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1. Introduction

Roughly speaking, Finsler metrics on a manifold are regular, but not neces-

sarily reversible, distance functions. In 1854, B. Riemann attempted to study a

special class of Finsler metrics — Riemannian metrics —and introduced what is

now called the Riemann curvature. This infinitesimal quantity faithfully reveals

the local geometry of a Riemannian manifold and becomes the central concept

of Riemannian geometry. It is a natural problem to understand general regu-

lar distance functions by introducing suitable infinitesimal quantities. For more

than half a century, there had been no essential progress until P. Finsler studied

the variational problem in a Finsler manifold. However, it was L. Berwald who
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first successfully extended the notion of Riemann curvature to Finsler metrics

by introducing what is now called the Berwald connection. He also introduced

some non-Riemannian quantities via his connection [Berwald 1926; 1928]. Since

then, Finsler geometry has been developed gradually.

The Riemann curvature is defined using the induced spray, which is indepen-

dent of any well-known connection in Finsler geometry. It measures the shape

of the space. The Cartan torsion and the distortion are two primary geometric

quantities describing the geometric properties of the Minkowski norm in each

tangent space. Differentiating them along geodesics gives rise to the Landsberg

curvature and the S-curvature. These quantities describe the rates of change of

the “color pattern” on the space.

In this article, I am going to discuss the geometric meaning of the Landsberg

curvature, the S-curvature, the Riemann curvature, and their relationship. I will

give detailed proofs for several important local and global results.

2. Finsler Metrics

By definition, a Finsler metric on a manifold is a family of Minkowski norms

on the tangent spaces. A Minkowski norm on a vector space V is a nonnegative

function F : V → [0,∞) with the following properties:

(i) F is positively y-homogeneous of degree one, i.e., F (λy) = λF (y) for any

y ∈ V and any λ > 0;

(ii) F is C∞ on V \ {0} and for any tangent vector y ∈ V \ {0}, the following

bilinear symmetric form gy : V × V → R is positive definite:

gy(u, v) :=
1

2

∂2

∂s∂t

(

F 2(y + su + tv)
)

|s=t=0.

A Minkowski norm is said to be reversible if F (−y) = F (y) for y ∈ V. In this

article, Minkowski norms are not assumed to be reversible. From (i) and (ii),

one can show that F (y) > 0 for y 6= 0 and F (u + v) ≤ F (u) + F (v) for u, v ∈ V.

See [Bao et al. 2000] for a proof.

Let 〈 , 〉 denote the standard inner product on Rn, defined by 〈u, v〉 :=
∑n

i=1 uivi. Then |y| :=
√

〈y, y〉 is called the standard Euclidean norm on Rn.

Let b ∈ Rn with |b| < 1, then F = |y|+ 〈b, y〉 is a Minkowski norm on Rn, which

is called a Randers norm.

Let M be a connected, n-dimensional, C∞ manifold. Let TM =
⋃

x∈M TxM

be the tangent bundle of M , where TxM is the tangent space at x ∈ M . We

denote a typical point in TM by (x, y), where y ∈ TxM , and set TM0 := TM\{0}
where {0} stands for {(x, 0) | x ∈ X, 0 ∈ TxM}. A Finsler metric on M is a

function F : TM → [0,∞) with the following properties:

(a) F is C∞ on TM0;

(b) At each point x ∈ M , the restriction Fx := F |TxM is a Minkowski norm on

TxM .
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The pair (M,F ) is called a Finsler manifold.

Let (M,F ) be a Finsler manifold. Let (xi, yi) be a standard local coordinate

system in TM , i.e., yi’s are determined by y = yi(∂/∂xi)|x. For a vector y =

yi(∂/∂xi)|x 6= 0, let gij(x, y) := 1
2 [F 2]yiyj (x, y). The induced inner product gy

is given by

gy(u, v) = gij(x, y)uivj ,

where u = ui(∂/∂xi)|x and v = vi(∂/∂xi)|x. By the homogeneity of F ,

F (x, y) =
√

gy(y, y) =
√

gij(x, y)yiyj .

A Finsler metric F = F (x, y) is called a Riemannian metric if the gij = gij(x)

are functions of x ∈ M only.

There are three special Riemannian metrics.

Example 2.1 (Euclidean metric). The simplest metric is the Euclidean

metric α0 = α0(x, y) on Rn, which is defined by

α0(x, y) := |y|, y = (yi) ∈ TxRn ∼= Rn. (2–1)

We will simply denote (Rn, α0) by Rn, which is called Euclidean space.

Example 2.2 (Spherical metric). Let Sn := {x ∈ Rn+1 | |x| = 1} denote the

standard unit sphere in Rn+1. Every tangent vector y ∈ TxSn can be identified

with a vector in Rn+1 in a natural way. The induced metric α+1 on Sn is defined

by α+1 = ‖y‖x, for y ∈ TxSn ⊂ Rn+1, where ‖·‖x denotes the induced Euclidean

norm on TxSn. Let ϕ : Rn → Sn ⊂ Rn+1 be defined by

ϕ(x) :=

(

x
√

1 + |x|2
,

1
√

1 + |x|2

)

. (2–2)

Then ϕ pulls back α+1 on the upper hemisphere to a Riemannian metric on Rn,

which is given by

α+1 =

√

|y|2 + (|x|2|y|2 − 〈x, y〉2)
1 + |x|2 , y ∈ TxRn ∼= Rn. (2–3)

Example 2.3 (Hyperbolic metric). Let Bn denote the unit ball in Rn.

Define

α−1 :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2)
1 − |x|2 , y ∈ TxBn ∼= Rn. (2–4)

We call α−1 the Klein metric and denote (Bn, α−1) by Hn.

The metrics (2–1), (2–3) and (2–4) can be combined into one formula:

αµ =

√

(1 + µ|x|2)|y|2 − µ〈x, y〉2
1 + µ|x|2 . (2–5)

Of course, there are many non-Riemannian Finsler metrics on Rn with special

geometric properties. We just list some of them below and discuss their geometric

properties later.
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Example 2.4 (Funk metric). Let

Θ :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
1 − |x|2 , y ∈ TxBn ∼= Rn. (2–6)

Θ = Θ(x, y) is a Finsler metric on Bn, called the Funk metric on Bn.

For an arbitrary constant vector a ∈ Rn with |a| < 1, let

Θa :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
1 − |x|2 +

〈a, y〉
1 + 〈a, x〉 . (2–7)

where y ∈ TxBn ∼= Rn. Θa = Θa(x, y) is a Finsler metric on Bn. Note that

Θ0 = Θ is the Funk metric on Bn. We call Θa the generalized Funk metric

on Bn [Shen 2003a].

Example 2.5 [Shen 2003b]. Let δ be an arbitrary number with δ < 1. Let

Fδ :=

√

|y|2−(|x|2|y|2−〈x, y〉2)+〈x, y〉
2(1−|x|2) − δ

√

|y|2−δ2(|x|2|y|2−〈x, y〉2)+δ〈x, y〉
2(1−δ2|x|2) ,

where y ∈ TxBn ∼= Rn. Fδ is a Finsler metric on Bn. Note that F−1 = α−1 is

the Klein metric on Bn. Let Θ be the Funk metric on Bn defined in (2–6). We

can express Fδ by

Fδ = 1
2

(

Θ(x, y) − δΘ(δx, y)
)

.

Example 2.6 [Berwald 1929b]. Let

B :=

(
√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
)2

(1 − |x|2)2
√

|y|2 − (|x|2|y|2 − 〈x, y〉2)
, (2–8)

where y ∈ TxBn ∼= Rn. Then B = B(x, y) is a Finsler metric on Bn.

Example 2.7. Let ε be an arbitrary number with |ε| < 1. Let

Fε :=

√

Ψ
(

1
2 (

√

Φ2+(1−ε2)|y|4+Φ)
)

+(1−ε2)〈x, y〉2 +
√

1−ε2〈x, y〉
Ψ

, (2–9)

where

Φ := ε|y|2 + (|x|2|y|2 − 〈x, y〉2), Ψ := 1 + 2ε|x|2 + |x|4.

Fε = Fε(x, y) is a Finsler metric on Rn. Note that if ε = 1, then F1 = α+1 is

the spherical metric on Rn.

R. Bryant [1996; 1997] classified Finsler metrics on the standard unit sphere

S2 with constant flag curvature equal to +1 and geodesics being great circles.

The Finsler metrics Fε in (2–9) is a special family of Bryant’s metrics expressed

in a local coordinate system. See Example 12.7 for further discussion.
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The examples of Finsler metrics above all have special geometric properties.

They are locally projectively flat with constant flag curvature. Some belong to

the class of (α, β)-metrics, that is, those of the form

F = α φ
(

β

α

)

, (2–10)

where α = αx(y) =
√

aij(x)yiyj is a Riemannian metric, β = βx(y) = bi(x)yi

is a 1-form, and φ is a C∞ positive function on some interval I = [−r, r] big

enough that r ≥ β/α for all x and y ∈ TxM . It is easy to see that any such

F is positively homogeneous of degree one. Let ‖β‖x := supy∈TxM βx(y)/αx(y).

Using a Maple program, we find that the Hessian gij := 1
2 [F 2]yiyj is

gij = ρaij + ρ0bibj + ρ1(biαj + bjαi) + ρ2αiαj ,

where αi = αyi and

ρ = φ2 − sφφ′,

ρ1 = −s(φφ′′ + φ′φ′) + φφ′,

ρ0 = φφ′′ + φ′φ′,

ρ2 = s2(φφ′′ + φ′φ′) − sφφ′,

where s := β/α with |s| ≤ ‖β‖x ≤ r. Then

det (gij) = φn+1 (φ − sφ′)
n−2 (

(φ − sφ′) + (‖β‖2
x − s2)φ′′

)

det (aij) .

If φ = φ(s) satisfies

φ(s) > 0, φ(s) − sφ′(s) > 0,
(

(φ − sφ′) + (b2 − s2)φ′′(s)
)

≥ 0 (2–11)

for all s with |s| ≤ b ≤ r, then (gij) is positive definite; hence F is a Finsler

metric.

Sabau and Shimada [2001] have classified (α, β)-metrics into several classes

and computed the Hessian gij for each class. Below are some special (α, β)-

metrics.

(a) φ(s) = 1 + s. The defined function F = α + β is a Finsler metric if and only

if the norm of β with respect to α is less than 1 at any point:

‖β‖x :=
√

aij(x)bi(x)bj(x) < 1, x ∈ M.

A Finsler metric in this form is called a Randers metric. The Finsler metrics

in Example 2.4 are Randers metrics. The Finsler metrics in Example 2.5 is

the sum of two Randers metrics.

(b) φ(s) = (1 + s)2. The defined function F = (α + β)2/α is a Finsler metric if

and only if ‖β‖x < 1 at any point x ∈ M . The Finsler metric in Example 2.6

is in this form.

By a Finsler structure on a manifold M we usually mean a Finsler metric.

Sometimes, we also define a Finsler structure as a scalar function F ∗ on T ∗M

such that F ∗ is C∞ on T ∗M \ {0} and F ∗
x := F ∗|T∗

x M is a Minkowski norm on
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T ∗
x M for x ∈ M . Such a function is called a co-Finsler metric. Given a co-Finsler

metric, one can define a Finsler metric via the standard duality defined below.

Let F ∗ = F ∗(x, ξ) be a co-Finsler metric on a manifold M . Define a non-

negative scalar function F = F (x, y) on TM by

F (x, y) := sup
ξ∈T∗

x M

ξ(y)

F ∗(x, ξ)
.

Then F = F (x, y) is a Finsler metric on M , said to be dual to F ∗. In the same

sense, F ∗ = F ∗(x, ξ) is also dual to F :

F ∗(x, ξ) = sup
y∈TxM

ξ(y)

F (x, y)
.

Every vector y ∈ TxM \ {0} uniquely determines a covector ξ ∈ T ∗
x M \ {0} by

ξ(w) :=
1

2

d

dt

(

F 2(x, y + tw)
)

|t=0, w ∈ TxM.

The resulting map `x : y ∈ TxM → ξ ∈ T ∗
x M is called the Legendre transforma-

tion at x. Similarly, every covector ξ ∈ T ∗
x M \ {0} uniquely determines a vector

y ∈ TxM \ {0} by

η(y) :=
1

2

d

dt

(

F ∗2(x, ξ + tη)
)

|t=0, η ∈ T ∗
x M.

The resulting map `∗x : ξ ∈ T ∗
x M → y ∈ TxM is called the inverse Legendre

transformation at x. Indeed, `x and `∗x are inverses of each other. Moreover,

they preserve the Minkowski norms:

F (x, y) = F ∗(x, `x(y)), F ∗(x, ξ) = F (x, `∗x(ξ)). (2–12)

Let Φ = Φ(x, y) be a Finsler metric on a manifold M and let Φ∗ = Φ∗(x, ξ)

be the co-Finsler metric dual to Φ. By the above formulas, one can easily show

that if y ∈ TxM \ {0} and ξ ∈ T ∗
x M \ {0} satisfy

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 = η(y), η ∈ T ∗
x M.

Then

Φ(x, y) = 1. (2–13)

Let V be a vector field on M with Φ(x,−Vx) < 1 and let V ∗ : T ∗M → [0,∞)

denote the 1-form dual to V , defined by

V ∗
x (ξ) = ξ(Vx), ξ ∈ T ∗

x M.

We have Φ∗(x,−V ∗
x ) = Φ(x,−Vx) < 1. Thus F ∗ := Φ∗ + V ∗ is a co-Finsler

metric on M . Define F = F (x, y) by

F (x, y) := sup
ξ∈T∗

x M

ξ(y)

F ∗(x, ξ)
, y ∈ TxM. (2–14)
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F is a Finsler metric on M , called the Finsler metric generated from the pair

(Φ, V ). One can also define F in a different way without using the duality:

Lemma 2.8. Let Φ = Φ(x, y) be a Finsler metric on M and let V be a vector

field on M with Φ(x,−Vx) < 1 for all x ∈ M . Then F = F (x, y) defined in

(2–14) satisfies

Φ
(

x,
y

F (x, y)
− Vx

)

= 1, y ∈ TxM. (2–15)

Conversely , if F = F (x, y) is defined by (2–15), it is dual to the co-Finsler metric

F ∗ := Φ∗ + V ∗ as defined in (2–14).

Proof. For the co-Finsler metric F ∗ = Φ∗ + V ∗, let F = F (x, y) be defined in

(2–14). Fix an arbitrary nonzero vector y ∈ TxM . There is a covector ξ ∈ T ∗
x M

such that

F (x, y) =
ξ(y)

F ∗(x, ξ)
. (2–16)

Let η ∈ T ∗
x M be an arbitrary covector. Consider the function

h(t) :=
ξ(y) + tη(y)

Φ∗(x, ξ + tη) + ξ(Vx) + tη(Vx)
.

Then h(t) ≤ h(0) = F (x, y). Thus h′(0) = 0:

η(y)F ∗(x, ξ) − ξ(y)
(

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 + η(Vx)
)

= 0.

Dividing by F ∗(x, ξ) and using (2–16), one obtains

η(y) − F (x, y)
(

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 + η(Vx)
)

= 0.

From this identity it follows that

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 = η
(

y

F (x, y)
− Vx

)

, η ∈ T ∗
x M.

Thus F (x, y) satisfies (2–15) as we have explained in (2–13).

Conversely, let F = F (x, y) be defined by (2–15). Then for any ξ ∈ T ∗
x M ,

Φ∗(x, ξ) = sup
y∈TxM

η
(

y

F (x, y)
− Vx

)

.

One obtains

sup
y∈TxM

ξ(y)

F (x, y)
= sup

y∈TxM
ξ
(

y

F (x, y)
−Vx

)

+ ξ(Vx) = Φ∗(x, ξ)+V ∗
x (ξ) = F ∗(x, ξ).

Thus F ∗ is dual to F and so F is dual to F ∗, that is, F is given by (2–14). �
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Let Φ =
√

φij(x)yiyj be a Riemannian metric and let V = V i(x)(∂/∂xi) be a

vector field on a manifold M with

Φ(x,−Vx) = ‖V ‖x :=
√

φij(x)V i(x)V j(x) < 1, x ∈ M.

Solving (2–15) for F = F (x, y), one obtains

F =

√

(1 − φijV iV j)φijyiyj + (φijyiV j)2 − φijy
iV j

1 − φijV iV j
. (2–17)

Clearly, F is a Randers metric. It is easy to verify that any Randers metric

F = α+β, where α =
√

aij(x)yiyj and β = bi(x)yi, can be expressed in the form

(2–17). According to Lemma 2.8, any Randers metric F = α + β expressed in

the form (2–17) can be constructed in the following way. Let Φ∗ :=
√

φij(x)ξiξj

be the Riemannian metric dual to Φ =
√

φij(x)yiyj and V ∗ := ξ(Vx) = V i(x)ξi

be the 1-form dual to V . Then F ∗ := Φ∗(x, ξ) + V ∗(ξ) =
√

φij(x)ξiξj + V i(x)ξi

is a co-Finsler metric on M . Moreover, the dual Finsler metric F of F ∗ is given

by (2–17). This is proved in [Hrimiuc and Shimada 1996].

It was discovered in [Shen 2003c; 2002] that if Φ is a Riemannian metric of

constant curvature and V is a special vector field, the generated metric F is

of constant flag curvature. This discovery opens the door to a classification of

Randers metrics of constant flag curvature [Bao et al. 2003]. But Maple programs

played an important role in the computations that led to it.

Example 2.9. Let φ = φ(y) be a Minkowski norm on Rn and let

Uφ :=
{

y ∈ Rn | φ(y) < 1
}

.

Define

Φ(x, y) := φ(y), y ∈ TxRn ∼= Rn.

Φ = Φ(x, y) is called a Minkowski metric on Rn. Let Vx := −x, for x ∈ Rn. V

is a radial vector field pointing toward the origin. For any x ∈ Uφ,

Φ
(

x, −Vx

)

= φ(x) < 1.

The pair (Φ, V ) generates a Finsler metric Θ = Θ(x, y) on Uφ by (2–15):

Θ(x, y) = φ
(

y + Θ(x, y)x
)

. (2–18)

Differentiating with respect to xk and yk separately, one obtains
(

1 − φwl(w)xl
)

Θxk(x, y) = φwk(w)Θ(x, y),
(

1 − φwl(w)xl
)

Θyk(x, y) = φwk(w),

where w := y + Θ(x, y)x. It follows that

Θxk(x, y) = Θ(x, y)Θyk(x, y). (2–19)

This argument is from [Okada 1983].
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A domain Uφ in Rn defined by a Minkowski norm φ is called a strongly convex

domain. A Finsler metric Θ = Θ(x, y) defined in (2–18) is called the Funk metric

on a strongly convex domain in Rn. When φ = |y| is the standard Euclidean

metric on Rn, Uφ = Bn is the standard unit ball and Θ = Θ(x, y) is given by

(2–6). Equation (2–19) is the key property of Θ, from which one can derive other

geometric properties of Θ.

Definition 2.10. A Finsler function Θ = Θ(x, y) on an open subset in Rn is

called a Funk metric if it satisfies (2–19).

Example 2.11. Let Φ(x, y) := |y| be the standard Euclidean metric on Rn and

let V = V (x) be a vector field on Rn defined by

Vx := |x|2a − 2〈a, x〉x,

where a ∈ Rn is a constant vector. Note that

Φ(x,−Vx) =
√

φijV iV j = |Vx| = |a||x|2 < 1, x ∈ Bn(1/
√

|a|),

and that

φijy
iV j = |x|2〈a, y〉 − 2〈a, x〉〈x, y〉.

Given the pair (Φ, V ) above, one obtains, by solving (2–15) for F ,

F =

√

(

|x|2〈a, y〉−2〈a, x〉〈x, y〉
)2

+ |y|2
(

1−|a|2|x|4
)

−
(

|x|2〈a, y〉−2〈a, x〉〈x, y〉
)

1 − |a|2|x|4 .

(2–20)

This Randers metric F has very important properties. It is of scalar curvature

and isotropic S-curvature. But the flag curvature and the S-curvature are not

constant. See Example 11.2 below for further discussion.

3. Cartan Torsion and Matsumoto Torsion

To characterize Euclidean norms, E. Cartan [1934] introduced what is now

called the Cartan torsion. Let F = F (y) be a Minkowski norm on a vector space

V. Fix a basis {bi} for V. Then F = F (yibi) is a function of (yi). Let

gij := 1
2 [F 2]yiyj , Cijk := 1

4 [F 2]yiyjyk(y), Ii := gjk(y)Cijk(y),

where (gij) := (gij)
−1. It is easy to see that

Ii =
∂

∂yi

(

ln
√

det(gjk)
)

. (3–1)

For y ∈ V \ {0}, set

Cy(u, v, w) := Cijk(y)uivjwk, Iy(u) := Ii(y)ui,

where u := uibi, v := vjbj and w := wkbk. The family C := {Cy | y ∈ V \ {0}}
is called the Cartan torsion and the family I := {Iy | y ∈ V \ {0}} is called the
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mean Cartan torsion. They are not tensors in a usual sense. In later sections, we

will convert them to tensors on TM0 and call them the (mean) Cartan tensor.

We view a Minkowski norm F on a vector space V as a color pattern. When

F is Euclidean, the color pattern is trivial or Euclidean. The Cartan torsion

Cy describes the non-Euclidean features of the color pattern in the direction

y ∈ V \ {0}. And the mean Cartan torsion Iy is the average value of Cy.

A trivial fact is that a Minkowski norm F on a vector space V is Euclidean if

and only if Cy = 0 for all y ∈ V \ {0}. This can be improved:

Proposition 3.1 [Deicke 1953]. A Minkowski norm is Euclidean if and only if

I = 0.

To characterize Randers norms, M. Matsumoto introduces the quantity

Mijk := Cijk − 1

n + 1

(

Iihjk + Ijhik + Ikhij

)

, (3–2)

where hij := FFyiyj = gij − gipy
pgjqy

q/F 2. For y ∈ V \ {0}, set

My(u, v, w) := Mijk(y)uivjwk,

where u = uibi, v = vjbj and w = wkbk. The family M := {M y | y ∈ V\{0}} is

called the Matsumoto torsion. A Minkowski norm is called C-reducible if M = 0.

Lemma 3.2 [Matsumoto 1972b]. Every Randers metric satisfies M = 0.

Proof. Let F = α + β be an arbitrary Randers norm on a vector space V,

where α =
√

aijyiyj and β = biy
i with ‖β‖α < 1. By a direct computation, the

gij := 1
2 [F 2]yiyj are given by

gij =
F

α

(

aij −
yi

α

yj

α
+

α

F

(

bi +
yi

α

)(

bj +
yj

α

)

)

, (3–3)

where yi := aijy
j . The hij = FFyiyj = gij − gipy

pgjqy
q/F 2 are given by

hij =
α + β

α

(

aij −
yiyj

α2

)

. (3–4)

The inverse matrix (gij) = (gij)
−1 is given by

gij =
α

F

(

aij − (1 − ‖β‖2)
yi

F

yj

F
+

α

F

((

bi − yi

α

)(

bj − yj

F

)

− bibj
)

)

. (3–5)

The determinant det(gij) is

det (gij) =
(

α + β

α

)n+1

det (aij) .

From this and (3–1), one obtains

Ii =
n + 1

2(α + β)

(

bi −
yi

α

β

α

)

. (3–6)
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Differentiating (3–3) yields

Cijk =
1

n + 1

(

Iihjk + Ijhik + Ikhij

)

, (3–7)

implying that Mijk = 0. �

Matsumoto and Hōjō later proved that the converse is true as well, if dimV ≥ 3.

Proposition 3.3 [Matsumoto 1972b; Matsumoto and Hōjō 1978]. If F is a

Minkowski norm on a vector space V of dimension at least 3, the Matsumoto

torsion of F vanishes if and only if F is a Randers norm.

Their proof is long and I could not find a shorter proof which fits into this article.

4. Geodesics and Sprays

Every Finsler metric F on a connected manifold M defines a length structure

LF on oriented curves in M . Let c : [a, b] → M be a piecewise C∞ curve. The

length of c is defined by

LF (c) :=

∫ b

a

F
(

c(t), ċ(t)
)

dt.

For any two points p, q ∈ M , define

dF (p, q) := infc LF (c),

where the infimum is taken over all piecewise C∞ curves c from p to q. The

quantity dF = dF (p, q) is a nonnegative function on M × M . It satisfies

(a) dF (p, q) ≥ 0, with equality if and only if p = q; and

(b) dF (p, q) ≤ dF (p, r) + dF (r, q) for any p, q, r ∈ M .

We call dF the distance function induced by F . This is a weaker notion than the

distance function of metric spaces, since dF need not satisfy dF (p, q) = dF (q, p)

for p, q ∈ M . But if the Finsler metric F is reversible, that is, if F (x,−y) =

F (x, y) for all y ∈ TxM , then dF is symmetric.

A piecewise C∞ curve σ : [a, b] → M is minimizing if it has least length:

LF (σ) = dF

(

σ(a), σ(b)
)

.

It is locally minimizing if, for any t0 ∈ I := [a, b], there is a small number ε > 0

such that σ is minimizing when restricted to [t0 − ε, t0 + ε] ∩ I.

Definition 4.1. A C∞ curve σ(t), t ∈ I, is called a geodesic if it is locally

minimizing and has constant speed (meaning that F (σ(t), σ̇(t)) is constant).

Lemma 4.2. A C∞ curve σ(t) in a Finsler manifold (M,F ) is a geodesic if and

only if it satisfies the system of second order ordinary differential equations

σ̈i(t) + 2Gi
(

σ(t), σ̇(t)
)

= 0, (4–1)
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where the Gi = Gi(x, y) are local functions on TM defined by

Gi := 1
4gil(x, y)

(

[F 2]xkyl(x, y)yk − [F 2]xl(x, y)
)

. (4–2)

This is shown by the calculus of variations; see, for example, [Shen 2001a; 2001b].

Let {∂/∂xi, ∂/∂yi} denote the natural local frame on TM in a standard local

coordinate system, and set

G := yi ∂

∂xi
− 2Gi ∂

∂yi
, (4–3)

where the Gi = Gi(x, y), which are given in (4–2), satisfy the homogeneity

property

Gi(x, λy) = λ2Gi(x, y), λ > 0. (4–4)

G is a well-defined vector field on TM . Any vector field G on TM having the

form (4–3) and satisfying the homogeneity condition (4–4) is called a spray on

M , and the Gi are its spray coefficients.

Let

N i
j =

∂Gi

∂yj
,

δ

δxi
:=

∂

∂xi
− N i

j

∂

∂yj
.

Then HTM := span{δ/δxi} and V TM := span{∂/∂yi} are well-defined and

T (TM0) = HTM ⊕ V TM . That is, every spray naturally determines a decom-

position of T (TM0).

For a Finsler metric on a manifold M and its spray G, a C∞ curve σ(t) in

M is a geodesic of F if and only if the canonical lift γ(t) := σ̇(t) in TM is an

integral curve of G. One can use this to define the notion of geodesics for sprays.

It is usually difficult to compute the spray coefficients of a Finsler metric.

However, for an (α, β)-metric F , given by equation (2–10), the computation is

relatively simple using a Maple program. Let Gi be the spray coefficients of the

Riemannian metric α, with coefficients Γi
jk, so that Gi = 1

2Γi
jk(x)yjyk. These

coefficients are called the Christoffel symbols of α. By (4–2), they are given by

Γi
jk =

ail

2

(

∂ajl

∂xk
+

∂akl

∂xj
− ∂ajk

∂xl

)

.

To find a formula for the spray coefficients Gi = Gi(x, y) of F in terms of α and

β, we introduce the covariant derivatives of β with respect to α. Let θi := dxi

and θ i
j := Γi

jk dxk. We have

dθi = θj ∧ θ i
j , daij = akjθ

k
i + aikθ k

j .

Define bi;j by

bi;jθ
j := dbi − bjθ

j
i .

Let
rij := 1

2

(

bi;j + bj;i

)

,

si
j := aihshj , sj := bis

i
j ,

sij := 1
2

(

bi;j − bj;i

)

,

eij := rij + bisj + bjsi.

By (4–2) and using a Maple program, one obtains the following relationship:
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Lemma 4.3. The geodesic coefficients Gi are related to Gi by

Gi = Gi +
αφ′

φ − sφ′
si

0 +
φφ′ − s(φφ′′ + φ′φ′)

2φ
(

(φ − sφ′) + (b2 − s2)φ′′
)

×
( −2αφ′

φ − sφ′
s0 + r00

)(

yi

α
+

φφ′′

φφ′ − s(φφ′′ + φ′φ′)
bi

)

, (4–5)

where s = β/α, si
0 = si

jy
j , s0 = siy

i, r00 = rijy
iyj and b2 = aijbibj .

Consider the metric

F =
(α + β)2

α
,

where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form

with ‖β‖x < 1 for every x ∈ M . By (4–5), we obtain a formula for the spray

coefficients of F :

Gi = Gi +
2α

α − β
αsi

0 +
α(α − 2β)

2α2b2 + α2 − 3β2

( −4α

α − β
αs0 + r00

)(

yi

α
+

α

α − 2β
bi

)

,

where b = ‖β‖x.

Given a spray G, we define the covariant derivatives of a vector field X =

Xi(t)(∂/∂xi)|c(t) along a curve c by

DċX(t) :=
(

Ẋi(t) + Xj(t)N i
j (c(t), ċ(t))

) ∂

∂xi

∣

∣

∣

c(t)
,

∇ċX(t) :=
(

Ẋi(t) + Xj(t)N i
j (c(t),X(t))

) ∂

∂xi

∣

∣

∣

c(t)
.

(4–6)

DċX(t) is the linear covariant derivative and ∇ċX(t) the covariant derivative of

X(t) along c. The field X is linearly parallel along c if DċX(t) = 0, and parallel

along c if ∇ċX(t) = 0. For linearly parallel vector fields X = X(t) and Y = Y (t)

along a geodesic c, the expression g ċ(t)

(

X(t), Y (t)
)

is constant, and for a parallel

vector field X = X(t) along a curve c, F
(

c(t),X(t)
)

is constant.

5. Berwald Metrics

Consider a Riemannian metric F =
√

gij(x)yiyj on a manifold M . By (4–2),

we obtain Gi = 1
2Γi

jk(x)yjyk, where

Γi
jk(x) := 1

4gil(x)
(

∂glk

∂xj
(x) +

∂gjl

∂xk
(x) − ∂gjk

∂xl
(x)

)

. (5–1)

In this case the Gi = Gi(x, y) are quadratic in y ∈ TxM at any point x ∈ M .

A Finsler metric F = F (x, y) is called a Berwald metric if in any standard

local coordinate system, the spray coefficients Gi = Gi(x, y) are quadratic in

y ∈ TxM .

There are many non-Riemannian Berwald metrics.
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Example 5.1. Let (M, ᾱ) and (M,α) be Riemannian manifolds and let M =

M ×M . Let f : [0,∞)× [0,∞) → [0,∞) be a C∞ function satisfying f(λs, λt) =

λf(s, t) for λ > 0 and f(s, t) 6= 0 if (s, t) 6= 0. Define

F (x, y) :=
√

f
(

[ᾱ(x̄, ȳ)]2, [α(x, y)]2
)

, (5–2)

where x = (x̄, x) ∈ M and y = ȳ ⊕ y ∈ TxM ∼= Tx̄M ⊕ TxM .

We now find additional conditions on f(s, t) under which the matrix gij :=
1
2 [F 2]yiyj is positive definite. Take standard local coordinate systems (x̄ā, ȳā)

in TM and (xa, ya) in TM , so that ȳ = ȳā ∂/∂x̄ā and y = ya ∂/∂xa. Then

(xi, yj) := (x̄ā, xa, ȳā, ya) is a standard local coordinate system in TM . Express

ᾱ and α by

ᾱ(x̄, ȳ) =
√

ḡāb̄(x̄)ȳāȳb̄, α(x, y) =
√

gab(x)yayb,

We obtain

gab = 2fssȳāȳb̄ + fsḡāb̄, gab = 2fstȳāyβ, gab = 2fttyayb + ftgab, (5–3)

where ȳā := ḡāb̄ȳ
b̄ and ya := gaby

b. By an elementary argument, one can show

that (gij) is positive definite if and only if f(s, t) satisfies the conditions

fs > 0, ft > 0, fs + 2sfss > 0, ft + 2tftt > 0, fsft − 2ffst > 0.

In this case,

det (gij) = h
(

[ᾱ]2, [α]2
)

det (ḡāb̄) det
(

gab

)

, (5–4)

where

h := (fs)
n̄−1(ft)

n−1(fsft − 2ffst), (5–5)

where n̄ := dimM and n := dimM .

By a direct computation, one can show that the spray coefficients of F split

as the direct sum of the spray coefficients of ᾱ and α:

Gā(x, y) = Gā(x̄, ȳ), Ga(x, y) = Ga(x, y), (5–6)

where Gā and Ga are the spray coefficients of ᾱ and α. From (5–6), one can see

that the spray of F is independent of the choice of a particular function f(s, t).

In particular, the Gi(x, y) are quadratic in y ∈ TxM . Thus F is a Berwald

metric.

A typical example of f is

f = s + t + ε
k
√

sk + tk,

where ε is a nonnegative real number and k is a positive integer. The Berwald

metric obtained with this choice of f is discussed in [Szabó 1981].
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Let (M,F ) be a Berwald manifold and p, q ∈ M be an arbitrary pair of points

in M . Let c : [0, 1] → M be a geodesic going from p = c(0) to q = c(1). Define

a linear isomorphism T : TpM → TqM by T (X(0)) := X(1), where X(t) is a

linearly parallel vector field along c, so DċX(t) = 0. Since F is a Berwald metric,

the linear covariant derivative ∇ċ coincides with the covariant derivative Dċ along

c, by (4–6). Thus X(t) is also parallel along c, that is, ∇ċX(t) = 0. Therefore,

F (c(t),X(t)) is constant. This implies that T : (TpM,Fp) → (TqM,Fq) preserves

the Minkowski norms. We have proved the following well-known result:

Proposition 5.2 [Ichijyō 1976]. On a Berwald manifold (M,F ), all tangent

spaces (TxM,Fx) are linearly isometric to each other .

On a Finsler manifold (M,F ), we view the Minkowski norm Fx on TxM as an

infinitesimal color pattern at x. As we mentioned early in Section 3, the Cartan

torsion Cy describes the non-Euclidean features of the pattern in the direction

y ∈ TxM \ {0}. In the case when F is a Berwald metric on a manifold M , by

Proposition 5.2, all tangent spaces (TxM,Fx) are linearly isometric, and (M,F )

is modeled on a single Minkowski space. More precisely, for any pair points

x, x′ ∈ M and a geodesic from x to x′, (linearly) parallel translation defines

a linear isometry T : (TxM,Fx) → (Tx′M,Fx′). This linear isometry T maps

the infinitesimal color pattern at x to that at x′. Thus the infinitesimal color

patterns do not change over the manifold. If one looks at a Berwald manifold

on a large scale, with the infinitesimal color pattern at each point shrunken to

a single spot of color, one can only see a space with uniform color. The color

depends on the Minkowski model.

A Finsler metric F on a manifold M is said to be affinely equivalent to another

Finsler metric F̄ on M if F and F̄ induce the same sprays. By (5–6), one can

see that the family of Berwald metrics in (5–2) are affinely equivalent.

Proposition 5.3 [Szabó 1981]. Every Berwald metric on a manifold is affinely

equivalent to a Riemannian metric.

Based on this observation, Z. I. Szabó [1981] determined the local structure of

Berwald metrics.

6. Gradient, Divergence and Laplacian

Let F = F (x, y) be a Finsler metric on a manifold M and let F ∗ = F ∗(x, ξ)

be dual to F . Let f be a C1 function on M . At a point x ∈ M , the differential

dfx ∈ T ∗
x M is a 1-form. Define the dual vector ∇fx ∈ TxM by

∇fx := `∗x(dfx), (6–1)

where `∗x : T ∗
x M → TxM is the inverse Legendre transformation. By definition,

∇fx is uniquely determined by

η(∇fx) :=
1

2

d

dt

(

F ∗2(x, dfx + tη)
)

|t=0, η ∈ T ∗
x M.
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∇fx is called the gradient of f at x. We have

F (x,∇fx) = F ∗(x, dfx).

If f is Ck (k ≥ 1), then ∇f is Ck−1 on {dfx 6= 0} and C0 at any point x ∈ M

with dfx = 0.

Given a closed subset A ⊂ M and a point x ∈ M , let d(A, x) := supz∈A d(z, x)

and d(x,A) := supz∈A d(x, z). The function ρ defined by ρ(x) := d(x,A) is

locally Lipschitz, hence differentiable almost everywhere. It is easy to verify

[Shen 2001b] that

F (x,∇ρx) = F ∗(x, dρx) = 1 almost everywhere. (6–2)

Any function ρ satisfying satisfies (6–2) is called a distance function of the Finsler

metric F ; another example is the function ρ defined by ρ(x) := −d(x,A). In

general, a distance function on a Finsler manifold (M,F ) is C∞ on an open

dense subset of M . For example, when A = {p} is a point, the distance function

ρ defined by ρ(x) := d(x, p) or rho(x) := d(p, x) is C∞ on an open dense subset

of M .

Let ρ be a distance function of a Finsler metric F on a manifold M . Assume

that it is C∞ on an open subset U ⊂ M . Then ∇ρ induces a Riemannian metric

F̂ :=
√

g∇ρ(v, v) on U . Moreover, ρ is a distance function of F̂ and ∇ρ = ∇̂ρ is

the gradient of ρ with respect to F̂ . See [Shen 2001b].

Every Finsler metric F defines a volume form

dVF := σF (x) dx1 · · · dxn,

where

σF :=
Vol Bn

Vol
{

(yi) ∈ Rn | F (x, yi(∂/∂xi)|x) < 1
} . (6–3)

Here Vol denotes Euclidean volume in Rn. It was proved by H. Busemann [1947]

that if F is reversible, the Hausdorff measure of the induced distance function

dF is represented by dVF . When F =
√

gij(x)yiyj is Riemannian,

σF =
√

det(gij(x)) and dVF =
√

det(gij(x)) dx1 · · · dxn.

For a vector field X = X i(x)(∂/∂xi)|x on M , the divergence of X is

div X :=
1

σF (x)

∂

∂xi

(

σF (x)Xi(x)
)

. (6–4)

The Laplacian of a C2 function f with df 6= 0 is

∆f := div∇f.

∆ is a nonlinear elliptic operator. If there are points x at which dfx = 0, then

∇f is only C0 at these points. In this case, ∆f is only defined weakly in the

sense of distributions.



LANDSBERG, S- AND RIEMANN CURVATURES 319

For a C∞ distance function ρ on an open subset U ⊂ M , dρx 6= 0 at every

point x ∈ U and the level set Nr := ρ−1(r) ⊂ U is a C∞ hypersurface in U . Thus

∆ρ can be defined by the above formula and its restriction to Nr, H := ∆ρ|Nr
,

is called the mean curvature of Nr with respect to the normal vector n = ∇ρ|Nr
.

7. S-Curvature

Consider an n-dimensional Finsler manifold (M,F ). As mentioned in Section

5, we view the Minkowski norm Fx on TxM as an infinitesimal color pattern at

x. The Cartan torsion Cy describes the non-Euclidean features of the pattern in

the direction y ∈ TxM \ {0}. The mean Cartan torsion Iy is the average value

of Cy. Besides the (mean) Cartan torsion, there is another geometric quantity

associated with Fx. Take a standard local coordinate system (xi, yi) and let

τ := ln

√

det
(

gij(x, y)
)

σF (x)
, (7–1)

where σF is defined in (6–3). τ is called the distortion [Shen 1997; 2001b].

Intuitively, the distortion τ(x, y) is the directional twisting number of the infin-

itesimal color pattern at x. Observe that

τyi =
∂

∂yi
ln

√

det
(

gjk(x, y)
)

=
1

2
gjk ∂gjk

∂yi
= gjkCijk =: Ii. (7–2)

Here σF does not occur in the first equality, because it is independent of y at

each point x. If the distortion is isotropic at x, that is, if τ(x) is independent of

the direction y ∈ TxM , then τ(x) = 0 and Fx is Euclidean (Proposition 3.1). In

this case, the infinitesimal color pattern is in the simplest form at every point.

It is natural to study the rate of change of the distortion along geodesics. For

y ∈ TxM \ {0}, let σ(t) be the geodesic with σ(0) = x and σ̇(0) = y. Let

S :=
d

dt
τ
(

σ(t), σ̇(t)
)

∣

∣

∣

t=0
. (7–3)

S is called the S-curvature. It is positively homogeneous of degree one in y:

S(x, λy) = λS(x, y), λ > 0.

In a standard local coordinate system (xi, yi), let Gi = Gi(x, y) denote the

spray coefficients of F . Contracting (8–2) with gij yields

∂Gm

∂ym
= 1

2gml ∂gml

∂xi
yi − 2IiG

i,

so

S = yi ∂τ

∂xi
− 2

∂τ

∂yi
Gi = 1

2gml ∂gml

∂xi
yi − 2IiG

i − ym ∂

∂xm
lnσF
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and finally

S =
∂Gm

∂ym
− ym ∂

∂xm
lnσF . (7–4)

Proposition 7.1 [Shen 1997]. For any Berwald metric, S = 0.

However, many metrics of zero S-curvature are non-Berwaldian.

Some comparison theorems in Riemannian geometry are still valid for Finsler

metrics of zero S-curvature; see [Shen 1997; 2001b].

By definition, the S-curvature is the covariant derivative of the distortion

along geodesics. Let σ(t) be a geodesic and set

τ(t) := τ
(

σ(t), σ̇(t)
)

, S(t) := S
(

σ(t), σ̇(t)
)

.

By (7–3), S(t) = τ ′(t), so if S vanishes, τ(t) is a constant. Intuitively, the

distortion (twisting number) of the infinitesimal color pattern in the direction

σ̇(t) does not change along any geodesic. However, the distortion might take

different values along different geodesics.

A Finsler metric F is said to have isotropic S-curvature if

S = (n + 1)cF.

More generally, F is said to have almost isotropic S-curvature if

S = (n + 1)(cF + η),

where c = c(x) is a scalar function and η = ηi(x)yi is a closed 1-form.

Differentiating the S-curvature gives rise to another quantity. Let

Eij := 1
2Syiyj (x, y). (7–5)

For y ∈ TxM \ {0}, the form Ey = Eij(x, y) dxi ⊗ dxj is a symmetric bilinear

form on TxM . We call the family E := {Ey | y ∈ TM \ {0}} the mean Berwald

curvature, or simply the E-curvature [Shen 2001a]. Let hy := hij(x, y) dxi⊗dxj ,

where hij := FFyiyj . We say that F has isotropic E-curvature if

E = 1
2 (n + 1)cF−1h,

where c = c(x) is a scalar function on M . Clearly, if the S-curvature is almost

isotropic, the E-curvature is isotropic. Conversely, if the E-curvature is isotropic,

there is a 1-form η = ηi(x) dxi such that S = (n + 1)(cF + η). However, this η

is not closed in general.

Finally, we mention another geometric meaning of the S-curvature. Let ρ =

ρ(x) be a C∞ distance function on an open subset U ⊂ M (see (6–2)). The

gradient ∇ρ induces a Riemannian metric F̂ = F̂ (z, v) on U by

F̂ (z, v) :=
√

g∇ρ(v, v), v ∈ TzU.
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Let ∆ and ∆̂ denote the Laplacians on functions with respect to F and F̂ . Then

H = ∆ρ|Nr
and Ĥ = ∆̂ρ|Nr

are the mean curvature of Nr := ρ−1(r) with respect

to F and F̂ , respectively. The S-curvature can be expressed by

S(∇ρ) = ∆̂ρ − ∆ρ = Ĥ − H.

From these identities, one can estimate ∆̂ and obtain an estimate on ∆ρ under

a Ricci curvature bound and an S-curvature bound. Then one can establish a

volume comparison on the metric balls. See [Shen 2001b] for more details.

8. Landsberg Curvature

The (mean) Cartan torsion is a geometric quantity that characterizes the Eu-

clidean norms among Minkowski norms on a vector space. On a Finsler manifold

(M,F ), one can view the Minkowski norm Fx on TxM as an infinitesimal color

pattern at x. The Cartan torsion Cy describes the non-Euclidean features of

the pattern in the direction y ∈ TxM \ {0}. The mean Cartan torsion Iy is the

average value of Cy. They reveal the non-Euclidean features which are different

from that revealed by the distortion. Therefore, it is natural to study the rate

of change of the (mean) Cartan torsion along geodesics.

Let (M,F ) be a Finsler manifold. To differentiate the (mean) Cartan torsion

along geodesics, we need linearly parallel vector fields along a geodesic. Recall

that a vector field U(t) := U i(T )(∂/∂xi)|σ(t) along a geodesic σ(t) is linearly

parallel along σ if Dσ̇U(t) = 0:

U̇ i(t) + U j(t)N i
j(σ(t), σ̇(t)) = 0. (8–1)

On the other hand, by a direct computation using (4–2), one can verify that gij

satisfy the following identity:

ym ∂gij

∂xm
− 2Gm ∂gij

∂ym
= gimNm

j + gmjN
m
i (8–2)

Using (8–1) and (8–2), one can verify that for two linearly parallel vector fields

U(t), V (t) along σ,
d

dt
gσ̇(t)

(

U(t), V (t)
)

= 0.

In this sense, the family of inner products gy does not change along geodesics.

However, for linearly parallel vector fields U(t), V (t) and W (t) along σ, the

functions C σ̇(t)

(

U(t), V (t),W (t)
)

and I σ̇(t)

(

U(t)
)

do change, in general. Set

Ly(u, v, w) :=
d

dt

(

Cσ̇(t)(U(t), V (t),W (t))
)

|t=0 (8–3)

and

Jy(u) :=
d

dt

(

I σ̇(t)(U(t))
)

|t=0,

where u = U(0), v = V (0), w = W (0) and y = σ̇(0) ∈ TxM . The family

L = {Ly | y ∈ TM \ {0}} is called the Landsberg curvature, or L-curvature, and
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the family J = {Jy | y ∈ TM \ {0}} is called the mean Landsberg curvature,

or J-curvature. A Finsler metric is called a Landsberg metric if L = 0, and a

weakly Landsberg metric if J = 0.

Let (xi, yi) be a standard local coordinate system in TM and set Cijk :=
1
4 [F 2]yiyjyk . From the definition, Ly = Lijk dxi ⊗ dxj ⊗ dxk is given by

Lijk = ym ∂Cijk

∂xm
− 2Gm ∂Cijk

∂ym
− CmjkNm

i − CimkNm
j − CijmNm

k , (8–4)

and J = Jidxi is given by

Ji = ym ∂Ii

∂xm
− 2Gm ∂Ii

∂ym
− ImNm

i . (8–5)

We have

Ji = gjkLijk.

It follows from (4–2) that

gsmGm =
1

4

(

2
∂gsk

∂xm
− ∂gkm

∂xs

)

ykym.

Differentiating with respect to yi, yj , yk and contracting the resulting identity

by 1
2ys, one obtains

Lijk = − 1
2ysgsm

∂3Gm

∂yi∂yj∂yk
. (8–6)

Thus if Gm = Gm(x, y) are quadratic in y ∈ TxM , then Lijk = 0. This proves

the following well-known result.

Proposition 8.1. Every Berwald metric is a Landsberg metric.

By definition, the (mean) Landsberg curvature is the covariant derivative of

the (mean) Cartan torsion along a geodesic. Let σ = σ(t) be a geodesic and

U = U(t), V = V (t),W = W (t) be parallel vector fields along σ. Let

L(t) := Lσ̇(t)

(

U(t), V (t),W (t)
)

, C(t) := C σ̇(t)

(

U(t), V (t),W (t)
)

.

By (8–3),

L(t) = C ′(t).

If F is Landsbergian, the Cartan torsion C σ̇ in the direction σ̇(t) is constant

along σ. Intuitively, the infinitesimal color pattern in the direction σ̇(t) does not

change along σ. But the patterns might look different at neighboring points.

It is easy to see that in dimension two, a Finsler metric is Berwaldian if and

only if E = 0 (or S = 0) and J = 0. It seems that E and L are complementary

to each other. So we may ask: Is a Finsler metric Berwaldian if E = 0 and

L = 0? A more difficult problem is: Is a Finsler metric Berwaldian if L = 0?

So far, we do not know.

Finsler metrics with L = 0 can be generalized as follows. Let F be a Finsler

metric on an n-dimensional manifold M . We say that F has relatively isotropic
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L-curvature L + cFC = 0, where c = c(x) is a scalar function on M . We say

that F has relatively isotropic J-curvature if J + cFI = 0.

There are many interesting Finsler metrics having isotropic L-curvature or

(almost) isotropic S-curvature. We will discuss them in the following two sec-

tions.

9. Randers Metrics with Isotropic S-Curvature

We now discuss Randers metrics of isotropic S-curvature. Let F = α + β be

a Randers metric on an n-dimensional manifold M , with α =
√

aij(x)yiyj and

β = bi(x)yi. Recall from page 307 that this is a special case of an (α, β)-metric,

with φ(s) = 1 + s. By (4–5), the spray coefficients Gi of F and Gi of α are

related via

Gi = Gi + Pyi + Qi, (9–1)

where

P :=
e00

2F
− s0, Qi = αsi

0, (9–2)

and e00 := eijy
iyj , s0 := siy

i, si
0 := si

jy
j . The formula above can be found in

[Antonelli et al. 1993].

Let

ρ := ln
√

1 − ‖β‖2
x.

The volume forms dVF and dVα are related by

dVF = e(n+1)ρ(x)dVα.

Since sij = sji, s00 := sijy
iyj = 0 and si

i = aijsij = 0. Observe that

∂(Pym)

∂ym
=

∂P

∂ym
ym + nP = (n+1)P,

∂Qm

∂ym
= α−1s00 + αsm

m = 0.

Since α is Riemannian, we have

∂Gm

∂ym
= ym ∂

∂xm
lnσα.

Thus one obtains

S =
∂Gm

∂ym
− ym ∂

∂xm
lnσF

=
∂Gm

∂ym
+

∂(Pym)

∂ym
+

∂Qm

∂ym
− (n+1)ym ∂ρ

∂xm
− ym ∂

∂xm
lnσα

= (n+1)(P − ρ0) = (n+1)
(

e00

2F
− (s0 + ρ0)

)

, (9–3)

where ρ0 := ρxi(x)yi.

Lemma 9.1 [Chen and Shen 2003a]. For a Randers metric F = α + β on an

n-dimensional manifold M , the following conditions are equivalent :
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(a) The S-curvature is isotropic, i .e., S=(n+1)cF for a scalar function c on M.

(b) The S-curvature is almost isotropic, i .e., S = (n+1)(cF + η) for a scalar

function c and a closed 1-form η on M .

(c) The E-curvature is isotropic, i .e., E = 1
2 (n+1)cF−1h for a scalar function

c on M .

(d) e00 = 2c(α2 − β2) for a scalar function c on M .

Proof. (a) =⇒ (b) and (b) =⇒ (c) are obvious.

(c) =⇒ (d). First, S = (n + 1)(cF + η), where η is a 1-form on M . By (9–3),

(c) is equivalent to the following e00 = 2cF 2 +2θF , where θ := s0 + ρ0 + η. This

implies that

e00 = 2c(α2 + β2) + 2θβ, 0 = 4cβ + 2θ.

Solving for θ in the second of these equations and plugging the result into the

first, one obtains (d).

(d) =⇒ (a). Plugging e00 = 2c(α2 − β2) into (9–3) yields

S = (n + 1)
(

c(α − β) − (s0 + ρ0)
)

. (9–4)

On the other hand, contracting eij = 2c(aij−bibj) with bj gives si+ρi+2cbi = 0.

Thus s0 + ρ0 = −2cβ. Plugging this into (9–4) yields (a). �

Example 9.2. Let V = (A,B,C) be a vector field on a domain U ⊂ R3, where

A = A(r, s, t), B = B(r, s, t) and C = C(r, s, t) are C∞ functions on U with

|V (x)| =
√

A(x)2 + B(x)2 + C(x)2 < 1, ∀x = (r, s, t) ∈ U.

Let Φ := |y| be the standard Euclidean metric on R3. Define F = α + β by

(2–15) for the pair (Φ, V ). α and β are given by

α =

√

〈V (x), y〉2 + |y|2(1 − |V (x)|2)
1 − |V (x)|2 , β = − 〈V (x), y〉

1 − |V (x)|2 ,

where y = (u, v, w) ∈ TxU ∼= R3. One can easily verify that ‖β‖x < 1 for x ∈ U .

By a direct computation, one obtains

e11 =
B2(Ar−Bs) + C2(Ar−Ct) − Ar + H

1−A2−B2−C2
,

e22 =
A2(Bs−Ar) + C2(Bs−Ct) − Bs + H

1−A2−B2−C2
,

e33 =
A2(Ct−Ar) + B2(Ct−Bs) −Ct + H

1−A2−B2−C2
,

e12 = − 1
2 (As+Br), e13 = − 1

2 (At+Cr), e23 = − 1
2 (Bt+Cs),,

where H := 2ABe12 + 2ACe13 + 2BCe23. Here as usual we write Ar = ∂A/∂r,

etc. On the other hand,

aij − bibj =
δij

1 − A2 − B2 − C2
.



LANDSBERG, S- AND RIEMANN CURVATURES 325

It is easy to verify that eij = 2c(aij − bibj) if and only if A, B, and C satisfy

Ar = Bs = Ct, At + Cr = 0, As + Br = 0, Bt + Cs = 0.

In this case,

c = − 1
2Ar = − 1

2Bs = − 1
2Ct.

By Lemma 9.1, we know that S = 4cF .

If F = α+β on an n-dimensional manifold M is generated from the pair (Φ, V ),

where Φ =
√

φijyiyj is a Riemannian metric and V = V i(∂/∂xi) is a vector

field on M with φij(x)V i(x)vj(x) < 1 for any x ∈ M , then F has isotropic

S-curvature, S = (n + 1)c(x)F , if and only if

Vi;j + Vj;i = −4cφij ,

where Vi = φijV
j and Vi;j are the covariant derivatives of V with respect to Φ.

This observation is made by Xing [2003]. It also follows from [Bao and Robles

2003b], although it is not proved there directly.

10. Randers Metrics with Relatively Isotropic L-Curvature

We now study Randers metrics with relatively isotropic (mean) Landsberg

curvature. From its definition, the mean Landsberg curvature is the mean value

of the Landsberg curvature. Thus if a Finsler metric has isotropic Landsberg cur-

vature, it must have isotropic mean Landsberg curvature. I don’t know whether

the converse is true as well; no counterexample has been found. Nevertheless, for

Randers metrics, “having isotropic mean Landsberg curvature” implies “having

isotropic Landsberg curvature”. According to Lemma 3.2, the Cartan torsion is

given by (3–7). Differentiating (3–7) along a geodesic and using (8–4) and (8–5),

we obtain

Lijk =
1

n + 1
(Jihjk + Jjhik + Jkhij). (10–1)

Here we have used the fact that the angular form hy is constant along geodesics.

By (3–7) and (10–1), one can easily show that Ji + cFIi = 0 if and only if

Lijk + cFCijk = 0. This proves the claim.

Lemma 10.1 [Chen and Shen 2003a]. For a non-Riemannian Randers metric

F = α + β on an n-dimensional manifold M , these conditions are equivalent :

(a) J + cF I = 0 (or L + cFC = 0).

(b) S = (n+1)cF and β is closed .

(c) E = 1
2cF−1h and β is closed .

(d) e00 = 2c(α2 − β2) and β is closed .

Here c = c(x) is a scalar function on M .
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Proof. By (10–1), to compute Lijk, it suffices to compute Ji. First, the mean

Cartan torsion is

Ii =
1

2
(n + 1)F−1α−2(α2bi − βyi), (10–2)

where yi := aijy
j . By a direct computation using (8–5), one obtains

Ji = 1
4 (n + 1)F−2α−2(2α

(

(ei0α
2 − yie00) − 2β(siα

2 − yis0) + si0(α
2 + β2)

)

+α2(ei0β − bie00) + β(ei0α
2 − yie00) − 2(siα

2 − yis0)(α
2 + β2) + 4si0α

2β).

Using this and (10–2), one can easily prove the lemma. �

Thus, for any Randers metric F = α + β, the J-curvature vanishes if and only

if e00 = 0 and dβ = 0. This is equivalent to bi;j = 0, in which case, the

spray coefficients of F coincide with that of α. This observation leads to the

following result, first established by the collective efforts found in [Matsumoto

1974; Hashiguchi and Ichijyō 1975; Kikuchi 1979; Shibata et al. 1977].

Proposition 10.2. For a Randers metric F = α + β, the following conditions

are equivalent :

(a) F is a weakly Landsberg metric, J = 0.

(b) F is a Landsberg metric, L = 0.

(c) F is a Berwald metric.

(d) β is parallel with respect to α.

Example 10.3. Consider the Randers metric F = α + β on Rn defined by

α :=

√

(1 − ε2)〈x, y〉2 + ε|y|2(1 + ε|x|2)
1 + ε|x|2 , β :=

√
1 − ε2 〈x, y〉
1 + ε|x|2 ,

where ε is an arbitrary constant with 0 < ε ≤ 1. Since β is closed, sij = 0 and

si = 0. After computing bi;j , one obtains

eij =
ε
√

1 − ε2

(1 + ε|x|2)(ε + |x|2)δij .

On the other hand, aij − bibj =
ε

1 + ε|x|2 δij . Thus eij = 2c(aij − bibj) with

c :=

√
1 − ε2

2(ε + |x|2) .

By Lemma 10.1, F satisfies L + cFC = 0, S = (n + 1)cF , and E = 1
2cF−1h.

See [Mo and Yang 2003] for a family of more general Randers metrics with

nonconstant isotropic S-curvature.
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11. Riemann Curvature

The Riemann curvature is an important quantity in Finsler geometry. It was

first introduced by Riemann for Riemannian metrics in 1854. Berwald [1926;

1928] extended it to Finsler metrics using the Berwald connection. His extension

of the Riemann curvature is a milestone in Finsler geometry.

Let (M,F ) be a Finsler manifold and let G = yi(∂/∂xi)− 2Gi(∂/∂yi) be the

induced spray. For a vector y ∈ TxM \ {0}, set

Ri
k := 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
. (11–1)

The local curvature functions Ri
k and Rjk := gijR

i
k satisfy

Ri
kyk = 0, Rjk = Rkj . (11–2)

Ry = Ri
k(∂/∂xi) ⊗ dxk : TxM → TxM is a well-defined linear map. We call

the family R = {Ry | y ∈ TM \ {0}} the Riemann curvature. The Riemann

curvature is actually defined for sprays, as shown in [Kosambi 1933; 1935]. When

the Finsler metric is Riemannian, then

Ri
k(x, y) = R i

j kl(x)yjyl,

where R(u, v)w = R i
j kl(x)wjuivj(∂/∂xi)|i denotes the Riemannian curvature

tensor. Namely, Ry(u) = R(u, y)y.

The geometric meaning of the Riemann curvature lies in the second variation

of geodesics. Let σ(t), for a ≤ t ≤ b, be a geodesic in M . Take a geodesic

variation H(t, s) of σ(t), that is, a family of curves σs(t) := H(t, s), a ≤ t ≤ b,

each of which is a geodesic, with σ0 = σ. Let

J(t) :=
∂H

∂s
(t, 0).

Then J(t) satisfies the Jacobi equation

Dσ̇Dσ̇J(t) + Rσ̇(t)(J(t)) = 0, (11–3)

where Dσ̇ is defined in (4–6). See [Kosambi 1933; 1935].

There is another way to define the Riemann curvature. Any vector y ∈ TxM

can be extended to a nonzero C∞ geodesic field Y in an open neighborhood U

of x; a geodesic field is one for which every integral curve is a geodesic. Define

F̂ (z, v) :=
√

gYz
(v, v), v ∈ TzU, z ∈ U.

Then F̂ = F̂ (z, v) is a Riemannian metric on U . Let ĝ = gY be the inner product

induced by F̂ and let R̂ be the Riemann curvature of F̂ . It is well-known in

Riemannian geometry that

R̂y(u) = 0, ĝ
(

R̂y(u), v
)

= ĝ
(

u, R̂y(v)
)

, (11–4)
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where u, v ∈ TxU . An important fact is

Ry(u) = R̂y(u), u ∈ TxM. (11–5)

See [Shen 2001b, Proposition 6.2.2] for a proof of (11–5). Note that ĝx = gy. It

follows from (11–4) and (11–5) that

Ry(y) = 0, gy(Ry(u), v) = gy(u,Ry(v)), (11–6)

where u, v ∈ TxM . In local coordinates, this equation is just (11–2). See [Shen

2001b] for the application of (11–5) in comparison theorems in conjunction with

the S-curvature.

For a two-dimensional subspace Π ⊂ TxM and a nonzero vector y ∈ Π, define

K(Π, y) :=
gy(Ry(u), u)

gy(y, y)gy(u, u) − gy(y, u)2
, (11–7)

where u ∈ Π such that Π = span {y, u}. One can use (11–6) to show that K(Π, y)

is independent of the choice of a vector u, but it is usually dependent on y. We

call K(Π, y) the flag curvature of the flag (Π, y). When F =
√

gij(x)yiyj is a

Riemannian metric, K(Π, y) = K(Π) is independent of y ∈ Π, in which case

K(Π) is usually called the sectional curvature of the section Π ⊂ TxM .

A Finsler metric F on a manifold M is said to be of scalar curvature K =

K(x, y) if for any y ∈ TxM \ {0} the flag curvature K(Π, y) = K(x, y) is

independent of the tangent planes Π containing y. From the definition, the flag

curvature is a scalar function K = K(x, y) if and only if in a standard local

coordinate system,

Ri
k = KF 2hi

k, (11–8)

where hi
k := gijhjk = gijFFyjyk . F is of constant flag curvature if this K is a

constant. For a Riemannian metric, if the flag curvature K(Π, y) = K(x, y) is a

scalar function on TM , then K(x, y) = K(x) is independent of y ∈ TxM and it

is a constant when n ≥ 3 by the Schur Lemma. In the next section we show that

any locally projectively flat Finsler metric is of scalar curvature. Such metrics

are for us a rich source of Finsler metrics of scalar curvature.

Classifying Finsler metrics of scalar curvature, in particular those of constant

flag curvature, is one of the important problems in Finsler geometry. The local

structures of projectively flat Finsler metrics of constant flag curvature were

characterized in [Shen 2003b]. R. Bryant [1996; 1997; 2002] had earlier classified

the global structures of projectively flat Finsler metrics of K = 1 on Sn, and

given some ideas for constructing non–projectively flat metrics of K = 1 on Sn.

Very recently, some non–projectively flat metrics of constant flag curvature

have been explicitly constructed; see [Bao–Shen 2002; Bejancu–Farran 2002;

Shen 2002; 2003a; 2003b; 2003c; Bao–Robles 2003], for example. These are all

Randers metrics. Therefore the classification of Randers metrics of constant flag

curvature is a natural problem, first tackled in [Yasuda and Shimada 1977; Mat-

sumoto 1989]. These authors obtained conditions they believed were necessary
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and sufficient for a Randers metric to be of constant flag curvature. Using their

result strictly as inspiration, Bao and Shen [2002] constructed a family of Ran-

ders metrics on S3 with K = 1; these metrics do satisfy Yasuda and Shimada’s

conditions. Later, however, examples were found of Randers metrics of constant

flag curvature not satisfying those conditions [Shen 2002; 2003c], showing that

the earlier characterization was incorrect. Shortly thereafter, Randers metrics of

constant flag curvature were characterized in [Bao–Robles 2003] using a system

of PDEs, a result also obtained in [Matsumoto and Shimada 2002] by a different

method. This subsequently led to a corrected version of the Yasuda–Shimada

theorem. Finally, using the characterization in [Bao–Robles 2003], and moti-

vated by some constructions in [Shen 2002; 2003c], Bao, Robles and Shen have

classified Randers metrics of constant flag curvature with the help of formula

(2–17):

Theorem 11.1 [Bao et al. 2003]. Let Φ =
√

φijyiyj be a Riemannian metric

and let V = V i(∂/∂xi) be a vector field on a manifold M with Φ(x, Vx) < 1 for

all x ∈ M . Let F be the Randers metric defined by (2–17). F is of constant flag

curvature K = λ if and only if

(a) there is a constant c such that V satisfies Vi|j + Vj|i = −4cφij , where Vi :=

φijV
j , and

(b) Φ has constant sectional curvature K̃ = λ + c2,

where | denotes the covariant derivative with respect to Φ and c is a constant .

The equation Vi|j + Vj|i = −4cφij of part (a) is by itself always equivalent to

S = (n + 1)cF , for c a scalar function on M [Xing 2003].

An analogue of Theorem 11.1 still holds for Randers metrics of isotropic Ricci

curvature, i.e., Ric = (n − 1)λF 2, where λ = λ(x) is a scalar function on M .

See [Bao and Robles 2003b] in this volume.

We have not extended the result above to Randers metrics of scalar curvature.

Usually, the isotropic S-curvature condition simplifies the classification problem.

It seems possible to classify Randers metrics of scalar curvature and isotropic

S-curvature. The following example is our first attempt to understand Randers

metrics of scalar curvature and isotropic S-curvature.

Example 11.2. Let F = α + β be the Randers metric defined in (2–20). Set

∆ := 1 − |a|2|x|4. We can write α =
√

aij(x)yiyj and β = bi(x)yi, where

aij =
δij

∆
+

(

|x|2ai − 2〈a, x〉xi
)(

|x|2aj − 2〈a, x〉xj
)

∆2
, bi = −|x|2ai − 2〈a, x〉xi

∆
.
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Using Maple for the computation, we obtain, with the notations of Section 9,

e00 =
2〈a, x〉|y|2

∆
= 2〈a, x〉(α2 − β2),

sj0 = 2
〈a, y〉xj − 〈x, y〉aj

∆2
,

s0 = bisi0 = 2
|a|2|x|2〈x, y〉 + 〈a, x〉〈a, v〉

∆
.

By Lemma 9.1, we see that F has isotropic S-curvature:

S = (n+1)〈a, x〉F.

By (9–1), the spray coefficients Gi = Gi(x, y) of F are

Gi = Gi + Pyi + αaijsj0,

where P = e00/(2F ) − s0 = 〈a, x〉(α − β) − s0. Using the formulas for Gi and

Ri
k in (11–1), we can show that F is also of scalar curvature with flag curvature

K = 3
〈a, y〉

F
+ 3〈a, x〉2 − 2|a|2|x|2.

12. Projectively Flat Metrics

A Finsler metric F = F (x, y) on an open subset U ⊂ Rn is projectively flat if

every geodesic σ(t) is straight in U , that is, if

σi(t) = xi + f(t)yi,

where f(t) is a C∞ function with f(0) = 0, f ′(0) = 1 and x = (xi), y = (yi) are

constant vectors. This is equivalent to Gi = Pyi, where P = P (x, y) is positively

y-homogeneous of degree one. P is called the projective factor.

It is generally difficult to compute the Riemann curvature, but for locally

projectively flat Finsler metrics, the formula is relatively simple.

Consider a projectively flat Finsler metric F = F (x, y) on an open subset

U ⊂ Rn. By definition, its spray coefficients are in the form Gi = Pyi. Plugging

them into (11–1), one obtains

Ri
k = Ξδi

k + τkyi, (12–1)

where

Ξ = P 2 − Pxkyk, τk = 3(Pxk − PPyk) + Ξyk .

Using (11–6), one can show that τk = −ΞF−1Fyk and

Ri
k = Ξ

(

δi
k − Fyk

F
yi

)

. (12–2)

Thus F is of scalar curvature with flag curvature

K =
Ξ

F 2
=

P 2 − Pxkyk

F 2
. (12–3)
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Using (7–4), one obtains

S = (n + 1)P (x, y) − ym ∂

∂xm
lnσF (x). (12–4)

By (12–2), one immediately obtains the following result. (See also [Szabó 1977]

and [Matsumoto 1980] for related discussions.)

Proposition 12.1 [Berwald 1929a; 1929b]. Every locally projectively flat Finsler

metric is of scalar curvature.

There is another way to characterize projectively flat Finsler metrics.

Theorem 12.2 [Hamel 1903; Rapcsák 1961]. Let F = F (x, y) be a Finsler

metric on an open subset U ⊂ Rn. F is projectively flat if and only if F satisfies

Fxkylyk − Fxl = 0, (12–5)

in which case, the spray coefficients are given by Gi = Pyi with P = 1
2Fxkyk/F .

Proof. Let Gi = Gi(x, y) denote the spray coefficients of F in the standard

coordinate system in TU ∼= U × Rn. One can rewrite (4–2) as

Gi = Pyi + Qi, (12–6)

where

P =
Fxkyk

2F
, Qi = 1

2Fgil(Fxkylyk − Fxl).

Thus F is projectively flat if and only if there is a scalar function P̃ = P̃ (x, y)

such that Gi = P̃ yi, i.e.,

Pyi + Qi = P̃ yi. (12–7)

Observe that

gijy
jQi = 1

2Fyl(Fxkylyk − Fxl) = 0.

Assume that (12–7) holds. Contracting with yi := gijy
j yields

P = P̃ .

Then Qi = 0 by (12–7). This implies (12–5). �

Since equation (12–5) is linear, if F1 and F2 are projectively flat on an open

subset U ⊂ Rn, so is their sum. If F = F (x, y) is projectively flat on U ⊂ Rn,

so is its reverse F̄ := F (x,−y). Thus the symmetrization

F̃ := 1
2

(

F (x, y) + F (x,−y)
)

is projectively flat.

The Finsler metric F=αµ(x, y) in (2–5) satisfies (12–5), so it’s projectively flat.

Theorem 12.3. (Beltrami) A Riemannian metric F = F (x, y) on a manifold

M is locally projectively flat if and only if it is locally isometric to the metric αµ

in (2–5).
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Using the formula (9–1), one can easily prove the following:

Theorem 12.4. A Randers metric F = α+β on a manifold is locally projectively

flat if and only if α is locally projectively flat and β is closed .

Besides projectively flat Randers metrics, we have the following examples.

Example 12.5. Let φ = φ(y) be a Minkowski norm on Rn and let U be the

strongly convex domain enclosed by the indicatrix of φ. Let Θ = Θ(x, y) be the

Funk metric on U (Example 2.9). By (2–19),

Θxkylyk = (ΘΘyk)ylyk = 1
2 (Θ2)ykylyk = 1

2 [Θ2]yl = Θxl .

Thus Θ is projectively flat with projective factor

P =
Θxkyk

2Θ
=

ΘΘykyk

2Θ
= 1

2Θ.

By (12–3), the flag curvature is

K =
Θ2 − 2Θxkyk

4Θ2
=

Θ2 − 2Θ2

4Θ2
= −1

4
.

Example 12.6 [Shen 2003b]. Let φ = φ(y) be a Minkowski norm on Rn and let

U be the strongly convex domain enclosed by the indicatrix of φ. Let Θ = Θ(x, y)

be the Funk metric on U and define

F := Θ(x, y)
(

1 + Θyk(x, y)xk
)

.

Since F (0, y) = Θ(0, y) = φ(y) is a Minkowski norm, by continuity, F is a Finsler

metric for x nearby the origin. By (2–19), one can verify that

Fxkylyk = Fxl , Fxkyk = 2ΘF.

Thus F is projectively flat with projective factor P = Θ(x, y). By (2–19) and

(12–3), we obtain

K =
Θ2 − Θxkyk

F 2
=

Θ2 − ΘΘykyk

F 2
= 0.

Now we take a look at the Finsler metric F = Fε(x, y) defined in (2–9).

Example 12.7. Let

F :=

√

Ψ
(

1
2 (

√

Φ2 + (1 − ε2)|y|4 + Φ)
)

+ (1 − ε2)〈x, y〉2 +
√

1 − ε2 〈x, y〉
Ψ

,

(12–8)

where

Φ := ε|y|2 +
(

|x|2|y|2 − 〈x, y〉2
)

, Ψ := 1 + 2ε|x|2 + |x|4.
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First, one can verify that F = Fε(x, y) satisfies (12–5). Thus F is projectively

flat with spray coefficients Gi = Pyi, where P = 1
2Fxk(x, y)yk/F (x, y). A Maple

computation gives

P =

√

Ψ
(

1
2 (

√

Φ2 + (1 − ε2)|y|4 + Φ)
)

− (1 − ε2)〈x, y〉2 − (ε + |x|2)〈x, y〉
Ψ

.

(12–9)

Further, one can verify that P satisfies

Pxkyk = P 2 − F 2.

Thus

K =
P 2 − Pxkyk

F 2
=

P 2 − (P 2 − F 2)

F 2
= 1.

That is, F has constant flag curvature K = 1.

The projectively flat Finsler metrics constructed above are incomplete. They

can be pulled back to Sn by (2–2) to form complete irreversible projectively flat

Finsler metrics of constant flag curvature K = 1. See [Bryant 1996; 1997].

13. The Chern Connection and Some Identities

The previous sections introduced several geometric quantities, such as the

Cartan torsion, the Landsberg curvature, the S-curvature and the Riemann cur-

vature. These quantities are not all independent. To reveal their relationships,

we use the Chern connection to describe them as tensors on the slit tangent

bundle, and use the exterior differentiation method to derive some important

identities.

Let M be an n-dimensional manifold and TM its tangent bundle. As usual,

a typical element of TM will be denoted by (x, y), with y ∈ TxM . The natural

projection π : TM → M pulls back the tangent bundle TM over M to a vector

bundle π∗TM over the slit tangent bundle TM0. The fiber of π∗TM at each

point (x, y) ∈ TM0 is a copy of TxM . Thus we write a typical element of π∗TM

as (x, y, v), where y ∈ TxM \ {0} and v ∈ TxM . Let ∂i|(x,y) :=
(

x, y, (∂/∂xi)|x
)

.

Then {∂i} is a local frame for π∗TM . Let (xi, yi) be a standard local coordinate

system in TM0. Then HT ∗M := span{dxi} is a well-defined subbundle of

T ∗(TM0). Let

δyi := dyi − N i
jdxj ,

where N i
j := ∂Gi/∂yj . Then V T ∗M := span {δyi} is a well-defined subbundle

of T ∗(TM0), so that T ∗(TM0) = HT ∗M ⊕ V T ∗M . The Chern connection is a

linear connection on π∗TM , locally expressed by

DX = (dXi + Xjω i
j ) ⊗ ∂i, X = Xi∂i,
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where the set of 1-forms {ω i
j } is uniquely determined by

dωi = ωj ∧ ω i
j ,

dgij = gikω k
j + gkjω

k
i + 2Cijkωn+k,

(13–1)

where gij := 1
2 [F 2]yiyj , Cijk := 1

4 [F 2]yiyjyk , ωi := dxi, and ωn+i := δyi. See

[Bao and Chern 1993; Bao et al. 2000; Chern 1943; 1948; 1992]. Each 1-form

ω i
j is horizontal: ω i

j = Γi
jk dxk. The coefficients Γi

jk = Γi
jk(x, y) are called the

Christoffel symbols. We have N i
j = ykΓi

jk. Thus

ωn+i = dyi + yjω i
j . (13–2)

Put

Ωi := dωn+i − ωn+j ∧ ω i
j . (13–3)

One can express Ωi as

Ωi =
1

2
Ri

klω
k ∧ ωl − Li

klω
k ∧ ωn+l,

where

Ri
kl =

∂N i
l

∂xk
− ∂N i

k

∂xl
+ Ns

l

∂N i
k

∂ys
− Ns

k

∂N i
l

∂ys
,

and

Li
kl := yj

∂Γi
jk

∂yl
=

∂N i
k

∂yl
− Γi

kl.

Let Ri
k be defined in (11–1) and Lijk be defined in (8–4). Then

Ri
k = Ri

kly
l, Ri

kl =
1

3

(

∂Ri
k

∂yl
− ∂Ri

l

∂yk

)

, Li
kl = gijLjkl. (13–4)

Put

Ω i
j := dω i

j − ω k
j ∧ ω i

k .

One can express Ω i
j as

Ω i
j =

1

2
R i

j klω
k ∧ ωl + P i

j klω
k ∧ ωn+l.

Differentiating (13–2) yields Ωi = yjΩ i
j . Thus

Ri
kl = yjR i

j kl, Li
kl = −yjP i

j kl.

There is a canonical way to define the covariant derivatives of a tensor on

TM0 using the Chern connection. For the distortion τ on TM \ {0}, define τ|m
and τ·m by

dτ = τ|iω
i + τ·iω

n+i. (13–5)

It follows from (7–2) that

τ·i =
∂τ

∂yi
= Ii. (13–6)
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For the induced Riemannian tensor, g = gijω
i ⊗ ωj , define gij|k and gij·k by

dgij − gkjω
k

i − gikω k
j = gij|kωk + gij·kωn+k.

It follows from (13–1) that

gij|k = 0, gij·k = 2Cijk.

Similarly, one can define Cijk|l at Ii|l. Equations (8–4) and (8–5) become

Lijk = Cijk|mym, Ji = Ii|mym. (13–7)

Differentiating (13–3) yields the Bianchi identity

dΩi = −Ωj ∧ ω i
j + ωn+j ∧ Ω i

j . (13–8)

It follows from (13–8) that

R i
j kl = Ri

kl·j + Li
kj|l − Li

lj|k + Li
lmLm

kj − Li
kmLm

lj . (13–9)

We are going to find other relationships among curvature tensors. Differenti-

ating (13–1) yields

0 = gikΩ k
j + gkjΩ

k
i + 2(Cijk|lω

l + Cijk·lω
n+l) ∧ ωn+k + 2CijkΩk.

It follows that

Rjikl + Rijkl + 2CijmRm
kl = 0, (13–10)

where Rjikl := gimR m
j kl, and

Pjikl + Pijkl + 2Cijl|k − 2CijmLm
kl = 0,

where Pjikl := gimP m
j kl. Then (13–9) can be expressed by

Rjikl = gimRm
kl·j + Likj|l − Lilj|k + LilmLm

kj − LikmLm
lj .

Plugging the formulas for Rjikl and Rijkl into (13–10) yields

Lijk|l − Lijl|k = − 1
2 (gimRm

kl·j + gjmRm
kl·i) − CijmRm

kl,

Ik|l − Il|k = −Rm
kl·m − ImRm

kl.
(13–11)

The expression for Ri
kl in (13–4) can be written as

Ri
kl = 1

3 (Ri
k·l − Ri

l·k). (13–12)

Lemma 13.1 [Mo 1999]. Lijk and Ri
k are related by

Cijk|p|qy
pyq + CijmRm

k

= − 1
3gimRm

k·j − 1
3gjmRm

k·i − 1
6gimRm

j·k − 1
6gjmRm

i·k. (13–13)

In particular ,

Ik|p|qy
pyq + ImRm

k = − 1
3 (2Rm

k·m + Rm
m·k). (13–14)
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Proof. By (13–7), we have

Lijk|mym = Cijk|p|qy
pyq, Jk|mym = Ik|p|qy

pyq.

Contracting the first line of (13–11) with yl yields (13–13), and contracting

(13–13) with gij yields (13–14). Here we have made use of (13–12). �

The equations above are crucial in the study of Finsler metrics of scalar curva-

ture. Let F = F (x, y) be a Finsler metric of scalar curvature with flag curvature

K = K(x, y). Then (11–8) holds. Plugging (11–8) into (13–13) and (13–14)

yields

Cijk|p|qy
pyq + KF 2Cijk = − 1

3F 2(K·ihjk + K·jhik + K·khij),

Ik|p|qy
pyq + KF 2Ik = − 1

3 (n + 1)F 2K·k.
(13–15)

Using the first of these equations, one shows that any compact Finsler mani-

fold of negative constant flag curvature must be Riemannian [Akbar-Zadeh 1988].

It follows from (13–15) that for any Finsler metric F of scalar curvature with

flag curvature K, the Matsumoto torsion satisfies

Mijk|p|qy
pyq + KF 2Mijk = 0. (13–16)

One can use (13–16) to show that any Landsberg metric of scalar curvature

with K 6= 0 it is Riemannian, in dimension n ≥ 3 [Numata 1975]. See also

Corollary 17.4.

Using (13–16), one can easily prove this:

Theorem 13.2 [Mo and Shen 2003]. Let (M,F ) be a compact Finsler manifold

of dimension n ≥ 3. If F is of scalar curvature with negative flag curvature, F

must be a Randers metric.

Now we derive some important identities for the S-curvature. Differentiating

(13–5) and using (13–3) and (13–6), one obtains

0 = d2τ = (τ|k|lω
l + τ|k·lω

n+l) ∧ ωk + (Ik|lω
l + Ik·lω

n+l) ∧ ωk + ImΩn+m.

This yields the Ricci identities

τ|k|l=τ|l|k + IpR
p
kl, (13–17)

τ|k·l=Il|k − IpL
p
kl. (13–18)

From the definition (7–3), the S-curvature can be regarded as

S = τ|mym. (13–19)

Contracting (13–17) with yk yields

S·k = (τ|mym)·k = τ|m·kym + τ|k = Ik|mym − IpL
p
mkym + τ|k = Jk + τ|k,

where we have made use of (13–17) and (13–19). We restate this equation as

S·k = τ|k + Jk. (13–20)
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Lemma 13.3 [Mo 2002; Mo and Shen 2003]. The S-curvature satisfies

S·k|mym − S|k = − 1
3 (2Rm

k·m + Rm
m·k). (13–21)

Proof. It follows from (13–20) that

S·k|l = τ|k|l + Jk|l. (13–22)

By (13–17) and (13–22), one obtains

S·k|mym − S|k = (S·k|m − S·m|k)ym = (τ|k|m − τ|m|k)ym + (Jk|m − Jm|k)ym

= IpR
p
kmym + Jk|mym = IpR

p
k − IpR

p
k − 1

3Im(Rm
k·l − Rm

l·k)

= − 1
3Im(Rm

k·l − Rm
l·k). �

14. Nonpositively Curved Finsler Manifolds

We now use some of the identities derived in the previous section to establish

global rigidity theorems.

First, consider the mean Cartan torsion. Let (M,F ) be an n-dimensional

Finsler manifold. The norm of the mean Cartan torsion I at a point x ∈ M is

defined by

‖I‖x := sup
06=y∈TxM

√

Ii(x, y)gij(x, y)Ij(x, y).

It is known that if F = α + β is a Randers metric, then

‖I‖x ≤ n + 1√
2

√

1 −
√

1 − ‖β‖2
x <

n + 1√
2

.

The bound in dimension two was suggested by B. Lackey. See [Shen 2001b,

Proposition 7.1.2] or [Ji and Shen 2002] for a proof. Below is our first global

rigidity theorem.

Theorem 14.1 [Shen 2003d]. Let (M,F ) be an n-dimensional complete Finsler

manifold with nonpositive flag curvature. Suppose that F has almost constant

S-curvature S = (n + 1)(cF + η) (with c a constant and η a closed 1-form) and

bounded mean Cartan torsion supx∈M ‖I‖x < ∞. Then J = 0 and R ◦ I = 0.

Moreover F is Riemannian at points where the flag curvature is negative.

Proof. It follows from (13–14) and (13–21) that

Ik|p|qy
pyq + ImRm

k = S·k|mym − S|k. (14–1)

Assume that the S-curvature is almost isotropic:

S = (n + 1)(cF + η),

where c = c(x) is a scalar function on M and η = ηidxi is a closed 1-form on M .

Observe that

η·k|mym − η|k = (ηk|m − ηm|k)ym =
(

∂ηk

∂xm
− ∂ηm

∂xk

)

ym = 0.
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Thus

S·k|mym − S|k = (n + 1)(cxmymF·k − c|kF + η·k|mym − η|k)

= (n + 1)(cxmymF·k − c|kF ).

In this case, (13–21) becomes

2Rm
k·m + Rm

m·k = −3(n + 1)(cxmymF·k − c|kF ) (14–2)

and (14–1) becomes

Ik|p|qy
pyq + ImRm

k = (n + 1)(cxmymF·k − c|kF ).

By assumption, c is constant, so this last equation reduces

Ik|p|qy
pyq + ImRm

k = 0. (14–3)

Let y ∈ TxM be an arbitrary vector and let σ(t) be the geodesic with σ(0) = x

and σ̇(0) = y. Since the Finsler metric is complete, one may assume that σ(t)

is defined on (−∞,∞). The mean Cartan torsion I and the mean Landsberg

curvature J restricted to σ(t) are vector fields along σ(t):

I(t) := Ii(σ(t), σ̇(t))
∂

∂xi

∣

∣

∣

σ(t)
, J(t) := J i(σ(t), σ̇(t))

∂

∂xi

∣

∣

∣

σ(t)
.

It follows from (8–5) or (13–7) that

Dσ̇I(t) = Ii
|m(σ(t), σ̇(t))σ̇m(t)

∂

∂xi

∣

∣

∣

σ(t)
= J(t).

It follows from (14–3) that

Dσ̇Dσ̇I(t) + Rσ̇(t)(I σ̇(t)) = 0.

Setting

ϕ(t) := gσ̇(t)

(

I(t), I(t)
)

,

we obtain

ϕ′′(t) = 2gσ̇(t)

(

Dσ̇Dσ̇I(t), I(t)
)

+ 2gσ̇(t)

(

Dσ̇I(t),Dσ̇I(t)
)

= −2gσ̇(t)

(

Rσ̇(t)(I(t)), I(t)
)

+ 2gσ̇(t)

(

J(t),J(t)
)

. (14–4)

By assumption, K ≤ 0. Thus

gσ̇(t)

(

Rσ̇(t)(I(t)), I(t)
)

≤ 0.

It follows from (14–4) that

ϕ′′(t) ≥ 0.

Thus ϕ(t) is convex and nonnegative. Suppose that ϕ′(t0) 6= 0 for some t0.

By an elementary argument, limt→+∞ ϕ(t) = ∞ or limt→−∞ ϕ(t) = ∞. This
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implies that the mean Cartan torsion is unbounded, which contradicts the as-

sumption. Therefore, ϕ′(t) = 0 and hence ϕ′′(t) = 0. Since each term in (14–4)

is nonnegative, one concludes that

gσ̇(t)

(

Rσ̇(t)(I(t)), I(t)
)

= 0, J(t) = 0.

Setting t = 0 yields

gy

(

Ry(Iy), Iy

)

= 0 (14–5)

and Jy = 0. By (11–6), Ry(y) = 0 and Ry is self-adjoint with respect to gy,

i.e., gy

(

Ry(u), v
)

= gy(u,Ry(v)), for u, v ∈ TxM . Thus there is an orthonormal

basis {ei}n
i=1 with en = y such that

Ry(ei) = λiei, i = 1, . . . , n,

with λn = 0. By assumption, the flag curvature is nonpositive. Then

gy(Ry(ei),ei) = λi ≤ 0, i = 1, . . . , n − 1.

Since Iy is perpendicular to y with respect to gy, one can express it as Iy =

µ1e1 + · · · + µn−1en−1. By (14–5), one obtains

0 = gy

(

Ry(Iy), Iy

)

=
n−1
∑

i=1

µ2
i λi.

Since each term µ2
i λi is nonpositive, one concludes that µiλi = 0, or yet

Ry(Iy) =
n−1
∑

i=1

µiλi = 0. (14–6)

Now suppose that F has negative flag curvature at a point x ∈ M . Then

λi < 0 for i = 1, . . . , n−1. By (14–6), one concludes that µi = 0, i = 1, . . . , n−1,

namely, Iy = 0. By Deicke’s theorem [Deicke 1953], F is Riemannian. �

Corollary 14.2. Every complete Berwald manifold with negative flag curvature

is Riemannian.

Proof. For a Berwald metric F on a manifold M , the Minkowski spaces

(TxM,Fx) are all linearly isometric (Proposition 5.2). Thus the Cartan tor-

sion is bounded from above. Meanwhile, the S-curvature vanishes (Proposition

7.1). Thus F must be Riemannian. �

Example 14.3. Let (M, ᾱ) and (M,α) be Riemannian manifolds and let F =

F (x, y) be the product metric on M = M × M , defined in Example 5.1. We

computed the spray coefficients of F in Example 5.1. Using (11–1), one obtains

the Riemann tensor of F :

Rā
b̄ = Rā

b̄, Rā
b = 0 = R

a

b̄
, R

a
b = R

a
b,
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where Rā
b̄

and R
a
b are the coefficients of the Riemann tensors of ā and a. Let

Rij := gikRk
j as usual, and define Rāb̄ and Rab similarly. Using (5–3), one

obtains

Rāb̄ = fsRāb̄, Rāb = 0 = Rab̄, Rab = ftRab.

For any vector v = vi(∂/∂xi)|x ∈ TxM ,

gy

(

Ry(v), v
)

= fsRāb̄v
āvb̄ + ftRabv

avb.

Thus if α1 and α2 both have nonpositive sectional curvature, F has nonpositive

flag curvature.

Using (5–4), one can compute the mean Cartan torsion. First, observe that

Ii =
∂

∂yi
ln

√

det(gjk) =
∂

∂yi
ln

√

h
(

[α1]2, [α2]2
)

,

where h = h(s, t) is defined in (5–5). One obtains

Iā =
hs

h
ȳā, Ia =

ht

h
ȳa,

where ȳā := ḡāb̄y
b̄ and ȳa := ḡaby

b. Since ȳāRā
b̄

= 0 and ȳaR
a
b = 0, one obtains

gy

(

Ry(Iy), Iy

)

= IiR
i
jI

j =
hs

h
ȳāRā

b̄I
b̄ +

ht

h
ȳaR

a
bI

b = 0.

Since Ry is self-adjoint and nonpositive definite with respect to gy, Ry(Iy) = 0.

Therefore F satisfies the conditions and conclusions in Theorem 14.1.

The next example shows that completeness in Theorem 14.1 cannot be replaced

by positive completeness.

Example 14.4. Let φ(y) be a Minkowski norm on Rn. Let Θ = Θ(x, y) be the

Funk metric on U := {y ∈ Rn | φ(y) < 1} defined in (2–18). Let a ∈ Rn be an

arbitrary constant vector. Let

F := Θ(x, y) +
〈a, y〉

1 + 〈a, x〉 , y ∈ TU ∼= U × Rn.

Clearly, F is a Finsler metric near the origin. By (2–19), one sees that the spray

coefficients of F are given by Gi = Pyi, where

P :=
1

2

(

Θ(x, y) − 〈a, y〉
1 + 〈a, x〉

)

.

Using this and (12–3), one obtains

K =

1

4

(

Θ − 〈a, y〉
1 + 〈a, x〉

)2

− 1

2

(

Θ2 +
( 〈a, y〉

1 + 〈a, x〉

)2
)

(

Θ(x, y) +
〈a, y〉

1 + 〈a, x〉

)2 = −1

4
.

Thus F has constant flag curvature K = − 1
4 . See also [Shen 2003b, Example 5.3].
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Now we compute the S-curvature of F . A direct computation gives

∂Gm

∂ym
= (n + 1)P.

Let dV = σF (x) dx1 · · · dxn be the Finsler volume form on M . From (12–4), we

obtain

S =
n + 1

2
F (x, y) − (n + 1)

〈a, y〉
1 + 〈a, x〉 − ym ∂

∂xm
lnσF (x)

= (n + 1)
(

1
2F (x, y) + dϕx(y)

)

,

where ϕ(x) := − ln
(

(1 + 〈a, x〉)σF (x)1/(n+1)
)

. Thus

E = 1
4 (n + 1)F−1h,

where hy = hij(x, y) dxi ⊗ dxj is given by hij = F (x, y)Fyiyj (x, y).

When φ(y) = |y| is the standard Euclidean norm, U = Bn is the standard

unit ball in Rn and

Θ =

√

|y|2 −
(

|x|2|y|2 − 〈x, y〉2
)

1 − |x|2 .

Thus

F =

√

|y|2 −
(

|x|2|y|2 − 〈x, y〉2
)

1 − |x|2 +
〈a, y〉

1 + 〈a, x〉 .

Assume that |a| < 1. It is easy to verify that F is a Randers metric defined on

the whole Bn, with constant S-curvature S = 1
2 (n + 1)F (x, y). One can show

that F is positively complete on Bn, so that every geodesic defined on an interval

(λ, µ) can be extended to a geodesic defined on (λ,+∞).

15. Flag Curvature and Isotropic S-Curvature

It is a difficult task to classify Finsler metrics of scalar curvature. All known

Randers metrics of scalar curvature have isotropic S-curvature. Thus it is a

natural idea to investigate Finsler metrics of scalar curvature which also have

isotropic S-curvature.

Proposition 15.1 [Chen et al. 2003]. Let (M,F ) be an n-dimensional Finsler

manifold of scalar curvature with flag curvature K = K(x, y). Suppose that the

S-curvature is almost isotropic,

S = (n + 1)(cF + η),

where c = c(x) is a scalar function on M and η = ηi(x)yi is a closed 1-form.

Then there is a scalar function σ = σ(x) on M such that the flag curvature

equals

K = 3
cxmym

F
+ σ. (15–1)
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Proof. By assumption, the flag curvature K = K(x, y) is a scalar function on

TM0. Thus (11–8) holds. Plugging (11–8) into (14–2) yields

cxmymF·k − cxkF = − 1
3KykF 2. (15–2)

Rewriting (15–2) as
(

1

3
K − cxmym

F

)

yk

= 0,

one concludes that the quantity

σ := K − 3cxmym

F

is a scalar function on M . This proves the proposition. �

Corollary 15.2 [Mo 2002]. Let F be an n-dimensional Finsler metric of scalar

curvature. If F has almost constant S-curvature, the flag curvature is a scalar

function on M .

From the definition of flag curvature, one can see that every two-dimensional

Finsler metric is of scalar curvature. One immediately obtains the following:

Corollary 15.3. Let F be a two-dimensional Finsler metric with almost isotro-

pic S-curvature. Then the flag curvature is in the form (15–1).

Let F = F (x, y) be a two-dimensional Berwald metric on a surface M . It follows

from Corollaries 15.3 and 15.2 that the Gauss curvature K = K(x) is a scalar

function of x ∈ M . Since F is a Berwald metric, the Gi = 1
2Γi

jk(x)yjyk are

quadratic in y = yi(∂/∂xi)|x ∈ TxM . By (11–1), the Riemann curvature, Ri
k =

Ri
k(x, y), are quadratic in y. This implies that the Ricci scalar Ric = Rm

m(x, y)

is quadratic in y. Suppose that K(x0) 6= 0 at some point x0 ∈ M . Then

F (x0, y)2 =
Ric(x0, y)

K(x0)

is quadratic in y ∈ Tx0
M . Namely, Fx0

= F |Tx0
M is Euclidean at x0. By

Proposition 5.2, all tangent spaces (TxM,Fx) are linearly isometric to each other.

One concludes that Fx is Euclidean for any x ∈ M and F is Riemannian. Now

we suppose that K ≡ 0. Since F is Berwaldian, F must be locally Minkowskian.

See [Szabó 1981] for a different argument.

16. Projectively Flat Metrics with Isotropic S-Curvature

Recall that a Finsler metric F on a manifold M is locally projectively flat if

at any point x ∈ M , there is a local coordinate system (xi) in M such that every

geodesic σ(t) is straight, i.e., σi(t) = f(t)ai + bi. This is equivalent to saying

that in the standard local coordinate system (xi, yi), the spray coefficients Gi are

in the form Gi = Pyi with P = Fxkyk/(2F ). It is well-known that any locally

projectively flat Finsler metric F is of scalar curvature, and its flag curvature
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equals K = (P 2 −Pxkyk)/F 2 (see Proposition 12.1). Our goal is to characterize

those with almost isotropic S-curvature.

First, by Beltrami’s theorem and the Cartan classification theorem, a Rie-

mannian metric is locally projectively flat if and only if it is of constant sectional

curvature. Every Riemannian metric of constant sectional curvature µ is locally

isometric to the metric αµ on a ball in Rn, defined in (2–5). A Randers metric

F = α + β is locally projectively flat if and only if α is locally projectively flat

(hence of constant sectional curvature) and β is closed. This follows directly

from a result in [Bácsó and Matsumoto 1997] and the Beltrami theorem on

projectively flat Riemannian metrics. If in addition, the S-curvature is almost

isotropic, then β can be determined explicitly.

Proposition 16.1 [Chen et al. 2003]. Let F = α+β be a locally projectively flat

Randers metric on an n-dimensional manifold M . Suppose that F has almost

isotropic S-curvature, S = (n + 1)(cF + η), where c is a scalar function on M

and η is a closed 1-form on M . Then:

(a) α is locally isometric to αµ and β is a closed 1-form satisfying

(µ + 4c2)β = −cxkyk.

(b) The flag curvature is given by

K =
3cxkyk

α + β
+ 3c2 + µ = 3

4 (µ + 4c2)
α − β

α + β
+

µ

4
. (16–1)

(c) If µ + 4c2 ≡ 0, then c is a constant and the flag curvature equals −c2. In

this case, F = α + β is either locally Minkowskian (c = 0) or , up to scaling

(c = ± 1
2 ), locally isometric to the generalized Funk metric Θa = Θa(x, y) of

(2–7) or its reverse Θ̄a = Θa(x,−y).

(d) If µ + 4c2 6= 0, then F = α + β must be locally given by

α = αµ(x, y), β = −2cxk(x)yk

µ + 4c2
(16–2)

where c := cµ(x) is given by

cµ =



















(λ + 〈a, x〉)
√

µ

±(1 + µ|x|2) − (λ + 〈a, x〉)2 , µ 6= 0,

±1

2
√

λ + 2〈a, x〉 + |x|2
, µ = 0,

for a ∈ Rn a constant vector and λ ∈ R a constant number .

Proof. Let αµ =
√

aij(x)yiyj and β = bi(x)yi. We may assume that α = αµ

in a local coordinate system

aij =
δij

1 + µ|x|2 − µxixj

(1 + µ|x|2)2 .
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The Christoffel symbols of α are given by

Γi
jk = −µ

xjδi
k + xkδi

j

1 + µ|x|2 .

Thus

Gi = − µ〈x, y〉
1 + µ|x|2 yi.

The spray coefficients of F are given by Gi = Gi+Pyi+Qi, where P = e00/(2F )

and Qi = αsi
0 are given by (9–1) and (9–2). Since β is closed, sij := 1

2 (bi;j +

bj;i) = 0 and si := bjs
j
i = 0. Thus Qi = 0. By assumption, S = (n +1)(cF + η)

and Lemma 9.1,

e00 = β|kyk = 2c(α2 − β2). (16–3)

Thus P = e00/(2F ) − s0 = c(α − β) and

βxkyk = β|kyk + 2Gkβyk = 2c(α2 − β2) − 2µ〈x, y〉β
1 + µ|x|2 .

Then Gi = P̃ yi, where P̃ = − µ〈x, y〉
1 + µ|x|2 + c(α − β). By (12–3), we obtain

KF 2 = P̃ 2 − P̃xkyk = µα2 + c2(3α + β)(α − β) − cxkyk(α − β).

On the other hand, by Theorem 15.1, the flag curvature is in the following form

K =
3cxkyk

α + β
+ σ,

where σ = σ(x) is a scalar function on M . It follows from the last two displayed

equations that

2
(

2cxkyk + (σ + c2)β
)

α +
(

2cxkyk + (σ + c2)β
)

β + (σ − 3c2 − µ)α2 = 0.

This gives

2cxkyk + (σ + c2)β = 0, σ − 3c2 − µ = 0.

Solving the second of these equations for σ and substituting into the first we get

(µ + 4c2)β = −2cxkyk. (16–4)

To prove part (c) of the Proposition, suppose that µ + 4c2 ≡ 0. Then c is

constant. It follows from (16–1) that K = 3c2 + µ = −c2. The local structure

of F can be easily determined [Shen 2003a].

Now suppose instead that µ + 4c2 6= 0 on an open subset U ⊂ M . By (16–4),

β = − 2cxkyk

µ + 4c2
. (16–5)
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Note that β is exact. It follows from (16–3) and (16–5) that

cxixj +
µ(xicxj + xjcxi)

1 + µ|x|2

= −c(µ + 4c2)
(

δij

1 + µ|x|2 − µxixj

(1 + µ|x|2)2
)

+
12ccxicxj

µ + 4c2
. (16–6)

We are going to solve for c. Let

f :=



















2c
√

1 + µ|x|2
√

±(µ + 4c2)
, µ 6= 0,

1

c2
, µ = 0,

where the sign is chosen so that the radicand ±(µ + 4c2) > 0. Then (16–6)

reduces to

fxixj =

{

0, µ 6= 0,

8δij , µ = 0.

We obtain

f =

{

λ + 〈a, x〉, µ 6= 0,

4
(

λ + 2〈a, x〉 + |x|2
)

, µ = 0,

where a ∈ Rn is a constant vector and λ is a constant. This gives part (d). �

By Proposition 16.1, one immediately obtains:

Corollary 16.2. Let F = α+β be a locally projectively flat Randers metric on

an n-dimensional manifold M . Suppose that F has almost constant S-curvature

S = (n + 1)(cF + η), where c is a constant . Then F is locally Minkowskian, or

Riemannian with constant curvature, or up to a scaling , locally isometric to the

generalized Funk metric in (2–7).

Proof. Let µ be the constant sectional curvature of α. If µ + 4c2 = 0, by

Proposition 16.1(c), F = α +β is either locally Minkowskian or, up to a scaling,

locally isometric to the generalized Funk metric in (2–7). If µ + 4c2 6= 0 instead,

F = α + β is given by (16–2). Since cxk = 0, we get β = 0 and F = α is a

Riemannian metric. �

Proposition 16.1 completely classifies projectively flat Randers metrics of almost

isotropic S-curvature. If a Randers metric has almost isotropic S-curvature, its

the E-curvature is isotropic. By Lemma 9.1, the S-curvature is isotropic. Thus

a Randers metric is of almost isotropic S-curvature if and only if it is of isotropic

S-curvature. This is not true for general Finsler metrics: if Θ(x, y) is the Funk

metric on a strongly convex domain U ⊂ Rn, the Finsler metric

F = Θ(x, y) +
〈a, y〉

1 + 〈a, x〉 , y ∈ TxU ∼= Rn,



346 ZHONGMIN SHEN

is projectively flat with almost isotropic S-curvature, according to Example 14.4.

Thus it has isotropic E-curvature. However, this F is of isotropic S-curvature

only for certain U ’s such as the standard unit ball.

A natural problem is whether there are other types of projectively flat Finsler

metrics of almost isotropic S-curvature. Here is the answer:

Proposition 16.3 [Chen and Shen 2003b]. Let F = F (x, y) be a projectively

flat Finsler metric on a simply connected open subset U ⊂ Rn. Suppose that F

has almost isotropic S-curvature,

S = (n + 1)c(F + η), (16–7)

where c is a scalar function on M and η is a closed 1-form on U .

(a) If K is not of the form −c2+cxmym/F at every point x ∈ U , then F = α+β

is a Randers metric on U . Further , α is of constant sectional curvature K̄ = µ

with µ + 4c2 6= 0 and α and β are as in Proposition 16.1(c).

(b) If K ≡ −c2 + cxmym/F on U , then c is a constant , and either F is locally

Minkowskian (c = 0) or there exist a Funk metric Θ and a constant vector

a ∈ Rn such that F has the form

F =
1

2c

{

Ψ +
〈a, y〉

1 + 〈a, x〉 ,

where Ψ = Θ(x, y) if c = 1
2 and Ψ = −Θ(x,−y) if c = − 1

2 .

Proof. Since F is projectively flat, the spray coefficients are given by Gi = Pyi,

where

P :=
Fxkyk

2F
.

Thus the S-curvature is given by (12–4) and the flag curvature of F is given by

(12–3).

By assumption, S is of the form (16–7). Since η is closed on U , it can be

written as η(x, y) = dhx(y), where h = h(x) is a scalar function on U . Thus

P = cF + dϕx, (16–8)

where ϕ(x) := h(x) + (lnσF (x))/(n + 1). It follows from the last two displayed

equations that

Fxiyi = 2FP = 2F (cF + ϕxiyi).

Using this together with (16–8) and (12–3), one obtains

K =
(cF + ϕxiyi)2 − (cxiyiF + cFxiyi + ϕxixj yiyj)

F 2

=
−c2F 2 − cxmymF + (ϕxiϕxj − ϕxixj )yiyj

F 2
. (16–9)
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On the other hand, since F is of scalar curvature, by Proposition 15.1, the flag

curvature of F is given by (15–1). Comparing (16–9) with (15–1) yields

(σ + c2)F 2 + 4cxmymF + (ϕxixj − ϕxiϕxj )yiyj = 0. (16–10)

Assume that K 6= −c2 + cxmym/F at every point x ∈ U . Then, by (15–1),

for any x ∈ U , there is a nonzero vector y ∈ TxU such that

σ + c2 +
2cxmym

F
6= 0.

We claim that σ + c2 6= 0 on U . If not, there is a point x0 ∈ U such that

σ(x0) + c(x0)
2 = 0. The inequality above implies that dc 6= 0 at x0. Then

(16–10) at x0 reduces

4cxm(x0)y
mF (x0, y) +

(

ϕxixj (x0) − ϕxi(x0)ϕxj (x0)
)

yiyj = 0. (16–11)

Differentiating with respect to yi, then restricting to the hyperplane

V := {y | cxm(x0)y
m = 0},

one obtains

4cxi(x0)F (x0, y) +
(

ϕxixj (x0) − ϕxi(x0)ϕxj (x0)
)

yj = 0.

In other words, F (x0, y) is a homogeneous linear function of y ∈ V . This is

impossible, because F (x0, y) is always positive for y ∈ V \ {0}.
Now we may assume that σ + c2 6= 0 on U . One can solve the quadratic

equation (16–10) for F ,

F =

√

(σ + c2)(ϕxixj − ϕxiϕxj )yiyj + 4(cxmym)2 − 2cxmym

σ + c2
.

That is, F is expressed in the form F = α+β, where α =
√

aijyiyj and β = biy
i

are given by

aij =
(σ + c2)(ϕxixj − ϕxiϕxj ) + 4cxicxj

(σ + c2)2
, bi = − 2cxi

σ + c2
.

Since F is a Randers metric, by Lemma 9.1, one concludes that S is isotropic,

i.e., η = 0 and

S = (n + 1)cF.

Since F is projectively flat, α is of constant sectional curvature K̄ = µ and β

is closed. Moreover, by Proposition 16.1, the flag curvature is given by (16–1).

Note that σ + c2 6= 0 is equivalent to the inequality µ + 4c2 6= 0. By Proposition

16.1(d), F is given by (16–2).

We now assume that K ≡ −c2 + cxiyi/F . It follows from (15–1) that

σ + c2 +
2cxmym

F
≡ 0.
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Suppose that cxm(x0)y
m 6= 0 at some point x0. From the preceding identity, one

sees that σ(x0) + c(x0)
2 6= 0. Thus

F (x0, y) = − 2cxm(x0)y
m

σ(x0) + c(x0)2

is a linear function. This is impossible. One concludes that cxmym = 0 on U ,

and hence c is a constant and σ(x) = −c2 is a constant too. In this case, the

flag curvature is given by K = −c2. Equation (16–10) reduces to

ϕxixj − ϕxiϕxj = 0,

which is easily solved to yield

ϕ = − ln
(

1 + 〈a, x〉
)

+ C,

where a ∈ Rn is a constant vector and C is a constant.

Assume that c = 0. Then K = −c2 = 0. It follows from (16–8) that the

projective factor P = dϕx is a 1-form, hence the spray coefficients Gi = Pyi are

quadratic in y ∈ TxU . By definition, F is a Berwald metric, and every Berwald

metric with K = 0 is locally Minkowskian (see [Bao et al. 2000] for a proof).

Assume that c 6= 0. By (16–8), P = cF +dϕ. With Ψ := P +cF = 2cF +dϕx,

we have

F =
1

2c
(Ψ(x, y) − dϕx) =

1

2c

(

Ψ(x, y) +
〈a, y〉

1 + 〈a, x〉

)

.

Since F is projectively flat and P is the projective factor,

Fxk = (PF )yk , Pxk = PPyk + c2FFyk .

These equations imply that Ψxi = ΨΨyi . Let Θ := Ψ(x, y) if c > 0 and Θ :=

−Ψ(x,−y) if c < 0. Then Θ is a Funk metric and F is of the form stated in part

(b) of the theorem. �

17. Flag Curvature and Relatively Isotropic L-Curvature

Although the relatively isotropic J-curvature condition is stronger than the

isotropic S-curvature condition for Randers metrics (Lemma 10.1), it seems that

there is no direct relationship between these two conditions. Nevertheless, for

Finsler metrics of scalar curvature, the relatively isotropic J-curvature condition

also implies that the flag curvature takes a special form in certain cases.

Proposition 17.1 [Chen et al. 2003]. Let F be an n-dimensional Finsler man-

ifold of scalar curvature and of relatively constant J-curvature, so that

J + cFI = 0, (17–1)

for some constant c. Then

K = −c2 + σe−3τ/(n+1),
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where τ = τ(x, y) is the distortion and σ = σ(x) is a scalar function on M .

Proof. By assumption, Jk = −cFIk. Using (13–6) and (13–7), one obtains

Ik|p|qy
pyq = Jk|mym = −cFIk|mym = c2F 2τ·k.

Plugging this into the second line of (13–15) yields

1
3 (n + 1)K·k + (K + c2)τ·k = 0.

This implies that

(

(K + c2)(n+1)/3eτ
)

·k
= (K + c2)(n−2)/3eτ

(

1
3 (n + 1)K ·k + Kτ·k

)

= 0.

Thus the function (K + c2)(n+1)/3eτ is independent of y ∈ TxM . �

Proposition 17.1 in the particular case c = 0 was essentially achieved in the

proof of [Matsumoto 1972a, Proposition 26.2], where it is assumed that F is a

Landsberg metric, but what is needed is merely that J = 0. Since the notion of

distortion is not introduced in [Matsumoto 1972a], the result is stated in a local

coordinate system.

Corollary 17.2. Let F be a Finsler metric on a manifold M . Suppose that F

has isotropic flag curvature not equal to −c2 and that F has relatively constant

J-curvature. Then F is Riemannian.

Proof. By Proposition 17.1,

K(x) = −c2 + σ(x)e−3τ/(n+1).

Since K(x) 6= −c2, one concludes that σ(x) 6= 0, so τ = τ(x) is independent of

y ∈ TxM . It follows from (7–2) that Ii = τyi = 0. Thus F is Riemannian by

Deicke’s theorem [Deicke 1953]. �

Proposition 17.3. Let F be a Finsler metric of scalar curvature on an n-

dimensional manifold . Suppose that F has relatively isotropic L-curvature, so

L + cFC = 0, (17–2)

where c is a scalar function on M .

(a) If c is constant , then

K = −c2 + σe−3τ/(n+1),

where σ is a scalar function on M .

(b) If n ≥ 3 and K 6= −c2 +cxmym/F for almost all y ∈ TxM \{0} at any point

x in an open domain U of M , then F = α + β is a Randers metric in U .
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Proof. If F has relatively isotropic L-curvature, (17–1) holds by taking the

average of (17–2) on both sides. Statement (a) then follows from Proposition

17.1.

Now we assume that K 6= −c2 + cxm(x)ym/F for almost all y ∈ TxM \{0} at

any point x in an open domain U ⊂ M . By assumption, Lijk = −cFCijk, one

obtains

Cijk|p|qy
pyq = −cxmymFCijk − cFLijk =

(

c2 − cxmym

F

)

F 2Cijk.

Since Jk = −cFIk by (17–1), we have

Ik|p|qy
pyq = −cxmymFIk − cFJk =

(

c2 − cxmym

F

)

F 2Ik.

By the formula for Mijk in (3–2), one obtains

Mijk|p|qy
pyq =

(

c2 − cxmym

F

)

F 2Mijk.

Since F is of scalar curvature, equation (13–16) holds. One obtains
(

K + c2 − cxmym

F

)

F 2Mijk = 0.

It follows that Mijk = 0, so the Matsumoto torsion vanishes. By Proposition 3.3,

F = α + β is a Randers metric on U . �

Proposition 17.3 was proved by H. Izumi [1976; 1977; 1982], The particular case

c = 0 is proved by S. Numata [1975].

Corollary 17.4 [Numata 1975]. Let F be a Finsler metric of scalar curvature

on an n-dimensional manifold , with n ≥ 3. Suppose that L = 0 and K 6= 0.

Then F is Riemannian.

Proof. By Proposition 17.3, F = α + β is a Randers metric with L = 0. By

Lemma 10.1, S = 0 and β is closed. By Proposition 15.1, one concludes that

K = σ(x) is a scalar function on M . It follows from (13–14) that 0 = −F 2σ(x)Ik.

By assumption, K = σ(x) 6= 0. Thus Ik = 0 and F is Riemannian by Deicke’s

theorem. �

We may ask again: is there a non-Berwaldian Finsler metric satisfying K = 0

and L = 0 (or J = 0)? If such a metric exists, it cannot be locally projectively

flat and it cannot be a Randers metric. (Why?)

Example 17.5. Let F = α + β be the Randers metric on Rn defined by

F := |y| + 〈x, y〉
√

1 + |x|2
, y ∈ TxRn ∼= Rn.

Note that

‖β‖2 =
|x|2

1 + |x|2 < 1.
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F is indeed a Randers metric on the whole of Rn. One can verify that F satisfies

(12–5). Thus it is a projectively flat Randers metric on Rn. Further, the spray

coefficients Gi = Pyi are given by

P = c
(

|y| − 〈x, y〉
√

1 + |x|2
)

,

where c = 1/
(

2
√

1 + |x|2
)

. Let ρ := ln
√

1 − ‖β‖2 = − ln
√

1 + |x|2. By (9–3),

one obtains S = (n+1)(P −ρ0) = (n+1)cF . Since β is closed, this is equivalent,

by Proposition 10.1, to the identity L + cFC = 0.

Since F is projectively flat, it is of scalar curvature. Further computation

yields the flag curvature:

K =
P 2 − Pxkyk

F 2
=

3

4(1 + |x|2) · |y|
√

1 + |x|2 − 〈x, y〉
|y|

√

1 + |x|2 + 〈x, y〉
.

Note that K 6= −c2 + cxk(x)yk/F (x, y) and that F is a Randers metric. This

matches the conclusion in Proposition 17.3(b).

The Randers metric in Example 17.5 is locally projectively flat. There are non–

projectively flat Randers metrics of scalar curvature and isotropic S-curvature;

see Example 11.2. This example is a Randers metric generated by a special vector

field on the Euclidean space by (2–15). In fact, we can determine all vector fields

V on a Riemannian space form (M,αµ) of constant curvature µ such that the

generated Randers metric F = α + β by (αµ, V ) is of scalar curvature and

isotropic S-curvature. This work will appear elsewhere.
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