will be needed.

In contrast with Heilbronn’s problem, the next application of the improved

independence number method gives an almost precise answer to a geometric

problem. It is a recent result of Kim and Vu [2004]. We need to introduce some

terminology.

A graph G(V,E) is (d, ε)-regular if its degrees are between d(1 − ε) and d.

The codegree of a the graph, D = D(G) is the maximum number of common

neighbours of x, y ∈ V , x 6= y. An independent set W ⊂ V is called maximal if

it is not contained in a larger independent set. In the following theorem, which

is from [Kim and Vu 2004], the asymptotics is understood with d → ∞ and ω(d)

denotes a function that tends to infinity as d → ∞.

Theorem 11. Let G be a (d, ε)-regular graph on n vertices, where

ε = (ω(d) ln d)−1.

If

D(G) ≤ d

ω(d) ln2 d
,

then G contains a maximal independent set W with

(1 + o(1))
n

d
ln

d

D
≤ |W | ≤ (1 + o(1))

n

d
ln

d

D
+ ω(d)

n

d
D ln2 D.

The error term ω(d)n
d D ln2 D is dominating if ω(d)D ln2 D is larger than ln d

D .

Otherwise, that is, when ω(d)D ln2 D = o(ln d
D ), G contains a maximal inde-

pendent set of size (1 + o(1))n
d ln d

D . The method is, again, a sequential random

choice of vertices but the remainder term has to be estimated precisely which

makes the proof hard.

This result is used in [Kim and Vu 2004] to answer a question of Segre from

1959 (see [Szőnyi 1997]) on arcs in projective planes. An arc in a projective

plane P of order q is a set A ⊂ P containing no three points on a line. An

arc is complete if it is not contained in a larger arc. Segre’s question is this:

What are the possible sizes of complete arcs in P? Simple counting arguments,

using properties of the projective plane, show that the size of a complete arc

is always between
√

2q and q + 2. Szőnyi [1997] showed that almost all values

in the interval [cq3/4, q] can be the size of a complete arc. Kim and Vu [2003]

showed the existence of complete arcs whose size is
√

q(ln q)b with some universal

constant b. This is close to the lower bound
√

2q. Further, it is proved in [Kim

and Vu 2004] that sizes of complete arcs in P are almost dense in the interval

[
√

2q, q].
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Theorem 12. There are positive constants b, c and Q such that the following

holds. For every plane P of order q ≥ Q and every q∗ ∈ [
√

q ln4 q, q], P contains

a complete arc A with

cq∗ ≤ |A| ≤ q∗ lnb q.

The proof uses the fact that the conic C = {(x, x2) : x ∈ GF (q)} is an arc in P

whose secants cover every point of P \C (except the one at infinity) q/2−O(1)

times. Set D = P \ C and ε = (
√

q ln q)/q∗, so ε is small when q is large. Given

an arc A ⊂ D one defines a graph GA(V,E) as follows: V is the set of points

v ∈ C not covered by secants from A, and u, v ∈ V form an edge in E if there

is a ∈ A with a, u, v collinear. One has to show next (the proof is hard and

probabilistic) that there is an arc A ⊂ D, of size at most 2ε
√

q, such that GA

satisfies the conditions of Theorem 11. Then one applies Theorem 11 and an

additional argument to show that GA contains a maximal independent set of the

desired size such that its secants cover D \ A. Further details of the proof (that

are even less geometric) can be found in the forthcoming [Kim and Vu 2004].

Results like Lemma 10 and Theorem 11 have been used to find a large match-

ing in a hypergraph: Given a hypergraph H, a matching M is a collection of

pairwise disjoint edges. Define the intersection graph, G(H) of H as follows: its

vertex set is H, and two vertices, e, f ∈ H form an edge in G(H) if e ∩ f = ?.

So a matching in H corresponds to an independent set in G(H), and a large in-

dependent set corresponds to many pairwise disjoint edges. Further, using such

a matching one can find an economic cover of the ground set by edges. This

happens if the set of vertices left uncovered by the matching is small. In other

words, if the estimate of error term is precise. This is a very promising area with

plenty of results and conjectures. Their geometric applications are waiting to be

discovered.

6. The Regularity Lemma

Szemerédi’s famous regularity lemma is one of the most important and useful

results in combinatorics, it has millions of applications in discrete mathematics,

but surprisingly few in geometry. Here is a remarkably elegant one, due to János

Pach [1998].

Theorem 13. For every d ≥ 2 there is a positive constant cd with the following

property . Given sets X1, . . . , Xd+1 ⊂ Rd, each of size n, there are subsets Zi ⊂
Xi, (i ∈ [d + 1]), each of size at least cdn such that

⋂

conv{z1, . . . , zd+1} 6= ?,

where the intersection is taken over all transversals zi ∈ Zi, i ∈ [d + 1].

The proof uses several ingredients: the point selection theorem (Theorem 5),

a weak form of the regularity lemma for hypergraphs, and the so-called same-

type lemma from [Bárány and Valtr 1998]. To state the last one we say that
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the sets Z1, . . . , Zk in Rd have same type transversals if there is no hyper-

plane intersecting the convex hull of any d + 1 of them. (For various equiv-

alent definitions see [Bárány and Valtr 1998] or [Matoušek 2002].) What we

will need is the following fact. If Z1, . . . , Zd+2 have same type transversals,

and if some z1 ∈ Z1, . . . , zd+2 ∈ Zd+2 satisfies zd+2 ∈ conv{z1, . . . , zd+1}, then

wd+2 ∈ conv{w1, . . . , wd+1} holds for all w1 ∈ Z1, . . . , wd+2 ∈ Zd+2. (Hopefully,

this also explains the meaning of “same type”.)

Lemma 14. For every d ≥ 2 and every k ≥ d + 1 there is a positive constant

b(d, k) with the following property . Given nonempty sets X1, . . . , Xk ⊂ Rd in

general position, there are subsets Zi ⊂ Xi, (i ∈ [k]), each with |Zi| ≥ b(d, k)|Xi|
such that Z1, . . . , Zk have the same type transversals.

Remark. Ramsey’s theorem guarantees the existence of sets Zi with this property

but their size is much smaller than cn. Here geometry is needed to guarantee

linear size.

The proof of Theorem 13 begins by forming the (d + 1)-uniform hypergraph H

whose edges are the sets {x1, . . . , xd+1} with xi ∈ Xi. H has (d+1)n vertices and

nd+1 edges, so Theorem 5 gives a subhypergraph H∗ ⊂ H and a point z ∈ Rd

such that |H∗| ≥ βnd+1 and z ∈ conv e for each edge e ∈ H∗, where β > 0

depends only on d.

Next, a weak form of the regularity lemma for hypergraph (see [Pach 1998])

is needed. Without stating it we just claim that it ensures the existence of

Yi ⊂ Xi, |Yi| ≥ γ|Xi| such that for every subset Z1 ⊂ Y1, . . . , Zd+1 ⊂ Yd+1 with

|Zi| ≥ b(d, d+2)|Yi| there are vertices zi ∈ Zi i ∈ [d+1] such that {z1, . . . , zd+1}
is an edge of H∗. Here γ > 0 depends only on d.

Finally, one applies the same type lemma for the sets Y1, . . . , Yd+1 and Yd+2 =

{z}. This gives sets Zi ⊂ Yi (i ∈ [d+ 1]), each of size at least b(d, d+ 2)|YI |, and

Zd+2 = {z} with same type transversals. By the weak regularity lemma, there

is at least one simplex with vertices zi ∈ Zi, i ∈ [d + 1] that contains z. Then,

by the same type lemma, all such simplices contain z. This finishes the proof.

It is high time to state the original regularity lemma now. We need some

terminology: Given a graph G(V,E), and disjoint sets X,Y ⊂ V , their density

is defined as

d(X,Y ) =
|E(X,Y )|
|X| · |Y | ,

where E(X,Y ) is the set of edges between X and Y . Given some δ > 0, and

disjoint A,B ⊂ V , the pair (A,B) is called δ-regular if, for every X ⊂ A and

Y ⊂ B satisfying |X| > δ|A| and |Y | > δ|B| we have

|d(X,Y ) − d(A,B)| < δ.

Now we state the regularity lemma of Szemerédi [1978] in the hope that it will

find further geometric applications.
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Theorem 15. Given δ > 0 and an integer m, there is an M = M(δ,m) such

that the vertex set of every graph G(V,E) with |V | > m can be partitioned into

classes V0, V1, . . . , Vk, where m ≤ k ≤ M , such that |V0| ≤ |V1| = . . . = |Vk| and

all but at most δk2 of the pairs (Vi, Vj), i, j ∈ [k] are δ-regular .

A proper illustration of the use of this lemma is a very recent result of Pach,

Pinchasi, and Vondrák (manuscript, 2004). This result answers a question of

Erdős in the following form: Assume ε > 0, X is a set of n points in R3, and

every two points in X are at distance one at least. If there are εn2 pairs in X

whose distance is between t and t + 1 for some t > 0, then the diameter of X is

at least cn where c only depends on ε.

The conditions immediately cry out for the regularity lemma. In the graph

G(X,E), x, y ∈ X form an edge if ‖x − y‖ ∈ [t, t + 1]. One obtains two disjoint

sets A,B ⊂ X of size c1n with (A,B) ε-regular. This is a very strong condition

on the point sets A,B. Using geometry one can find subsets X ⊂ A and Y ⊂ B,

each of size c2n and such that ‖x − y‖ ∈ [t, t+1] for every x ∈ X, y ∈ Y . Here

c2 > 0 depends on ε only. The rest of the proof is 3-dimensional geometry.

Szemerédi’s regularity lemma has recently been generalized for hypergraphs

by Gowers and by Rödl et al. (unpublished yet) with the potential of having

further geometric applications. The regularity lemma is extremely useful in

discrete mathematics, but, so far, it has not been applied in geometry very

often.

7. VC-Dimension and ε-Nets

Given a hypergraph H with vertex set V , and ε-net (where ε ∈ (0, 1]) is a

subset N ⊂ V that intersects each edge E ∈ H with |E| ≥ ε|V |. In other words,

N is an ε-net for H if it is a transversal for the edges with at least ε|V | elements.

This definition can be extended to “infinite hypergraphs”: Assume V is a set, µ

is a probability measure on V , and H is a system of µ-measurable sets. Then

N ⊂ V is called an ε-net for H with respect to µ if it intersects every set E ∈ H

whose measure is at least ε.

There is a special condition, of combinatorial nature, that ensures the exis-

tence of “very finite” ε-nets. Given a set system H on a finite or infinite ground

set V , a set A ⊂ V is shattered by H if each subset of A can be produced as A∩E

for a suitable E ∈ H. The VC-dimension of the set system H, denoted by dimH,

is the maximum of the sizes of all finite shattered subsets of V , or ∞ if there

are arbitrarily large shattered subsets. The VC-dimension, introduced by Vapnik

and Chervonenkis in [1971] has turned out to be a very powerful tool everywhere:

in statistics (the original motivation for the VC-dimension), discrete geometry,

computational geometry, combinatorics of hypergraphs, and discrepancy theory.

The terminology is sometimes different, for instance in computational geometry,

the set system H is called range space and its edges ranges.
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A simple example is a set of points V in Rd for which H is formed by the sets

of type V ∩h where h is a half-space. The VC-dimension of H is then d+1 since,

by Radon’s theorem, no (d + 2)-set is shattered by half-spaces in Rd. Another

example with finite VC-dimension, on the same ground set V , is the collection

of all Euclidean balls.

The reason for the wide range of applications of VC-dimension lies in the very

general setting and in the so called ε-net theorem (see [Haussler and Welzl 1987])

and the ε-approximation theorem (introduced in to [Vapnik and Chervonenkis

1971]).

Theorem 16. Let V be a set , and µ be a probability measure on V , H a system

of µ-measurable subsets of V , and ε ∈ (0, 1]. If dimH ≤ d where d ≥ 2, then

there exists an ε-net for H of size at most 4d
ε ln 1

ε .

While an ε-net intersects each (large enough) set in H in at least one point, an

ε-approximation M ⊂ V provides a “proportional representation” of each set in

H: for each E ∈ H
∣

∣

∣

∣

µ(E) − |M ∩ E|
|M |

∣

∣

∣

∣

< ε.

Theorem 17. Let V be a set , and µ be a probability measure on V , H a system

of µ-measurable subsets of V , and ε ∈ (0, 1]. If dimH ≤ d where d ≥ 2, then

there exists an ε-approximation for H, of size at most

Cd

ε2
ln

1

ε
.

The ε-net theorem is more often used in geometry. The following application to

an art gallery problem is due to Kalai and Matoušek [1997]. An art gallery is a

simply connected compact set T in the plane, and the set of points visible from

x ∈ T is, by definition,

V (x) = {y ∈ T : [x, y] ⊂ T}.

In other words, x sees or guards the points in V (x).

Theorem 18. Let T ⊂ R2 be a simply connected art gallery of Lebesgue measure

one. Assume that for some r ≥ 2 the Lebesgue measure of each V (x) is at least

1/r. Then T can be guarded by at most Cr ln r points, that is, there is a set

N ⊂ T , having at most Cr ln r points, with T = ∪x∈NV (x).

The proof begins by introducing the set system H = {V (x) : x ∈ T} and noting

that a set N ⊂ T guards T iff it intersects each set in H. So we are done if H

admits an (1/r)-net of the required size. This is guaranteed by the ε-net theorem

provided the VC-dimension of H is bounded by some constant independent of

T . This can be shown by a geometric argument using the fact that T is simply

connected. The details can be found in [Kalai and Matoušek 1997], or in [Valtr

1998] where dimH ≤ 23 is shown.
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There are several geometric applications of VC-dimension and the ε-net theo-

rem, see for instance the books [Chazelle 2000], [Matoušek 2002], and [Pach and

Agarwal 1995]. Since most of them require new concepts and further prepara-

tions that go beyond the limits of this survey, I only explain one more case, that

of a spanning tree with low crossing number. The setting is this. Given a set

X of n points in R2 in general position, we want to build a spanning tree (with

vertex set X and edge set segments connecting certain pairs of X) such that

no line meets too many of the edges. The following beautiful theorem is due to

Welzl [1988] (the lnn factor has been since then removed).

Theorem 19. Given a set X of n points in R2 in general position, there is a

spanning tree with vertex set X such that no line meets more than O(
√

n lnn)

edges of the tree.

For the proof one checks first that the following set system H has finite VC-

dimension: The ground set is the collection of all lines in R2 and H consists

of sets of lines Ls that intersect a fixed segment s. To see that dimH is finite

assume an n element set of lines A is shattered by H. These lines divide the

plane into m ≤
(

n
2

)

+n+1 cells, and if s and t are two segments whose endpoints

(in pairs) belong to the same cell, then Ls and Lt have the same intersection

with A. Consequently there are at most
(

m
2

)

segments s for which Ls ∩ A are

pairwise distinct, so 2n ≤
(

m
2

)

implying that dimH ≤ n ≤ 12.

Lemma 20. Given a set S of k points in general position, and a set L of m lines

in R2 with no point incident to any of the lines, there exist x, y ∈ S such that

the line segment [x, y] intersects at most (cm ln k)/
√

k lines from L.

For the proof one notes that the set system H has finite VC-dimension, so the

ε-net theorem applies: with ε = c1(ln k)/k we get a collection of lines L′ ⊂ L of

size c2ε
−1 ln ε−1 <

√
k/2 such that every open segment crossing

εm = c
m ln k√

k

elements of L crosses some line in L′. The lines in L′ divide the plane into less

than k cells. Thus one cell contains two points of S; the segment connecting

them satisfies the requirements of the lemma.

To finish the proof of the spanning tree theorem one starts with constructing

a set, L, of
(

n
2

)

lines that represent all possible partitions of X by lines. Setting

S0 = X and L0 = L one applies the lemma to Si, Li (i = 0, 1, . . . , n − 2) to

obtain a segment [xi, yi] intersecting at most cmi ln ni√
n

i

from Li. For the next

iteration Si+1 = Si \ {xi} and Li+1 is the set of lines consisting of Li plus one

more, slightly perturbed, copy of each line in Li intersecting [xi, yi]. The analysis

of this algorithm finishes the proof; the details can be found in [Welzl 1988] or

[Pach and Agarwal 1995].
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8. Epilogue

László Fejes Tóth asked in 1976 whether the densest packing of congruent

circles in the plane is unique or not in the following sense: Assume that in a

circle packing, C, in the plane, every circle is touched by at least six others. Is

it true then, that arbitrarily large or arbitrarily small circles occur in C unless it

is the densest packing of congruent circles. The answer is yes and is the content

of [Bárány et al. 1984]:

Theorem 21. Under the conditions above arbitrarily small circles occur in C

unless C is the densest packing of congruent circles.

For the proof one defines the graph G(V,E) whose vertices are the circles with

two of them forming an edge if the corresponding circles are touching each other.

G is a planar graph. Define the function f : V → R by f(v) = 1/r when r is

the radius of the circle corresponding to v ∈ V . Surprisingly, this function is

subharmonic on G, that is, f(v) is less than or equal to the average of f on the

neighbours of v. This is the first geometric component in the proof. Then one

uses, or rather proves a theorem saying that, under suitable conditions on the

underlying graph, if a subharmonic function is bounded from above, then it is

necessarily constant. Finally, the “suitable” condition follows from the planarity

of G. I’m sure that, in the world of geometry, there are hundreds of similar

proofs waiting to be discovered.
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numbers”, J. Combin. Theory Ser. A 29:3 (1980), 354–360.

[Ajtai et al. 1981] M. Ajtai, J. Komlós, and E. Szemerédi, “A dense infinite Sidon
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numbers for hypergraphs arising in geometry”, Adv. in Appl. Math. 29:1 (2002),
79–101.
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[Erdős 1938] P. Erdős, “On sequences of integers no one of which divides the product
of two others and related problems”, Mitt. Forsch. Institut. Mat. Tomsk. 2 (1938),
38–42.
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[Szemerédi and Trotter 1983] E. Szemerédi and W. T. Trotter, Jr., “A combinatorial
distinction between the Euclidean and projective planes”, European J. Combin. 4:4
(1983), 385–394.



50 IMRE BÁRÁNY
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Rényi Institute

POBox 127,

Budapest, 1364

Hungary

and

Department of Mathematics

University College London

Gower Street

London WC1E 6BT

United Kingdom

barany@renyi.hu


