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Near-Field Tomography
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Abstract. We consider the inverse scattering problem for wave fields con-

taining evanescent components. Applications to near-field optics and to-

mographic imaging with subwavelength resolution are described.
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1. Introduction

This article is concerned with a class of inverse problems that arise in near-field

optics. These problems may be considered to be special cases of the more general

problem of inverse scattering with wave fields containing evanescent components.

To place the work described herein in context, we begin with some background

information on near-field optical microscopy.
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Microscopy is both modern and ancient, beginning nearly four centuries ago

with the advent of the Galilean microscope, around 1610. To the extent that

Galileo’s telescope changed our perspective on the place of humankind in the uni-

verse, the microscope changed our perception of the stuff of which we are made.

For over 250 years microscopists saw lens design and manufacture as the limit-

ing factors in resolving power. Abbe [1] and Rayleigh [2] separately determined

that no matter the physical aparatus, the linear size of the smallest feature that

may be resolved with monochromatic, or quasi-monochromatic, light is on the

order of the central wavelength of the light. However, the analyses of Abbe and

Rayleigh were predicated on the restriction that the imaging instrument is sev-

eral wavelengths or more from the object. Near-field optical techniques surpass

the Abbe–Rayleigh limits by doing away with this restriction.

Near-field optical microscopy has developed dramatically in recent years [3; 4;

5]. The ubiquity of the need for microscopic inspection techniques has brought

the intellectual resources of several disparate disciplines to bear on the task of im-

proving the basic methods and putting them to novel application. Conspicuous

among those applications are the imaging of biological samples, the inspection

and manipulation of nano-electronic components in semiconductor technology,

and the inspection and activation of nano-optical devices.

The first proposal of a method to circumvent the Rayleigh resolution limit

was put forward by Synge [6] in 1928. Synge proposed that a thin sample be

illuminated through a subwavelength aperture. By recording the transmitted

light as a function of aperture position, a subwavelength resolved image of the

sample may be acquired. Today this method is known as near-field scanning

optical microscopy (NSOM) [3; 4; 6; 7; 8; 9; 10; 11] or scanning near-field optical

microscopy (SNOM); it is practiced in many variations including the reciprocal

arrangement in which the sample is illuminated by a source in the far zone and

light is collected through a small aperture. The role of the small aperture is now

played by the tip of a tapered optical fiber, a technique not known to Synge. A

number of other modalities that fall under the umbrella of near-field optics are

subsequently discussed (Figure 1).
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Figure 1. Basic experiments of near-field optics: left, near-field scanning optical

microscopy (NSOM); middle, total internal reflection microscopy (TIRM); right,

photon scanning tunneling microscopy (PSTM).

Near-field scanning optical microscopy. NSOM has attracted considerable at-

tention as a technique to obtain images of surfaces with subwavelength resolu-

tion. This achievement is particularly important for imaging structures where

spectroscopic concerns or sample handling requirements dictate the use of lower

frequency fields and yet high spatial resolution is still required. Various exper-

imental modalities are in practical use. Two prominent examples are collection

mode NSOM and illumination mode NSOM. In illumination mode NSOM, a

tapered fiber probe with a sub-wavelength size aperture serves as a source of

illumination in the near-zone of the sample. The scattered field intensity is then

measured and recorded as a function of the probe position while the probe is

scanned over the sample. In collection mode NSOM, the fiber probe serves to

detect the total field in the near-zone as the sample is illuminated by a source

in the far zone.

There are certain limitations of NSOM as currently practiced. Despite the

fact that the sample may present a complicated three-dimensional structure,

NSOM produces only a two-dimensional image. Indeed, rather than being an

imaging method, it is more accurate to say that NSOM maps the sub-wavelength

structure of the optical near-field intensity above the sample. Under certain

simplifying assumptions, such as homogeneity of the bulk optical properties of

the sample [12; 13; 14; 15], the images produced in these experiments may be

related to the sample structure. However, for the more general case in which

the topography of the sample and the bulk optical properties both vary, the

relationship between the near-field intensity and the sample structure has proven

ambiguous [16]. To appreciate this point we consider simulations of the NSOM

image of a collection of point scatterers as shown in Figure 2. As is well noted

in the literature, the topmost layer of scatterers dominates the conventional

(nontomographic) image. When the top layer is removed from the simulation,

the conventional image, made with the tip now λ/4 from the nearest layer,

manifests blurring similar to that observed in experiments in which the scanning

tip is withdrawn from the sample [10]. See Figure 2.
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Figure 2. A simulated NSOM image. In each frame the field of view is λ × λ.

The model scatterer consists of six point scatterers distributed in three planes,

z = 0.05λ, z = 0.25λ, and z = 0.45λ; the successively deeper planes are shown

from left to right in the top row. The figure on the left in the bottom row shows

the results of a scalar simulation of a collection mode NSOM image made by

scanning in the z = 0 plane. Illumination is provided by a normally incident plane

wave. The figure on the right in the bottom row is the same simulation with the

scatterers in the z = 0.05λ plane removed.

Total internal reflection microscopy. Essential to the near-field modality of

NSOM is the presence of inhomogeneous, or evanescent, modes of the illumi-

nation field. Specifically, the illuminating field consists of a superposition of

plane waves including the high spatial frequency evanescent plane waves. These

waves are super-oscillatory parallel to some reference plane and are exponentially

decaying away from the plane. The super-resolving capabilities of NSOM may

be attributed to the high spatial frequency of the evanescent waves. Instead

of generating these modes at the small aperture in NSOM, they may be gener-

ated at the interface of two media by total internal reflection as is done in total

internal reflection microscopy (TIRM).

TIRM has been in practical use for decades. This technique has primarily

been used as a means of surface inspection [17; 18], though the sensitivity of the

field to distance along the decay axis has been used to advantage in applications

such as the measurement of distance between two surfaces [19]. Until recently

the opportunities for transverse superresolution made possible by the high spa-

tial frequency content of the probe field have been largely over-looked. However,

recently a direct imaging approach resulting from the marriage of standing-wave

illumination techniques and TIRM has been described [20; 21], achieving trans-

verse resolution of λ/7.
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Photon scanning tunneling microscopy. At the intersection of NSOM and TIRM

modalities is the method referred to as photon scanning tunneling microscopy

(PSTM) [3; 22; 23]. In this technique the object is illuminated by an evanescent

wave generated at the face of a prism or slide (as in TIRM), and the scattered

field is detected via a tapered fiber probe in the near-zone of the sample (as

in NSOM). Because PSTM is a dark field method, that is the signal is zero if

the sample is absent, PSTM generally offers a better signal to noise ratio than

NSOM.

Inverse scattering and near-field tomography. In all of the above mentioned

modalities, the connection between the measured field and the sample properties

has proven to be problematic. Variations in surface height may be indistinguish-

able from variations in the refractive index of the sample. To clarify the meaning

of the measurements and to provide three-dimensional imaging capability, it is

desirable to find a solution to the near-field inverse scattering problem.

There is an extensive body of literature on the far-field inverse scattering prob-

lem[24]. The inverse scattering problem for near field optics presents challenges

and opportunities unlike those encountered in the far-field problem. When, as

in the far-field, all waves are homogeneous, the scattering data may be related

to a Fourier transform of the sample structure. In contrast, the near-field prob-

lem, due to the presence of evanescent fields, will generally involve data related

to the object structure through a Fourier–Laplace transform. Because the in-

version of the Laplace transform is ill-posed, inverse scattering in the near-field

has been thought unfeasible. However, the inverse scattering problem is also

over-determined so that it may be observed that there exist many copies of

the Fourier–Laplace transform of the object structure encoded on the scatter-

ing data. This over-specification of the object structure effectively allows for

the averaging of multiple unstable reconstructions to produce a stable recon-

struction. The means to accomplish such averaging may be obtained from the

analytic construction of the pseudoinverse of the forward scattering operator.

Results in this direction have been reported for the TIRM, NSOM and PSTM

modalities [25; 26; 27]. The use of inverse scattering methods to reconstruct

tomographic images in near-field optics is called near-field tomography.

Near-field power extinction tomography. The preceding discussion focused on

inverse scattering methods for extant near-field imaging modalities. It should

be stressed that in order to carry-out the program of inverse scattering and

object reconstruction described herein, the measurements must be phase sensi-

tive. In certain modalities (NSOM, PSTM), the measurements are intrinsically

holographic, producing clear interference between the illuminating field and the

scattered field. For other modalities (the TIRM variants) the scattered field

must be measured interferometrically with a separate reference field. Because

these measurements must be made with multiple directions of illumination, the

holographic approach may be somewhat challenging to implement. See Figure 3.
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Figure 3. Illustrating the near-field power extinction tomography experiment.

Two plane waves are totally internally reflected at the prism face generating

evanescent wave. Frustration of the total internal reflection due to the presence

of the scatterer generates a scattered field. The power content of the reflected

beams is monitored.

To circumvent the phase problem it is desirable to effect reconstruction of the

sample structure from measurements only of the power transmitted through the

object as is done in X-ray computed tomography. For a scattering sample, a

single illuminating wave will not provide sufficient information because the field

fails to propagate on a line or even in a rectilinear manner as described by geo-

metrical optics. It was recently shown that knowledge of the three dimensional

structure of a scattering medium may be inferred from the power lost by the

probe field to scattering and absorption [28; 29] when two coherent plane waves

illuminate the sample. This result follows, in part, from a generalization of the

optical cross-section theorem that applies when more than one wave is incident

on the scatterer and allows for the incident waves to be evanescent. Making use

of these results, a new modality has recently been proposed in which a sample is

illuminated by two superposed evanescent plane waves at the surface of a prism

or slab [30]. In the absence of a sample on the prism face, all of the power inci-

dent on the interface is reflected. In the presence of the sample, a certain amount

of power is coupled into propagating modes and a certain amount of power is

absorbed by the object. The total power lost from the incident field due to the

presence of the sample is referred to as the extinguished power. The extinguished

power carries information about the structure of the scatterer. In order to obtain

a complete description of the object, the power content of the internally reflected

beams is monitored as the phase between the illuminating waves is varied. Thus

a phase measurement problem is traded for a phase control problem, a gener-

ally more tractable one. Varying the phase relationship between the two waves

causes the interference pattern of the incident field to shift and probe other parts

of the object. The higher the spatial frequency of the evanescent waves used to

probe the sample, the more rapidly the field falls off as a function of depth into

the sample. For this reason the resolution of tomographs generated from these

measurements falls off with depth into the sample, as with the other near-field

modalities. This method is known as near-field power extinction tomography, or

when the probe field is light, near-field optical power extinction tomography.
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The remainder of this article is organized as follows. In Section 2 those aspects

of scattering theory, for both scalar and electromagnetic waves, that are neces-

sary for the treatment of the forward scattering problem in near-field tomography

are discussed. In Section 3 the forward problems for four separate experimental

modalities are considered: scanning near-field tomography, total internal reflec-

tion tomography, photon scanning tunneling tomography, and near-field power

extinction tomography. In each case the integral equations that relate the three-

dimensional structure of the sample susceptibility to the scattered field are de-

rived. In Section 4 a unified approach to the inverse problem is developed by

construction of the singular value decompostion of the relevant forward scatter-

ing operators. Issues of sampling as well as effects due to incomplete and limited

data are addressed and the results explored numerically. Finally, in Section 5 a

summary of our results and a discussion of future research directions is presented.

2. Scattering Theory

In this section those aspects of scattering theory necessary for the formula-

tion of the forward problem in near-field tomography are reviewed. Scalar waves

are discussed first followed by a parallel treatment of the vector theory of elec-

tromagnetic scattering. It may be noted that the vector theory is essential for

near-field optics since the scalar approximation to the scattering of electromag-

netic waves is invalid when the dielectric susceptibility varies on subwavelength

scales. Nevertheless, the scalar theory is of independent physical interest since

it describes, for example, the scattering of acoustic waves in acoustic microscopy

[31; 32; 33].

2A. Scalar Case

Basic equations. Consider an experiment in which an inhomogeneous sample is

deposited on a homogeneous substrate. The substrate is assumed to be thick

so that only one face need be considered, thus defining an interface between

two half-spaces. The index of refraction in the lower half-space z < 0 (the

substrate) has a constant value n. The index of refraction in the upper half-

space z ≥ 0 varies within the domain of the sample but otherwise has a value

of unity. The sample is illuminated either from above (reflection geometry) or

below (transmission geometry) by a monochromatic scalar wave of frequency

ω = ck0. The scalar field U(r) obeys the reduced wave equation

∇2U(r) + k2
0

(

n2(z) + 4πη(r)
)

U(r) = −4πS(r),

where η(r) is the susceptibility of the sample, k0 is the free-space wavenumber,

n(z) is the z-dependent index of refraction as described above, and S(r) is the

source density. The total field consists of two parts:

U(r) = Ui(r) + Us(r),
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where Ui(r) and Us(r) are the incident and scattered fields, respectively. The

incident field may be identified as the field that would exist in the absence of the

sample. Ui obeys the reduced wave equation

∇2Ui(r) + k2
0n2(z)Ui(r) = −4πS(r). (2–1)

It follows that the scattered field satisfies the equation

∇2Us(r) + k2
0n2(z)Us(r) = −4πk2

0η(r)U(r).

Integral equations. The analysis will be facilitated by use of the Green’s function,

G(r, r′) which obeys the equation

∇2G(r, r′) + n2(z)k2
0G(r, r′) = −4πδ(r − r′)

and satisfies the boundary conditions

G(r, r′)
∣

∣

z=0+ = G(r, r′)
∣

∣

z=0−
,

ẑ · ∇G(r, r′)
∣

∣

z=0+ = ẑ · ∇G(r, r′)
∣

∣

z=0−

on the z = 0 plane. Following standard procedures it may then be seen that the

incident field is given by

Ui(r) =

∫

d3r′G(r, r′)S(r′).

The scattered field obeys the integral equation

Us(r) = k2
0

∫

d3r′ G(r, r′)U(r′)η(r′). (2–2)

The Green’s function G(r, r′) may be expressed in the plane-wave decompo-

sition [34; 35]

G(r, r′) =

∫

d2q

(2π)2
g(z, z′; q) exp

(

iq · (ρ − ρ′)
)

. (2–3)

Explicit expressions for g(z, z′; q) in the half-space geometry are given in the

Appendix. In free space it can be shown that

g(z, z′; q) =
2πi

kz(q)
exp

(

ikz(q) |z − z′|
)

.

The notation should be understood to mean that r = (ρ, z) and

kz(q) =
√

k2
0 − q2.

The plane wave modes appearing in (2–3) are labeled by the transverse part of

the wave vector q. The modes for which |q| ≤ k0 correspond to propagating

waves while the modes with |q| > k0 correspond to evanescent waves. For these

modes kz(q) is pure imaginary. This leads to exponential decay of the field with

propagation and a corresponding loss of high spatial frequency components.
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The integral equation (2–2) has the form of the Lippmann–Schwinger equation

of quantum scattering theory. It provides a complete description of the scattering

of the incident wave within the sample and the substrate. If the scattered wave

is much weaker than the incident field, then we may replace the field by the

incident field in the right hand side of (2–2). Equation (2–2) thus becomes

Us(r) =

∫

d3r′G(r, r′)Ui(r
′)η(r′). (2–4)

This result, which is referred to as the first Born approximation for the scattered

field, is valid for small, weakly scattering objects.

The optical theorem. Energy conservation leads to a fundamental result in

scattering theory known as the optical theorem. In its most general form [36], it

expresses the total power P extinguished from the incident field as the integral

P = 4πk0 Im

∫

d3rU∗

i (r)U(r)η(r). (2–5)

The depletion of the power from the incident beam may be seen to arise from

the interference between the total field and the incident field within the region

of the scatterer.

The result is better known for a restricted case. If the incident field consists of

a homogeneous, or propagating, plane wave with amplitude a and wave vector k,

Ui(r) = aeik·r,

then P is related to the scattering amplitude in the forward (incident) direction

by the expression

P = |a|2 4π

k0
Im A(k,k). (2–6)

Here A(k,k′) is the scattering amplitude associated with the transition via scat-

tering of a plane wave with wave vector k to a plane wave with wave vector k′.

It is defined by

A(k,k′) = k2
0a−1

∫

d3re−ik′
·rU(r)η(r). (2–7)

Equation (2–6) is the classical form of the optical theorem known in quantum

scattering theory [37; 38; 39].

2B. Vector Case. To adequately describe the physics of near-field optical

microscopy, the vector theory of electromagnetic scattering must be invoked.

The starting point for such an investigation is the set of Maxwell’s equations.

It will be assumed that the material of the sample is linear and nonmagnetic (a

broad class of materials). As in the scalar case, the problem is set in a half-space

with the upper (z ≥ 0) half-space being the vacuum plus the sample and the

lower (z < 0) half-space being filled with a material of refractive index n.
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Basic equations. The fields are entirely descibed by specifying the electric field

everywhere. The magnetic field thus may be ignored as redundant and it is

sufficient to consider only the electric field E. For a monochromatic source, E

satisfies the reduced wave equation

∇×∇× E(r) − k2
0(n2(z) + 4πη(r))E(r) = 4πk2

0P (r).

Here the dielectric suspectibilty η(r) is related to the permittivity ε(r) by ε(r) =

n2(z) + 4πη(r), and P (r) is the dielectric polarization (which acts as a source

of the electric field). Again the field consists of two parts,

E(r) = Ei(r) + Es(r). (2–8)

The incident field Ei(r) obeys the equation

∇×∇× Ei(r) − k2
0n2(z)Ei(r) = 4πk2

0P (r).

Thus the scattered field Es(r) satisfies

∇×∇× Es(r) − k2
0n2(z)Es(r) = 4πk2

0η(r)E(r).

Integral equations. The fields may be expressed in integral equation form by use

of the Green’s tensor G(r, r′) which satisfies

∇×∇× G(r, r′) − k2
0n

2(z)G(r, r′) = 4πδ(r − r′)I

where I is the unit tensor. The Green’s tensor must also obey the boundary

conditions
ẑ × G(r, r′)

∣

∣

z=0+ = ẑ × G(r, r′)
∣

∣

z=0−
,

ẑ ×∇× G(r, r′)
∣

∣

z=0+ = ẑ ×∇× G(r, r′)
∣

∣

z=0−

on the z = 0 plane. For later reference we note the plane-wave decomposition of

Gαβ(r, r′) [40] :

Gαβ(r, r′) =

∫

d2q

(2π)2
gαβ(q, z) exp

(

iq · (ρ − ρ′)
)

. (2–9)

Explicit expressions for gαβ(q, z) in the half-space geometry are given in the

Appendix. In free space it can be shown that

gαβ(z, z′; q) =
2πi

kz(q)

(

δαβ − k−2
0 kα(q)kβ(q)

)

exp
(

ikz(q)|z − z′|
)

,

where k(q) = (q, kz(q)). Using these results, it may be seen that the incident

field is given by

Ei
α(r) = k2

0

∫

d3r′Gαβ(r, r′)Pβ(r′), (2–10)

where the summation convention over repeated indices applies. The scattered

field obeys the integral equation

Es
α(r) = k2

0

∫

d3r′Gαβ(r, r′)Eβ(r′)η(r′).
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Within the accuracy of the first Born approximation, the electric field may be

replaced by the incident field in the right hand side of the above equation thus

obtaining

Es
α(r) = k2

0

∫

d3r′Gαβ(r, r′)Ei
β(r′)η(r′). (2–11)

The optical theorem. Energy conservation for Maxwell’s equations leads to the

optical theorem for electromagnetic waves. The extinguished power may be

shown to be given by the expression [36]

P =
1

2
ck0 Im

∫

d3rEi∗(r) · E(r)η(r). (2–12)

If the incident field is a propagating plane wave with amplitude a and wave

vector k

Ei(r) = aeik·r,

then P is related to the scattering amplitude by

P = |a|2 4π

k0
Im

(

A(k,k) · ê∗
)

,

where ê is a unit vector in the a direction. Here A(k,k′) is the vector scattering

amplitude defined by

A(k,k′) =
k2
0c

8π|a|

∫

d3re−ik′
·rE(r)η(r).

3. Forward Problem

The forward problem in near-field tomography is the problem of computing the

scattered field from the susceptibility. Analyses are carried out here separately

for each experimental modality, making use of the scalar and vector scattering

theory developed in Section 2. A common form relating the susceptibility to the

scattering data will emerge.

3A. Scanning Near-Field Tomography. Scanning near-field tomography

is based on the scanning modalities of near-field optics, namely NSOM. The

two principal genres of NSOM are illumination mode and collection mode. The

nomenclature reflects the role of the probe in each modality. In collection mode

NSOM, a sharp, tapered optical fiber tip is coated with metal and a small aper-

ture is exposed at the end of the fiber probe. The sample is illuminated by a

source located in the far-zone of the sample and the total field is collected in the

near-zone of the sample through the small aperture in the probe as the probe is

scanned over the sample. In illumination mode NSOM, a probe, like that used

in collection mode, is scanned over the sample in the near-zone. However, the

source of illumination is light transmitted through the fiber and the small aper-

ture at the tip. The field scattered by the sample is then collected and measured

in the far-zone and recorded as a function of probe position.
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To effect tomographic reconstruction of the sample it is necessary to perform

all measurements with phase sensitivity. In the case of collection mode NSOM,

the scattered field is naturally in superposition with the incident field and so

the measurements are intrinsically holographic [42; 5]—a situation analogous to

the Gabor hologram[43; 44; 45]. Illumination mode, however, is not intrinsically

holographic and so the phase of the scattered field must be ascertained by some

other means, possibly by interference with some reference field coherent with

the illuminating field [46] as is done in the far field problem to produce the

Leith–Upatnieks hologram [43; 47; 48]. In this article, it will be assumed that

the scattered field is measured with phase sensitivity and we will not dwell on

the experimental particulars, though it should be noted that the problem is

nontrivial.

3A1. Scalar case

Illumination mode. An illustration of illumination mode NSOM is shown in

Figure 4. It is assumed that the sample lies on a substrate which is defined

by the plane z = 0 and is illuminated with a point source which lies in the

plane z = zs. The sample lies in the region 0 ≤ z ≤ zs and is described by a

susceptibility η(r). If the point source has unit amplitude and is located at the

position r1 = (ρ1, zs) then, according to (2–1) and (2–2), S(r) = δ(r − r1) and

hence Ui(r) = G(r, r1). The scattered field is then given by

Us(r) = k2
0

∫

d3r′G(r, r′)G(r′, r1)η(r′).

Suppose that the observation point r is in the far field of the sample and that

the field is measured in the z > 0 half-space. This situation is referred to as the

reflection geometry; the transmission geometry, in which the field is measured

in the z < 0 half-space, will not be considered here but is amenable to a similar

treatment. It may be seen that for |r| � |r′| the leading term in the asymptotic

expansion of the Green’s function is given by

G(r, r′) ∼ eik0r

r
e−ik(q)·r′(

1 + R(q)e2ikz(q)z′)

, (3–1)

where k(q) lies in the direction of r, |q| ≤ k0 and R(q) is the reflection coefficient

defined in the Appendix. The scattered field behaves as an outgoing spherical

wave. It may be expressed in terms of the scattering amplitude A(ρ1, q) which

depends on the position of the source and the propagation vector k(q) in the

direction of observation:

Us(r) ∼ eik0r

r
A(ρ1, q),

where

A(ρ1, q) = k2
0

∫

d3re−ik(q)·r
(

1 + R(q)e2ikz(q)z
)

G(r, r1)η(r). (3–2)
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Figure 4. Illumination mode geometry. The sample is illuminated by light from

the probe tip in the near-zone. The scattered field is measured in the far zone

and recorded as a function of tip position.

We assume that the source is scanned over a square lattice with lattice spacing

h, thus sampling the scattering amplitude. It will prove useful to define a data

function Φ(q1, q2) by the lattice Fourier transform

Φ(q1, q2) =
∑

1

eiq1·1A(ρ1, q2),

where the sum over ρ1 is carried out over all lattice vectors and q1 belongs to

the first Brillouin zone (FBZ) of the lattice. In this case FBZ=[−π/h, π/h] ×
[−π/h, π/h]. It may be observed that if q1 is not limited to the FBZ, the data

outside the FBZ are redundant. Making use of (2–3), (3–2) and the identity

∑



eiq· =
(

2π

h

)2
∑

q′

δ(q − q′),

where q′ denotes a reciprocal lattice vector 1, we find that

Φ(q1, q2) =
(

k0

h

)2 ∫

d3r
∑

q

exp
(

i(q1−q2−q) · ρ
)(

1 + R(q2)e
2ikz(q2)z

)

×eikz(q2)zg(z, zs; q1 − q)η(r). (3–3)

It is natural to reconstruct η(r) on the same lattice that field is sampled. In that

case the inverse problem will prove more tractable if η(r) is assumed to be band

limited so as to be consistent with the lattice on which A(ρ1, q2) is sampled.

Then the sum over q may be truncated and only the q = 0 term contributes to

Φ(q1, q2). Thus (3–3) may be written in the form of the integral equation

Φ(q1, q2) =

∫

d3rK(q1, q2; r)η(r). (3–4)

Here the kernel

K(q1, q2; r) = ei(q1−q2)·κ(q1, q2; z),

1The reciprocal lattice consists of all points in the plane of the form (2nπ/h, 2mπ/h) with

n, m being integers.
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where

κ(q1, q2; z) =
(

k0

h

)2
(

1 + R(q2)e
2ikz(q2)z

)

eikz(q2)zg(z, zs; q1).

Equation (3–4) expresses the forward problem in scalar illumination mode scan-

ning near-field tomography.

Figure 5. Collection mode geometry. The sample is illuminated from the far

zone. The field is collected at the probe tip and recorded as a function of tip

position.

Collection mode. An illustration of collection mode NSOM in the reflection

geometry is shown in Figure 5. In this situation the sample is illuminated from

the far zone by an incident plane wave and the scattered field is detected in the

near-zone by means of an idealized point detector. Evidently, the incident wave

may be reflected from the boundary and is of the form

Ui(r) =
(

1 + R(q)e2ikz(q)z
)

eiki(q)·r,

where ki(q) = (q,−kz(q)), R(q) is the reflection coefficient (defined in the Ap-

pendix), and it has been assumed that the incident wave is of unit amplitude.

The scattered field, measured in the z = zd plane at a point with coordinate

r = (ρ, zd), is given by the expession

Us(r) = k2
0

∫

d3r′
(

1 + R(q)e2ikz(q)z′)

eiki(q)·r′

G(r, r′)η(r′),

which follows from (2–4).

The scattered field is sampled on a square lattice with lattice spacing h and,

as in the case of illumination mode, the data function is defined by the lattice

Fourier transform

Φ(q1, q2) =
∑



e−iq2·Us(ρ, zd; q1),

where q2 ∈ FBZ and the dependence of the scattered field on the transverse

component q1 of the incident wave vector has been made explicit. Using the
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plane wave decomposition of the Green’s function (2–3) and carying out the

Fourier transform, we find that

Φ(q1, q2) =
(

k0

h

)2 ∫

d3r
∑

q

exp
(

i(q1−q2−q) · ρ
)

×
(

1 + R(q1)e
2ikz(q1)z

)

e−ikz(q1)zg(zd, z; q2 − q)η(r). (3–5)

As discussed earlier, η(r) is assumed to be transversely band limited with a band

limit commensurate with the lattice structure. Then (3–5) may be written in

the form of the integral equation (3–4) with

κ(q1, q2; z) =
(

k0

h

)2
(

1 + R(q1)e
2ikz(q1)z

)

e−ikz(q1)zg(zd, z; q2).

3A2. Vector case. The mathematical treatment of the vector forward problem

for scanning near-field tomography follows closely the scalar case.

Illumination mode. In illumination mode the sample is illuminated by a point

source with position r1 = (ρ1, zs) which is scanned in the z = zs plane. The

incident field is obtained from (2–10) with the dielectric polarization P (r) =

pδ(r − r1), p being the dipole moment of the source of the field. Thus

Ei
α(r) = k2

0Gαβ(r, r1)pβ .

Using (2–11) the scattered field is seen to be given by

Es
α(r) = k4

0

∫

d3r′Gαβ(r, r′)Gβγ(r′, r1)pγη(r′).

In the upper half space, for |r| � |r′|, the Green’s tensor assumes the asymptotic

form

Gαβ(r, r′) ∼ S−1
αγ (q)g̃γδ(q, z)Sδβ(q)

exp(ik0r)

r
exp

(

−ik(q) · r′
)

, (3–6)

where k(q) lies in the direction of r and the prefactors are defined in the Ap-

pendix. Thus the scattered field in the far-zone in the upper half space takes the

form

Es
α(r) ∼ eik0r

r
Aα(ρ1, q).

Here the scattering amplitude is given by

Aα(ρ1, q) = k2
0

∫

d3re−ik(q)·rwαβ(q, z)Gβγ(r, r1)pγη(r),

where

wαβ(q, z) = k2
0S−1

αγ (q)g̃γδ(q, z)Sδβ(q). (3–7)

As before, a data function is defined through a lattice Fourier transform of the

sampled scattering amplitude

Φα(q1, q2) =
∑

1

eiq1·1Aα(ρ1, q2),
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where q1 ∈ FBZ. Making use of the plane wave decomposition (2–9), it is found

that

Φα(q1, q2) =
(

k0

h

)2
∫

d3r
∑

q

exp
(

i(q1−q2−q) · ρ
)

× eikz(q2)zwαβ(q2, z)gβγ(z, zs; q1 − q)pγη(r). (3–8)

If η(r) is transversely band limited, as in the previous cases, with a band limit

commensurate with the lattice structure then we find that (3–8) may be written

in the form of the integral equation

Φα(q1, q2) =

∫

d3rKα(q1, q2; r)η(r). (3–9)

Here the kernel

Kα(q1, q2; r) = exp
(

i(q1−q2) · ρ
)

κα(q1, q2; z),

where

κα(q1, q2; z) =
(

k0

h

)2

eikz(q2)zwαβ(q2, z)gβγ(z, zs; q1)pγ .

Equation (3–9) expresses the forward problem for vector illumination mode scan-

ning near-field tomography.

Collection mode. As in the scalar case, collection mode NSOM in the reflection

geometry involves illumination of the sample by a source in the far-zone and

collection of the near-zone scattered field in the upper half-space. The incident

field will be taken to linearly polarized,

Ei
α(r) = E(0)

α

(

1 + R(q)e2ikz(q)z
)

eiki(q)·r,

where E
(0)
α is the polarization of the incident field, R(q) is the appropriate Fresnel

reflection coefficient for the electric field and ki(q) = (q,−kz(q)). For simplicity,

we will consider the incident field to have TE polarization, that is the polarization

vector of the incident fields is parallel to the boundary of the half-space. More

general states of polarization may also be considered and it is important to note

that the signal in NSOM has a strong polarization dependence [16]. Using (2–11),

we find that the scattered field, measured in the plane z = zd is given by the

expression

Es
α(r) = k2

0

∫

d3r′
(

1 + R(q)e2ikz(q)z′)

eiki(q)·r′

Gαβ(r, r′)E
(0)
β η(r′).

The data function is defined as the lattice Fourier transform

Φα(q1, q2) =
∑



e−iq2·Es
α(ρ, zd; q1), (3–10)
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where q2 ∈ FBZ. The plane wave decomposition (2–9) may be utilized to obtain

Φα(q1, q2) =
(

k0

h

)2
∫

d3r
∑

q

exp
(

i(q1−q2−q) · ρ
)(

1 + R(q1)e
2ikz(q1)z

)

× e−ikz(q1)zgαβ(zd, z; q2 − q)E
(0)
β η(r). (3–11)

If η(r) is transversely band limited with a band limit consistent with the lattice

structure, then we find that (3–11) may be written in the form of the integral

equation (3–9) with

κα(q1, q2; z) =
(

k0

h

)2
(

1 + R(q1)e
2ikz(q1)z

)

e−ikz(q1)zgαβ(zd, z; q2)E
(0)
β .

3B. Total Internal Reflection Tomography. In total internal reflection

tomography, the sample is illuminated by an evanescent wave that is generated

by total internal reflection. The scattered field is then measured in the far zone

of the scatterer as the direction of the incident wave is varied. See Figure 1. It

should be noted that the scattered field must be measured with phase sensitivity.

3B1. Scalar case. The sample resides in vacuum in the geometry described ear-

lier. The sample is illluminated by an evanescent plane wave which is generated

by total internal reflection in the half-space with n > 1. The field incident on

the sample is of the form

Ui(r) = eik1(q1)·r, (3–12)

where k1(q1) = (q1, kz(q1)) is the incident wave vector. The transverse wave

vector q satisfies k0 ≤ |q1| ≤ nk0, where n the index of refraction of the lower

half space. Note that kz is imaginary with the choice of sign dictated by the

physical requirement that the field decay exponentially with increasing values

of z. In the far zone, the scattered field behaves as an outgoing spherical wave

determined by the wave vector k2(q2) = (q2, kz(q2)) with |q2| ≤ k0. Making use

of the integral equation (2–4) and the asymptotic form of the outgoing Green’s

function (3–1), it may be seen that the scattered field in the far zone is given by

Us ∼ eik0r

r
A(q1, q2).

Here A(q1, q2), which is the scattering amplitude associated with the scattering

of evanescent plane waves with transverse wave vector q1 into homogeneous

plane waves with transverse wave vector q2, is related to the susceptibility of the

scattering object by the expression

A(q1, q2) = k2
0

∫

d3r
(

1 + R(q2)e
2ikz(q2)z

)

exp
(

i (k1(q1) − k2(q2)) · r
)

η(r).

Note that this result may be rewritten in the form of the integral equation (3–4)

where A(q1, q2) is identified with the data function Φ(q1, q2) and

κ(q1, q2; r) = k2
0

(

1 + R(q2)e
2ikz(q2)z

)

exp
(

i (kz(q1) − kz(q2)) z
)

.
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3B2. Vector case. As in the scalar case, the incident field is taken to be an

evanescent plane wave with polarization E
(0)
α

Ei
α(r) = E(0)

α eik1(q1)·r, (3–13)

where k1(q1) = (q1, kz(q1)) is the incident wave vector and k0 ≤ |q1| ≤ nk0.

In the far zone the scattered field is characterized by the wave vector k2(q2) =

(q2, kz(q2)) with |q2| ≤ k0. Using the integral equation (2–11) for the scattered

field and (3–6), it may be seen that asymptotic form of the scattered field in the

far zone is given by

Es
α ∼ eik0r

r
Aα(q1, q2).

Here Aα(q1, q2) denotes the vector scattering amplitude which is related to the

susceptibility by

Aα(q1, q2) =

∫

d3r wαβ(q2, z)E
(0)
β exp

(

i (k(q1) − k(q2)) · r
)

η(r).

This relation may be written in the form of the vector integral equation (3–9)

where the scattering amplitude Aα(q1, q2) is identified with the data function

Φα(q1, q2) and

κα(q1, q2; r) = wαβ(q2, z)E
(0)
β exp

(

i (kz(q1) − kz(q2)) z
)

,

with wαβ given by (3–7).

3C. Photon Scanning Tunneling Tomography. In photon scanning tun-

neling tomography, the sample is illuminated by an evanescent wave and the

scattered field is detected in the near zone. See Figure 1. Photon scanning

tunneling tomography is a hybrid of total internal reflection tomography and

scanning near-field tomography. The analyses follows those in Section 3A1 for

the scalar case and in Section 3A2 for the vector case.

3C1. Scalar case. The sample is illuminated by an evanescent plane wave of the

form (3–12). The scattered field is then given by (2–4). If the scattered field is

sampled on the plane z = zd and the data function Φ(q1, q2) is defined by (3–5),

it can be seen that

Φ(q1, q2) =
(

k0

h

)2 ∫

d3r
∑

q

exp
(

i(q1−q2−q) · ρ
)

eikz(q1)zg(zd, z; q2 − q)η(r).

(3–14)

Note that if η(r) is transversely band-limited then (3–14) may be put in the

form of the scalar integral equation (3–4) with

κ(q1, q2; z) =
(

k0

h

)2

eikz(q1)zg(zd, z; q2).
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3C2. Vector case. The sample is illuminated with an evanescent plane wave of

the form (3–13) and the scattered field is given by (2–11). The data function,

defined by (3–10), may be seen to be given by

Φα(q1, q2) =
(

k0

h

)2 ∫

d3r
∑

p

exp
(

i(q1−q2−p) · ρ
)

× eikz(q1)zgαβ(zd, z; q2 − p)E
(0)
β η(r). (3–15)

If η(r) is transversely band-limited, then (3–15) has the form of the vector inte-

gral equation (3–9) with

κα(q1, q2; z) =
(

k0

h

)2

eikz(q1)zgαβ(zd, z; q2)E
(0)
β . (3–16)

3D. Near-Field Power Extinction Tomography. In near-field power ex-

tinction tomography, the sample is illuminated by a coherent beam consisting

of a superposition of two evanescent plane waves as shown in Figure 3. The

intensity of the incident field is then structured due to the interference between

the plane waves as may be seen in Figure 6. Some of the power carried by the
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Figure 6. Two sets of two evanescent plane waves. The top row displays the

intensity in the z = 0 plane resulting from the addition of the evanescent waves.

The bottom figures display the intensity of the resultant field as a function of

depth, z, and one of the transverse coordinates, x, in the y = 0 plane.
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incident field is absorbed by the sample and some is scattered into propagating

modes of the scattered field in both the upper and lower half-spaces. The total

power lost from the incident field due to the presence of the sample is called the

extinguished power. For the scattering of single homogeneous plane waves, the

extinguished power is usually normalized by the incident power per unit area and

the resulting quantity is called the total cross-section. The power extinguished

from the beam is monitored at the output of the totally reflected component

plane waves. To obtain the structure of the sample, the extinguished power is

recorded as both the relative phase and the the orientation of the constituent

evanescent waves are varied. Thus the measurements need not be phase sensitive.

3D1. Scalar case. Consider a scattering experiment with an incident field con-

sisting of a superposition of two evanescent waves of the form

Ui(r) = a1e
ik1·r + a2e

ik2·r,

where a1, a2 denote the amplitudes of the waves and k1,k2 their wave vectors.

According to the generalized optical theorem (2–5), the extinguished power is

given by

P (a1, a2) =
4π

k0

× Im
(

|a1|2A(k1,k
∗

1)+a∗

1a2A(k2,k
∗

1)+a∗

2a1A(k1,k
∗

2)+|a2|2A(k2,k
∗

2)
)

. (3–17)

Here A(k1,k2) is the scattering amplitude associated with the scattering of a

plane wave with wave vector k1 into a plane wave with wave vector k2. Using

(2–7), it may be seen that to lowest order in η(r)

A(k1,k2) = k2
0

∫

d3rei(k1−k2)·rη(r). (3–18)

It will prove useful to extract the cross-terms from (3–17), that is to gain in-

formation about the scattering amplitude for nonzero momentum transfer. This

can be accomplished for any set of k1 and k2 through four measurements of the

extinguished power where the relative phases are varied between measurements.

To this end it is useful define the data function

Φ(k1,k2) =
k0

8πa∗
1a2

(

P (a1, ia2)−P (a1,−ia2) + i
(

P (a1, a2)−P (a1,−a2)
))

.

It may be seen from (3–17) that the data function is related to the scattering

amplitude by

Φ(k1,k2) = A(k1,k
∗

2) − A∗(k2,k
∗

1). (3–19)

Let α(r) ≡ Im η(r) denote the absorptive part of the susceptibility η(r). Then

(3–18) and (3–19) yield

Φ(k1,k2) =

∫

d3rei(k1−k∗

2)·rα(r).
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Note that this result may be rewritten in the form of the integral equation (3–4)

where

κ(q1, q2; r) = 2ik2
0 exp

(

i (kz(q1) − k∗

z(q2)) z
)

,

and the dependence of k1,k2 on their transverse parts q1, q2 has been made

explicit.

3D2. Vector case. As in the scalar case the experiment consists of a sample

in vacuum in the upper half-space and a set of totally internally reflected plane

waves in the lower half-space where n > 1. The incident field on the vacuum side

then consists of a coherent superposition of two evanescent waves of the form

Ei = a1e
ik1·r + a2e

ik2·r,

where a1,a2 denote the vector amplitudes of the waves and k1,k2 their wave

vectors. The extinguished power is given by

P (a1,a2) =
4π

k0
Im (|a1|2A(k1,k

∗

1) · ê∗

1 + a∗

1a2A(k2,k
∗

1) · ê∗

1

+ a∗

2a1A(k1,k
∗

2) · ê∗

2 + |a2|2A(k2,k
∗

2) · ê∗

2), (3–20)

where a1 = a1ê1 and a2 = a2ê2, ê1, ê2 denote unit vectors in the directions of

a1,a2, and we have used the generalized optical theorem (2–12). Here, to lowest

order in η(r), the vector scattering amplitude is given by

A(k1,k2) =
k2
0c

8π
ê

∫

d3rei(k1−k2)·rη(r).

Note that within the first Born approximation A(k1,k2) · ê = c/8πA(k1,k2),

where A(k1,k2) is the scalar scattering amplitude defined in (3–18).

The data function Φ(k1,k2) is defined by

Φ(k1,k2) =
k0

ca∗
1 · a2

×
(

P (a1, ia2)−P (a1,−ia2) + i
(

P (a1,a2)−P (a1,−a2)
))

. (3–21)

Then it is readily seen, within the accuracy of the first Born approximation, that

Φ(k1,k2) is related to the scalar scattering amplitude by

Φ(k1,k2) = A(k1,k
∗

2) − A∗(k2,k
∗

1).

This result is identical to (3–19). As a consequence, with suitable modifications

we may apply the scalar theory to vector near-field power extinction tomography.
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4. Inverse Problem

The inverse problem consists of recovering the susceptibility η(r) from the

data function Φ(q1, q2). To this end, the pseudoinverse solution to the integral

equations (3–4) and (3–9) will be systematically constructed. First, a brief review

the singular value decomposition (SVD) of linear operators on Hilbert spaces[49]

is given.

4A. Singular Value Decomposition. Let K denote a linear operator with

kernel K(x, y) which maps the Hilbert space H1 into the Hilbert space H2. The

SVD of K is a representation of the form

K(x, y) =
∑

n

σngn(x)f∗

n(y),

where σn is the singular value associated with the singular functions fn and gn.

The {fn} and {gn} are orthonormal bases of H1 and H2, respectively and are

eigenfunctions with eigenvalues σ2
n of the positive self-adjoint operators K∗K

and KK∗:

K∗Kfn = σ2
nfn, KK∗gn = σ2

ngn.

In addition, the fn and gn are related by

Kfn = σngn, K∗gn = σnfn.

The pseudoinverse solution to the equation Kf = g is defined to be the

minimizer of ‖Kf − g‖ with smallest norm. This well-defined element f + ∈
N(K)⊥ is unique and may be shown[49] to be of the form f+ = K+g, where the

pseudoinverse operator K+ is given by K+ = K∗(KK∗)−1 and N(K)⊥ is the

orthogonal complement of the null space of K. The SVD of K may be used to

express K+ as

K+(x, y) =
∑

n

1

σn

fn(x)g∗n(y). (4–1)

4B. Scalar Case. Consider the scalar integral equation

Φ(q1, q2) =

∫

d3rK(q1, q2; r)η(r),

where

K(q1, q2; r) = exp
(

i(q1−q2) · ρ
)

κ(q1, q2; z).

This equation describes the scalar forward problem for each of the experimen-

tal modalities we have considered. In each case, only the functional form of

κ(q1, q2; z) must be altered. In addition, the wave vectors q1, q2 take values in

a set which depends upon the choice of experiment and the available data. It

is convenient to introduce a data set Q that specifies the available wave vectors

and a function χ(q1, q2) that is unity if (q1, q2) ∈ Q and is zero otherwise. The

function κ(q1, q2; z) is then modified so that κ(q1, q2; z) → κ(q1, q2; z)χ(q1, q2).
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To obtain the SVD of K(q1, q2; r) it will prove useful to introduce the follow-

ing identity:

K(q1, q2; r) =

∫

d2Q exp(iQ · ρ)δ(Q + q2 − q1)κ(Q + q2, q2; z).

Using this result, the matrix elements of the operator KK∗ are seen to be given

by

KK∗(q1, q2; q
′

1, q
′

2) =

∫

d2QM(q2, q
′

2;Q)δ(Q+ q2 − q1)δ(Q+ q′

2 − q′

1), (4–2)

where

M(q2, q
′

2;Q) =

∫ L

0

dzκ(Q + q2, q2; z)κ∗(Q + q′

2, q
′

2; z),

with L the range of η(r) in the ẑ direction. The singular vectors gQQ′ of K

satisfy

KK∗gQQ′ = σ2
QQ′gQQ′ ,

and may be constructed by making the ansatz that

gQQ′(q1, q2) = CQ′(q2;Q)δ(Q + q2 − q1), (4–3)

for some CQ′(q2;Q). Equation (4–2) now implies that
∫

d2q′M(q, q′;Q)CQ′(q′;Q) = σ2
QQ′CQ′(q;Q).

Thus CQ′(q2;Q) is an eigenvector of M(Q) labeled by Q′ with eigenvalue σ2
QQ′ .

Since M(Q) is self-adjoint, the CQ′(q2;Q) may be taken to orthonormal. Next,

the fQQ′ may be found from K∗gQQ′ = σQQ′fQQ′ and are given by

fQQ′(r) =
1

σQQ′

∫

d2q exp(−iQ · ρ)κ∗(Q + q, q; z)C∗

Q′(q;Q). (4–4)

It follows that the SVD of K(q1, q2; r) is given by the expression

K(q1, q2; r) =

∫

d2Qd2Q′σQQ′f∗

QQ′(r)gQQ′(q1, q2). (4–5)

The SVD (4–5) may now be used to obtain the pseudoinverse solution to the

integral equation (3–4):

η+(r) =

∫

d2q1d
2q2K

+(r; q1, q2)Φ(q1, q2),

where K+(r; q1, q2) is the pseudoinverse of K(q1, q2; r). Using the result (4–1),

the pseudoinverse K+ may be seen to be given by

K+(r; q1, q2) =

∫

d2Qd2Q′
1

σQQ′

fQQ′(r)g∗QQ′(q1, q2). (4–6)
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Substituting (4–3) and (4–4) into (4–6) and using the spectral decomposition
∫

d2Q′
1

σ2
QQ′

CQ′(q;Q)C∗

Q′(q′;Q) = M−1(q, q′;Q),

where M−1(q, q′;Q) is the qq′ matrix element of M−1(Q) we obtain

η+(r) =

∫

d2q1d
2q2d

2q′2

∫

d2Q exp(−iQ · ρ) δ(Q + q2 − q1)

× M−1(q2, q
′

2;Q)κ∗(Q + q′

2, q
′

2; z)Φ(q1, q2), (4–7)

which is the inversion formula for scalar near-field tomography.

4C. Vector Case. Consider the vector integral equation

Φα(q1, q2) =

∫

d3rKα(q1, q2; r)η(r),

where

Kα(q1, q2; r) = exp
(

i(q1−q2) · ρ
)

κα(q1, q2; z).

The functional form of κα(q1, q2; r) is determined by the experimental modality

which is under consideration. As in the scalar case, it is assumed that Φα(q1, q2)

is specified for (q1, q2) in some data set and an appropriate blocking function

χ(q1, q2) is introduced. The vector integral equation (3–9) differs from its scalar

counterpart (3–4) only by a factor associated with the polarization. Evidently,

by measuring a fixed component of the scattered field we see that the scalar

inversion formula (4–7) may be used to reconstruct η(r).

The SVD for the general vector case may be obtained by an analysis similar

to the scalar case. Following the previous development it may be seen that the

SVD of Kα(q1, q2; r) takes the form

Kα(q1, q2; r) =

∫

d2Qd2Q′σQQ′f∗

QQ′(r)gα
QQ′(q1, q2).

Here the singular functions are given by

gα
QQ′(q1, q2) = Cα

Q′(q2;Q)δ(Q + q2 − q1),

fQQ′(r) =
1

σQQ′

∫

d2q exp(−iQ · ρ)κ∗

α(Q + q, q; z)Cα∗

Q′ (q;Q).

The Cα
Q′(q2;Q) are eigenfuntions of Mαβ(q2, q

′
2;Q) with eigenvalues σ2

QQ′

∫

d2q′Mαβ(q, q′;Q)Cβ
Q′(q

′;Q) = σ2
QQ′Cα

Q′(q;Q),

where

Mαβ(q2, q
′

2;Q) =

∫ L

0

dzκα(Q + q2, q2; z)κ∗

β(Q + q′

2, q
′

2; z).
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The pseudoinverse solution to the integral equation (3–9) is given by

η+(r) =

∫

d2q1d
2q2K

+
α (r; q1, q2)Φα(q1, q2),

where

K+
α (r; q1, q2) =

∫

d2Qd2Q′
1

σQQ′

fQQ′(r)gα∗

QQ′(q1, q2).

More explicitly,

η+(r) =

∫

d2q1d
2q2d

2q′2

∫

d2Q exp(−iQ · ρ) δ(Q + q2 − q1)

×
(

M−1(Q)
)

αβ
(q2, q

′

2)κ
∗

α(Q + q′

2, q
′

2; z)Φβ(q1, q2), (4–8)

which is the inversion formula for vector near-field tomography.

4D. Regularization and Resolution. In order to avoid numerical instabilty

and set the resolution of the reconstructed image to be comensurate with the

available data, the SVD inversion formulas must be regularized. In particular,

1/σ is replaced in the inversion formulas (4–7) and (4–8) by R(σ) where R(σ)

is a suitable regularizer The role of regularization is to limit the contribution of

small singular values to the reconstruction. This has the effect of replacing an

ill-posed problem with a well-posed one that closely approximates the original.

A simple choice for R(σ) consists of truncation, that is,

R(σQQ′) =

{

σ−1
QQ′ if σQQ′ ≥ σmin,

0 if σQQ′ < σmin.

for some σmin. If Tikhonov regularization is used

R(σQQ′) =
σQQ′

λ + σ2
QQ′

,

where λ is the regularization parameter. This choice leads to smoothing of η+(r)

by penalizing functions with large L2 norm. Other regularization schemes may

be appropriate depending on the noise model and experimental particulars.

Regularization effectively filters the reconstructed image. In the near-field

inverse scattering problem, the evanescent waves that decay most rapidly tend

to be filtered out. Since the most rapidly decaying evanescent waves are also the

waves on which the high spatial frequency information is encoded, regularization

limits the resolution achievable.

4E. Numerical Simulations. The preceding results may be better understood

with the aid of numerical simulations of reconstructions in several different forms

of near-field tomography. Collection mode scalar near-field scanning tomography

is considered first [26]. The model system consists of a three-dimensional distri-

bution of six point scatterers, two on the horizontal, vertical or diagonal axis of

each of three planes as shown in Figure 2. For simplicity the indices of refraction

of both half-spaces are chosen to have the vacuum value of unity. The field was
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Figure 7. Reconstructed tomographs of the scattering object shown in Figure 2.

sampled on a lattice with spacing λ/20 and the sample was illuminated with

21 different plane waves. Figure 7 shows the reconstructions obtained. Observe

that the simulated NSOM image obtained with the tip withdrawn a distance λ/4

from the nearest plane of scatterers, as shown in Figure 2, is blurred, whereas

the scatterers in the reconstructions are clearly identifiable. Because the high

frequency components of the field fall off exponentially with distance from the

scatterer, the resolution of the image is dependent on the depth of the slice, the

deeper layers being less well resolved.

Figure 8 explores the robustness of the inversion procedure in the presence

of noise [26]. Two point scatterers are located a distance 0.51λ from the scan

plane with noise added to the signal at various levels as indicated. The noise

was taken to be Gaussian and of zero mean, with a variance proportional to the

square of the signal at each pixel on the measurement plane.

Next, total internal reflection tomography with scalar waves is considered.

The reconstruction of η(r) for a collection of spherical scatterers was performed.

The forward data was calculated by considering the scattering of evanescent

waves from a homogeneous sphere including multiple scattering by means of a

partial wave expansion. For a sphere of radius a centered at r0 with refractive

index n, it may be found that

A(k1,k2) = exp(i(k1 − k2) · r0)

∞
∑

`=0

(2` + 1)A`P`(k̂1 · k̂2), (4–9)

where A` are the usual partial wave expansion coefficients(see, for instance [50]),

P` are the Legendre polynomials and the caret has the meaning k̂ = k/
√

k · k∗.

To treat the scattering of evanescent waves, the argument of the Legendre poly-

nomials in (4–9) must exceed unity. The series may nonetheless be shown to be

convergent due to the rapid decay of the A` with increasing `.

The forward data was obtained for a collection of four spheres of radius λ/20.

All scatterers are present simultaneously in the forward simulation with inter-

sphere scattering neglected. The spheres were arranged in two layers, one equa-

torial plane coincident with the z = λ/20 plane, the other with the z = λ/4

plane. In each layer, one sphere was taken to have index n = 1.2 and one sphere
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Figure 8. Demonstrating reconstruction from noisy data sets. The SNR is the

ratio of the magnitude of the signal to the standard deviation of the noise at

each data point. The noise in the data set for each image in identical except for

a scale factor.

was taken to have index n = 1.2 + 0.2i. In each of the simulations complex

Gaussian noise of zero mean was added to the signal at various levels as in-

dicated. Simulations were performed for two different prisms, one (Figure 9)

with an index of n = 10, as might be encountered in the infrared, and another

(Figure 10) with an index of n = 4. Further details are available in [25].

It may be seen from the reconstructions that the real and imaginary parts

of the susceptibility may be found separately and that the reconstructions are

subwavelength resolved. The resolution depends both on the size of the regu-

lariztion parameter that indirectly sets the number of singular functions used in

the reconstruction, and on the depth, a consequence of the fact that the probe

fields decay exponentially into the sample resulting in the loss of high frequency

Fourier components of the susceptibility. The tomographs at the z = λ/20 layer

are more highly resolved for the higher index prism than the lower index prism,

but there is little difference at the z = λ/4 layer.

Next considered is photon scanning tunneling tomography for vector waves.

Two point scatterers are located on the prism face separated by 0.3λ. The field

and intensity were computed in the measurement plane for three scan heights,
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Figure 9. The reconstructed tomographs of the real and imaginary parts of the

susceptibility using a prism of refractive index n = 10. The signal to noise ratio

is given in dB above each column. The images were plotted using the linear color

scale indicated to the right. The field of view in each image is λ × λ.
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Figure 10. The reconstructed tomographs of the real and imaginary parts of the

susceptibility using a prism of refractive index n = 4. All other parameters are

as indicated in Figure 9.
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qx = 2.5k0 qx = 0 reconstructed

zd = 0.05λ

zd = 0.35λ

zd = 0.55λ

2λ × 2λ 2λ × 2λ λ/2 × λ/2

Figure 11. Demonstrating the observable intensities and reconstructed images

for two point scatterers separated by 0.3λ with the measurement plane at various

distances from the prism face. The left column shows the simulated intensity in

the measurement plane z = zd for an illuminating field with transverse wave vec-

tor, qx set to the maximum value attainable in a prism with index n = 2.5. The

middle column shows the simulated intensity with the illuminating wave incident

normal to the plane of observation. The right column displays the image re-

constructed from multiple views obtained with different illuminating fields. Note

that the images of the intensity are shown with a 2λ× 2λ field of view while the

reconstructed image is shown with a λ/2 × λ/2 field of view.

zd, of the probe. Only the TE polarization, i.e. the polarization vector parallel

to the prism face, is used. The scattered field is computed on a 4λ × 4λ win-

dow and sampled on a cartesian grid at a spacing of λ/10 with a total of 41

illuminating plane waves all with qy = 0 and qx on equally spaced points in the

range [−2.5k0, 2.5k0], corresponding to a range attainable with a prism of index

n = 2.5. The computed fields are shown in Figure 11 in a 2λ × 2λ field of view,

while the reconstructed scatterer is shown in a λ/2×λ/2 field of view. The scan

made furthest from the prism face with an illuminating evanescent wave may

be seen to be dominated by the scattered wave due to the exponential decay

of the illuminating field. It may be observed that the object structure, which

is unclear in the direct measurements made farthest from the sample, is still

clearly evident in the reconstructions. The increased spread of the points may
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0
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5
λ

Model n = 10 n = 10 n = 5

Figure 12. The simulated tomographs in power extinction tomography. The field

of view is λ×λ in each image. The scatterers used in the forward simulation are

shown in the column labeled Model. The numbers across the top indicate the

level of noise relative to the signal. The indices listed across the bottom indicate

the index of refraction of the prism used in the simulations. Each reconstruction

was normalized by its maximum value and imaged using the linear color scale

shown to the right.

be attributed to the loss of high spatial frequency components of the scattered

field to exponential decay of evanescent waves. See [27] for further information.

Finally, reconstructions for near-field power extinction tomography with scalar

waves are simulated. To demonstrate the feasibility of the inversion, the recon-

struction of α(r) for a collection of spherical scatterers have been numerically

simulated. The forward data was calculated from the partial wave expansion

(4–9). The forward data was obtained for a collection of six spheres of radius

λ/20 and index of refraction n = 1.1+0.2i, distributed on three planes as shown

in Figure 12. All scatterers are present simultaneously in the forward simulation

with inter-sphere scattering neglected. Simulations of experiments done with

two different prisms, one with index of refraction n = 5 the other with n = 10

are presented. The reconstructions obtained at depths of .05λ, and .25λ which

correspond to the two separate equatorial planes of the original distribution of

scatterers are displayed. Complex Gaussian noise of zero mean was added to the

data function at various levels as indicated.

The resolution of the reconstruction is seen to be controlled by several factors

including the index of the prism, the depth of the slice, and choice of regulariza-

tion parameters. These effects may be understood by observing that the resolu-

tion is governed by the low pass filtering that is inherent in the transverse Fourier

integral in (4–7) and additionally by the exponential decay of high-frequency

components of the scattered field with increasing degree of evanescence. In gen-

eral, a useful rule of thumb is that for a prism of index n the transverse resolution

will be on the order of λ/2n at a depth of λ/2n after which it falls off linearly.
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This is seen in the n = 10 simulations where the spheres whose edges are sep-

arated by λ/20 may be resolved in the slice at a depth of λ/20. However, the

spheres in the next layer at λ/4 with the same spacing are not resolvable, but

the groups of spheres which are spaced at λ/4 may be resolved. For the n = 5

case the scatterers in the top layer are not as well resolved, but the scatterers in

the deeper layer are well resolved. It may be observed that the reconstruction

algorithm is very robust in the presence of noise. See [51] for additional details.

5. Discussion

The mathematical structure of the near-field inverse scattering problem has

been reviewed. It has been demonstrated that in the weak scattering limit,

where the forward scattering problem may be linearized, an analytic solution

to the inverse problem may be obtained. The data required to implement this

method may be obtained from a variety of near-field optical experiments.

Several directions for further research are apparent. The solution to the in-

verse problem discussed here is based on a linearization of the forward probem

by means of the first Born approximation. A solution applicable when multiple

scattering becomes significant is desirable. An interesting novel method for in-

verse scattering in diffusion tomography beyond the linear model has recently

been developed [52]. Diffusion tomography shares a great deal of formal mathe-

matical structure with the near-field problem and so it may be possible to apply

that method to near-field tomography. The treatment of sampling given here

is adequate and outlines the basic approach, but more sophisticated sampling

schemes, possibly even adaptive sampling methods, will need to be explored.

Prior constraints on the sample may be used to great advantage in the inverse

problem. In the work presented here, the finite thickness of the sample is al-

ways incorporated in the solution to the inverse problem. Such prior knowledge

lends stability to the solution to the inverse problem and greatly improves the

imaging of those parts of the sample farthest from the scan plane or the prism

face. Methods to include other prior information may be expected to be similarly

useful.

Near-field tomography offers improved imaging tools for a wide range of dis-

ciplines including the rapidly developing areas of research in nanotechnology.

Applications may also be found in nonimaging optics as well. For instance,

near-field tomography may provide a means to read out three dimensional op-

tical data storage devices with data encoded on sub-wavelength scales. Beyond

these applications, the work presented here provides new insight into the physics

of highly localized wave fields and the propagation of light on very small scales.
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Appendix

The scalar Green’s function in the half-space geometry is given by

G(r, r′) =
i

2π

∫

d2q k−1
z (q)

{

1 + R(q) exp
(

2ikz(q)z′
)}

exp
(

ik(q) · (r − r′)
)

.

Here R(q) is the reflection coefficient

R(q) =
kz(q) − k′

z(q)

kz(q) + k′
z(q)

,

with kz(q) =
√

k2
0 − q2, k′

z(q) =
√

n2k2
0 − q2, and k(q) = (q, kz(q)).

The Green’s tensor in the half-space geometry is given by

Gαβ(r, r′) =
i

2π

∫

d2q

kz(q)
S−1

αγ (q)g̃γδ(q)Sδβ(q) exp
(

ik(q) · (r − r′)
)

,

where S(q) is the matrix that rotates k(q) into the xz plane, or more explicitly

S(q) = |q|−1





qx qy 0

−qy qx 0

0 0 |q|





and

g̃xx =
(

kz(q)

k0

)2
(

1 + R′(q) exp(2ikz(q)z′)
)

,

g̃yy = 1 + R(q) exp(2ikz(q)z′),

g̃zz =
( |q|

k0

)2
(

1 − R′(q) exp(2ikz(q)z′)
)

,

g̃zx = −|q|kz(q)

k2
0

(

1 + R′(q) exp(2ikz(q)z′)
)

,

g̃xz = −|q|kz(q)

k2
0

(

1 − R′(q) exp(2ikz(q)z′)
)

,

all other elements of g being zero. In addition,

R′(q) =
k′

z(q) − nkz(q)

k′
z(q) + nkz(q)

.
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