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Geometry and Analysis in Many-Body Scattering

ANDRÁS VASY

Abstract. This chapter explains in relatively nontechnical terms recent
results in many-body scattering and related topics. Many results in the
many-body setting should be understood as new results on the propaga-
tion of singularities, here understood as lack of decay of wave functions at
infinity, with much in common with real principal type propagation (wave
phenomena). Classical mechanics plays the role that geometric optics has
in the study of the wave equation, but even at this point quantum phenom-
ena emerge. Propagation of singularities has immediate applications to the
structure of scattering matrices and to inverse scattering; these topics are
addressed here. The final section studies a problem very closely related
to many-body scattering, namely scattering on higher rank noncompact
symmetric spaces.

1. Introduction

This chapter is an effort to explain in relatively nontechnical terms recent
results in many-body scattering and related topics. Thus, many results in the
many-body setting should be understood as new results on the propagation of
singularities, here understood as lack of decay of wave functions at infinity, with
much in common with real principal type propagation, i.e. wave phenomena.
Motivated by this, I first briefly describe propagation of singularities for the
wave equation. This is a remarkable relationship between geometric optics (the
particle view of light) and the solutions of the wave equation (the wave view).

Next, in Section 3, I explain the geometry of many-body scattering, which
includes both that of the configuration space and phase space. This geometry
is closely related to classical mechanics, playing the role of geometric optics,
but even at this point quantum phenomena emerge. This leads to the analytic
results, namely the propagation of singularities connecting classical and quantum
mechanics.

This work is partially supported by NSF grant #DMS-0201092, a Fellowship from the Alfred
P. Sloan Foundation, and the Université de Nantes, where these lectures were originally given.
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Much as for the wave equation, such a result has immediate applications,
including the description of the scattering matrices and of the scattering phase.
Slightly stronger versions can even lead to inverse results, a topic covered in the
following section.

After so explaining the results, in Sections 5-6, I will try to at least give a
flavor of how they are proved. This uses a many-body pseudodifferential algebra
and positive commutator estimates, so these are discussed. We remark that these
techniques are closely related to the proofs of the propagation of singularities for
the wave equation, but there are significant differences as well, mostly arising
from bound states of particles, which have no analogues for the wave equation.
The pseudodifferential algebra itself is very interesting from the viewpoint of
noncommutative geometry: there is a hierarchy of operator valued symbols at
infinity.

Asymptotic completeness was the main focus of work in many-body scattering
for a long period. In Section 7, I briefly explain how it relates to the microlocal
estimates.

There is another area that is very closely related to many-body scattering,
namely scattering on higher rank noncompact symmetric spaces. Here, in Sec-
tion 8, we only discuss rank two, which corresponds to three-body scattering,
since this is the only part that has been properly written up, but it is expected
that very soon these results will extend to all higher rank spaces.

I hope that these notes will make many of these results more accessible, the
connections more transparent, and explain the motivation behind them. Many-
body scattering has a long history, and here I can only talk about the most
recent developments. An excellent overview of results known in the early 1990s
can be found in Hiroshi Isozaki’s lecture notes [30]. Indeed, in some sense, the
current notes continue where [30] left off. I introduce a fully microlocal picture,
motivated by the geometric approach of Richard Melrose [42], and emphasize
the results these give, but the basic spectral and scattering results follow from a
simpler ‘partial’ microlocalization, which is one of the subjects of [30].

Acknowledgements. The notes were originally prepared for a mini-course at
the Université de Nantes at the invitation of Professor Xue-Ping Wang, whose
hospitality I gratefully acknowledge. The analytic continuation of the resolvent
on symmetric spaces is a more recent development, but it was fueled by a dis-
cussion during the visit of Rafe Mazzeo, my collaborator, to Nantes. Over an
espresso, Gilles Carrón mentioned that the existence of the analytic continuation
was not known, something that was hard to believe, but we immediately realized
that our methods should yield such a continuation rather directly. I also thank
Gunther Uhlmann for urging me to write up these notes: without him, they
may never have been written up, and Rafe Mazzeo for a careful reading of the
manuscript.
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2. Geometric Optics and the Wave Equation

According to the rules of geometric optics, light propagates in straight lines,
and reflects/refracts from surfaces according to the Snell–Descartes law. That
is to say, considering light as a stream of billiard balls, the energy as well as
the tangential component of the momentum (tangential to the surface hit) is
conserved upon hitting the surface.

But light satisfies the wave equation, i.e. if u = u(x, t) is the electromagnetic
field on Ωx ×Rt, Ω ⊂ Rn, then Pu = 0 where P is the wave operator c2∆−D2

t ,
and a boundary condition also holds (say, Dirichlet), if Ω is not the whole space.
(Here Dt = 1

i
∂
∂t and ∆ =

∑
j D

2
xj

is the positive Laplacian.) How are these two
viewpoints related?

One can phrase the connection in different ways. The most usual one in
physics is that the billiard ball picture is accurate in the high frequency, i.e. low
wave length, limit. That is to say, for high frequency light, geometric optics is
accurate up to a ‘small’ error. A slightly different way of looking at this, which
however does not involve approximations, is that the location of singularities of
the solution of the wave equation is exactly predicted by geometric optics. Here
singularities are understood as lack of smoothness, or possibly lack of analyticity.

Indeed, it is convenient at this point to generalize the setting somewhat. So
let (Ω, g) be a Riemannian manifold with corners, P = c2∆g −D2

t , c > 0. The
speed of light, c, may be absorbed in the metric g, of course, we keep the notation
in analogy with the usual wave equation.

For simplicity of notation in this paragraph we assume that Mz = Ωx × Rt is
boundaryless; in general, the same definitions hold in the interior of M . Thus, we
associate a homogeneous real function on T ∗M to P , namely its principal symbol:
p = c2|ξ|2g − τ2, where we write ζ = (ξ, τ) as the dual variable of z = (x, t). Now
T ∗M is a symplectic manifold with symplectic form ω =

∑
dζj ∧ dzj . Thus, p

gives rise to a vector field Hp, called the Hamilton vector field, by requiring that
ω(V,Hp) = V p for any vector field V on T ∗M . Hence Hp is a smooth vector
field on T ∗M explicitly given by

Hp =
∂p

∂ζ

∂

∂z
− ∂p

∂z

∂

∂ζ
.

Note that p is constant along the integral curves of Hp since taking V = Hp,
0 = ω(Hp,Hp) = Hpp. Null bicharacteristics are the integral curves of Hp

inside its characteristic set Σ = p−1({0}). Thus, if γ : I → T ∗M is a null
bicharacteristic (here I is an interval), and z(s) = z(γ(s)), ζ(s) = ζ(γ(s)),
then these solve the ODE’s dz/ds = ∂p/∂ζ, dζ/ds = −∂p/∂z. Hence, when
M = Ω × R, Ω ⊂ Rn, p = c2|ξ|2 − τ2 as above, we deduce that ξ and τ are
constant along the integral curves of Hp, hence their projection to M consists of
straight line segments. More generally, the projection of null-bicharacteristics to
Ω are geodesics of g.
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Figure 1. Projection of broken bicharacteristics to Ω. When rays hit the bound-

ary hypersurfaces, the tangential component of the momentum and the kinetic

energy are conserved, but the normal component may change. At the corner,

there is no tangential component (though there would be if the time variable

were not projected out), so the only constraint is the conservation of kinetic

energy.

There is an appropriate extension of this at boundary surfaces and even at
corners, called generalized broken bicharacteristics, see [43; 36], which I will not
explain in full generality, though I remark that many-body scattering, discussed
in the next section in detail, is rather similar. However, a somewhat typical
example is that of broken bicharacteristics. These are piecewise bicharacteristics,
i.e. there is a sequence sj , j in a subset of integers, such that for each j, γ|(sj ,sj+1)

is a null bicharacteristic in the sense described above, the projection z ◦γ of γ to
M is continuous, and γ(sj+) − γ(sj−) is conormal to the smallest dimensional
boundary face containing z(γ(sj)). Thus, the tangent vectors to z◦γ|(sj ,sj+1) and
z ◦ γ|(sj−1,sj) differ by a vector normal to the smallest boundary face containing
z(γ(sj)). This expresses that the normal component of the momentum may
change, while the tangential component is conserved, when a light ray hits a
boundary.

Now one can describe the singularities of u using null bicharacteristics. Let o
be the zero section of T ∗M . The location of the singularities is described by an
object

WF(u) ⊂ T ∗M \ o = {(z, ζ) : ζ 6= 0}

that is conic in ζ, i.e. (z, ζ) ∈ WF(u) if and only if (z, rζ) ∈ WF(u) for every
r > 0. WF(u) is called the wave front set of u, and it describes where (in z) and in
which codirection ζ is the distribution u not C∞. More precisely, the definition of
WF(u) is that (z0, ζ0) /∈ WF(u) if and only if there exists φ ∈ C∞

c (M), φ(z0) 6= 0

such that the Fourier transform F(φu) of φu is rapidly decreasing in an open
cone around ζ0. Here we assume that M is boundaryless; otherwise we need
to require that φ is supported in the interior of M . Again, there is a natural
definition at ∂M which we do not give here. (There are more natural versions of
this definition using pseudodifferential operators that I will describe later.) As
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an example, consider the step function: write z = (z1, z
′′), u(z) = 1 if z1 > 0,

u(z) = 0 if z1 < 0. Then

WF(u) = N∗{z1 = 0} \ o = {(0, z′′, ζ1, 0) : ζ1 6= 0},

the conormal bundle of the hypersurface z1 = 0, with its zero section removed.
The same statement holds, with = possibly replaced by ⊂, if we take any C∞

function u0 on M , and then define u = u0 in z1 > 0 and u = 0 in z1 < 0.
Informally, one might say that u is singular in z1 at z1 = 0, but it depends
smoothly on z′′. The wave front set thus pinpoints not only the locations z
of singularities (lack of smoothness) in M , but it refines it by also giving the
frequencies (or rather direction of frequencies) at which these appear at z.

The theorem we are after is the following. In early versions it goes back to Lax
[35], its boundaryless version is due to Hörmander [28], the smooth boundary
versions are due to Melrose, Sjöstrand, Taylor and Ivrii [33; 43; 44; 61], and the
corner version in the analytic category is due to Lebeau [36] (the C∞ version is
still not known in the corner setting) while a different extension, to conic points,
is due to Melrose and Wunsch [45].

Theorem 2.1. Suppose Pu ∈ C∞(M), and if ∂M 6= 0 then u|∂M = 0. Then

WF(u) ⊂ Σ = p−1({0}) (microlocal elliptic regularity). Moreover , WF(u) is a

union of maximally extended generalized broken bicharacteristics inside Σ (prop-

agation of singularities).

This theorem states that if a point (z, ζ) ∈ T ∗M \ o is in WF(u) and u solves
Pu ∈ C∞(M), and satisfies a boundary condition if appropriate, then there is at
least one maximally extended generalized broken bicharacteristic through (z, ζ)

that is completely contained in WF(u). Of course, in the absence of bound-
aries, and often even in their presence, there is a unique maximally extended
generalized broken bicharacteristic through (z, ζ), so the statement is that this
bicharacteristic is completely in WF(u). However, as soon as codimension two
or higher corners appear, there is no hope for such uniqueness, and this theorem
is the optimal statement.

At least in the nicest settings (no boundaries, or nondegeneracy assumption at
the boundaries which are assumed to be smooth), this theorem can be improved
significantly to predict not only the location, but also the amplitude of the
singularities of u.

3. Propagation in Many-Body Scattering

There is an analogous setup for scattering. Now we want to understand how
interacting particles behave. Again, there is a classical mechanical setup (the
analogue of geometric optics) and a quantum mechanical setup (the analogue of
the wave equation). To focus on the most relevant points, I formulate the prob-



338 ANDRÁS VASY

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

��������������������������������
��������������������������������

��������������������������������
��������������������������������

��������������������������������
���������������������������������

��������������������������������
��������������������������������

��������������������������������
���������������������������������

��������������������������������
��������������������������������

�������������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

�����

��� �

��� �

�
	� �

� 	 	� �

Figure 2. Collision planes X12, X13 and X23 and translates X ′

12 and X ′′

12 of

X12. V12 is constant along X12, is a (typically different) constant along X ′

12,

etc., so it does not decay at infinity unless it is identically zero.

lem in a time-independent fashion, though it is easy to reformulate everything
in a time dependent way. We only do this in a remark following Theorem 3.1.

Thus, we want to understand tempered distributional solutions u of (H −
λ)u = 0; here λ ∈ R is the energy, and H is the Hamiltonian, i.e. the analogue of
H−λ is P above. Namely, if we have N particles, each of which is d-dimensional
with positions x1, . . . , xN ∈ Rd, mass m1, . . . ,mN , and the interaction between
particle i and j is given by a potential Vij (which is a function on Rd), then the
Hamiltonian describing this system is

H =

N∑

i=1

1

2mi
∆xi

+
∑

i<j

Vij(xi − xj) = ∆ + V,

which is an operator on (functions on) Rn = RNd. Planck’s constant ~ is here
taken to be 1; it could be absorbed in the xi by a simple rescaling.

Now H is elliptic in the standard sense, namely its principal symbol is
∑ 1

2mi
|ξ|2,

which never vanishes outside the zero section o. Note that the potential is lower
order than ∆ in the standard sense, so it is not part of the principal symbol. So,
by the previous theorem,

(H − λ)u = 0 =⇒ WF(u) = ? =⇒ u ∈ C∞(Rn).

So the only possibility of interesting behavior for u is at infinity, and this is
exactly what we want to understand.

The main feature of many-body problems is that even if Vij decays at infinity
on Rd, it does not decay at infinity in Rn since it is a constant along Xij =

{xi = xj}, as well as along its translates X ′
ij , X ′′

ij , so it does not decay if we go
to infinity, say, along Xij ; see Figure 2. The Xij are called collision planes (as
are their intersections) since at Xij particles i and j are at the same place.
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Figure 3. On the left, broken geodesics in R
n \ {0}, n = 2, broken at the

collision planes Xa, Xb and Xc. On the right, the projection of broken geodesics

in R
n \{0}, n = 3, emanating from the north pole, to the unit sphere S0, better

understood as the sphere at infinity. The Ca, Cb are the intersection of the

collision planes Xa, Xb with S0; dim Xa = 2, dim Xb = 1.

In the two-body problem one actually has H = ∆x1,x2
+ V12(x1 − x2), i.e.

V12 still does not decay at infinity, e.g. if one keeps x1 = x2 but lets x1 → ∞.
However, one can easily remove the center of mass by performing a Fourier
transform along X12. This conjugates H−λ to H12 + |ξ12|2−λ, where ξ12 is the
variable on X∗

12, and H12 = ∆X12 +V12, X12 being the orthocomplement of X12.
Thus, one reduces the study of H − λ to that of a Hamiltonian on X12, namely
H12 − λ′, λ′ = λ− |ξ12|2 being a shifted spectral parameter. Now V12 decays at
infinity (we are working on X12!), so H12 can be considered as a perturbation of
∆X12 , hence its analysis is rather simple. Notice that the point spectrum of H 12

gives rise to a branch of the continuous spectrum of H: this is a phenomenon
that is very typical in many-body scattering. The center of mass can also be
removed in any actual many-body problem, but one still obtains a Hamiltonian
with nondecaying potentials as before.

One can still talk about classical mechanics, just as for the wave equation,
using bicharacteristics. These are deterministic – if V is smooth enough (we
usually assume that V is C∞). But much like for corners, there is a compressed
description of dynamics near infinity. This is somewhat more complicated than
for the wave equation, but only because particles can be bound together. Thus,
even the ‘classical’ description is partly quantum. These two facts, the presence
of collision planes and the bound states, are the two crucial features of many-
body scattering.

The compressed dynamics in the absence of bound states looks just like in
the wave equation setting. One should think of this as a good description when
a classical trajectory is uniformly near infinity.
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More precisely, it is convenient to introduce Agmon’s generalization of the
many-body problem, which amounts to using the vector space structure of Rn

as the setting. One can also give geometric generalizations (in the sense of
differential geometry) that arose from the work of Melrose [41; 42], and I will do
this later.

So we work on the vector space X0 = Rn, equipped with the Euclidean metric.
We are also given a finite collection X = {Xa : a ∈ I} of linear subspaces Xa of
Rn, called the collision planes. We assume that X is closed under intersections,
and X0 = Rn ∈ X , X1 = {0} ∈ X . We let Xa = X⊥

a be the orthocomplement
of Xa in Rn, so Rn = Xa ⊕Xa. (Agmon’s generalization is thus that the Xa do
not have to come from intersections of the planes Xij = {xi = xj}.) We write
the corresponding coordinates as (xa, x

a), and denote the orthogonal projection
to Xa by πa. A many-body Hamiltonian in potential scattering is an operator
of the form

H = ∆ +
∑

a

(πa)∗Va,

where Va is a real valued function on Xa in a certain class, for example Va is a
symbol on Xa of negative order: Va ∈ S−ρ(Xa), ρ > 0. We also assume that
V0 = 0 for normalization; note that X0 = {0}, so V0 would simply play the role
of the spectral parameter. We sometimes drop the pull-back notation from now
on and write H = ∆ +

∑
a Va.

Another useful piece of terminology is the following. We say that Va is short
range if Va ∈ S−ρ(Xa) for some ρ > 1. We say that Va is long-range if Va ∈
S−ρ(Xa) for some ρ ∈ (0, 1]. The Coulomb potential is thus ‘marginally long-
range’, at least if we ignore its singularity at 0 (which is not a serious problem
anyway). Whether Va is short- or long-range does not make any difference for
the propagation phenomena we discuss in this section. However, it does make
a major difference for the precise behavior of generalized eigenfunctions at the
‘radial sets’ which we discuss later. This also shows up in the related issue of
asymptotic completeness.

Yet another notation we use on occasion is that of a k-cluster. Physically, a
cluster describes particles that are close (or collide), and a k-cluster means that
there are k clusters of particles, inside each of which the particles are close to
each other. So in N -particle scattering, the N -cluster describes N asymptotically
free particles (none is close to any other), hence we say that the collision plane
X0 = Rn is the N -cluster. On the other hand, if Xa 6= {0} is such that Xb ( Xa

implies that Xb = {0}, then Xa, or rather a, is a 2-cluster. E.g. given five
particles, a 2-cluster is where x1 = x2 and x3 = x4 = x5, i.e. the particles 1 and
2, resp. 3, 4 and 5, are close to each other. In general, a k-cluster Xa can be
defined by the length of nested chains of collision planes inside Xa.

One need not assume that all interactions between the particles are via po-
tentials. Indeed, Va may be allowed to be any first order differential operator on
the vector space Xa with symbolic coefficients of negative order. Also, one may
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generalize the metric g in an analogous fashion, as discussed later, which in effect
allows Va to be second order provided that H remains elliptic. To simplify the
notation, and due to the traditions, we mostly talk as if Va were potentials, but
the generalization to such higher order perturbations requires only occasional
and minor modifications, which will be pointed out.

The subsystem Hamiltonians are defined by

Ha = ∆Xa +
∑

Xa⊂Xb

Vb.

Note that Xa ⊂ Xb if and only if Xa ⊃ Xb, so above Vb is really the pull-back
of Vb from Xb to to Xa by the orthogonal projection. Thus, Ha is an operator
on (functions on) Xa, and indeed it is a many-body Hamiltonian.

We also let

Xa,sing =
⋃

{Xb : Xb ( Xa} and Xa,reg = Xa \Xa,sing

be the singular and regular parts of Xa. Thus, if Xc is a collision plane and Xa is
not a subset of Xc, then Xa∩Xc is a proper subset of Xa, and is a collision plane
(since X is closed under intersections), so Xa ∩Xc ⊂ Xa,sing. Correspondingly,
Vc decays at Xa,reg, so

Ha = ∆Xa
+Ha,

which is an operator on (functions on) X0 = Rn, has the property that H −Ha

is a function that decreases at Xa,reg. So Ha should be thought of as a good
approximation of H at Xa,reg. Note that Xa,sing is a finite union of codimension
≥ 1 submanifolds of Xa, so Xa,reg is in particular an open dense subset of Xa.
Also, note that ∆Xa

plays a role analogous to the kinetic energy of the center
of mass in the two-body setting, but now this description only valid locally, at
Xa,reg.

Having thus described the configuration space X = X0 = Rn, the next step
is to describe the phase space, as was done first in [65] and [66]. The main
goal in the process is to obtain a space on which broken bicharacteristics behave
well. We remind the reader that we are concerned with singularities at infinity,
hence with bicharacteristics that are uniformly close to infinity. Later we give a
compactified description, but here for simplicity we give its homogeneous version,
much as for the wave equation where bicharacteristics were integral curves of the
homogeneous principal symbol. So we start with T ∗X, but we wish to compress
it at Xa in such a way that at Xa,reg, T ∗

Xa,reg
X is replaced by T ∗

Xa,reg
Xa =

T ∗Xa,reg. For broken bicharacteristics this has the effect that only the Xa-
tangential component of the momentum is preserved at Xa,reg. So we define the
compressed cotangent bundle as

Ṫ ∗X =
⋃

a6=1

T ∗Xa,reg.
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Note that this is at first just a set, equipped with a projection Ṫ ∗X → X \ {0}
induced by the bundle projections T ∗Xa,reg → Xa,reg. There is also a natural
R+-action on Ṫ ∗X via dilation in the configuration variables:

R+
r × T ∗Xa,reg 3 (r, xa, ξa) 7→ (rxa, ξa) ∈ T ∗Xa,reg. (3–1)

We topologize Ṫ ∗X via the projection

π : T ∗
X\{0}X → Ṫ ∗X,

whose restriction to T ∗
Xa,reg

X is the pull-back of one-forms by the inclusion map
Xa,reg ↪→ X. Thus, writing (ξa, ξ

a) as the momenta dual to (xa, x
a), π projects

out the normal component of the momentum, ξa. The topology is then the
weakest topology that makes π continuous, i.e. a set C in Ṫ ∗X is closed if and
only if π−1(C) is closed.

We can now describe the contribution of the bound states to the characteristic
sets. As mentioned above, this is one of the most interesting features of many-
body scattering that has no analogue for the wave equation. These are conic
subsets of Ṫ ∗X (conic with respect to the R+

r -action in (3–1)). The characteristic
sets describe where certain operators are not elliptic, i.e. invertible, at infinity,
in a precise sense described in the subsequent sections. They correspond to the
‘energy shell’, i.e. being on the characteristic set at energy λ means that the
particles have total energy λ. We let

Char0(λ) = {(x, ξ) ∈ T ∗X : g(ξ) = λ}

be the free characteristic variety, with g being the metric function on T ∗X, and
more generally we set

Chara(λ) = {(xa, ξa) ∈ T ∗Xa : λ− ga(ξa) ∈ specppH
a} ⊂ T ∗Xa.

Notice that λ = ga(ξa) + εα, εα ∈ specppH
a, corresponds to the splitting of

the total energy λ to the kinetic energy of the cluster, ga(ξa), plus the energy
of the bound state, εα. Thus, Chara(λ) describes that particles may exist in a
bound state of Ha, of energy εα, along Xa, with kinetic energy ga(ξa) = λ− εα.
Moreover, H0 is the zero operator on X0 = {0}, so if a = 0, these two definitions
are consistent. If Xa ⊂ Xb, the pull-back of one-forms gives a projection πba :

T ∗
Xa
Xb → T ∗Xa. Let

Ċhar(λ) =
⋃

Ċhara(λ) ⊂ Ṫ ∗X,

Ċhara(λ) =
⋃

Xb⊃Xa

πba(Charb(λ)) ∩ T ∗Xa,reg.
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Figure 4. The characteristic set of many-body Hamiltonians. Here H is a

4-body Hamiltonian, a is a 3-cluster, b is a 2-cluster, p1 ∈ X0,reg, p2 ∈ Xa,reg,

p3 ∈ Xb,reg. The solid dots are the radial sets, defined below.

In order to understand Ċhar(λ) it is important to keep in mind several results
on the structure of the eigenvalues of the subsystems. So let

Λa =
⋃

b:Xb(Xa

specppH
b

be the set of thresholds of Ha. Fundamental results of Perry, Sigal and Simon
[53] and of Froese and Herbst [16] show that Λa is closed, countable, and the
countable set specppH

a can only accummulate at Λa, so

Λ′
a = Λa ∪ specppH

a =
⋃

b:Xb⊂Xa

specppH
b

is also closed. Hence, Ċhar(λ) is a closed subset of Ṫ ∗X. In fact, the quotient
Σ̇(λ) of Ċhar(λ) by the R+ action (which can be realized by restricting the
various bundles to the unit sphere, S0 = {x ∈ X0 : |x| = 1}) is compact, and
indeed it is metrizable, see [65]. Since compact topological spaces have better
properties than noncompact ones, it is quite natural to work with Σ̇(λ), although
we do not follow this route in this section. We also remark that it is much better
to think of Σ̇(λ) lying at the sphere at infinity, rather than at S0, since it is the
dynamics at infinity that is described here. We will take up this approach in
later sections.

We also recall another result of Froese and Herbst [15], namely that eigen-
functions ψα of Ha with eigenvalue εα decay exponentially on Xa, at a specified
rate, if εα /∈ Λa. This generalizes to higher order perturbations, but requires a
somewhat different approach, see [67]. In fact, this is the only place where second
order perturbations behave differently from first or zeroth order ones. For the
latter, there can be no positive energy bound states, while for the former this
has been only proved for small metric perturbations in [67], and it is not clear
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whether it holds more generally, especially for trapping perturbations. (Note
that if Ha, a 6= 1, is trapping then H is trapping at infinity!)

A generalized broken bicharacteristic (at energy λ) is then a continuous map
γ : I → Ċhar(λ), I an interval, such that a Hamilton vector field condition
holds. To see what this is, we consider a subset of continuous functions on Ṫ ∗X,
namely the class of π-invariant C∞ functions on T ∗X. π-invariance means that
if ζ, ζ ′ ∈ T ∗X and π(ζ) = π(ζ ′) then f(ζ) = f(ζ ′). If f is π-invariant then it
induces a function fπ on Ṫ ∗X by fπ(q) = f(ζ) if q = π(ζ). Moreover, if f is
smooth (or indeed just continuous) then fπ is continuous by the definition of the
topology on Ṫ ∗X.

Now, if γ̃ is a curve in a manifold, one way to put that it is an integral curve
of a vector field V is that

d

ds
(f ◦ γ̃)|s=s0

= (V f)(γ̃(s0))

for all smooth functions f . If f is a smooth π-invariant function on T ∗X, then
f defines a C∞ function on T ∗Xa for all a, so Hga

f makes sense. Here Hga

is the Hamilton vector field of the metric function ga on T ∗Xa, so explicitly,
Hga

= 2ξa · ∂xa
. Now we would like to say that along a generalized broken

bicharacteristic γ, (d/ds)(fπ ◦ γ)|s=s0
should be given by Hgb

f for some b and
some ζ with π(ζ) = γ(s0). The problem is that there are many such points ζ
and clusters b, so this statement does not make any sense. However, we may
replace the derivative by the lim inf of the difference quotients, i.e. by

D±h(s0) = lim inf
s→s0

h(s) − h(s0)

s− s0
,

and demand an inequality instead of the equality. That is, we may demand that
D±(fπ ◦γ)(s0) may not be less than the worst possible scenario as we run over all
such b and ζ. Thus, the condition for a continuous map γ : I → Ċhar(λ) to be a
generalized broken bicharacteristic is then that for any s0 ∈ I, if γ(s0) ∈ T ∗Xa,reg

then

D±(fπ ◦ γ)(s0) ≥ inf
{
(Hgb

f)(ζ) : ζ ∈ Charb(λ), π(ζ) = γ(s0), Xa ⊂ Xb

}
.

If the set of bound states is discrete, then such a curve γ is piecewise an integral
curve of the Hamilton vector field of gb inside Charb(λ), where b may of course
vary. In particular, if there are no bound states in any proper subsystem, the
picture is very similar to wave propagation: the definition can be reduced to the
analogue of Lebeau’s [36].

The structure of the generalized broken bicharacteristics, including the above
claims, depends on having a large supply of π-invariant functions. But these
exist, since the pull-backs of all functions on X to T ∗X is π-invariant, so one
can localize in X using smooth cutoffs. Moreover, near Xa,reg, each component of
ξa is π-invariant, as is ξa ·xa. Note that the generalized broken bicharacteristics
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depend on V , but only via the characteristic set Ċhar(λ), i.e. only via the bound
states of the subsystem Hamiltonians.

There is also a wave front set associated to many-body scattering which mea-
sures the microlocal decay of tempered distributions at infinity. For a tempered
distribution u, WFsc(u) is a closed conic subset of Ṫ ∗X. Apart from u, it de-
pends on X , since Ṫ ∗X depends on X , but we suppress this in the notation, and
write

WFsc(u) = WFsc,X (u).

Its definition is slightly complicated, and I only refer to [65] for the general
definition, which uses the structure of the pseudodifferential algebra, in partic-
ular the operator-valued nature of symbols at infinity. However, for general-
ized eigenfunctions of many-body Hamiltonians it is simple. Namely, suppose
that (H − λ)u ∈ S(X), where S(X) is the space of Schwartz functions. For
x̄ = x̄a ∈ Xa,reg and ξ̄a ∈ X∗

a we say that (x̄a, ξ̄a) /∈ WFsc(u) if there exists
φ ∈ C∞

c (X∗
a) such that φ(ξ̄a) 6= 0 and F−1φFu is rapidly decreasing in an open

cone in X around x̄a. Two examples are:

WFsc(e
ix·ξ0) = π({(x, ξ0) : x 6= 0}),

WFsc(e
iα|x|) = π({(x, αx/|x|) : x 6= 0}).

ξ0 ∈ X∗
0 ,

α ∈ R.

More generally, if v is a symbol of any order on X0, say v ∈ Sk(X0), and
φ ∈ C∞(X0) is homogeneous degree 1 for |x| > 1, then

WFsc(e
iφ(x)v(x)) ⊂ π(graph dφ) = π({(x, (dφ)(x)) : |x| > 1}).

The condition |x| > 1 is due to the requirement of the homogeneity of φ only for
|x| > 1; technically we should add a subset of |x| ≤ 1 to the right hand side to
make it conic. The theorem on the propagation of singularities is the following.

Theorem 3.1. Suppose that λ ∈ R and H is a many-body Hamiltonian. If

u ∈ S ′(Rn) and (H − λ)u ∈ S(Rn) then WFsc(u) ⊂ Ċhar(λ) (microlocal elliptic

regularity). Moreover , WFsc(u) is a union of maximally extended generalized

broken bicharacteristics of H − λ (propagation of singularities).

Remark. In the time dependent version, one considers tempered distributional
solutions of (Dt + H)u = 0 on X0 × Rt. Then Dt + H still has the structure
of a many-body Hamiltonian, with Dt + ∆ in place of ∆, with collision planes
given by Xa ×R, with {0} added for the sake of completeness. Thus, t is always
a variable along the collision planes, so in particular, its dual variable τ , is π-
invariant. Moreover, Chara(λ) is replaced by

Chara = {(xa, t, ξa, τ) ∈ T ∗(Xa × R) : −τ − ga(ξa) ∈ specppH
a} ⊂ T ∗Xa,

so effectively −τ plays the role of the energy λ. Generalized broken bicharacter-
istics can be defined as before with Hgb

replaced by Hτ+gb
= ∂t + 2ξb · ∂xb

. The
main additional issue is that they can only be expected to give a good description
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of propagation at finite energies since Dt +H is not elliptic in the usual sense.
So the analogue of Theorem 3.1 is that if u ∈ S ′(Rn × R), (Dt +H)u = 0, and
u = ψ(H)u for some ψ ∈ C∞

c (R), then WFsc(u) is a subset of the characteristic
set, and in fact WFsc(u) is a union of maximally extended generalized broken
bicharacteristics of Dt +H inside it. The proof of this statement only requires
simple modifications of the proof of the theorem.

The interpretation of the theorem is much analogous to that for the wave equa-
tion. However, there is a difference which also occurs in the traditional mi-
crolocal setting for more general operators (i.e. for operators other than the
wave operator), see [21]. Namely, the orbits of the R+-action may be bichar-
acteristics, and then the statement of the theorem is empty at the points ly-
ing on these orbits since the wave front set is a priori conic. This happens
for (xa, ξa) ∈ T ∗Xa,reg ⊂ Ṫ ∗X if and only if there exists some cluster b with
Xb ⊃ Xa, and ζ ∈ Charb(λ) such that Hgb

at ζ is tangent to the orbits of
the R+-action. This happens, in turn, if and only if ξa is parallel to xa and
λ− |ξa|2 ∈ specppH

b. Such points are called radial points, and their collection
is denoted by

R(λ) =
⋃

a6=1

{
(xa, ξa) ∈ T ∗Xa,reg : ∃c ∈ R, ξa = cxa,

∃b, Xb ⊃ Xa, λ− |ξa|2 ∈ specppH
b
}
.

As we discuss in Section 7, R(λ) plays an important role in asymptotic com-
pleteness. In many-body scattering it appeared in the work of Sigal and Soffer
[55] and was called ‘propagation set’ because in the time-dependent picture this
is where particles end up as time goes to infinity. (In the stationary semiclassi-
cal picture, this is where nontrapped classical trajectories starting in a compact
region end up.) It is thus unfortunate, in terms of terminology, that this is also
the region where there is no real principal type propagation.

Remark. In the time-dependent problem, the set of radial points is

R =
⋃

a

{
(xa, t, ξa, τ) ∈ T ∗(Xa,reg × R) : xa = 2tξa,

∃b, Xb ⊃ Xa, −τ − |ξa|2 ∈ specppH
b
}
.

In terms of radial points, the difference between threshold energies λ ∈ Λ = Λ0

and nonthreshold energies is that if λ ∈ Λ, then there are constant general-
ized broken bicharacteristics, i.e. bicharacteristics whose image is a single point.
Namely, if xa ∈ Xa,reg and λ ∈ specppH

a, then

(xa, 0) ∈ Chara(λ) ∩ T ∗Xa,reg ⊂ Ċhar(λ),

and Hga
= 2ξa · ∂xa

vanishes there, so (xa, 0) is indeed the image of a constant
bicharacteristic. While this does not make any difference for the propagation of
singularities, it does for the related limiting absorption principle, which in this
generality is due to Perry, Sigal and Simon [53].
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Theorem 3.2. If λ /∈ Λ, then the limits R(λ ± i0) = (H − (λ ± i0))−1 exists

as bounded operators between L2
s and H2

−s for s > 1
2 . Here Hm

l is the weighted

Sobolev space 〈x〉−lHm(Rn), L2
s = H0

s .

In fact, the proofs of the limiting absorption principle and the propagation of
singularities are related. Indeed, the statement on propagation of singularities
can be strengthened for R(λ+i0)f , f ∈ S(Rn), by saying that WFsc(R(λ+i0)f)

is not only a union of maximally extended generalized broken bicharacteristics,
as follows from Theorem 3.1, but in fact it is a union of generalized broken
bicharacteristics γ : Rs → Ṫ ∗X which go to

R+(λ) = R(λ) ∩
⋃

a6=1

{
(xa, ξa) ∈ T ∗Xa,reg : xa · ξa > 0

}

as s → −∞. That is, the singularities at R+(λ) (where the statement of Theo-
rem 3.1 is empty) can only leave R+(λ) in the forward direction. The limiting
absorption principle is thus strengthened to:

Theorem 3.3. If λ /∈ Λ, then for f ∈ S(Rn), WFsc(R(λ+i0)f) is a subset of the

image of R+(λ) under the forward generalized broken bicharacteristic relation.
A similar statement holds for R(λ− i0)f with R+(λ) replaced by

R−(λ) = R(λ) ∩
⋃

a6=1

{
(xa, ξa) ∈ T ∗Xa,reg : xa · ξa < 0

}
,

and the forward relation by the backward relation.
In fact , if u ∈ S ′(Rn) and WFsc(u) is disjoint from the image of R−(λ)

under the backward generalized broken bicharacteristic relation, then R(λ+ i0)u

is defined by duality and WFsc(R(λ+ i0)u) is a subset of the image of R+(λ) ∪
WFsc(u) under the forward relation.

Remark. λ /∈ Λ can be also characterized by R(λ) = R+(λ) ∪ R−(λ), i.e. that
xa · ξa never vanishes on R(λ) ∩ T ∗Xa,reg for any a.

In the time-dependent setting, xa = 2tξa on R, so x · ξa = 2t. So R+, defined
in R by xa · ξa > 0, is the subset of R where t > 0. Hence the ‘outgoing’
terminology for R(λ + i0) and ‘incoming’ for R(λ − i0). In fact, the solution
of (Dt + H)u = 0 with u|t=0 = φ, φ ∈ S(X0), say, is u( · , t) = e−iHtφ. The
time-dependent propagation of singularities shows that WFsc(u) is a subset of
the union of the image of R+ under the forward broken bicharacteristic relation
and the image of R− under the backward bicharacteristic relation. Using the
spectral measure and Stone’s theorem,

u( · , t) =
1

2πi

∫

R

e−iλt(R(λ+ i0) −R(λ− i0))φdλ

Fixing some ψ ∈ C∞
c (R), for φ in the range of ψ(H) we thus deduce that in t > 0,

WFsc(u) arises from the R(λ+i0) term, and in t < 0 from the R(λ−i0) term. So
the time-dependent and stationary settings are very close: the only difference is
that in the latter, λ is a parameter, while in the former, it is a variable, λ = −τ .
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Again, one can make more precise propagation statements in some circumstances,
such as three-body scattering, where the precise nature of the singularities can
be analyzed, see [22; 63]. Here we only state the stronger implication for the
structure of the scattering matrices, which we proceed to analyze.

4. Scattering Matrices

Physically, the scattering matrices relate incoming and outgoing data in an
experiment. In the time independent framework (where −λ is the dual variable
of time), for short-range potentials an incoming wave of energy λ in channel α (a
channel is the choice of a cluster a and an L2-eigenfunction ψα of Ha of energy
εα) takes the following form in |x| > 1:

uα,− = e−i
√

λ−εα|xa||xa|−(dim Xa−1)/2gα,−

(
xa

|xa|

)
ψα(xa) + u′−

Similarly, an outgoing wave has the form

uα,+ = ei
√

λ−εα|xa||xa|−(dim Xa−1)/2gα,+

(
xa

|xa|

)
ψα(xa) + u′+

i.e. the sign of the phase has changed. Here gα,± may be taken e.g. L2 functions
on Sa, the unit sphere in Xa, or ideally, at least one of them may be taken C∞. In
either case, u′± are ‘lower order terms’, namely they must be in L2

−1/2. (Note that

〈xa〉−(dim Xa−1)/2 ∈ L2
s(Xa) for s < − 1

2 but not for s = − 1
2 .) In fact, for gα,± ∈

C∞
c (Sa,reg) we may take them to be of the form e−i

√
λ−εα|xa||xa|−(dim Xa+1)/2v

where v is a 0th order symbol, with Sa,reg denoting Xa,reg ∩ S0.
One can now produce tempered distribution with given incoming, or alterna-

tively of given outgoing, asymptotics. A typical example is of the form

Pα,+(λ)gα,− = uα,− − (H − (λ+ i0))−1((H − λ)uα,−); (4–1)

here the lower order terms may be dropped from uα,− without affecting u =

Pα,+(λ)gα,− and gα,− can be specified to be any smooth function on Sa. In
general, even if the incoming data are in a single channel α, as in (4–1), the
corresponding generalized eigenfunction u of H will have outgoing waves in all
channels. The S-matrix Sαβ(λ) picks out the component in channel β by pro-
jection in a certain sense, see [64]. Thus, Sαβ(λ) maps functions on Sa, the unit
sphere in Xa, to functions on Sb, by

Sαβ(λ)gα,− = gβ,+

for u as in (4–1). For example, the free-to-free (i.e. N -cluster to N -cluster in
N -body scattering) S-matrix S00(λ) maps functions on S0, the unit sphere in
Rn, to functions on S0, more precisely S00(λ) : L2(S0) → L2(S0) is bounded.
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More precisely, let T+ be a pseudodifferential operator that is identically 1

on the outgoing radial set and identically 0 on the incoming radial set; see the
paragraph of (5–6) for a precise statement. Then

Sαβ(λ) =
1

2i
√
λ− εβ

((H − λ)T+Pβ,−(λ))∗Pα,+(λ), (4–2)

i.e. for any g ∈ C∞(Sa,reg), h ∈ C∞(Sb,reg),

〈h, Sαβ(λ)g〉 =
〈
(H − λ)T+Pβ,−(λ)h,

1

2i
√
λ− εβ

Pα,+(λ)g
〉
.

This is equivalent to the usual wave operator definition in the time-dependent
setting, see [64]. An immediate consequence of the propagation of singularities
and the definition of the scattering matrices is the following:

Theorem 4.1. The wave front relation of Sαβ(λ) is given by the broken bichar-

acteristic relation. In particular , if no proper subsystem of H has bound states,
the wave front relation of S00(λ) is given by the broken geodesic flow on S0 at

distance π.

While typically broken bicharacteristics can be continued in many ways when
they hit a collision plane, it is important to keep in mind that under suitable
assumptions (which rule out geometric complications) the broken bicharacter-
istic relation is Lagrangian, hence its dimension is the same as if there were
no collision planes. The reason is that only a low dimensional family of broken
bicharacteristics hits any specified collision plane, with the dimension of the pos-
sible continuations of each of these these bicharacteristics compensating to yield
the correct dimension for Lagrangian submanifolds.

The significant improvement in the three-body case, as shown by Hassell and
the author [63; 22], is that one can pinpoint not only the location of the singular-
ities, but also their precise form. This theorem was motivated by the geometric
result of Melrose and Zworski [46], showing that the scattering matrix on asymp-
totically Euclidean manifolds is a Fourier integral operator.

Theorem 4.2. Suppose that H is a three-body Hamiltonian and the Va are

Schwartz on Xa for all a. Then S00(λ) is a finite sum of Fourier integral oper-

ators (FIOs) associated to the broken geodesic relation on S0 to distance π. Its

canonical relation corresponds to the various collision patterns. The principal

symbol of the term corresponding to a single collision at Xa is given by , and in

turn determines, the 2-body S-matrix of Ha at energies λ′ ∈ (0, λ).

Remark. This result presumably extends to short range symbolic potentials,
using the same methods, though it is technically more complicated to write down
the argument in that case, and it has not been done. In fact, it should also extend
to the N -body problem, provided that there are no bound states in any proper
subsystem. Some assumption on the bound states is necessary, for otherwise
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the generalized broken bicharacteristic relation can become fairly complicated;
see [66]. The reason why one does not need any assumption on bound states
in three-body scattering is that for any 2-cluster a, Chara(λ) ∩ π0a(Char0(λ))

is either empty (if 0 is not an eigenvalue of Ha) or consists of the boundary of
π0a(Char0(λ)). In the former case there is no interaction (modulo smoothing
terms) between the 0-cluster and the a-cluster dynamics, while in the latter case
in the only place they interact, the two dynamics give the same propagation.

It should also be noted that the normalization of Sαβ(λ) is not the standard
one in many-body scattering (which is based on wave operators), but rather fol-
lows the geometric conventions [41]. The difference is that in the wave operator
approach, free motion is factored out, so the free scattering matrix is the identity
operator. On the other hand, in the geometric approach we describe the asymp-
totics of generalized eigenfunctions, or alternatively of the Schrödinger equation.
Since free particles move to infinity in the opposite direction from which they
came, it is reasonable that the two should differ by (a constant multiple of) pull-
back by the antipodal map, and this is indeed the case, see [64]. The distance π
propagation along (not broken!) geodesics on the sphere indeed takes particles
to the antipodal point.

An immediate corollary, when combined with two-body results (e.g. analyticity
of the S-matrix in λ′ and the Born approximation) is the following inverse result.

Corollary. If the Va decay exponentially and dimXa ≥ 2 for all a then S00(λ)

for a single value of λ determines all interactions.

This result is analogous to the recovery of cracks in a material by directing
sound waves at it and observing the singularities of the reflected waves, except
the last step which uses two-body results to get the potentials from the two-body
S-matrices.

The other extremal scattering matrices are the 2-cluster to 2-cluster ones, and
they describe the physically most interesting events. Indeed, it is hard to make
more than two particles collide in an accelerator, so the initial state in a physical
experiment tends to be a 2-cluster. The following result is due to Skibsted [59],
and it also follows from the propagation of singularities and the definition of the
S-matrices.

Theorem 4.3. Let α and β be two-clusters, and suppose that either εα ∈
specdH

a and εβ ∈ specdH
b, or Vc is Schwartz for all c. Then the two-cluster to

two-cluster S-matrix Sαβ(λ) has C∞ Schwartz kernel , except if α = β in which

case the Scwartz kernel of Sαα(λ) is conormal to the graph of the antipodal map

on Sa, corresponding to free motion.

Thus, principal symbol calculations do not help in this inverse problem. Note
that if H is a 3-body Hamiltonian, then εα ∈ specdH

a and εβ ∈ specdH
b holds

for any nonthreshold bound state energies. The new result, in a joint project
with Gunther Uhlmann, is the following [62].
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Theorem 4.4. Suppose that H is a 3-body Hamiltonian, a is a 2-cluster , α is

a channel of energy εα < 0, Va is a symbol of negative order (i .e. may be long

range). For any µ > dimXa there exists δ > 0 such that the following holds.
Suppose that sup |(1 + |xb|)µVb(x

b)| < δ for all b 6= a. Suppose also that

I ⊂ (εα, 0) is a nonempty open set , and let

R = 2
√

sup I − εα.

Then Sα′α′′(λ) given for all λ ∈ I and for all bound states α′, α′′ of Ha with

εα′ , εα′′ < sup I, determines the Fourier transform of the effective interaction

Vα,eff in the ball of radius R centered at 0.

The effective interaction is the interaction that arises if we consider the 3-body
problem as a 2-body problem, i.e. if we regard the two particles forming the
cluster a as a single particle. Mathematically, this amounts to projecting to
the state ψα in Xa and obtaing a new Hamiltonian ∆Xa

+ Vα,eff on Xa. Thus,
the effective interaction is physically relevant. Moreover, there is no hope for
recovering anything better than Vα,eff as shown by the high-energy inverse results
of Enss and Weder [11; 13], Novikov [49] and Wang [70; 71].

This theorem says that if the unknown interactions are small then the effective
interaction can be determined from the knowledge of all S-matrices with incoming
and outgoing data in the cluster a in the relevant energy range. In fact, near-
forward information suffices as in two-body scattering, where this was observed
recently by Novikov [50]. Also, if one is willing to take small R and α is the
ground state of Ha, it suffices to know Sαα(λ) to recover V̂α,eff in a small ball.

In case Vb decay exponentially on Xb for all b 6= a, then Vα,eff decays expo-
nentially on Xa, hence its Fourier transform is analytic, so Vα,eff itself can be
recovered from these S-matrices.

Remark. It is clear from the proof in [62] that there is a natural extension of
this theorem to many-body scattering at low energies.

This result should extend to higher energies, i.e. sup I ≤ 0 is not expected to
be essential. But it is hard to make R greater than 2

√−εα even then. The
reason is that our method relies on the construction of exponential solutions fol-
lowing Faddeev [14], Calderón [6], Sylvester and Uhlmann [60] and Novikov and
Khenkin [48], but in the three-body setting. One thus allows complex momenta
ρ ∈ C(Xa), the complexification of Xa, and one wants to construct solutions of
(H − λ)u = 0 of the form

eiρ·xa(ψα(xa) + v),

where v = vρ is supposed to be ‘small’ in the sense that it goes to 0 as ρ→ ∞ in
an appropriate fashion. Note that with v = 0 these complex plane waves solve
(Ha − λ)u = 0 with

λ = ρ · ρ+ εα; (4–3)
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this expresses that the total energy λ is the sum of the kinetic energy, ρ · ρ, and
the potential energy εα.

To construct u, we need to find v, and its study reduces to that of the conju-
gated Hamiltonian

e−iρ·xa(H − λ)eiρ·xa = Ha + ∆Xa
+ 2ρ ·DXa

+ Ia − εα

with ρ ∈ C(Xa) the complex frequency. Here we used (4–3). Now, Ia is con-
sidered as a perturbation (this is the reason for the smallness assumption in the
theorem), so we really study the model operator,

Ha + ∆Xa
+ 2ρ ·DXa

− εα.

Taking the Fourier transform in the Xa variables, one obtains

Ha + |ξa|2 + 2ρ · ξa − εα.

Writing ρ = zν + ρ⊥ with |ν| = 1, ρ⊥ · ν = 0, ρ, ν real, z ∈ C, this operator
becomes

Ha + |ξa|2 + 2ρ⊥ · ξa + 2zν · ξa − εα = Ha + (ξa + ρ⊥)2 + 2zν · ξa − |ρ⊥|2 − εα.

If ρ is not real, then neither is z, so this operator is invertible if ν · ξa 6= 0 since
Ha is self-adjoint. On the other hand, if ν · ξa = 0, this operator becomes

Ha + (ξa + ρ⊥)2 − |ρ⊥|2 − εα,

i.e. its invertibility properties correspond to the behavior of the boundary values
of the resolvent of Ha at the real axis. If |ρ⊥|2 + εα < 0, i.e. if |ρ⊥| <

√−εα,
then the spectral parameter |ρ⊥|2+εα−(ξa +ρ⊥)2 is negative, so only the bound
states of Ha contribute to the characteristic variety, i.e. the two-cluster a may
not break up. On the other hand, if |ρ| ≥ √−εα, such a break-up is possible
even if λ < 0, i.e. where the break up may not happen for real frequencies. The
break-up greatly influences analyticity properties, hence one cannot easily use
large ρ⊥. On the other hand, one needs such large ρ⊥ to recover Vα,eff on larger
balls, hence the limitation in the theorem. This also suggests that the fixed
energy problem would be hard, since then one always needs to let ρ⊥ → ∞ to
keep ρ · ρ = |ρ⊥|2 + z2 fixed and yet have ρ→ ∞.

5. Many-body Scattering Pseudo-Differential Operators

I will present the calculus from the compactified point of view. Both the one-
step polyhomogeneous (i.e. ‘classical’) and the nonpolyhomogeneous calculus
can be described in noncompact terms, i.e. directly on X0, but this is more
complicated and less natural. Indeed, one of the beauties of compactification is
that it exactly captures the structure of many-body Hamiltonians. We warn the

reader here that from now on the Euclidean variable is written as z, rather than
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x in the preceeding sections, for compatibility with previous papers espousing this

approach, such as [41; 42].
To see how the compactification should go, recall first that a classical symbol

of order 0 on Rn
z has an asymptotic expansion

a(rω) ∼
∞∑

j=0

r−jaj(ω), aj ∈ C∞(Sn−1),

in the polar coordinates (r, ω): z = rω. The meaning of such an expansion
is that, for any k, the difference of a and the sum of the first k terms on the
right hand side is a symbol of order −k. This expansion is just a Taylor series
at r = ∞, or rather at ‘r−1 = 0’. So we compactify Rn into a ball Bn by
adding points (0, ω), ω ∈ Sn−1, and making (r−1, ω) = (x, ω) coordinates near
these points. The resulting space is called the radial compactification Rn of
Rn. Thus, a classical symbol of order 0 is simply a smooth function of Rn; the
asymptotic expansion at infinity is its Taylor series around the boundary, x = 0.

This compactification, whose utility in this context was emphasized by Mel-
rose [41], can also be realized as the closed unit upper hemisphere via a modified
stereographic projection. So let RC : Rn → Sn

+ be given by

RC(z) =
(

1

〈z〉 ,
z

〈z〉

)
, where 〈z〉 = (1 + |z|2)1/2, z ∈ Rn.

Then n of the n + 1 variables
(
1/〈z〉, z/〈z〉

)
give local coordinates on various

regions of Sn
+. In particular, in coordinate patches near the equator, which is

∂Sn
+, 1/〈z〉 (or indeed x = |z|−1) and n − 1 of zj/〈z〉 (or indeed ωj = zj/|z|)

can be taken as coordinates, showing that Sn
+ can be identified with the radial

compactification Rn. A slightly modified version of x (it needs to be smoothed
at z = 0, where ‘x = ∞’), or 〈z〉−1, can be taken as a boundary defining
function. We will usually write x for this, so x = |z|−1 for |z| ≥ 1, say. (A
boundary defining function is a nonnegative function whose zero set is exactly
the boundary, and whose differential does not vanish there.)

How can we adapt this to many-body scattering? Let X̄a denote the closure
of Xa in the compactification Rn of Rn, and let Ca = ∂X̄a ⊂ ∂Sn

+ = C0. The
closure of any translate of Xa intersects C0 in the same submanifold (a sphere)
as Xa itself. Indeed, writing the coordinates as (za, z

a) on X0 = Xa ⊕Xa, local
coordinates near Ca are given by Za = za/|z|, |z|−1 and dimXa − 1 of (za)j/|z|.
Thus, Za → 0 as x → 0 along any translate, since za is constant along these.
So Va is not even continuous on X̄0, as it takes different values on the different
translates of Xa. However, it is a negative order symbol (in particular continuous
with boundary value 0) on X̄0 \ Ca, if Va is such on Xa; see Figure 5.

So the compactification works for Va, except at Ca. To remedy this, we blow
up Ca. This is an invariant way of introducing polar coordinates about it (i.e.
projective coordinates in various charts). That is, curves approaching Ca from
various normal directions will correspond to different points on the blown-up
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Figure 5. Translates of Xa on [X̄0; Ca].
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Figure 6. The blow up of Ca, given by Za = 0, x = 0.

space [X̄0;Ca]. Since Ca is given by x = 0, Za = 0, in local coordinates, this
means concretely that the components of Za/x become coordinate functions on
the part of [X̄0;Ca] where this quotient is finite. (For the sake of completeness,
a complete set of coordinates in this region is given by x, the components of Za

as well as the dimXa − 1 coordinates on the sphere ya = za/|za|; see Figure 6.)
But Za/x = za, so it is now easy to see that for classical symbols Va on Xa (of
negative integer order), Va is a C∞ function on [X̄0;Ca].

In general, there are many collision planes, and we blow them up recursively,
starting with ones of the largest codimension, to get [X̄0; C],

C = {Ca : Xa ∈ X , a 6= 1}.

We refer to [65] for details.
There is no reason at all to take X̄0 as the space we start with. Given any

compact manifold with boundary, X̄, and a cleanly intersecting family of closed
embedded submanifolds C of ∂X̄, we can define [X̄; C] analogously. For instance,
one can start with X̄ = Rn × Sk. The space [X̄; C] is equipped with boundary
fibrations given by the blow-down maps, see [38] for a simpler case where these
first appeared explicitly.
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Having described the configuration space, we turn to differential operators.
X0 has a nice algebra of differential operators, consisting of operators with sym-
bolic coefficients:

∑
|α|≤m aα(z)Dα

z , aα ∈ S0(X0). We may require instead that

aα is ‘classical’, i.e. that aα ∈ C∞(X̄0). The resulting algebras were denoted
Diffsccl(X̄0) and Diffsc(X̄0) by Melrose; he called them ‘scattering differential
operators’.

This setup generalizes to the geometric set-up as follows. Let (x, y), with
y = (y1, . . . , yn−1), be local coordinates near ∂X̄0. Then the vector fields in
Diffsc(X̄0) are linear combinations of x2Dx and the xDyj

with coefficients in
C∞(X̄0), as can be seen easily by an explicit calculation.

Now, if X̄ is a manifold with boundary, Vb(X̄) is the Lie algebra of vector
fields tangent to ∂X̄, and Vsc(X̄) = xVb(X̄), where x is a defining function
of ∂X̄. Vsc(X̄) is independent of the choice of x. Then Vb(X̄) is spanned by
x∂x and ∂y over C∞(X̄), so Vsc(X̄) is spanned by x2∂x and x∂y over C∞(X̄).
By definition, these generate Diffsc(X̄). Also, Vsc(X̄) is the set of all smooth
sections of a vector bundle over X̄, this is denoted by scTX̄. Its dual bundle is
the scattering cotangent bundle, denoted by scT ∗X̄. In the Euclidean setting,

scTX̄0 = X̄0 ×X0,
scT ∗X̄0 = X̄0 ×X∗

0 .

The way to generalize this differential operator algebra to one that includes
many-body potentials is to allow singular coefficients aα ∈ C∞([X̄; C]). Thus,

Diffsc(X̄; C) = C∞([X̄; C]) ⊗C∞(X̄) Diffsc(X̄).

In particular, if H is a many-body Hamiltonian, with either potential or higher
order interactions, then H ∈ Diff2

sc(X̄0; C).
We let scT [X̄; C] = β∗scTX̄ and scT ∗[X̄; C] = β∗scT ∗X̄, where β : [X̄; C] → X̄

is the blow-down map, and we are pulling back the vector bundles by it. Hence
in the Euclidean setting,

scT [X̄0; C] = [X̄0; C] ×X0,
scT ∗[X̄0; C] = [X̄0; C] ×X∗

0 .

Now it is natural to define pseudodifferential operators using these bundles.
Although I restrict the discussion to the Euclidean setting, the construction
generalizes to any X̄ via localization.

So we consider symbols

a ∈ 〈z〉−l〈ζ〉mC∞([X̄0; C] × X̄∗
0 ), (5–1)

X0 = Rn, where ζ is the dual variable of z, i.e. the variable on X∗
0 . Note that

this means that a is a classical symbol of order m in ζ. As usual, we define the
Schwartz kernel of the left quantization of a by

A = qL(a) = (2π)−n

∫

Rn

ei(z−z′)·ζa(z, ζ) dζ, (5–2)
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understood as an oscillatory integral. In particular, for any f ∈ S(Rn),

Af(z) = (2π)−n

∫

Rn

∫

Rn

ei(z−z′)·ζa(z, ζ)f(z′) dζ dz′,

again understood as an oscillatory integral. We write A ∈ Ψsc(X̄0; C) for this
class of operators.

Note that 〈z〉la ∈ Sm
∞(X0;X

∗
0 ), Hörmander’s uniform symbol space [27, Sec-

tion 18.1], so A = 〈z〉lÃ, Ã ∈ Ψm
∞(X0), the uniform ps.d.o.-algebra arising by

quantizing Sm
∞(X0;X

∗
0 ) as in (5–2). In particular, since the mapping properties

of Ψm
∞(X0) between weighted Sobolev spaces Hr,s are well known, the corre-

sponding properties of A follow. Namely, A : Hr,s → Hr−m,s+l for all r, s,
where

Hr,s = 〈z〉−sHr = 〈f ∈ S ′(Rn) : 〈z〉sf ∈ Hr}.
Now, Ψsc(X̄0; C) is a ∗-algebra, in particular is closed under composition. In-

deed, since Ψsc(X̄0; C) ⊂ Ψ∞(X0), and the latter is closed under composition, it
suffices to follow the usual proof and make sure that the product is in Ψsc(X̄0; C),
rather than merely in Ψ∞(X0). Thus, the key fact is that for any

b ∈ 〈z〉−l〈ζ〉mC∞([X̄0; C]z × [X̄0; C]z′ × (X̄∗
0 )ζ)

there exists a as in (5–1) such that the induced operators

B = (2π)−n

∫

Rn

ei(z−z′)·ζb(z, z′, ζ) dζ, (5–3)

and A as in (5–2) are the same. The proof of this claim is standard. Indeed, we
can expand b in Taylor series in z′ around z = z′ to finite order k. The finite order
terms depend on z′ only via (z′ − z)α, |α| ≤ k. We rewrite (z′ − z)αei(z−z′)·ζ as
(−1)|α|Dα

ζ e
i(z−z′)·ζ , and integrate by parts with respect to ζ. Thus, the α-term

is the left quantization of

1

α!
Dα

z′Dα
ζ b(z, z

′, ζ)|z′=z, (5–4)

which is of the desired form, i.e. is in 〈z〉−l〈ζ〉mC∞([X̄0; C] × X̄∗
0 ). In fact, the

weight 〈ζ〉m can be replaced by 〈ζ〉m−|α| due to the symbolic properties of b in
(X∗

0 )ζ , but no corresponding change may be made for the z weight. Similarly,
the remainder term is of the form

Kk(z, z′) = (2π)−n

∫

Rn

ei(z−z′)·ζbk(z, z′, ζ) dζ,

bk ∈ 〈z〉−l〈ζ〉m−k−1C∞([X̄0; C]z × [X̄0; C]z′ × (X̄∗
0 )ζ).

(5–5)

Now we can asymptotically sum the bα to get a new symbol

c ∈ 〈z〉−l〈ζ〉mC∞([X̄0; C] × X̄∗
0 ).

Let C be the left quantization of c. Then B − C is of the form (5–5) for all k,
with bk replaced by some b′k with the same properties. It is then straightforward
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to show that the Schwartz kernel K ′ of B − C is C∞, decays rapidly with all
derivatives as 〈z − z′〉 → ∞, and more precisely it is of the form

K ′ ∈ C∞([X̄0; C]z × (X̄0)z−z′)

with infinite order vanishing at the boundary of the second factor. Taking its
Fourier transform b′ in z − z′, K ′ is thus the left quantization of a = c + b′,
proving the claim, hence in turn that Ψsc(X̄0; C) is closed under composition.

In the two-body setting, where C = ?, there is a principal symbol at infinity.
Namely, if A ∈ Ψm,l

sc (X̄), A = qL(a), then σm,l(A) is given by the restriction of
〈z〉l〈ζ〉−ma ∈ C∞(X̄0×X̄∗

0 ) to ∂(X̄0×X̄∗
0 ) = (∂X̄0×X̄∗

0 )∪(X̄0×∂X̄∗
0 ). Of the two

boundary hypersurfaces, the restriction to X̄0 × ∂X̄∗
0 yields the usual principal

symbol, while the restriction to ∂X̄0 × X̄∗
0 is the principal symbol at infinity.

More precisely, if l = 0, we can indeed define the part of σm,0(A) at infinity to
be the restriction of a to (∂X̄0)× X̄∗

0 . The principal symbol is multiplicative, i.e.
σm+m′,l+l′(AB) = σm,l(A)σm′,l′(B). Thus, [A,B] ∈ Ψm+m′−1,l+l′+1

sc (X̄), and its
principal symbol is given by the Poisson bracket of their symbols, see Section 6.

Since in the many-body setting we do not gain decay in z in (5–4), we cannot
expect to have a commutative principal symbol at infinity, i.e. at ∂[X̄0; C]. For
C ∈ Ψm,0

sc (X̄, C), ya ∈ Ca,reg, ζa ∈ X∗
a , we let

Ĉa(ya, ζa) = (2π)− dim Xa

∫
ei(za−(z′)a)·ζa

c(ya, z
a, ζ) dζ ∈ S ′(Xa ×Xa)

be the operator valued principal symbol of C at (ya, ζa). Thus, Ĉa(ya, ζa) is a
tempered distribution on Xa ×Xa (denoted by the variables (za, (za)′)), and it
is in fact a many-body ps.d.o. itself: Ĉa(ya, ζ) ∈ Ψm,0

sc (X̄a, Ca) corresponding
to the collision planes Xa ∩Xb, with b satisfying Xb ⊃ Xa. We also call it the
indicial operator of C to make it clear we are not talking about the standard
principal symbol. We also write Ĉa(za, ζa) in the same setting, where we extend
Ĉa(ya, ζa) to be homogeneous degree 0 in za. It can be easily seen to satisfy

ÂaB̂a = \(AB)a,

where on the left hand side we compose the operators Âa(za, ζa) and B̂a(za, ζa).
Thus, multiplication of operators is only partially commutative, even to top
order. This can be observed already from [Dza

, Va] = 0, hence certainly lower
order at infinity, while [Dza , Va] ∈ C∞([X̄0; C]) without any decay at Ca.

This observation has important implications for the positive commutator esti-
mates that we take up in the next section. Namely, H must commute to leading
order with the operators we want to microlocalize with. This means that these
operators A must have Âa commute with Ĥa, and the most reasonable way of
achieving this is to have Âa be a scalar multiple of ψ(Ĥa), where e.g. ψ ∈ C∞

c (R).
This multiple defines a function on Ṫ ∗X̄0; we want this to arise from a smooth
π-invariant function for our estimates. On the other hand, ψ(Ĥa) provides lo-
calization at the characteristic set.
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Here, however, I would like to talk about pseudodifferential constructions first.
Namely, if λ /∈ R, or indeed if λ ∈ C \ [inf Λ,+∞) then there exists a parametrix
G(λ) ∈ Ψ−2,0

sc (X̄0; C) for H − λ, i.e. such that

(H − λ)G(λ) − Id, G(λ)(H − λ) − Id ∈ Ψ−∞,∞
sc (X̄0; C).

Then the parametrix identities show that

λ ∈ C \ specH =⇒ (H − λ)−1 ∈ Ψ−2,0
sc (X̄0; C).

The parametrix construction proceeds inductively by constructing (Ĥa−λ)−1 in
Ψ−2,0

sc (X̄a, Ca) for every a 6= 1 and then combining these: there exists a G0(λ) ∈
Ψ−2,0

sc (X̄0; C) with specified indicial operators (Ĥa − λ)−1, hence satisfying

(H − λ)G0(λ) − Id, G0(λ)(H − λ) − Id ∈ Ψ−1,1
sc (X̄0; C).

Then the standard Neumann series argument yields G(λ).
The Helffer-Sjöstrand argument [24] then shows that for any φ ∈ C∞

c (R),

φ(H) =
−1

2πi

∫

C

∂λφ̃(λ)(H − λ)−1 dλ ∧ dλ̄,

where φ̃ is an almost analytic extension of φ: φ̃ ∈ C∞
c (C), |∂λφ̃| ≤ Ck| Imλ|k

for all k. We can control (H − λ)−1 in Ψ−2,0
sc (X̄, C) as λ → R with semi-norm

estimates O(| Imλ|−j) (j depends on the norm), so we conclude that φ(H) ∈
Ψ−∞,0

sc (X̄; C).
We can now explain the precise specifications on T+ in (4–2). Namely, we

require that on a neighborhood of R+(λ) in Ṫ ∗X, the indicial operators T̂+

should equal [φ(H) for some φ ∈ C∞
c (R) identically 1 near λ, and on a neighbor-

hood of R−(λ) they should vanish. Explicitly this can be arranged by taking
any φ as above, and any χ ∈ C∞(R) identically 1 on

(√
λ/2,+∞

)
, identically

0 on (−∞,−
√

λ
2 ). Then let T+ = φ(H)qR(χ((z · ζ)/〈z〉)), with qR denoting the

‘right quantization’ (i.e. where we take b = χ((z ′ · ζ)/〈z′〉) in (5–3)). Although
qR(χ((z · ζ)/〈z〉)) is not in Ψsc(X̄; C), due to the nonsymbolic behavior of b as
ζ → ∞, T+ is, namely T+ ∈ Ψ−∞,0

sc (X̄; C), since φ(H) is smoothing: see [65].
Moreover,

T̂+a(za, ζa) = χ
(
za · ζa
|za|

)
φ(Ĥa(za, ζa)), (5–6)

hence has the desired properties.
Our construction of φ(H) in fact shows that if all potentials are in S−ρ(Xa),

ρ > 0, and χa ∈ C∞(X̄0) is supported away from Cb such that Cb ⊃ Ca does not

hold, then χa(φ(H) − φ(Ha)) ∈ Ψ−∞,ρ
sc (X̄; C), hence trace class if ρ > dimX0.

In the three-body setting this shows that

φ(H) − φ(H0) −
∑

#b=2

(φ(Hb) − φ(H0))
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is trace class. Indeed, near Ca this can be written as

(φ(H) − φ(Ha)) −
∑

#b=2, b6=a

(φ(Hb) − φ(H0)),

and now all terms in parantheses are in Ψ−∞,ρ
sc (X̄; C) near Ca. So we conclude,

with a proof that shows much more, a result of Buslaev and Merkureev:

σ(φ) = tr((φ(H) − φ(H0)) −
∑

#b=2

(φ(Hb) − φ(H0)))

defines a distribution σ ∈ C−∞(R). Writing σ = ξ′ defines the spectral shift
function, up to a constant, which in turn, in two-body scattering, is the well-
known generalization of the eigenvalue counting function on compact manifolds.
These statements, as well as the following theorem, which is joint work with Xue-
Ping Wang [68], generalize to arbitrary many-body Hamiltonians (with short-
range interactions as indicated).

Theorem 5.1. Suppose H is a three-body Hamiltonian with Schwartz interac-

tions: Va ∈ S(Xa), and that all interactions are pair interactions (i .e. Va 6= 0

implies that a is a 2-cluster .) Then the spectral shift function σ is C∞ in

R \ (Λ∪ specppH), and it is a classical symbol at infinity (i .e. outside a compact

set) with a complete asymptotic expansion:

σ(λ) ∼ λ(n/2)−3
∞∑

j=0

cjλ
−j , c0 = C0(n)

∑

a,b:a6=b

∫

Rn

VaVb dg.

Note that σ decays one order faster than in 2-body scattering, and two or-
ders faster than Weyl’s law on compact manifolds. This is because φ(H0) +∑

#b=2(φ(Hb) − φ(H0)) is, in a high-energy sense, closer to φ(H) than φ(H0)

is to φ(H) in two body scattering. If not all interactions are pair interactions,
the order of the leading term changes, namely becomes λ(n/2)−2 as in 2-body
scattering.

The proof of this theorem relies on the propagation of singularities, applied
to the Schwartz kernel of the resolvent, R(λ+ i0). (In fact, the theorem should
generalize to symbolic potentials, but the proof would require a more precise
microlocalization than provided by WFsc.) So we now turn to the positive com-
mutator methods that prove this.

6. Microlocal Positive Commutator Estimates

First I sketch, somewhat vaguely, the idea of positive commutator estimates.
So suppose that we want to obtain estimates on the solutions of Pu = f , where
f is known, and is ‘nice’, and P is self-adjoint. Suppose that we can construct
an operator A which is self-adjoint and is such that

i[A,P ] = B∗B + E. (6–1)
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Here B∗B is the positive term, giving the name to the estimate. The point is
that we can estimate Bu in terms of Eu. Indeed, at least formally,

〈u, i[A,P ]u〉 = 〈u,B∗Bu〉 + 〈u,Eu〉 = ‖Bu‖2 + 〈u,Eu〉.

On the other hand,

〈u, i[A,P ]u〉 = 〈u, iAPu〉− 〈u, iPAu〉 = 〈u, iAPu〉+ 〈iAPu, u〉 = 2Re〈u, iAPu〉.

Combining these yields

‖Bu‖2 ≤ 2|Re〈u, iAPu〉| + |〈u,Eu〉|. (6–2)

This means that Bu can be estimated in terms of Pu, which is known from the
PDE, and Eu, on which we need to make assumptions. The typical application
is that E is supported in one region of phase space and B in another, in which
case we can propagate estimates of u.

In fact, one can also apply this estimate if one does not know a priori that
Bu ∈ L2. Namely, an approximation argument gives that if Pu and Eu are
in appropriate spaces so that the right hand side of (6–2) makes sense, then
Bu ∈ L2, and (6–2) holds. Considering pseudodifferential operators A of various
orders, this means that we obtain microlocal weighted Sobolev estimates for u.
Also, typically one has an error term F , i.e. i[A,P ] = B∗B + E + F , but F is
‘lower order’ in some sense. Thus, |〈u, Fu〉| is added to the right hand side of
(6–2), but being ‘lower order’ means that |〈u, Fu〉| automatically makes sense,
hence is irrelevant when proving that Bu ∈ L2.

In fact, this method also yields estimates for the resolvent very directly. Since
for t ∈ R, i[A,P − it] = i[A,P ], and

〈u, i[A,P − it]u〉 = 〈u, iA(P − it)u〉 − 〈u, i(P − it)Au〉
= 〈u, iA(P − it)u〉 + 〈iA(P + it)u, u〉
= 2Re〈u, iA(P − it)u〉 − 2t〈Au, u〉.

Thus, we deduce

‖Bu‖2 + 2t〈Au, u〉 ≤ 2|Re〈u, iAPu〉| + |〈u,Eu〉|. (6–3)

This is in particular an estimate for ‖Bu‖ provided that t ≥ 0 and A is positive.
Here we may take u = ut = (P − it)−1f , defined for t > 0, say, and we find a
uniform estimate for But as t→ 0.

The question is thus how one can produce operators A which have a pos-
itive commutator with P as above. First, we recall how this happens in the
scattering calculus. Namely, if A ∈ Ψm,l

sc (X̄), P ∈ Ψm′,l′

sc (X̄) then [A,P ] ∈
Ψm+m′−1,l+l′+1

sc (X̄) and

σm+m′−1,l+l′+1(i[A,P ]) = Hap = −Hpa, a = σm,l(A), p = σm′,l′(P ),
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where Ha is the Hamilton vector field of a, Hp the Hamilton vector field of p.
So modulo lower terms, which I ignore here and which are easy to deal with, we
need to arrange that

Hpa = −b2 + e, (6–4)

and then take B,E with σ(B) = b, σ(E) = e. Indeed, under these assumptions
(6–2) shows that ‖Bu‖ can be estimated in terms of Pu and Eu. That is, u
microlocally on supp b is estimated by u on supp e (and Pu) in the precise sense
described in the next paragraph, so we can propagate estimates of u from supp e

to supp b. (Incidentally, this is a good example of the F term: only the principal
symbols of E and B are specified. Take any E and B with these principal
symbols, F = i[A,P ] −B∗B − E is lower order.)

This can be used in a very straightforward manner to obtain bounds on
WFsc(u). Namely, one works with ‘relative wave front sets’, relative to xsHr =

Hr,s, that is. Thus, for X̄ = Rn, (z, ζ) /∈ WFr,s
sc (u) means that there is a cutoff

function φ ∈ C∞
c (Rn) with φ(ζ) 6= 0 such that F−1φFu is in Hr,s in an open cone

around z. But this is equivalent to the existence of some Q ∈ Ψr,−s
sc (X̄) such that

σ(Q)(z, ζ) 6= 0 and Qu ∈ L2. Note that σ(Q)(z, ζ) 6= 0 means that Q is elliptic

at (z, ζ). So if we find A ∈ Ψm,l
sc (X̄), and consequently B ∈ Ψ

(m−1)/2,(l+1)/2
sc (X̄),

E ∈ Ψm−1,l+1
sc (X̄) as above, then the conclusion is that (if Pu ∈ Ċ∞(X̄))

WF(m−1)/2,−(l+1)/2
sc (u) ∩ supp e = ? =⇒ WF(m−1)/2,−(l+1)/2

sc (u) ∩ supp b = ?.

In scattering theory m is usually irrelevant by standard elliptic regularity. Thus,
one iteratively reduces l, proving that supp b is disjoint from the wave front set
with respect to more and more decaying Sobolev spaces. (In fact, b is shrunk
slightly during the iterative procedure for technical reasons.)

I now illustrate how to prove the propagation of singularities at ∂X̄ for real
principal type P ∈ Ψm,0

sc (X̄). For example, we may take P = H − λ, λ > 0, and
H is a two-body Hamiltonian. (Note that microlocal elliptic regularity is the
consequence of the standard microlocal parametrix construction.) We thus want
to prove that if Pu ∈ Ċ∞(X̄) (or a microlocal version of it holds), ξ̄ ∈ scT ∗

∂X̄
X̄

and there is a point on the backward bicharacteristic through ξ̄ which is not in
WFsc(u), then ξ̄ /∈ WFsc(u). In fact, by a simple argument it suffices to prove
that there exists a neighborhood U of ξ̄ such that if there is a point ξ̃ in U which
is also on the backward bicharacteristic through ξ̄ and which is not in WFsc(u),
then ξ̄ /∈ WFsc(u).

The standard proof proceeds via linearization of Hp, see [28]. Thus, first note
that x−1Hp is a smooth vector field on scT ∗X̄ which is tangent to the boundary.
(For example, for Euclidean two-body Hamiltonians,

x−1Hp = 2|z|ζ · ∂z = 2
∑

j

ζj |z|∂zj
,
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Figure 7. The region supp a superimposed on the linearized Hamilton flow.

supp e is the shaded region on the left.

and |z|∂zj
is a smooth vector field tangent to ∂X̄, i.e. it is in Vb(X̄).) Thus, given

any point ξ̄ ∈ scT ∗
∂X̄
X̄ one can introduce local coordinates (q1, . . . , q2n−1) =

(q1, q
′′) on scT ∗

∂X̄
X̄ centered at ξ̄ such that x−1Hp = ∂q1

at scT ∗
∂X̄
X̄. Thus,

bicharacteristics at ∂X̄ are curves q′′ = constant. Now let χ1 ∈ C∞
c (Rq1

) and
χ2 ∈ C∞

c (R2n−2
q′′ ) be smooth functions supported near 0 with the property that

χ′
1 = −b21 + e1,

b1, e1 ∈ C∞
c (R), and supp e1 ⊂ (−∞, 0). Let

a = χ1χ
2
2, b = b1χ2, e = e1χ

2
2.

Then (6–4) holds. In fact, we can even allow weights and take

as = xsχ1χ
2
2, s ∈ R,

since (x−1Hpx
s)χ1 can be absorbed in xs(x−1Hpχ1) by choosing χ′

1 large com-
pared to χ1. This gives microlocal weighted L2 estimates in x−s−1/2L2. The
iterative argument, in which we gradually let s → −∞, then allows one to con-
clude that

supp e ∩ WFsc(u) = ? ∧ supp a ∩ WFsc(Pu) = ? =⇒ {b > 0} ∩ WFsc(u) = ?.

By choosing suppχ1 and suppχ2 appropriately, we may arrange that e is sup-
ported near ξ̃ so that supp e ∩ WFsc(u) = ?, and so that b(ξ̄) > 0, as shown
below.

There are several directions from here. One can use finer notion of regularity,
such as Lagrangian regularity, which would correspond to using χ2 that vanishes
simply on a Lagrangian submanifold, or such as regularity at radial points, which
is the subject of a joint paper with Andrew Hassell and Richard Melrose [23].

Here I will talk about a rougher version, namely what happens if the bichar-
acteristic ‘flow’ is more complicated, e.g. in the presence of boundaries or corners
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for the wave equation [43; 36] or many-body scattering. In fact, here I will not
explain the detailed behavior of bicharacteristics, rather just show how to mi-
crolocalize positive commutator estimates in a versatile fashion. This method
goes back to the work of Melrose and Sjöstrand [43].

The main point is that if we cannot put the operator P , or at least its Hamilton
vector field Hp in a model form, the previous construction will not work. Indeed,
unless Hpχ2 = 0, Hp(χ1χ2) will always yield a term χ1Hpχ2, which cannot be
controlled by (Hpχ1)χ2: the problem being near the boundary of suppχ2. So
instead use a different form of localization. First let η ∈ C∞(scT ∗X̄) be a function
with

η(ξ̄) = 0, Hpη(ξ̄) > 0.

Thus, η measures propagation along bicharacteristics, e.g. η = q1 in the above
example would work, but so would many other choices. We will use a function ω
to localize near putative bicharacteristics. This statement is deliberately vague;
at first we only assume that ω ∈ C∞(scT ∗X̄) is the sum of the squares of C∞

functions σj , j = 1, . . . , l, with nonzero differentials at ξ̄ such that dη and dσj ,
j = 1, . . . , l, span Tξ̄

scT ∗
∂X̄
X̄. Such a function ω is nonnegative and it vanishes

quadratically at ξ̄, i.e. ω(ξ̄) = 0 and dω(ξ̄) = 0. An example is ω = q22+. . .+q22n−1

with the notation from before, but again there are many other possible choices.
We now consider a family symbols, parameterized by constants δ ∈ (0, 1), ε ∈
(0, δ], of the form

a = χ0

(
2 − φ

ε

)
χ1

(
η + δ

εδ
+ 1

)
,

where

φ = η +
1

ε
ω, χ0(t) =

{
0 if t ≤ 0,
e−1/t if t > 0,

and χ1 ∈ C∞(R) with suppχ1 ⊂ [0,+∞) and suppχ′
1 ⊂ [0, 1]. Although we do

not do it explicitly here, weights such as xs can be accommodated for any s ∈ R,
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Figure 8. The region supp a in (η, σ) coordinates. Again, supp e is the shaded

region on the left.

Note that given any neighborhood U of ξ̄, we can thus make a supported in U

by choosing ε and δ sufficiently small. Below we illustrate the parabola shaped
region given by supp a.

Note that as ε→ 0, but δ fixed, the parabola becomes very sharply localized
at ω = 0. In particular, for very small ε > 0 we obtain a picture quite analogous
to letting suppχ2 → {0} in Figure 7.

So we have shown that a is supported near ξ̄. We define

e = χ0(2 − φ

ε
)Hpχ1((η + δ)/(εδ) + 1),

so the crucial question is whether Hpφ ≥ 0 on supp a. Note that choosing
δ0 ∈ (0, 1) and ε0 ∈ (0, δ0) sufficiently small, one has Hpη ≥ c0 > 0 where
|η| ≤ 2δ0, ω1/2 ≤ 2(ε0δ0)

1/2. So Hpφ ≥ 0 on supp a, provided that |Hpω| ≤ c0

2 ε

there.
But being a sum of squares of functions with nonzero differentials, Hpω van-

ishes at ω = 0 and satisfies |Hpω| ≤ Cω1/2. Due to (6–5), we deduce that
|Hpω| ≤ 2C(εδ)1/2. So |Hpω| ≤ c0

2 ε holds if c0

2 ε ≥ 2C(εδ)1/2, i.e. if ε ≥ C ′δ
for some constant C ′ > 0 independent of ε, δ. Note that this constraint on ε,
i.e. that it cannot be too small, gives very rough localization: the width of the
parabola at η = −δ is roughly ω1/2 ∼ δ, i.e. it is very wide, and in particular
insufficient to prove the propagation of singularities along the bicharacteristics.
The reason is simple: our localizing function ω has no relation to Hp, so we
cannot expect a more precise estimate. Note, however, that the estimate is still
nontrivial! Indeed, it shows that singularities propagate in the sense that ξ̄ can-
not be an isolated point of WFsc(u). (We required ε ∈ (0, δ] beforehand, but
in fact we could have dealt with ε ≤ µδ, even if µ > 1, if we localized slightly
differently.)

We need to adapt ω to Hp to get a better estimate. If we linearize Hp as
above, and take ω = q22 + . . .+ q22n−1, then Hpω = 0 and any ε > 0 works. Thus,
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Figure 9. Bicharacteristics and supp a. The labels from Figure 8 have been

removed to make the picture less cluttered. The straight horizontal lines are the

σ = constant lines, while the nearby parabolae are the bicharacteristics.

in this case, we can prove propagation of singularities much like by the previous,
simpler, construction.

However, we do not need such a strong relationship to Hp. Suppose instead
that we merely get ω ‘right’ at ξ̄, in the sense that ω =

∑
σ2

j and Hpσj(ξ̄) = 0.
Then |Hpσj | ≤ C0(ω

1/2 + |η|), so |Hpω| ≤ Cω1/2(ω1/2 + |η|). Using (6–5),
we deduce that |Hpω| ≤ (c0/2)ε provided that (c0/2)ε ≥ C ′′(εδ)1/2δ, i.e. that
ε ≥ C ′δ3 for some constant C ′ independent of ε, δ. Now the size of the parabola
at η = −δ is roughly ω1/2 ∼ δ2, i.e. we have localized along a single direction,
namely the direction of Hp at ξ̄. By a relatively simple argument, one can piece
together such estimates (i.e. where the direction is correct ‘to first order’) and
deduce the propagation of singularities. We emphasize that the lower bound for
ε is natural. Indeed, with qj as above, we may take σj e.g. to be σj = qj + q21 ,
j ≥ 2. The bicharacteristics are qj = constant, but we are localizing near
σj = constant, and at η = −δ these differ by δ2. So any localization better than
ω1/2 ∼ δ2 would in fact contradict the propagation of singularities!

The microlocal positive commutator estimates in many-body scattering arise
by this method. In particular, one can take η = z·ζ

|z| , which is the radial compo-

nent of the momentum. The function ω needs to be π-invariant, so if ξ̄ ∈ scT ∗X̄a,
it involves functions on scT ∗X̄a as well as Za = za

|z| and η. The only additional
argument needed is to show that the commutator is indeed positive, which has to
be understood in an operator sense. Thus, the key point is that the commutator
of H − λ with a quantization B of η is positive, modulo compact terms, when
localized at λ in the spectrum of H and microlocalized away from the radial set
R(λ). Note that, as usual, there is nothing to prove at R(λ), since each point in
it is the image of a maximally extended generalized broken bicharacteristic.

This positivity can be proved directly by showing that the indicial operators
of the commutator are positive away from R(λ), which follows from an itera-
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tive argument. However, it also reduces to the Mourre estimate, involving the
generator of dilations A = 1

2 (·Dz +Dz · z), which has principal symbol at ζ · z.
The Mourre estimate states the following. Suppose that λ /∈ Λ and ε > 0. Then
there is a δ > 0 such that if φ ∈ C∞

c (R) is supported in (λ− δ, λ+ δ) there exists
K ′ ∈ Ψ−∞,1

sc (X̄, C) such that

φ(H)i[A,H]φ(H)) ≥ 2(d(λ) − ε)φ(H)2 +K ′, (6–6)

where

d(λ) = inf{λ− λ′ : λ′ ≤ λ, λ′ ∈ Λ} ≥ 0

is the distance of λ to the next threshold below it if λ ≥ inf Λ, and d(λ) an
arbitrary positive number if λ < d(λ). Since d(λ) > 0 if λ /∈ Λ, (6–6) is indeed
a positive commutator estimate, which does not even have a ‘negative’ term E,
unlike (6–1). The Mourre estimate, originating in [47], has been well understood
since the work of Perry, Sigal and Simon [53] and Froese and Herbst [16]. Here
I just outline the argument in the simplest case, namely if no proper subsystem
has any L2-eigenvalues.

In this simplest case, the argument of [16] (see also [8] and [67]) proceeds
as follows. In order to prove (6–6), one only needs to show that for all b, the
corresponding indicial operators satisfy the corresponding inequality, i.e. that

φ(Ĥb)i\[A,H]bφ(Ĥb) ≥ 2(d(λ) − ε)φ(Ĥb)
2. (6–7)

(This means that the operators on the two sides, which are families of operators
on Xb, depending on (yb, ζb) ∈ scT ∗

Cb
X̄, satisfy the inequality for all (yb, ζb) ∈

scT ∗
Cb
X̄.) It is convenient to assume that φ is identically 1 near λ; if (6–7)

holds for such φ, it holds for any φ0 with slightly smaller support, as follows by
multiplication by φ0(Ĥb) from the left and right.

Note that for b = 0 the estimate certainly holds: it comes from the Poisson
bracket formula in the scattering calculus, or from a direct computation yielding

i\[A,H]0 = 2∆g0
. Hence, if the the localizing factor

φ(Ĥ0) = φ(|ζ|2)

is supported in (λ− δ, λ+ δ) and λ > 0, (6–7) holds even with d(λ)− ε replaced
with λ − δ. Note that λ ≥ d(λ), if λ > 0, since 0 is a threshold of H. On the
other hand, if λ < 0, both sides of (6–7) vanish for φ supported near λ, so the
inequality holds trivially.

In general, we may assume inductively that at all clusters c with Cc ( Cb, i.e.
Xb ( Xc, (6–7) has been proved with φ replaced by a cutoff φ̃ and ε replaced
by ε′, i.e. we may assume that for all ε′ > 0 there exists δ′ > 0 such that for all
c with Cc ( Cb, and for all φ̃ ∈ C∞

c (R; [0, 1]) supported in (λ− δ′, λ+ δ′),

φ̃(Ĥc)i\[A,H]cφ̃(Ĥc) ≥ 2(d(λ) − ε′)φ̃(Ĥc)
2. (6–8)
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But these are exactly the indicial operators of φ̃(Ĥb)i\[A,H]bφ̃(Ĥb), so, as dis-
cussed in [65, Proposition 8.2], (6–7) implies that

φ̃(Ĥb)i\[A,H]bφ̃(Ĥb) ≥ 2(d(λ) − ε′)φ̃(Ĥb)
2 +Kb, Kb ∈ Ψ−∞,1

sc (Xb, Cb). (6–9)

This implication relies on a square root construction in the many-body calculus,
which is particularly simple in this case.

Now, we first multiply (6–9) through by φ(H) from both the left and the
right. Recall that we use coordinates (zb, z

b) on Xb ⊕ Xb and (ζb, ζ
b) are the

dual coordinates. We remark that Ĥb = |ζb|2 + Hb, so if λ − |ζb|2 is not an
eigenvalue of Hb, then as suppφ → {λ}, φ(Hb + |ζb|2) → 0 strongly, so as Kb

is compact, φ(Hb + |ζb|2)Kb → 0 in norm; in particular it can be made to have
norm smaller than ε′ − ε > 0. After multiplication from both sides by φ1(Ĥb),
with φ1 having even smaller support, (6–7) follows (with φ1 in place of φ), with

the size of suppφ1 a priori depending on ζb. However, iφ1(Ĥb) \[A,H]bφ1(Ĥb) is
continuous in ζb with values in bounded operators on L2(Xb), so if (6–7) holds
at one value of ζb, then it holds nearby. Moreover, for large |ζb| both sides vanish
as Ĥb = Hb + |ζb|2, with Hb bounded below, so the estimate is in fact uniform
if we slightly increase ε > 0.

In general, the proof requires to treat the range of E, the spectral projection
of Hb to {λ}, separately. Roughly, the positivity estimate on the range of E
comes from the virial theorem, iE[zbDzb ,Hb]E = 0, which is formally clear, and
is easy to prove. Thus,

iE[A,Hb]E = iE[zbDzb ,Hb]E + iE[zbDzb
,∆Xb

]E = i[zbDzb
,∆Xb

]E,

and the commutator iφ(Hb)[zbDzb
,∆Xb

]φ(Hb) is easily computed to be positive.
Of course, there are also cross-terms that need to be considered, but they can
be estimated by Cauchy-Schwartz estimates, see [16] or [67].

I refer to [66] and [65] for the detailed arguments proving propagation of sin-
gularities in the many-body setting, and to [68, Appendix] for weaker estimates
with simplified proofs.

7. Asymptotic Completeness

Asymptotic completeness (AC) is an L2-based statement describing the long-
term behavior of solutions of the Schrödinger equation. In the short-range setting
it says that for any φ ∈ L2(X0) in the range of Id−Epp, Epp being the projection
onto the bound states of H (i.e. onto its L2-eigenfunctions), there exist φα ∈
L2(Xa) such that

‖e−iHtφ−
∑

α

e−iHat(φα ⊗ ψα)‖ → 0 as t→ +∞.

In the long-range setting, e−iHat must be somewhat modified. After the ground-
breaking work of Enss [12; 10], AC was first proved by Sigal and Soffer [55] in
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the short-range setting (see Graf’s paper [20] for a different proof), and later by
Dereziński [7], and also by Sigal and Soffer [56; 57], in the long-range setting.
In the short range case the main ingredient is equivalent to certain estimates
of the resolvent at the radial sets in a sense that I now describe. In the long-
range setting, as already in two-body scattering, additional constructive steps
are needed. The estimates, in a different language, appeared first in the work of
Sigal and Soffer [55]. I hope that the following discussion makes it clearer how
they relate to the propagation of singularities.

While asymptotic completeness gives a complete long-term L2-description of
solutions of the Schrödinger equation, the question remains whether an analo-
gous description exists on other spaces, such as weighted L2-spaces. For example,
if φ is Schwartz, are the φα Schwartz? Or dually, starting with a tempered dis-
tribution φ, are there tempered distributions α such that the convergence holds,
as t→ +∞, in a suitable sense? A different point of view is the parameterization
of generalized eigenfunctions of H using the Poisson operators Pα,+(λ), and the
analogues of these questions can be asked there as well. The answer is affirmative
in the two-body setting (even in the geometric setting, see [41; 46]). However,
as indicated by the related issue of the mapping properties of the scattering ma-
trices, discussed at the end of this section, it is unlikely that the same holds in
the many-body setting. One can then ask weaker question, e.g. whether it holds
in weighted spaces L2

s, s near 0. Or, one may ask whether one can give a precise
description of the map φ 7→ φα e.g. as some sort of Fourier integral operator.

As a starting point of relating the propagation of singularities to AC, we note
that the propagation of singularities is proved by showing its ‘relative’ versions,
i.e. that for any l, WF∗,l

sc (u) is also a union of maximally extended generalized
broken bicharacteristics. When considering the resolvent, first recall that for
f ∈ Ċ∞(X̄), R(λ+ i0)f ∈ H∞,l for all l < − 1

2 , so we only need to find

WF∗,l
sc (R(λ+ i0)f)

for l ≥ − 1
2 . Theorem 3.3 is also valid for WF∗,l

sc , i.e. the following holds.

Theorem 7.1. If λ /∈ Λ, then for f ∈ S(Rn), l ≥ − 1
2 , WFsc(R(λ + i0)f) is a

subset of the image of R+(λ) under the forward generalized broken bicharacter-

istic relation.

This result allows u = R(λ + i0)f not to lie in H∗,−1/2 on the image of R+(λ)

under the forward generalized broken bicharacteristic relation. This is a small
set, but it is important to know whether WF∗,l

sc (u) may indeed intersect the
forward image of R+(λ). Of course, we cannot expect an improvement at R+(λ),
as shown already by the example of the free Euclidean Laplacian. The crucial
improvement is the following estimate, due to Sigal and Soffer [55].

Theorem 7.2. If λ /∈ Λ, then for f ∈ S(Rn), WF∗,−1/2
sc (R(λ+ i0)f) ⊂ R+(λ).
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Remark. This theorem also has a time-dependent analogue. If u is a solution
of the Schrödinger equation (Dt +H)u = 0 with u|t=0 ∈ S(X0) then on the one
hand u ∈ H∞,l(X0 × R) for l < − 1

2 , on the other hand WF∗,−1/2
sc (u) ⊂ R.

In fact, this theorem can be improved along the lines of the distributional state-
ment in Theorem 3.3:

Corollary 7.3. Suppose that λ /∈ Λ, f ∈ H∗,1/2 and WF∗,1/2+ε
sc (f)∩R−(λ) =

? for some ε > 0. Then R(λ+i0)f = limt→0R(λ+it)f exists in H∗,−1/2−ε′

(X̄),
ε′ > 0, and WF∗,−1/2

sc (R(λ+ i0)f) ⊂ R+(λ).

Theorem 7.2 can be proved rather simply. The main issue is how to obtain a
positive commutator at the radial point. Away from the radial sets arbitrary
weights can be accommodated by suitable construction, as pointed out in the
previous section. At radial points only the weights can give positive commuta-
tors. Now, one has to use weights x−2l−1 to obtain estimates for WF∗,l

sc , and
these weights will give a commutator whose sign depends on that of −2l − 1,
hence on whether l > − 1

2 , l < − 1
2 or l = − 1

2 . It turns out that the sign is correct
for (6–3) to be of use if l < − 1

2 ; this yields the limiting absorption principle. The
sign is wrong if l > − 1

2 , so no results can be expected then. In the borderline
case l = − 1

2 , the weight vanishes. The way to obtain a positive commutator is
thus to consider operators A which are microlocally (a multiple of) the identity
near R+(λ). The commutator then vanishes microlocally near R+(λ), which is
reasonable since no estimate on WF∗,−1/2

sc (u) can be expected there.
It is then straightfoward to construct A so that (6–3) can be used to prove

Theorem 7.2. Indeed, it suffices to show that on WF∗,−1/2
sc (u), η = z·ζ

|z| must

satisfy λ − η2 ∈ Λ, for then the full statement of the theorem follows by the
propagation of singularities for WF∗,−1/2

sc (u). So we proceed to prove this simpler
result, namely that if λ − η̄2 /∈ Λ then for any point ξ, η(ξ) = η̄ implies ξ /∈
WF∗,−1/2

sc (u).
To do so, we let a = χ(η) where χ ∈ C∞

c (R), χ ≥ 0, is chosen so that χ ≡ 1

on [0, η̄ − δ] for some δ > 0, χ′ ≤ 0 on (0,∞), χ′(η̄) < 0, and t ∈ suppχ′ implies
that λ− t2 /∈ Λ. This can be arranged as Λ is closed. We can further make sure
that

√−χ′ is C∞ on (0,∞). Then the positive commutator methods outlined
show the commutator of A, a quantization of a, with H − λ is positive, in the
region η > 0, yielding the estimate that proves the theorem. We remark that
partial microlocalization, using functions of η, hes been used extensively in many-
body scattering, especially by Gérard, Isozaki and Skibsted [18; 19] and Wang
[69], to obtain partially microlocal statements such as radiation conditions and
uniqueness statements [32; 31], and indeed to prove the smoothness of 2-cluster
to 2-cluster scattering matrices [59].

It turns out that there is an even simpler way of proving Theorem 7.2, or in-
deed a stronger statement, which is due to Yafaev [73]. His estimate states that
in a neighborhood of Ca,reg, where we write ya for the coordinates za/|za| along
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Ca,reg, xDya
R(λ + i0)f is in H∗,−1/2(X̄). Since the principal symbol of xDya

is invertible on (T ∗Xa,reg ∩ Ċhar(λ)) \ R(λ), this result implies Theorem 7.2.
Yafaev’s proof relies on a simple and explicit commutator calculation, which
allows one to deal with various error terms that one may, a priori, expect. How-
ever, exactly because of its explicit nature, it is presumably hard to generalize
to more geometric settings, while the argument we sketched does not face this
difficulty.

As discussed by Yafaev [73] in the usual time-dependent version, short-range
asymptotic clustering, hence asymptotic completeness, are relatively easy conse-
quences of Corollary 7.3, and we refer to [73] and [8] for more details. However,
it is worth pointing out that the reason why Coulomb-type potentials (i.e. those
in S−1) are not ‘short-range’ is that the Hamilton vector field in some subsys-
tem vanishes at radial points. This degeneracy makes even the subprincipal
term important in describing the precise behavior of generalized eigenfunctions
microlocally near this point.

Before turning to scattering theory on symmetric spaces, we note the impli-
cations of Theorem 7.2 for the scattering matrices. Previously, Sαβ(λ) was only
defined as a map Sαβ(λ) : C∞

c (Sa,reg) → C−∞(Sb,reg). Indeed, part of the broken
bicharacteristic relation connects R+(λ) with its image, and this can a priori
give a singularity in the kernel of Sαβ(λ) of the kind that does not even allow
one to conclude that Sαβ(λ) : C∞

c (Sa,reg) → C∞(Sb,reg). The pairing formula,
(4–2), combined with Theorem 7.2, show that in fact

Sαβ(λ) : L2(Sa) → L2(Sb). (7–1)

It is an interesting question whether this can be improved if we restrict Sαβ(λ) to
C∞

c (Sa,reg). Namely, except in special cases such as N -clusters and two-clusters,
the best known result is the trivial consequence of (7–1):

Sαβ(λ) : C∞
c (Sa,reg) → L2(Sb).

(In the case of N -clusters and 2-clusters, the geometry of generalized broken
bicharacteristics gives Sαβ(λ) : C∞

c (Sa,reg) → C∞(Sb,reg).) The putative im-
provement would have to be connected to an improvement of Theorem 7.2,
namely to the existence of some l > − 1

2 such that WF∗,l
sc (R(λ+i0)f) ⊂ R+(λ). It

would also be connected to a better understanding of R(λ±i0) at the thresholds,
in which direction Wang’s paper [72] is the only one I am aware of.

8. Scattering on Higher Rank Symmetric Spaces

In this section I discuss SL(N,R)/SO(N,R) — indeed, mostly I will discuss
SL(3,R)/SO(3,R). The books [25], [34] and [9] are good general references.
N = 2 yields the hyperbolic plane H2, which is a rank one symmetric space on
which many aspects of analysis, such as the asymptotic behavior of the resolvent
kernel and the analytic continuation of the resolvent are well understood. Indeed,
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these have been described on asymptotically hyperbolic spaces by Mazzeo and
Melrose [37] and Perry [51; 52].

Higher rank symmetric spaces, such as SL(N)/SO(N), N ≥ 3, are much
less understood. For example, using results of Harish-Chandra, and Trombi and
Varadarajan (see [25]), Anker and Ji only recently obtained the leading order
behavior of the Green’s function [2; 3; 4]. Also, while spherical functions, which
are most analogous to partial plane-partial spherical waves in the Euclidean set-
ting, have been analyzed by Harish-Chandra, Trombi and Varadarajan, and in
particular their analytic continuation is understood, the same cannot be said
about the Green’s function. The analysis of spherical functions relies on per-
turbation series expansions, much like in the proof of the Cauchy-Kovalevskaya
theorem, and it does not work well at the walls of the Weyl chambers. Here I
only illustrate some recent joint results with Rafe Mazzeo [40; 39], that illumi-
nate the connections with many-body scattering, and in particular give rather
direct results for the resolvent.

First I describe the space SL(3)/SO(3). The polar decomposition states that
any C ∈ SL(3) can be written uniquely as C = V R, V = (CC t)1/2 is positive
definite and has determinant 1, R ∈ SO(3). Thus, SL(3)/SO(3) can be identified
with the set M of positive definite matrices of determinant 1; this is a five-
dimensional real analytic manifold. The Killing form provides a Riemannian
metric g. The associated Laplacian ∆ = ∆g gives a self-adjoint unbounded
operator on L2(M,dg), with spectrum [λ0,+∞), λ0 = 1

3 . Let R(λ) = (∆−λ)−1

be the resolvent of ∆g, λ /∈ [λ0,+∞).
Fix a point o ∈M , which we may as well assume is the image of the identity

matrix I in the identification above. The stabilizer subgroup Ko (in the natural
SL(3) action on M) is isomorphic to SO(3). The Green function Go(λ) with pole
at o and at eigenvalue λ is, by definition R(λ)δo. It is standard that Go lies in
the space of Ko-invariant distributions on M . It is thus natural to study ∆ on
Ko-invariant functions.

Perhaps the most interesting property is the analytic continuation of the re-
solvent, which I state before indicating how it, and other results, relate to many-
body scattering.

Fix the branch of the square root function √ on C\[0,+∞) which has negative
imaginary part when w ∈ C \ [0,+∞). Let S denote that part of the Riemann
surface for λ 7→

√
λ− λ0 where we continue from λ − λ0 /∈ [0,+∞) and allow

arg(λ−λ0) to change by any amount less than π. In other words, starting in the
region Im

√
λ− λ0 < 0, we continue across either of the rays where Im

√
λ− λ0 =

0 and Re
√
λ− λ0 > 0, respectively < 0, allowing the argument of

√
λ− λ0 to

change by any amount less than π/2 (so that only the positive imaginary axis is
not reached).

Theorem 8.1. With all notation as above, the Green function Go(λ) contin-

ues meromorphically to S as a distribution. Similarly , as an operator between
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appropriate spaces of Ko-invariant functions, the resolvent R(λ) itself has a

meromorphic continuation in this region, with all poles of finite rank .

Having stated the theorem, I indicate how it relates to many-body scattering.
To do so, fix the point o – we may as well take it to be the identity matrix I.
Now, M is a perfectly nice real analytic manifold and ∆ is an elliptic operator
on it in the usual sense, so the only question is its behavior at infinity. In order
to describe this, we remark that any matrix A ∈ M can be diagonalized, i.e.
written as A = OΛOt, with O ∈ SO(3) and Λ diagonal, with entries given by the
eigenvalues of A. If a is the set of diagonal matrices of trace 0, then Λ ∈ exp(a).
If all eigenvalues of A are distinct, then Λ is determined except for the ordering
of the eigenvalues, and there are only finitely many possibilities for O as well.
However, at the walls, which are defined to be the places where two eigenvalues
coincide, there is much more indeterminacy. For example, if two eigenvalues
coincide, only their joint eigenspace is well-defined. Correspondingly, we may
replace O by O′O for any O′ ∈ SO(3) preserving the eigenspace decomposition
and still obtain the desired diagonalization.

This is closely reflected in the structure of the Laplacian at infinity. In fact,
it turns out that on SO(3)-invariant functions, ∆ is essentially a three-body
Hamiltonian on a with first order interactions and with collision ‘planes’ given
by the walls (they are lines), see e.g. [25, Chapter II, Proposition 3.9]. So rather
than particles, eigenvalues scatter in this case! Consequently, many-body results
can be adapted to this setting.

We indicate how this is done. The most succint way of describing the geometry
of M at infinity is to compactify it to a manifold M̄ with codimension two
corners. It has two boundary hypersurfaces, H] and H], which are perhaps
easiest to describe in terms of a natural system of local coordinates derived from
the matrix representation of elements in M . As above, we write A ∈ M as
A = OΛOt, with O ∈ SO(3) and Λ diagonal. The ordering of the diagonal
entries of Λ is undetermined, but in the region where no two of them are equal,
we denote them as 0 < λ1 < λ2 < λ3 (but recall also that λ1λ2λ3 = 1). In this
region the ratios

µ =
λ1

λ2
, ν =

λ2

λ3

are independent functions, and near the submanifold exp(a) in M we can com-
plete them to a full coordinate system by adding the above-diagonal entries c12,
c13, c23 in the skew-symmetric matrix T = logO. On M we have µ, ν > 0,
and locally the compactification consists of replacing (µ, ν) ∈ (0, 1) × (0, 1) by
(µ, ν) ∈ [0, 1)×[0, 1). Then H] = {µ = 0} and H] = {ν = 0}, and this coordinate
system gives the C∞ structure near the corner H] ∩H].

On the other hand, in a neighborhood of the interior of H], for example, we
obtain the compactification and its C∞ structure as follows. Write the eigenval-
ues of A ∈ M , i.e. the diagonal entries of Λ in the decomposition for A above,
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Figure 10. The closure of a, or rather exp(a), in the compactification M̄ of M .

The lines in the interior are the Weyl chamber walls, playing the role of collision

planes in many-body scattering. The side faces H] ∩ a and H] ∩ a correspond

to the front faces on Figure 5. The main face on Figure 5 would only show up if

we did a logarithmic blow-up of all boundary hypersurfaces of M̄ and then blew

up the corner.

as λ1, λ2 and λ3. Suppose that A lies in a small neighbourhood U where

c <
λ1

λ2
<

1

c
< λ3,

for some fixed c ∈ (0, 1). Recall also that λ3 = 1/λ1λ2. These inequalities
imply that λ1 = (λ1/λ2)

1/2λ−1/2
3 < 1 and λ2 = (λ2/λ1)

1/2λ−1/2
3 < 1, and

λ3 > 1 in U . Hence there is a well-defined decomposition R3 = E12 ⊕ E3 for
any A ∈ U , where E12 is the sum of the first two eigenspaces and E3 is the
eigenspace corresponding to λ3, regardless of whether or not λ1 and λ2 coincide.
We could write equivalently A = OCOt, where C is block-diagonal, preserving
the splitting R2 ⊕R of R3. The ambiguity in this factorization is that C can be
conjugated by an element of O(2) (acting in the upper left block), and O(2) can
be included in the top left corner of SO(3) (the bottom right entry being set equal
to ±1 appropriately). Let C ′ denote the upper-left block of C; the bottom right

entry of C is just λ3, and so λ3 detC ′ = 1. In other words, C ′ = λ
−1/2
3 C ′′ where

C ′′ is positive definite and symmetric with determinant 1, hence represents an
element of SL(2)/SO(2) ≡ H2. Hence for an appropriate neighbourhood V of I in
SL(2)/SO(2), the neighbourhood U is identified with (V×SO(3))/O(2)×(0, c3/2),

where the variable on the last factor is s = λ
−3/2
3 . The compactification then

simply replaces (0, c3/2)s by [0, c3/2). Note that although the action of O(2) on
V has a fixed point (namely I), its action on SO(3), and hence on the product,
is free. The neighbourhood V can be chosen larger when λ3 is larger, and the
limiting ‘cross-section’ λ3 = const has the form (H2 × SO(3))/O(2). This space
is a fibre bundle over SO(3)/O(2) (= RP 2) with fibre H2. Notice that the Weyl
chamber wall corresponds to the origin (i.e. the point fixed by the SO(2) action)
in H2. I refer to [40] for a more thorough description of M̄ .
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On each boundary hypersurface of M , it is now easy to describe model oper-
ators for ∆ acting on SO(3)-invariant functions. For instance, at H] this model
can be considered as an operator L] on Rs × H2, acting on SO(2)-invariant
functions. Explicitly,

L] = 1
4 (sDs)

2 + i 12 (sDs) + 1
3∆H2 .

This is tensor product type, so its resolvent can be obtained from an integral of
the resolvents of 1

4 (sDs)
2 + i 12 (sDs) and 1

3∆H2 . (Note that I am ignoring the
weights of the L2 spaces on which we are working, hence the appearance of the
perhaps strange first order terms.)

This framework allows one to develop the elliptic theory, for example to ana-
lyze (∆−λ)−1 for λ ∈ C\[λ0,+∞). In particular, one can construct a parametrix
for ∆ on M̄ that has a smoothing error. Since this error has no decay at infinity,
it is not compact. However, the error can be improved by pasting together the
resolvents of L] and L], and applying the result to the error term to remove it
modulo a decaying, hence compact, new error term. One of the consequences is
then the description of the asymptotic behavior of the Green’s function, see [40].

The point of complex scaling is to rotate the essential spectrum of the operator
being studied, in this case the Laplacian. To give the reader a rough idea how
this works, consider the hyperbolic space H2 = SL(2,R)/SO(2,R), which may be
identified with the set of two-by-two positive definite matrices A of determinant 1.
In terms of geodesic normal coordinates (r, ω) about o = I, the Laplacian is

∆H2 = D2
r − i coth r Dr + (sinh r)−2D2

ω.

Now consider the diffeomorphism Φθ : A 7→ Aw, w = eθ, on H2, θ ∈ R. This
corresponds to dilation along the geodesics through o, since these have the form
γA : s 7→ Acs, c > 0. Thus, in geodesic normal coordinates, Φθ : (r, ω) 7→ (eθr, ω).
Φθ defines a group of unitary operators on L2(H2) via

(Uθf)(A) = (detDAΦθ)
1/2(Φ∗

θf)(A), J = detDAΦθ = w
sinhwr

sinh r
, w = eθ.

Now, for θ real, consider the scaled Laplacian

(∆H2)θ = Uθ∆H2U−1
θ = J1/2Φ∗

θ∆H2Φ∗
−θJ

−1/2

= J1/2(w−2D2
r − iw−1 coth(wr)Dr + (sinh(wr))−2D2

ω)J−1/2.

This is an operator on H2, with coefficients which extend analytically in the
strip |Im θ| < π/2. The square root is continued from the standard branch near
w > 0. (The singularity of the coefficients at r = 0 is only an artifact of the
polar coordinate representation.) Note that (∆H2)θ and (∆H2)θ′ are unitary
equivalent if Im θ = Im θ′ because of the group properties of Uθ. The scaled
operator, (∆H2)θ, is not elliptic on all of H2 when 0 < | Im θ| < π

2 because for
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r large enough, w2 sinh(wr)−2 can lie in R−. However, it is elliptic in some
uniform neighbourhood of o in H2, and its radial part

(∆H2)θ,rad = J1/2(w−2D2
r − iw−1 coth(wr)Dr)J

−1/2,

which corresponds to its action on SO(2)-invariant functions, is elliptic on the
entire half-line r > 0. The model operator for (∆H2)θ,rad − λ at infinity,

e(w−1)r/2(w−2D2
r − iw−1Dr − λ)e−(w−1)r/2

= e(w−1)r/2((w−1Dr − i
2 )2 − (λ− 1

4 ))e−(w−1)r/2,

is also invertible on the model space at infinity, L2(R; er dr), since this is equiv-
alent to the invertibility of

ewr/2((w−1Dr − i
2 )2 − (λ− 1

4 ))e−wr/2 = w−2D2
r − (λ− 1

4 )

on L2(R; dr). Thus, a parametrix with compact remainder can be constructed for
(∆H2)θ,rad, and this show that its essential spectrum lies in 1

4 + e−2i Im θ[0,+∞).
Hence ((∆H2)θ,rad − λ)−1 is meromorphic outside this set. In fact, it is well
known that there are no poles in this entire strip (although there are an infinite
number on arg

√
λ− λ0 = π/2).

Combining this with some more standard technical facts, we are in a position
to apply the theory of Aguilar-Balslev-Combes to prove that ((∆H2)rad − λ)−1,
and hence (∆H2 − λ)−1, has an analytic continuation in λ across ( 1

4 ,+∞). This
is done by noting that for SO(2)-invariant functions f, g ∈ L2(H2) and θ ∈ R,

〈f, ((∆H2)rad − λ)−1g〉 =
〈
Uθ̄f, ((∆H2)θ,rad − λ)−1Uθg

〉
,

by the unitarity of Uθ. Now if f , g lie in a smaller (dense) class of functions
such that Uθf and Uθg continue analytically from θ ∈ R, then the meromorphic
continuation in λ of the right hand side is obtained by first making θ com-
plex with imaginary part of the appropriate sign, and then allowing λ to cross
the continuous spectrum of ∆H2 without encountering the essential spectrum of
(∆H2)θ,rad. Hence the left hand side continues meromorphically also. With some
additional care, one can even allow g to be the delta distribution at o, yielding
the meromorphic continuation of the Green’s function.

The argument on the higher rank symmetric space M = SL(3)/SO(3) is
similar. We still use the same scaling Φθ :A 7→Aw, w=eθ with θ∈R, on M. Again,
the first concern is that, allowing θ to become complex, the scaled operator ∆θ is
not elliptic. However, it is elliptic near o = Id, and the scaled models for it near
the walls, such as (L])θ, remain elliptic at the walls. After all, for the latter, this
is just the ellipticity of (∆H2)θ near the origin, which we have already observed.
This again allows the elliptic parametrix construction to proceed, supplying the
results we needed in order to reach the framework of complex scaling. This in
turn finishes the proof of Theorem 8.1.
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