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Heegner Points and Representation Theory

BENEDICT H. GROSS

Abstract. Our aim in this paper is to present a framework in which the re-
sults of Waldspurger and Gross–Zagier can be viewed simultaneously. This
framework may also be useful in understanding recent work of Zhang, Xue,
Cornut, Vatsal, and Darmon. It involves a blending of techniques from rep-
resentation theory and automorphic forms with those from the arithmetic
of modular curves. I hope readers from one field will be encouraged to
pursue the other.
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1. Heegner Points on X0(N)

I first encountered Heegner points in 1978, when I was trying to construct
points of infinite order on the elliptic curves A(p) I had introduced in my thesis
[G0, page 79]. Barry Mazur gave me a lecture on Bryan Birch’s work, and on
his amazing computations. I had missed Birch’s lectures at Harvard on the
subject, as I was in Oxford in 1973-4, bemoaning the fact that no one was there
to supervise graduate work in number theory.

By 1978, Birch had found the key definitions and had formulated the central
conjectures, relating Heegner points to the arithmetic of elliptic curves (see [B],
[B-S]). These concerned certain divisors of degree zero on the modular curves
X0(N), and their images on elliptic factors of the Jacobian. I will review them
here; a reference for this material is [G1].

A (noncuspidal) point on the curve X0(N), over a field k of characteristic
prime to N , is given by a pair (E,F ) of elliptic curves over k and a cyclic N -
isogeny φ : E → F , also defined over k. We represent the point x by the diagram

(E
φ
- F );

two diagrams represent the same point if they are isomorphic over a separable
closure of k.

The ring End(x) associated to the point x is the subring of pairs (α, β) in
End(E)×End(F ) which are defined over k and give a commutative square

E
φ

- F

E

α

?

φ
- F .

β

?

When char(k) = 0, the ring End(x) is isomorphic to either Z or an order O in an
imaginary quadratic field K. In the latter case, we say the point x has complex
multiplication.

Assume End(x) = O, and let OK be the full ring of integers of K. The
conductor c of O is defined as the index of O in OK . Then O = Z + cOK , and
the discriminants of OK and O are dK and D = dKc2, respectively. We say x is
a Heegner point if End(x) = O, and the conductor c of O is relatively prime to
N . This forces an equality: End(x) = End(E) = End(F ).

Heegner points exist (for all conductors c prime to N) precisely when all prime
factors p of N are either split or ramified in K, and all factors with ordp(N) ≥ 2
are split in K. The points of conductor c are defined over the ring class field
k of conductor c over K, which is an abelian extension of K with Galois group
isomorphic to Pic(O).
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Let x be a Heegner point of conductor c, and let ∞ be the standard cusp on
X0(N), given by the cyclic isogeny (Gm/qZ →

N
Gm/qNZ) of Tate curves over Q.

Consider the divisor (x)− (∞) of degree 0, and let

a ≡ (x)− (∞)

be its class in the k-rational points of the Jacobian J0(N).
The finite dimensional rational vector space

W = J0(N)(k)⊗Q
is a semi-simple module for the Hecke algebra T, generated over Q by the op-
erators Tm, for m prime to N , and the involutions wn, for n dividing N . The
Galois group Gal(k/K) also acts on W , and commutes with T. Note that the
complex characters of the commutative Q-algebra T[Gal(k/K)] are indexed by
pairs (f, χ), where f is a cuspidal eigenform of weight 2 for Γ0(N) and χ is a
ring class character of conductor dividing c.

Assume that f is a new form, of level N , and that χ is primitive, of conductor
c. Let a(f, χ) be the projection of the class a in W to the (f, χ)-eigenspace in
W ⊗ C. The central question on Heegner divisors is to determine when a(f, χ)
is nonzero.

If a prime p divides both dK and N , then (p) = ℘2 is ramified in K and
ordp(N) = 1. In this case, χ(℘) = ±1 and ap(f) = ±1. When ap(f) · χ(℘) = 1,
the class a(f, χ) is zero, for simple reasons [G1]. In what follows, we will assume
that ap(f) · χ(℘) = −1, for all primes p dividing both dK and N .

2. Rankin L-Series and a Height Formula

Associated to the pair (f, χ), one has the Rankin L-function

L(f, χ, s) =
∏
p

Lp(f, χ, s),

defined by an Euler product in the half plane Re(s) > 3
2 . The Euler factors have

degree ≤ 4 in p−s, and are given explicitly in [G1]. Rankin’s method shows that
the product

Λ(f, χ, s) =
(
(2π)−sΓ(s)

)2
L(f, χ, s)

has an analytic continuation to the entire plane, and satisfies the functional
equation:

Λ(f, χ, 2− s) = −A1−s · Λ(f, χ, s)

with A = (ND)2/ gcd(N, D). The sign in this functional equation is -1, as the
local signs εp at finite primes p are all +1, and the local sign ε∞ at the real
prime is −1 [G1]. Hence L(f, χ, s) vanishes to odd order at the central critical
point s = 1.
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Birch considered the projection a(f, χ) in the special case of rational char-
acters (f, χ) of the Q-algebra T[Gal(k/K)]. In this case, f corresponds to an
elliptic curve factor A of J0(N) over Q, and χ to a factorization D = d1d2 into
two fundamental discriminants. If A1 and A2 are the corresponding quadratic
twists of A over Q, then

L(f, χ, s) = L(A1, s)L(A2, s).

He discovered that a(f, χ) was nonzero precisely when the order of vanishing
of L(f, χ, s) at s = 1 was equal to one. In this case, he obtained a wealth
of computational evidence in support of a new limit formula, relating the first
derivative of the Rankin L-series to the height of the projected Heegner point
on the elliptic curve A, over the biquadratic field Q(

√
d1,

√
d2).

The extension of Birch’s conjecture to all complex characters (f, χ) of the
algebra suggested a similar formula for L′(f, χ, 1), of the type

L′(f, χ, 1) =
(f, f)√

D
ĥ(a(f, χ)).

Here (f, f) is a normalized Petersson inner product, and ĥ is the canonical height
on J0(N) over K. Conjecturing the formula in this generality allows one to un-
wind the various projection operations, and obtain an equivalent identity involv-
ing the height paring of a Heegner divisor with a Hecke translate of its Galois
conjugate. This is a simpler identity to prove, as one can use Néron’s theory of
local heights on the original modular curve, where the Heegner points and Hecke
operators have a modular interpretation. Another advantage in this formulation
is that the Rankin L-series is easier to study than the product of two Hecke
L-series, owing to its integral representation.

Working along these lines, Zagier and I obtained such a formula, for D square-
free and relatively prime to N , in 1982 [G-Z]. Zhang has recently established a
similar formula in great generality [Z1].

3. Starting from the L-Function

In the above formulation, one starts with Heegner divisor classes a ≡ (x)−(∞)
on J0(N). The Rankin L- function L(f, χ, s) is introduced in order to study the
projection a(f, χ).

To generalize beyond the modular curves X0(N), we will reverse matters and
start with the Rankin L-function L(f, χ, s). The form f corresponds to an au-
tomorphic, cuspidal representation π of the adèlic group GL2(AQ), with trivial
central character and π∞ in the discrete series of weight 2. The character χ cor-
responds to a Hecke character of GL1(AK), with trivial restriction to GL1(AQ),
and χ∞ = 1. The tensor product π⊗χ gives an automorphic cuspidal represen-
tation of a group G of unitary similitudes over Q, which has L-function L(f, χ, s)
via a four-dimensional, symplectic representation of the L-group of G.
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The key idea is to use the local signs in the functional equation of L(f, χ, s)
to define an arithmetic object— either an inner form G′ of G, or a Shimura
curve M(GS). We then use the representation theory of G′ to study the central
critical value L(f, χ, 1), following Waldspurger [W], and the arithmetic geometry
of the Shimura curve and its special points to study the central critical derivative
L′(f, χ, 1). Using the local and global representation theory of GL2 and its inner
forms, we can formulate both cases in a similar manner.

4. Local Representation Theory

We begin with the local theory. Let k be a local field, and let E be an étale
quadratic extension of k. Then E is either a field, or is isomorphic to the split
k-algebra k[x]/(x2 − x)' k + k. In the latter case, there are two orthogonal
idempotents e1 and e2 in E, with e1 + e2 = 1. Let e 7→ e be the nontrivial
involution of E fixing k; in the split case e1 = e2. By local class field theory,
there is a unique character α : k∗ → 〈 ± 1〉 whose kernel is the norm group
NE∗ = {ee : e ∈ E∗} in k∗.

Let π be an irreducible complex representation of the group GL2(k), and let
ω :k∗ → C∗ be the central character of π. We will assume later that π is generic,
or equivalently, that π is infinite-dimensional.

Let S be the two-dimensional torus ResE/kGm, and let χ be an irreducible
complex representation of the group S(k) = E∗. Since E has rank 2 over k, we
have an embedding of groups:

S(k) ' AutE(E) → GL2(k) ' Autk(E)

We will consider the tensor product π⊗χ as an irreducible representation of the
group GL2(k)× S(k), and wish to restrict this representation to the diagonally
embedded subgroup S(k).

The central local problem is to compute the space of coinvariants

HomS(k)(π ⊗ χ,C).

If this is nonzero, we must have

ω · Res(χ) = 1 (∗)
as a character of k∗. Indeed, ω ·Res(χ) gives the action of k∗ ⊂ E∗ on all vectors
in π ⊗ χ.

We will henceforth assume that (∗) holds. Then π ⊗ χ is an irreducible rep-
resentation of G(k), with

G = (GL2×S)/∆Gm,

and we wish to restrict it to the subgroup T (k), where T is the diagonally
embedded, one-dimensional torus S/Gm.
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5. Unitary Similitudes

The group G defined above is a group of unitary similitudes. Indeed, let k be
a field, and let E ⊂ B be an étale, quadratic algebra E over k, contained in a
quaternion algebra B over k. The k-algebra B is then graded: B = B+ + B−
with

B+ = E,

B− = {b ∈ B : be = eb for all e ∈ E}.
Both B+ and B− are free E-modules of rank 1. The pairing φ : B × B → E,
defined by

φ(b1, b2) = (b1b2)+

= first component of b1b2,

is a nondegenerate Hermitian form on the free E module B of rank 2.
The group GU(B,φ) of unitary similitudes has k-valued points isomorphic to

B∗×E∗/∆k∗. To give a specific isomorphism, we let the pair (b, e) in B∗ × E∗

act on x ∈ B by

(b, e)(x) = exb−1.

Then ∆k∗ acts trivially on B, and the similitude factor for φ is Ne/Nb in k∗.
When E is split, the algebra B is a matrix algebra. If we take B = Endk(E) =

M2(k), using the basis 〈e1, e2〉 of orthogonal idempotents, then the k-valued
points of GU(B, φ) are isomorphic to GL2(k) × k∗. The pair

((
a
c

b
d

)
, λ

)
acts on

x =
(

A
C

B
D

)
by

((
a b

c d

)
, λ

)
(x) =

(
λ

1

)
· x ·

(
a b

c d

)−1

.

The unit element 1 ∈ B satisfies φ(1, 1) = 1, and the subgroup fixing this
vector is the diagonally embedded torus T = S/Gm, which acts as the unitary
group of the line B−.

Conversely, if (V, φ) is a nondegenerate unitary space of dimension 2 over E,
and v is a vector in V satisfying φ(v, v) = 1, we may give V the structure of a
quaternion algebra over k, containing the quadratic algebra E. Indeed

V = E · v + W, with W = (Ev)⊥

and we define multiplication by

(αv + w)(α′v + w′) = (αα′ − φ(w, w′))v + (αw′ + α′w).

The group GU(V, φ)(k) is then isomorphic to B∗×E∗/∆k∗, with B the quater-
nion algebra so defined.
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6. The L-Group and Its Symplectic Representation

The L-group of G = GU(V, φ) depends only on E, not on the quaternion
algebra B. If E is split, G ' GL2×Gm and

LG ' GL2×Gm.

If E is a field, LG is a semidirect product
LG ' (GL2×Gm)oGal(E/k).

The action of the generator τ of Gal(E/k) is by

τ(λ, g) = (λ · det g, g · (det g)−1).

In all cases, the L-group LG has a four-dimensional symplectic representation

ρ : LG → Sp4

with kernel isomorphic to Gm and image contained in the normalizer of a Levi
factor in a Siegel parabolic. We will encounter this representation in § 8.

7. Inner Forms

We return to the case when k is a local field. If E is split, there is only one
possible similitude group, corresponding to the quaternion algebra M2(k) of 2×2
matrices:

G(k) = (GL2(k)× E∗)/∆k∗ ' GL2(k)× k∗.

When E is a field, it embeds into M2(k) as well as into the unique quaternion
division algebra B over k (since E is a field, k 6= C). This gives two similitude
groups

G(k) = (GL2(k)× E∗)/∆k∗

G′(k) = (B∗ × E∗)/∆k∗.

Both contain the diagonally embedded torus

T (k) = E∗/k∗,

and the latter is compact modulo its center.
If π is an irreducible, complex representation of GL2(k) with central character

ω, and χ is a character of E∗, which satisfies ω · Res(χ) = 1, then π ⊗ χ is an
irreducible representation of G(k). If π is square-integrable, it corresponds to
a unique finite-dimensional, irreducible, complex representation π′ of B∗. The
representation π′ is described in [J-L]; it is characterized by

Tr(g|π) + Tr(g|π′) = 0

for all elliptic, semi-simple classes g, and has central character ω. If E is a field,
then π′ ⊗ χ gives an irreducible representation of G′(k), which can be restricted
to the diagonally embedded torus T (k).
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In the next three sections, we will compute the complex vector spaces

HomT (k)(π ⊗ χ,C) and HomT (k)(π′ ⊗ χ,C).

8. Langlands Parameters

Let Wk denote the Weil group of k, and normalize the isomorphism k∗ '
W ab

k of local class field theory to map a uniformizing parameter to a geometric
Frobenius element, in the non-Archimedean case.

The representation π of GL2(k) has a local Langlands parameter [G-P]

σπ : W ′
k → GL2(C).

Here W ′
k is the Weil–Deligne group, and we normalize the parameter so that

det(σπ) = ω.
The character χ of E∗ has conjugate χτ defined by χτ (α) = χ(α). Since

χ · χτ (α) = χ(αα) = ω−1(αα), we have

χτ = χ−1 · (ω ◦N)−1.

When E is split, so E∗ = k∗ × k∗, we have χ = (η1, η2) and χτ = (η2, η1). In
general, the pair (χ, χτ ) gives a homomorphism, up to conjugacy

σχ : Wk → (C∗ × C∗)oAut(E/k).

The kernel of α : Wk → 〈± 1〉 maps to the subgroup C∗×C∗ via (χ, χτ ), and
Aut(E/k) permutes the two factors. The complex group on the right is GO2(C);
in this optic, σχ is given by the induced representation Ind(χ) = Ind(χτ ).

We view σπ as a homomorphism from W ′
k to GSp(V ), with dim V = 2, having

similitude factor ω. We view σχ as a homomorphism from Wk to GO(V ′), with
dim V ′ = 2, having similitude factor Res(χ) = Res(χτ ). Since ω · Res(χ) = 1,
the tensor product V ⊗ V ′ is a four-dimensional, symplectic representation of
the Weil–Deligne group:

σπ ⊗ σχ : W ′
k → Sp(V ⊗ V ′) = Sp4(C).

This is the composition of the Langlands parameter of the representation π ⊗ χ

of G(k)

σπ⊗χ : W ′
k → LG(C)

with the symplectic representation

ρ : LG(C) → Sp4(C),

mentioned in § 6. The key point is that the image of this symplectic representa-
tion lands in the normalizer of a Levi factor.
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9. Local ε-Factors

In particular, we have an equality of Langlands L and ε-factors with the
Artin–Weil L and ε-factors:

L(π ⊗ χ, ρ, s) = L(σπ ⊗ σχ, s),

ε(π ⊗ χ, ρ, ψ, dx, s) = ε(σπ ⊗ σχ, ψ, dx, s).

We normalize the L-function so that the functional equation relates s to 1 − s,
and the central point is s = 1

2 . Since this is the only representation ρ of LG we
will consider, we suppress it in the notation and write L(π⊗χ, s) for L(π⊗χ, ρ, s).

Since σπ ⊗ σχ is symplectic, we can also normalize the local constant follow-
ing [G4]. If dx is the unique Haar measure on k which is self-dual for Fourier
transform with respect to ψ, then

ε(π ⊗ χ) = ε(σπ ⊗ σχ, ψ, dx,
1
2
)

depends only on σπ ⊗ σχ, and satisfies

ε(π ⊗ χ)2 = 1.

Since the representation ρ of LG is not faithful, certain nonisomorphic rep-
resentations of G(k) have the same local L- and ε-factors. Since σχ = σχτ as
representations to GO2(C), we have

L(π ⊗ χ, s) = L(π ⊗ χτ , s),

ε(π ⊗ χ) = ε(π ⊗ χτ ).

Also, if η is any character of k∗, and we define

π∗ = π ⊗ (η ◦ det),

χ∗ = χ⊗ (η ◦N)−1,

then σπ∗ ⊗ σχ∗ = σπ ⊗ σχ, so

L(π∗ ⊗ χ∗, s) = L(π ⊗ χ, s),

ε(π∗ ⊗ χ∗) = ε(π ⊗ χ).

Note, however, that when η 6= 1 the representation π ⊗ χ and π∗ ⊗ χ∗ of G(k)
are not isomorphic, as they have distinct central characters. Their restrictions
to the subgroup U2 ⊂ GU2 are isomorphic, and U2 contains the torus T .

Finally, since the dual of the representation π ⊗ χ of G(k) is isomorphic to

(π ⊗ χ)∨ ' π∨ ⊗ χ∨ ' (π ⊗ ω(det)−1)⊗ χ−1 ' π∗ ⊗ (χτ )∗,

with η = ω−1, we have

L((π ⊗ χ)∨, s) = L(π ⊗ χ, s),

ε((π ⊗ χ)∨) = ε(π ⊗ χ).
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10. Local Linear Forms

We can now state the main local result, which is due to Tunnell and Saito
(see [T], [S]). Recall that the representation π is generic if it has a nonzero
linear functional on which the unipotent radical of a Borel subgroup acts via
a nontrivial character. A fundamental result states that this occurs precisely
when π is infinite dimensional. Also, recall that π has square-integrable matrix
coefficients if and only if it lies in the discrete series for GL2.

Theorem. Assume that π is generic. Then dim HomT (k)(π ⊗ χ,C) ≤ 1, with
equality holding precisely when

ε(π ⊗ χ) = α · ω(−1).

If dim HomT (k)(π ⊗ χ,C) = 0, then π is square-integrable and E is a field . In
this case, we have dim HomT (k)(π′ ⊗ χ,C) = 1.

Informally speaking, this says that the T (k) coinvariants in the representation

(π ⊗ χ) + (π′ ⊗ χ)

have dimension 1, and the location of the coinvariants is given by the sign:

ε(π ⊗ χ)/α · ω(−1).

Note that this result is compatible with the identities

ε(π ⊗ χ) = ε(π ⊗ χτ ) = ε(π∗ ⊗ χ∗),

where π∗ = π ⊗ (η ◦ det) and χ∗ = χ⊗ (η ◦N)−1.

11. Local Test Vectors

We can refine the result on T (k)-invariant linear forms ` on π⊗χ or π′⊗χ in
favorable cases, by giving test vectors on which the nonzero invariant linear forms
are nonzero. These vectors will lie on a line 〈v〉 fixed by a compact subgroup M

in G(k) or G′(k), and M will be well-defined up to T (k)-conjugacy.
For k non-Archimedean, the favorable cases are when either the representation

π, or the character χ, is unramified. In this case, 〈v〉 will be the fixed space of an
open, compact subgroup M (see [G-P]). We will give a construction of M from
the point of view of Hermitian lattices, first in the case when π is unramified,
and then in the case when χ is unramified.

Let A be the ring of integers of k, and let OE be the integral closure of A in
E. Since either ω or Res(χ) is unramified, and ω · Res(χ) = 1, both are trivial
on the subgroup A∗. Writing ω = η−2, where η is an unramified character of k∗,
and twisting π by η(det) and χ by η(N)−1, we may assume that ω = Res(χ) = 1.
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Let c be the conductor ideal of χ, so χ is trivial when restricted to (1+ cOE).
Since χ is a character of E∗/k∗, c is the extension of an ideal of A, and the order

O = A + cOE

is stable under conjugation. Since

O∗ = A∗(1 + cOE),

the character χ of E∗ is trivial, when restricted to the subgroup O∗.
Now assume that π is unramified. Then, by the theorem in the previous

section, we have a T (k)-invariant linear form on π ⊗ χ. The quaternion algebra
B = Endk(E) contains the quadratic algebra B+ = EndE(E) = E, and B− = Eτ

is the E-submodule of antilinear maps. The associated Hermitian space has

φ(α + βτ, α + βτ) = Nα−Nβ,

and contains the O-lattice of rank 2:

L = EndA(O) ⊃ O + Oτ.

We define the open compact subgroup M of G(k) = GU(B,φ) as the stabilizer
of L:

M = GU(L, φ) ' AutA(O)× O∗/∆A∗

' GL2(A)× O∗/∆A∗.

Note that φ, when restricted to L, takes values in O∨ = Hom(O, A) ⊂ E. Since
L ∩ E = O, the intersection of M with T (k) = E∗/k∗ is O∗/A∗. The proof that
M fixes a unique line in π ⊗ χ, and that nonzero vectors on this line are test
vectors for the T (k)-invariant linear form, is given in [G-P, § 3].

The construction of M ⊂ G(k) which we have just given, when π is unramified,
appears to be a natural one. But we could also have taken the O-lattice L′ =
EndA(P ), where P = Oα is any proper O-submodule of E, with α ∈ E∗. The
resulting stabilizer M ′ = AutA(P ) × O∗/∆A∗ in G(k) is then the conjugate of
M by the image of α in T (k) = E∗/k∗. This gives an action of the quotient
group E∗/k∗ ·O∗ on the open compact subgroups M we have defined, and hence
on their fixed lines (π ⊗ χ)M = 〈v〉.

We now turn to the construction of M in the case when the character χ is
unramified. The Hermitian lattice

L = OE + OE · w
is determined by φ(w, w) in A−{0}, up to multiplication by NO∗E . If E/k is un-
ramified, NO∗E = A∗, and L = Ln is completely determined by n = ord(φ(v, v)).
We let n be the conductor of π, and let M = Mn be the subgroup of GU(V, φ)
stabilizing Ln.

When E is split, Mn is open and compact in G(k) ' GL2(k)×k∗, of the form
R∗n ×A∗, where Rn is an Eichler order of conductor n. Hence Mn fixes a line in
π ⊗ χ, giving test vectors for the T -invariant form, by [G-P,§ 4]. When E is the
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unramified quadratic field extension, GU(V, φ) is isomorphic to G(k) when n is
even, and to G′(k) when n is odd. Since ε(π ⊗ χ) = (−1)n in this case, we find
that Mn contains T (k), so that the line fixed by Mn in π⊗ χ or π′ ⊗ χ provides
test vectors [G-P, prop. 2.6].

Now assume E/k is tamely ramified and that π has conductor n + 1 ≥ 1.
Then NO∗E has index 2 in A∗, and there are two Hermitian lattices Ln and L′n
of the form OE + OEw, with ord(φ(w, w)) = n. One has Mn = GU(Ln, φ) open
and compact in G(k), and the other has M ′

n = GU(L′n, φ) open and compact
in G′(k). Both contain the compact subgroup T (k), and fix a line in π ⊗ χ and
π′ ⊗ χ, respectively— depending on the sign of ε(π⊗ χ). This line provides test
vectors for the T (k)-invariant linear form.

For k real and E complex, the torus M = T (k) is compact. Its fixed space in
either π ⊗ χ or π′ ⊗ χ provides test vectors for the invariant form.

The remaining case is when k is Archimedean, and the algebra E is split.
Let K be the maximal compact subgroup of GL2(k) = Autk(E), which fixes
the positive definite form Tr(e2), when k = R, and Tr(ee′), when k = C and
(z, w)′ = (z, w). Let L be the maximal compact subgroup of k∗, so K × L is a
maximal compact subgroup in G(k) ' GL2(k)× k∗.

Let W ⊗ χ be the minimal (K × L)-type in the representation π ⊗ χ. By
construction, the intersection

M = T (k) ∩ (K × L)

is isomorphic to L. One shows that the M -invariants in W ⊗ χ have dimension
≤ 1. The favorable situation is when the M -invariants have dimension 1: this
line provides test vectors for the T (k)-invariant linear form [P].

12. An Explicit Local Formula

We end the local section with a formula for the central critical value of the
L-function, which provides a model for the global case.

Assume that k is non-Archimedean, with ring of integers A, and that E is
split over k. Let B = Endk(E), and fix an isomorphism

B ' M2(k) =
{

 a b

c d


 : a, b, c, d ∈ k

}

such that

E = B+ =
{

 a 0
0 d




}

B− =
{

 0 b

c 0




}
.

We assume π ⊗ χ is a generic representation of G(k) = B∗ ×E∗/∆k∗, and that
the character χ of E∗ is unramified.
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Let U be the unipotent subgroup of G with

U(k) =
{

 1 b

0 1


× 1

}
.

We fix an isomorphism G(k) ' GL2(k) × k∗, so that T maps to the torus with
points

T (k) =
{

gλ =

 λ 0

0 1


× λ

}
.

The element gλ acts by conjugation on U(k), and the isomorphism has been
chosen so that this action is given by multiplication by λ. Via the chosen iso-
morphism, the representation π⊗χ of G(k) corresponds to a representation π⊗η

of GL2(k) × k∗. The representation π ⊗ χτ corresponds to the representation
π ⊗ η′, with η · η′ · ω = 1, and the contragradient (π ⊗ χ)∨ corresponds to the
representation π · ω−1 ⊗ η−1 = π · ω−1 ⊗ η′ω. Here we use the notation π · α,
for a character α of k∗, to denote the representation π⊗α(det) of GL2(k). Note
that

L(π ⊗ χ, s) = L(π · η, s)L(π · η′, s)
as the representation σχ is the direct sum of the characters η and η′.

Let ψ : U(k) → S1 be a nontrivial character, with kernel U(A), and let

m : π ⊗ χ → C

be a nonzero linear form on which U(k) acts by ψ. This exists, and is unique up
to scaling, by the genericity of π ⊗ χ.

Let n ≥ 0 be the conductor of π, and

Kn =
{

 a b

c d


× λ

}

be the subgroup of GL2(A)×A∗ with c ≡ 0 (mod Pn
A). Then Kn fixes a unique

line 〈v〉 in π ⊗ χ, by results of Casselman [C]. Moreover, one has m(v) 6= 0, by
[G-P, Lemma 4.1]. Indeed, in the Kirillov model, the linear form m is given
by f → f(1), and the spherical line 〈v〉 is explicitly determined in the function
space. If we take the unique spherical vector on this line with m(v) = 1, then

∫

k∗
m(gλv) · |λ|s−1/2 d∗λ =

∫

k∗
m

(
λ

1


 v0

)
η(λ) · |λ|s−1/2 d∗λ,

where v = v0 ⊗ 1, and d∗λ = dλ
|λ| with

∫
A

dλ = 1. But

m(gv0) = W0(g)

is the classical Whittaker function on GL2(k), normalized so that W0(e) = 1.
Hence, by [J-L], ∫

k∗
m(gλv0) · |λ|s−1/2d∗λ = L(π · η, s)

is the Hecke L-series of the representation π · η.
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On the other hand, the map

` : π ⊗ χ → C

defined on vectors w by the integral

`(w) =
∫

k∗
m(gλw) d∗λ

gives (when the indefinite integral is convergent) a T (k)-invariant linear form on
π ⊗ χ. Hence the line 〈v〉 provides test vectors for π ⊗ χ, whenever L(π · η1, s)
does not have a pole at s = 1

2 , and we have the formula

`(v) = m(v) · L(π · η, 1
2 )

for any vector v on that line.
The same considerations apply to the contragradient representation (π⊗χ)∨.

Denoting the Whittaker linear functional by m∨, its T -invariant integral by `∨,
and the Kn-line of test vectors by 〈v∨〉, we obtain the formula

`∨(v∨) = m∨(v∨) · L(π · η′, 1
2 ).

Indeed, π is replaced by π · ω−1 and η by η−1 = η′ω. Multiplying the two
formulas, we obtain

`(v) · `∨(v∨) = m(v) ·m∨(v∨) · L(π ⊗ χ, 1
2 ).

Since 〈v〉 is the line of Kn-invariants in π ⊗ χ, and 〈v∨〉 is the line of Kn-
invariants in (π ⊗ χ)∨, we have

〈v, v∨〉 6= 0

under the canonical pairing of π ⊗ χ with (π ⊗ χ)∨. Hence, our final formula
may be rewritten as

`(v)`∨(v∨)
〈v, v∨〉 · 〈v, v∨〉

m(v)m∨(v∨)
= L(π ⊗ χ, 1

2 ).

It is this form which we will generalize to the global case. Note that m,m∨,
v, and v∨ are only determined up to scaling, but that the left-hand side of the
formula is well defined.

13. Adèlic Groups

We now turn to the global theory. Let k be a global field, with ring of adèles
A, and let E be an étale quadratic extension of k. Let

π ⊗ χ = ⊗̂
v
(πv ⊗ χv)

be an admissable, irreducible representation of the adèlic group

G(A) = GL2(A)×A∗
E/∆A∗.
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Then the local components πv and χv are unramified, for almost all finite places
v. Consequently, the set

S = {v : ε(πv ⊗ χv) 6= αvωv(−1)} (13.1)

is finite.
Assume that each local component πv is infinite-dimensional. Then, by our

local results, we may define an admissable, irreducible representation

π′ ⊗ χ = ⊗̂
v
(π′v ⊗ χv)

of the locally compact group

GS,A =
∏

v

G′(kv),

where G′ = G at the places not in S, and G′ is the nontrivial local inner form
of G at the places in S. Thus G′(kv) is defined by the split quaternion algebra
over kv, for the places not in S, and by the quaternion division algebra over kv

at the places in S. The representation π′ ⊗ χ has the property that

HomT (A)(π′ ⊗ χ,C)

is of dimension 1.
We emphasize that GS,A need not be the adèlic points of a group G′ defined

over k. This will only be the case when the cardinality of the set S is even. In
that case, let B be the quaternion algebra over k ramified at S, which exists by
the results of global class field theory. Then, if we define

G′(k) = B∗ × E∗/∆k∗,

we have
G′(A) = GS,A.

In this case, GS,A not only contains the diagonally embedded adèlic group T (A),
but also contains the discrete subgroup G′(k). Their intersection is the subgroup
T (k).

14. A Special Case

We now discuss a special case of the above, which is important in arithmetic
applications. For this, we assume that k is a number field, and that the set S

defined in (13.1) contains all Archimedean places v of k. This hypothesis has a
number of surprising consequences, and seems essential if we wish to obtain an
algebraic theory.

First it implies that the number field k is totally real, and the quadratic
extension E of k is totally complex, so is a CM field. Indeed, at each place v of
S the algebra E ⊗ kv is a field.
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Next, since πv is square-integrable at each real place of k, and π′v is finite-
dimensional, we find that the representation (π′ ⊗ χ)∞ =

⊗
v|∞ π′v ⊗ χv is a

finite-dimensional representation of the group GS,∞, which is compact modulo
its split center.

We will sometimes further assume that the representation (π′ ⊗χ)∞ of GS,∞
is the trivial representation. This means that, for each real place v of k, the
representation πv is the discrete series of weight 2 for PGL2(kv), and χv is the
trivial character of E∗

v/k∗v . If we also assume that the adèlic representation
π⊗χ of G(A) is automorphic and cuspidal, then the last hypothesis means that
π corresponds to a Hilbert modular form, of weight (2, 2, . . . , 2), with central
character ω of finite order, split at infinity, and that χ is a Hecke character of
A∗

E , of finite order, with χ|A∗ = ω−1.

15. Automorphic Representations

We henceforth assume that the adèlic representation π ⊗ χ is automorphic
and cuspidal, so appears as a submodule in the space of cusp forms

F(G) = F(G(k)\G(A)).

We will also assume that the Hecke character χ of A∗
E is unitary.

Fixing an embedding:
i : π ⊗ χ → F(G)

of G(A)-modules, gives a G(k)-invariant linear form

` : π ⊗ χ → C

defined by evaluating the function i(w) on the identity in G:

`(w) = i(w)(1).

From the linear form `, we can recover the embedding i by: i(w)(g) = `(gw).
Both i and ` are well-defined, up to scaling, as the multiplicity of π⊗χ in F(G)
is equal to 1 (see [J-L]).

Since π is automorphic, its central character ω is an idèle class character. The
same is true for the quadratic character α corresponding to E. Hence

∏
v

(αω)v(−1) = 1.

We therefore find that

ε(π ⊗ χ) =
∏
v

ε(πv ⊗ χv) = (−1)#S

with S the finite set of places where

ε(πv ⊗ χv) 6= αvωv(−1).
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This is the global sign in the functional equation of the Rankin L-function
L(π ⊗ χ, s). In particular, when #S is even, we will study the central critical
value L(π⊗ χ, 1

2 ). When #S is odd, we will study the central critical derivative
L′(π ⊗ χ, 1

2 ), as L(π ⊗ χ, 1
2 ) = 0.

16. When #S Is Even

First, assume #S is even. We then have defined a group G′ over k with
G′(A) = GS,A, as well as an irreducible representation π′ ⊗ χ of G′(A). By
a fundamental theorem of Jacquet–Langlands [J-L], the representation π′ ⊗ χ

is also automorphic and cuspidal, and appears with multiplicity 1 in the space
F(G′) of cusp forms on G′.

We define a T (A)-invariant linear form m on F(G′) by the formula

m(f) =
∫

T (k)\T (A)

f(t) dt.

Here f is a function (with rapid decay) on G′(A) (which is left G′(k)-invariant),
f(t) denotes its restriction to T (A), and dt is a nonzero invariant measure on
the locally compact abelian group T (A) (which is unique up to scaling).

When E is a field, T (k)\T (A) = E∗ · A∗\A∗
E is compact. One example of

an invariant measure is Tamagawa measure, which gives this quotient volume 2.
When E is the split quadratic algebra, G′(A) ' G(A) ' GL2(A) × A∗, and
T (A) is embedded as the subgroup

(
t

1

)× t. The integral defining m converges,
owing to the rapid decay of f .

If we choose a G′(A)-equivariant embedding

i : π′ ⊗ χ ↪→ F(G′)

we may restrict m to the image, to obtain an element m◦i in the one-dimensional
vector space HomT (A)(π′ ⊗ χ,C). If ` is the G′(k)-invariant linear form corre-
sponding to the embedding i, then

m ◦ i(w) =
∫

T (k)\T (A)

`(tw) dt = AvT (`)(w).

The main global result in this case is due to Waldspurger [W].

Theorem. The T (A)-invariant linear form m ◦ i = AvT (`) is nonzero on
π′ ⊗ χ if and only if L(π ⊗ χ, 1

2 ) 6= 0.

17. Global Test Vectors

We can refine this result, if we are in the favorable situation where test vectors
exist in π′v⊗χv, for all places v of k. In this case, we let 〈wv〉 be the line of local
test vectors, and let

w =
⊗

v wv



54 BENEDICT H. GROSS

be a basis of the tensor product line in π′ ⊗ χ. Then, by our local results, the
linear form AvT (`) is nonzero if and only if

AvT (`)(w) 6= 0.

Of course, this value depends on the choice of ` and w, both of which are
only defined up to scalars, as well as the choice of invariant measure dt on T (A)
used to define the average. To obtain a number which depends only on π′ ⊗ χ,
we choose a G′(k)-invariant form `∨ : (π′ ⊗ χ)∨ → C on the contragradient
representation, and a test vector w∨ for `∨ in (π′ ⊗ χ)∨. The space

Hom∆G′(A)((π′ ⊗ χ)⊗ (π′ ⊗ χ)∨,C)

has dimension equal to 1, by Schur’s lemma. The linear form Av∆G′(` ⊗ `∨),
defined by the integral

Av∆G′(`⊗ `∨)(u⊗ u∨) =
∫

G′ad(k)\G′ad(A)

`(gu) `∨(gu∨) dg

is a nonzero basis element, where dg is an invariant (positive) measure on the
adèlic points of the adjoint group Z\G′ = G′ad.

To verify that Av∆G′(` ⊗ `∨) is nonzero, we observe that if we use ` to em-
bed π′ ⊗ χ as a sub-module of F(G′), so u corresponds to the function f ′u on
G′(k)\G′(A) with `(gu) = f ′u(g), then the contragradient (π′ ⊗ χ)∨ embeds as
the functions g 7→ f ′u(g) and the form `∨ is given by evaluation at the identity.
Consequently, if u∨ in (π′ ⊗ χ)∨ is the conjugate of f ′u, we find

Av∆G′(`⊗ `∨)(u⊗ u∨) =
∫

Z(A)G′(k)\G′(A)

f ′u(g)f ′u(g) dg = 〈f ′u, f ′u〉.

This Petersson product is positive, so is nonzero.
Since the test vector w in (π′⊗χ) is determined by its M -invariance (and K-

type), we find that w∨ can be taken as the conjugate function of f ′w in (π′⊗χ)∨.
If we do so, we find that

AvT (`)(w) =
∫

T (k)\T (A)

f ′w(t) dt,

AvT (`∨)(w∨) =
∫

T (k)\T (A)

f ′w(t) dt = AvT (`)(w),

Av∆G′(`⊗ `∨)(w ⊗ w∨) =
∫

G′ad(k)\G′ad(A)

f ′w(g)f ′w(g) dg > 0.

These results hold for any positive, invariant measures dt and dg on the adèlic
groups T (A) and G′ad(A). We now use the product measures

dt =
⊗

v dtv, dg =
⊗

v dgv,
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which come from our test vector. Namely, at each finite place v of k, we let
Mv be the open compact subgroup of G′(kv) which fixes the test vector wv, and
define dtv and dgv by ∫

Mv∩T (kv)

dtv = 1,

∫

Mv/Mv∩Z(kv)

dgv = 1.

At each Archimedean place,we let dtv and dgv be the canonical Haar measure
|ωv| defined in [G-G]. For example, if kv = R and Ev = C, so T (kv) = C∗/R∗,
we have ∫

T (kv)

dtv = 2π.

If Ev is split, so T (kv) ' k∗v , dtv is the usual measure on the multiplicative group.
Now the quantities AvT (`)(w), AvT (`∨)(w∨), and Av∆G′(`⊗ `∨)(w⊗w∨) are

all defined. The ratio:

A(π′ ⊗ χ) =
AvT (`)(w) ·AvT (`∨)(w∨)
Av∆G′(`⊗ `∨)(w ⊗ w∨)

is a real number ≥ 0, which is zero precisely when L(π ⊗ χ, 1
2 ) = 0. This is an

invariant of π′ ⊗χ and (π′ ⊗χ)∨, which is independent of the choices of `, `∨, w

and w∨. There should be a simple formula, expressing L(π ⊗ χ, 1
2 ) as a product

R(π⊗χ) ·A(π′⊗χ), where R(π⊗χ) is a positive real number, given by periods
of π ⊗ χ. We will make this more precise in the next section.

18. An Explicit Global Formula

To clarify the invariant A(π′⊗χ), and to prepare for the discussion when #S

is odd, we will obtain an explicit formula for A(π′ ⊗ χ) under the hypotheses
that S has even cardinality and contains all Archimedian places, and that

(π′ ⊗ χ)∞ is the trivial representation of GS,∞.

Recall that this implies that k is totally real, that E is a CM field, that π corre-
sponds to a Hilbert modular form of weight (2, 2, . . . , 2) with central character ω

of finite order, split at infinity, and that χ has finite order, with restriction ω−1

to A∗.
We also assume that the conductors of π and χ are relatively prime, so a global

test vector w = w∞ ⊗ ωf exists in π′ ⊗ χ. We let M ⊂ GS,f = G′(Af ) be the
open compact subgroup fixing wf in (π′⊗χ)f . By hypothesis, G′(k⊗R) = GS,∞
fixes w∞.

Choose a G′(k)-invariant linear form (unique up to scaling, by the multiplicity
1 theorem):

` : π′ ⊗ χ → C.
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Then, using our test vector w, we get a function

fw(g) = `(gw)

on the double coset space G′(k)\G′(A)/G′(k⊗R)×M , which is identified with
a function on

G′(k)\G′(Af )/M,

since fw is constant on G′(k ⊗R). We wish to compute

AT =
∫

T (k)\T (A)

fw(t) dt,

AG′ =
∫

G′ad(k)\G′ad(A)

|fw(g)|2 dg,

for the Haar measures dt, dg defined in the previous section. Then

A(π′ ⊗ χ) =
AT ·AT

AG′
.

Let J = M ∩ T (Af ), so the restriction of fw to T (Af ) ↪→ G′(Af ) is a
function on the finite set T (k)\T (Af )/J . Recall that A is the ring of integers in
k, O = A + cOE the order of conductor c in OE , and J = Ô∗/Â∗. By our choice
of measures ∫

T (k⊗R)×J

dt = (2π)d,

where d is the degree of k. Let

u = #(O∗/A∗) = #(J ∩ T (k)).

Then
AT =

∫

T (k)\T (A)

fw(t) dt = (2π)d · 1
u

∑

T (k)\T (Af )/J

fw(t).

Similarly, if Mad = M/M∩Z(Af ) is the image of M in Gad(Af ), then |fw(g)|2
is a function on the finite set G′ad(k)\G′ad(Af )/Mad. For each double coset, we
define the integer

eg = #
(
Mad ∩ g−1G′ad(k)g

)
.

We then have the formulas∫

G′ad(k⊗R)×Mad

dg = (2π)2d

AG′ = (2π)2d ·
∑

G′ad(k)\G′ad(Af )/Mad

1
eg
· |fw(g)|2.

The ratio A(π′ ⊗ χ) = |AT |2/AG′ has a nice description in the language of
“algebraic modular forms” (see [G2]). Consider the finite-dimensional vector
space of functions

V =
{
F : G′(k)\G′(Af )/M → C

}
.
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The finite abelian group

Z(k)\Z(Af )/M ∩ Z(Af ) = E∗\A∗
E,f/Ô∗ = Pic(O)

acts on V by the formula

zF (g) = F (gz) = F (zg),

and V decomposes as a direct sum of eigenspaces V (χ) for the characters of
Pic(O). Since χ · χ = 1, each eigenspace has a Hermitian inner product

〈F,G〉 =
∑

G′ad(k)\G′ad(Af )/Mad

1
eg

F (g)G(g).

The representation π′ ⊗ χ, and our choice of linear form ` and test vector w,
give an element fw(g) in V (χ). The homomorphism

T → G′

of groups over k gives a map of finite sets

φ : T (k)\T (Af )/J → G′(k)\G′(Af )/M.

This, in turn, gives an element FT in V , which is defined by

FT (g) =
1
u
·#{t : φ(t) = g}.

We define the projection

FT (χ)(g) =
1

#Pic O

∑

Pic(O)

χ−1(z)FT (zg),

which is an element of V (χ). We then have the inner product formula

〈fw, FT (χ)〉 =
∑

g

1
eg

fw(g)FT (χ)(g) =
1
u

∑
t

fw(t).

Indeed, FT (χ) is supported on T · Z, and T ∩ Z = 1.
Now let FT (π′ ⊗ χ) be the projection of the function FT to the (π′ ⊗ χ)-

eigenspace of V , or equivalently the projection of FT (χ) to the π′-eigenspace of
V (χ). Since this eigenspace is spanned by fw, we have the inner product formula

FT (π′ ⊗ χ) =
〈FT (χ), fw〉
〈fw, fw〉 · fw.

Consequently, we obtain the formula

〈
FT (π′ ⊗ χ), FT (π′ ⊗ χ)

〉
=
|〈FT (χ), fw〉|2
〈fw, fw〉 =

|AT |2
AG′

= A(π′ ⊗ χ).

This shows, among other things, that A(π′⊗χ) is algebraic, and lies in the field
of definition of π′ ⊗ χ.
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It suggests, by our previous work on special values (see [G3]), that the factor
R(π ⊗ χ) in the formula

L(π ⊗ χ, 1
2 ) = R(π ⊗ χ) ·A(π′ ⊗ χ)

has the form
R(π ⊗ χ) =

1√
ND

(f0, f0),

where f0 is a new form in π with a1(f0) = 1, and ( , ) is a normalized Petersson
inner product on Gad. There is work of Zhang and Xue in this direction, but
the precise result is not yet proved. One may want to renormalize the measures
dt and dg so that

R(π ⊗ χ) = Ress=1L(π ⊗ χ, ad, s),

as this formulation, using the adjoint L-function at s = 1, would make sense for
more general π and χ.

19. When #S Is Odd

We now consider the case when #S is odd. Then

ε(π ⊗ χ) = −1 and L(π ⊗ χ, 1
2 ) = 0.

In this case, the adèlic group GS,A does not contain a natural discrete subgroup
(like G′(k) in the case when #S is even), so it is unclear what it means for the
representation π′ ⊗ χ to be automorphic.

To generalize Waldspurger’s theorem to a result on L′(π ⊗ χ, 1
2 ), we need to

construct a representation F of GS,A, analogous to the space of cusp forms on G′.
This representation should contain π′ ⊗ χ, and have a naturally defined T (A)-
invariant linear form. We will construct the representation F in the special case
when k is a number field, the group GS,∞ =

∏
v|∞G′v(kv) is compact modulo its

center, and the representation (π′ ⊗ χ)∞ of GS,∞ is the trivial representation.
More generally, one should be able to construct F whenever the set S con-

tains all Archimedean places of k. In the number field case, this implies that
the representation (π′ ⊗ χ)∞ is finite-dimensional. When this representation is
nontrivial, however, the approach to the first derivative sketched in the next few
sections involves the theory of heights on local systems over curves, which is not
yet complete. However, there is much preliminary work in the area; see [Br; Z2].

20. Shimura Varieties

We now assume that k is a number field and that the set S has odd cardinality,
and contains all Archimedean places. Then k is totally real and E is a CM field.

Let v be a real place of k, and let B(v) be the quaternion algebra over k

which is ramified at S − {v}. Since Ew is a field, for all w ∈ S, E embeds
as a subfield of B(v). Let G′ = G(v) be the corresponding group of unitary
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similitudes, with k-points B(v)∗ × E∗/∆k∗. The torus T with T (k) = E∗/k∗

embeds diagonally, as the subgroup of G′ fixing a vector u with φ(u, u) = 1. The
adèlic pair T (Af ) → G′(Af ) is isomorphic to T (Af ) → GS,Af

, independent of
the choice of real place v.

Consider the homomorphism

h : C∗ → T (k ⊗R) =
∏

w|∞
(C∗/R∗)w

given by

h(z) = (z(mod R∗), 1, 1, . . . , 1),

where the first coordinate corresponds to the real place v. The inclusion T → G′

then gives rise to a homomorphism

h : C∗ → G′(k ⊗R).

The data (T, h) defines a Shimura variety M(T, h) over C, with an action of
T (Af ). If J ⊂ T (Af ) is compact and open, then

M(T, h)J(C) = T (k)\T (Af )/J

is a finite set of points.
The data (G′, h) define a Shimura variety M(G′, h) over C, with an action of

G′(Af ) = GS,Af
. If K ⊂ GS,Af

is compact and open, then

M(G′, h)K(C) = G′(k)\(X ×GS,Af
/K),

where X is the Riemann surface of the G′(k⊗R) conjugacy class of h. We have

X ' G′(k ⊗R)/Z(h)

= G′(kv)/Z · T (kv)

' GL2(R)/C∗ ' H±.

Hence M(G′, h)K(C) is a disjoint union of a finite number of connected hyper-
bolic Riemann surfaces with finite volume. They are compact, unless k = Q and
S = {∞}, in which case G′ is quasi-split and there are finitely many cusps.

The theory of canonical models provides models for M(T, h) and M(G′, h)
over their reflex fields. In this case, the reflex field is E in both cases, embedded
in (E ⊗ kv) = C by the place v. The actions of T (Af ) and GS,Af

are both
defined over E, and the morphism M(T, k) → M(G′, h) is defined over E and
is T (Af )-equivariant. The connected components of M(T, h) and M(G′, h) are
all defined over the maximal abelian extension Eab of E in C, and the action
of Gal(Eab/E) on these components is given by Shimura’s reciprocity law. For
proofs of these assertions, see [D] and [Ca].
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21. Nearby Quaternion Algebras

In fact, the varieties M(T, h) → M(G′, h) over E do not depend on the choice
of a real place v of k, which was used to define G′ and the Shimura varieties over
(kv⊗E) = C. They depend only on S, and we will denote them M(T ) → M(GS).
More precisely, if w is any real place of k, and G′ = G(w) is the form of G coming
from the quaternion algebra ramified at S − {w}, we have an isomorphism of
Riemann surfaces

M(GS)K(Ew) = G′(k)\(G′(kw)/Z · T (kw)×GS,Af
/K).

If J = K ∩ T (Af ), then

M(T )J(Ew) = T (k)\(1× T (Af )/J),

and the morphism M(T ) → M(GS) over Ew is given by the map T → G′.
More generally, if w is a non-Archimedean place in S, and G′ = G(w) is the

inner form of G made from the quaternion algebra over k which is ramified at
S − {w}, we also have a rigid analytic uniformization of the points of the curve
M(GS) over Ew = E ⊗ kw. For simplicity, we describe this in the case where
K ⊂ GS,Af

has the form K = Kw×Kw, and Kw is the unique maximal compact
subgroup (for the general case, see [Dr]). In this case Jw = T (kw), and all the
points of M(T )J are rational over Ew. We have an isomorphism of rigid analytic
spaces:

M(GS)K(Ew) ' G′(k)\(G′(kw)/Z · T (kw)×GS,Aw
f
/Kw

)
.

Here
G′(kw)/Z · T (kw) ' GL2(kw)/E∗

w ' P1(Ew)−P1(kw)

are the Ew-points of Drinfeld’s upper half plane. The inclusion of

M(T )(Ew) ' T (k)\(1× T (Aw
f )/Jw)

is again described by group theory. The components of M(GS)K containing
these “special points” are rational over Ew; the general components are rational
over the maximal unramified extension of Ew.

There is also a slightly weaker result for non-Archimedean places w which are
not in S. Here we get a rigid analytic description of the “supersingular locus”
on M(GS) over Ew, when Ew is the unramified quadratic field extension of kw.
Let G′ = G(w) be the inner form of G, corresponding to the quaternion algebra
ramified at S ∪ {w}, and assume K ⊂ GS,Af has the form K = Kw ×Kw, with
Kw the unique hyperspecial maximal compact subgroup of G(kv) which contains
T (kv). Then M(GS)K has a model over the ring of integers Ow of Ew, with good
reduction (mod w). The points reducing to supersingular points (mod w) give a
rigid analytic space

M(GS)K(Ew)supersing ' G′(k)\(G′(kw)/Z · T (kw)×GS,Aw
f
/Kw

)
.
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The supersingular points in the residue field Fw are given by

M(GS)K(Fw)supersing ' G′(k)\GS,Aw
f
/Kw,

and the reduction map is given by group theory. Note that

G′(kw)/Z · T (kw) ' D∗
w/E∗

w

is analytically isomorphic to an open disc over Ow. The special points in M(T )J

are all rational over Ew, and their map to the supersingular locus in M(GS)K is
given by group theory. Again, not all of the components of M(GS)K are rational
over Ew, but those containing the special points are.

To recapitulate, the morphism of Shimura varieties M(T ) → M(GS) over
E depends only on the pair of groups T → G and the odd set S of places,
which contains all real places of k. The local study of this morphism over the
completion Ew = E⊗kw involves the quaternion algebra over k with ramification
locus

S − {w}, when w ∈ S,

S ∪ {w}, when w 6∈ S and Ew is a field.

These are all quaternion algebras at distance one from the set S.

22. The Global Representation

We are now prepared to construct the representation F of GS,A = GS,∞ ×
GS,Af

, with a T (A)-invariant linear form, under the hypothesis that

(π′ ⊗ χ)∞ = C (22.1)

is the trivial representation. We will define a natural representation Ff of GS,Af
,

using the Shimura curve M(GS), as well as a T (Af )-invariant linear form on it,
using the morphism M(T ) → M(GS). We will then put

F = C ⊗ Ff

as a representation of GS,∞ ×GS,Af
.

Let Pic0(M(GS)K) be the group of line bundles on the curve M(GS)K which
have degree zero on each geometric component, and Pic0(M(GS)K)(E) those
line bundles which are rational over E. If K ′ ⊂ K, we have a finite covering of
curves over E

β : M(GS)K′ → M(GS)K .

This induces a homomorphism, by pull-back:

β∗ : Pic0(M(GS)K)(E) → Pic0(M(GS)K′
)(E).

The map β∗ is an injection, modulo torsion. We define

Ff = lim
→

Pic0(M(GS)K)(E)⊗ C,
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where the direct limit maps are now injective.
The direct limit is a representation of GS,Af

, and the fixed space of any open
compact subgroup K

(Ff )K = Pic0(M(GS)K)(E)⊗ C

is a finite-dimensional complex vector space, by the Mordell–Weil theorem.
The tangent space to Pic0(M(GS)K) is the cohomology group

H0(M(GS)K , Ω1).

On the direct limit

Hf = lim
→

H0(M(GS)K , Ω1)⊗ C

the group GS,Af
acts via a direct sum of the representations (π′ ⊗ χ)f , where

π ⊗ χ appears in the space of cusp forms for G, is square integrable at all local
places in S, and satisfies (22.1).

Since the action of the endomorphisms of abelian varieties in characteristic
zero is faithfully represented by their action on the tangent space, these are the
only representations which can appear in the action of GS,Af

on Ff . Whereas
their multiplicity in Hf is equal to 1, their multiplicity in Ff is predicted by a
generalization of the conjecture of Birch and Swinnerton-Dyer.

Conjecture. The multiplicity of (π′⊗χ)f in Ff is equal to ords=1/2L(π⊗χ, s).

In particular, since #S is odd, we have L(π ⊗ χ, 1
2 ) = 0, and the multiplicity of

(π′⊗χ)f in Ff should be positive (and odd). The same holds for the multiplicity
of π′ ⊗ χ in F = C ⊗ Ff , where C is the trivial representation of GS,∞.

23. The Global Linear Form

We now use the torus T , and the zero cycle j : M(T ) → M(GS) over E, to
define a T (Af )-invariant linear form ` : Ff → C.

For each open compact K ⊂ GS,Af
, we put J = K ∩ T (Af ), which is open,

compact in T (Af ). We define the 0-cycle

m(T )K = j∗(M(T )J)

on the curve M(GS)K over E.
Since M(GS)K is hyperbolic, there is, for each component c, a class δc in

Pic(M(GS)K)(E)⊗Q that has degree 1 on c and degree 0 on all other compo-
nents. Indeed, if the component c is X = H/Γ over C, then the divisor class

dc = KX +
∑

x elliptic
or cuspidal

(
1− 1

ex

)
(x)
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has positive degree, where KX is the canonical class, and ex is the order of the
cyclic stabilizer Γx of x. This pulls back correctly for coverings given by the
subgroups of finite index in Γ. We put

δc = dc/deg(dc),

and define

m0(T )K = m(T )K −
∑

c

degc(m(T )K) · δc.

This class lies in Pic0(M(GS)K)(E)⊗Q, as m(T )K has equal degree on conjugate
components, and the δc are similarly conjugate.

The canonical height pairing of Néron and Tate, on the Jacobian of M(GS)K

over E, gives a linear form `K : (Ff )K → C, defined by

`K(d) =
〈
d,m0(T )K

〉
.

These forms come from a single linear form ` on Ff , for when K ′ ⊂ K we have
a commutative diagram

M(T )J ′

j′
- M(GS)K′

M(T )J

?

j
- M(GS)K .

π
?

Hence m0(T )K = π∗(m0(T )K′
), and if d is in (F0

f )K :

`K′(π∗d) = 〈π∗d, m0(T )K′〉 = 〈d, π∗m0(T )K′〉 = 〈d,m0(T )K〉 = `K(d).

The form ` is clearly T (Af )-invariant, so gives a T (A)-invariant form (also de-
noted `) on F = C ⊗ Ff . This induces a map

`∗ : HomGS,A
(π′ ⊗ χ, F) → HomT (A)(π′ ⊗ χ,C).

We know the space HomT (A)(π′ ⊗ χ,C) is one-dimensional, by the local theory
and the construction of GS,A. The space HomGS,A

(π′ ⊗ χ, F) was conjectured
to have odd dimension, equal to the order of L(π ⊗ χ, s) at s = 1

2 .
The analog of Waldspurger’s theorem in this context is the following.

Conjecture. The map `∗ is nonzero if and only if L′(π ⊗ χ, 1
2 ) 6= 0.
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24. Global Test Vectors

We can refine this conjecture, and obtain a statement generalizing [G-Z], in
the situation where a global test vector exists (i.e., when the conductors of π

and χ are relatively prime). Let K ⊂ GS,Af
be the open compact subgroup

fixing a line of test vectors in (π′ ⊗ χ)f . Then one wants a formula relating
L′(π ⊗ χ, 1

2 ) to the height pairing of the (π′ ⊗ χ)f -eigencomponent of m0(T )K

with itself. This formulation does not require a determination of the entire space
HomGS,A

(π′ ⊗ χ,F).
In the spirit of the explicit formula in § 18, I would guess that

L′(π ⊗ χ, 1
2 ) =

(f0, f0)√
ND

〈
m0(T )K(π′ ⊗ χ)f , m0(T )K(π′ ⊗ χ)f

〉
.

Zhang [Z1] has done fundamental work in this direction. In the case when k = Q,
E is imaginary quadratic, all primes p dividing N (the conductor of π) are split
in E, and c = conductor(χ) = 1, we have S = {∞}. Furthermore,

K ⊂ GL2(Ẑ)× Ô∗E/∆Ẑ
∗

is the subgroup of those
(

a
c

b
d

)
in GL2(Ẑ) with c ≡ 0 (mod N). The desired

formula is the one I proved with Zagier, twenty years ago.
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[Ca] H. Carayol, “Sur la mauvaise réduction des courbes de Shimura”, Compositio
Math. 59 (1986), 151–230.

[C] W. Casselman, “On some results of Atkin and Lehner”, Math Ann. 201 (1973),
301–314.

[D] P. Deligne, “Travaux de Shimura”, pp. 123–165 (exposé 389) in Séminaire Bourbaki,
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