
This book describes a constructive approach to the inverse Galois problem:
Given a finite group G and a field K, determine whether there exists a Galois
extension of K whose Galois group is isomorphic to G. Further, if there is such
a Galois extension, find an explicit polynomial over K whose Galois group is
the prescribed group G.

The main theme of the book is an exposition of a family of “generic” poly-
nomials for certain finite groups, which give all Galois extensions having the
required group as their Galois group. The existence of such generic polyno-
mials is discussed, and where they do exist, a detailed treatment of their
construction is given. The book also introduces the notion of “generic dimen-
sion” to address the problem of the smallest number of parameters required
by a generic polynomial.
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Introduction

0.1. The Inverse Problem of Galois Theory

Let G be a finite group, and let K be a field. The Inverse Problem of Galois
Theory, as formulated for the pair (G,K), consists of two parts:

(A) General existence problem. Determine whether G occurs as a Galois
group over K. In other words, determine whether there exists a Galois exten-
sion M/K such that the Galois group Gal(M/K) is isomorphic to G.

We call such a Galois extension M a G-extension over K.

(B) Actual construction. If G is realisable as a Galois group over K, con-
struct explicit polynomials over K having G as a Galois group. More generally,
construct a family of polynomials over a K having G as Galois group.

The classical Inverse Problem of Galois Theory is the existence problem for
the field K = Q of rational numbers.

It would of course be particularly interesting if the family of polynomials we
construct actually gives all G-extensions of K. One obvious way of formulating
this is in the form of a parametric or generic polynomial:

Definition 0.1.1. Let P (t, X) be a monic polynomial in K(t)[X ], where t =
(t1, . . . , tn) and X are indeterminates, and let M be the splitting field of P (t, X)
over K(t). Suppose that P (t, X) satisfies the following conditions:

(i) M/K(t) is Galois with Galois group Gal(M/K(t)) ' G, and
(ii) every Galois extension M/K with Gal(M/K) ' G is the splitting field

of a polynomial P (a, X) for some a = (a1, . . . , an) ∈ Kn.

Then we say that P (t, X) parametrises G-extensions of K, and call P (t, X) a
parametric polynomial.

The parametric polynomial P (t, X) is said to be generic, if it satisfies the
following additional condition:

(iii) P (t, X) is parametric for G-extensions over any field containing K.

Remark. The motivation for this definition is roughly speaking as follows:
Condition (i) ensures that we are in fact looking specifically at the structure of

G-extensions, cf. section 3.3 in Chapter 3, and are not getting the G-extensions
in (ii) merely by ‘degenerate’ specialisations. For instance: A cyclic extension
of degree 4 is of course the splitting field of a quartic polynomial. However, the
splitting field of an arbitrary quartic polynomial is unlikely to be cyclic.

Condition (ii) is a demand that the ‘family’ of G-extensions given by our
polynomial P (t, X) covers all G-extensions. This was, after all, the whole point.

1
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Condition (iii) expresses the experiental fact that our analysis and construc-
tion may well make use only of such properties of K as are inherited by larger
fields, saving us the trouble of having to analyse the situation over such fields
separately. Also, adopting an algebraic geometric viewpoint for a moment, that
the study of varieties over a field (which encompasses Galois theory through ex-
tensions of function fields) does not merely consider the rational points over the
ground field itself, but also those over extension fields.

The next natural question after (B) one may ask is thus:

(C) Construction of generic polynomials. Given K and G as above,
determine whether a generic polynomial exists for G-extensions over K, and if
so, find it.

Remark. We point out that the definition of generic polynomials given here
is weaker than the one given by DeMeyer in [DM], where it is required that all
subgroups of G can be obtained by specialisations as well. However, over infinite
fields, the two concepts coincide (see Chapter 5).

The ti’s are the parameters of the generic polynomial. This raises a further
question:

(D) The Number of Parameters. What is the smallest possible number of
parameters for a generic polynomial for G-extensions over K? (Again, assuming
existence.)

Remarks. The existence problem (A) has been solved in the affirmative in
some cases. On the other hand, for certain fields, not every finite group occurs
as a Galois group.

(1) If K = C(t), where t is an indeterminate, any finite group G occurs
as a Galois group over K. This follows basically from the Riemann Existence
Theorem. More generally, the absolute Galois group of the function field K(t)
is free pro-finite with infinitely many generators, whenever K is algebraically
closed, cf. [Hrb2] and [Pop].

(2) If K = Fq is a finite field, the Galois group of every polynomial over K is
a cyclic group.

(3) If K is a p-adic field, any polynomial over K is solvable, cf. e.g. [Lo2, §25
Satz 5].

(4) If K is a p-adic field, andK(t) a function field overK with indeterminate t,
any finite group G occurs as a Galois group over K(t), by the Harbater Existence
Theorem [Hrb1].

Remarks. Concerning the problem (C) about generic polynomials, some-
times results are known in greater generality than just for a single pair (G,K).

(1) The polynomial Xp − X − t is generic for cyclic extensions of degree p
over Fp for all primes p, by Artin-Schreier theory. The polynomial Xn − t is
generic for cyclic extensions of degree n over fields containing the primitive nth

roots of unity, for all n ∈ N, by Kummer theory.
(2) The polynomial Xn + t1X

n−1 + · · · + tn is generic for Sn-extensions for
any field and any n ∈ N, where Sn is the symmetric group on n letters. This
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indicates that we might (and should) try to find generic polynomials for families
of pairs (G,K), rather than focus on an individual pair (G,K).

(3) It is also of course trivial that the existence of generic polynomials over K
for groups G and H (not necessarily distinct) implies the existence of a generic
polynomial for the direct product G×H .

The Inverse Galois Problem is particularly significant when K is the field Q
of rational numbers (or, more generally, an algebraic number field), or a function
field in several indeterminatess over Q (or over an algebraic number field).

In this connection, an especially interesting version of the Inverse Problem
(over Q) concerns regular extensions: Let t = (t1, t2, . . . , tn) be indeterminates.
A finite Galois extension M/Q(t) is then called regular, if Q is relatively alge-
braically closed in M, i.e., if every element in M \ Q is transcendental over Q.
The big question is then

The Regular Inverse Galois Problem. Is every finite group realisable as
the Galois group of a regular extension of Q(t)?

Whenever we have a Galois extension M/Q(t) (regular or not), it is an easy
consequence of the Hilbert Irreducibility Theorem (covered in Chapter 3 below)
that there is a ‘specialisation’ M/Q with the same Galois group. Moreover, if
M/Q(t) is regular, we get such specialised extensions M/K over any Hilbertian
field in characteristic 0, in particular over all algebraic number fields. Hence the
special interest in the Regular Inverse Galois Problem.

Concerning the existence problem (A), there are already several monographs
addressing the problem, e.g., Malle and Matzat [M&M2] and Völklein [Vö]. In
this book, our main aim is then to consider problem (C), the construction of
generic polynomials with prescribed finite groups as Galois groups.

The nature of the Inverse Problem of Galois Theory, in particular its con-
structive aspects, resembles that of the Diophantine problems, and it has been
an intractably difficult problem; it is still unsolved.

0.2. Milestones in Inverse Galois Theory

The Inverse Galois Problem was perhaps known to Galois. In the early nine-
teenth century, the following result was known as folklore:

The Kronecker-Weber Theorem. Any finite abelian group G occurs as
a Galois group over Q: Indeed G is realized as the Galois group of a subfield
of the cyclotomic field Q(ζ), where ζ is an nth root of unity for some natural
number n.

For proof, we refer to e.g. [Lo3, Ch. 13] (or indeed most books on class field
theory). For the first part (existence), it follows easily from the fact that there
are infinitely many primes ≡ 1 (mod n) for any natural number n. For a simple
proof of this last statement, see [Hs3].

As for the actual construction, there were examples of polynomials realizing
abelian groupsG as Galois groups over Q, which were constructed using Gaussian
periods.
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The first systematic study of the Inverse Galois Problem started with Hilbert
in 1892. Hilbert used his Irreducibility Theorem (see Chapter 3) to establish the
following results:

Theorem 0.2.1. For any n ≥ 1, the symmetric group Sn and the alternating
group An occur as Galois groups over Q.

Further, Hilbert constructed parametric polynomials for Sn, however, he was
not able to come up with parametric polynomials for An. (Indeed, this problem
remains open even today.)

In 1916, E. Noether [Noe] raised the following question:

(0.2.2) The Noether Problem. Let M = Q(t1, . . . , tn) be the field of
rational functions in n indeterminates. The symmetric group Sn of degree n
acts on M by permuting the indeterminates. Let G be a transitive subgroup of
Sn, and let K = MG be the subfield of G-invariant rational functions of M . Is K
a rational extension of Q? I.e., is K isomorphic to a field of rational functions
over Q?

If the Noether Problem has an affirmative answer,G can be realised as a Galois
group over Q, and in fact over any Hilbertian field of characteristic 0, such as
an algebraic number field (cf. section 3.3 of Chapter 3). Additionally, we get
information about the structure of G-extensions over all fields of characteristic 0
(cf. section 5.1 of Chapter 5).

The next important step was taken in 1937 by A. Scholz and H. Reichardt [Sco,
Rei] who proved the following existence result:

Theorem 0.2.3. For an odd prime p, every finite p-group occurs as a Galois
group over Q.

The final step concerning solvable groups was taken by Shafarevich [Sha] (with
correction appended in 1989; for a full correct proof, the reader is referred to
Chapter IX of the book by Neukirch, Schmidt and Wingberg [NS&W, 2000]),
extending the result of Iwasawa [Iw] that any solvable group can be realized as
a Galois group over the maximal abelian extension Qab of Q.

Theorem 0.2.4. (Shafarevich) Every solvable group occurs as a Galois
group over Q.

Shafarevich’s argument, however, is not constructive, and so does not produce
a polynomial having a prescribed finite solvable group as a Galois group.

Some remarks regarding simple groups. Of the finite simple groups, the
projective groups PSL(2, p) for some odd primes p were among the first to be
realized. The existence was established by Shih in 1974, and later polynomials
were constructed over Q(t) by Malle and Matzat:

Theorem 0.2.5. (a) (Shih [Shi]) Let p be an odd prime such that either 2,
3 or 7 is a quadratic non-residue modulo p. Then PSL(2, p) occurs as a Galois
group over Q.
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(b) (Malle & Matzat [M&M1]) Let p be an odd prime with p 6≡ ±1
(mod 24). Then explicit families of polynomials over Q(t) with Galois group
PSL(2, p) can be constructed.

(c) (Belyi [Bel1]) Let k be a finite field of odd characteristic, and let G be
SL(n, k), PSL(n, k), Sp(2n, k), SO(2n + 1, k), U(n, k), etc. Then there exist
finite extensions L ⊇ K of Q such that K/Q is abelian and L/K is Galois with
Galois group G.

Belyi (in [Bel2]) also realized simple Chevalley groups of certain types as
Galois groups over the maximal cyclotomic field.

For the 26 sporadic simple groups, all but possibly one, namely, the Mathieu
group M23, have been shown to occur as Galois groups over Q. For instance:

Theorem 0.2.6. (Matzat & al.) Four of the Mathieu groups, namely M11,
M12, M22 and M24, occur as Galois groups over Q.

Matzat and his collaborators further constructed families of polynomials over
Q(t) with Mathieu groups as Galois groups.

The most spectacular result is, perhaps, the realization of the Monster group,
the largest sporadic simple group, as a Galois group over Q by Thompson [Th].
In 1984, Thompson succeeded in proving the following existence theorem:

Theorem 0.2.7. (Thompson) The monster group occurs as a Galois group
over Q.

Most of the aforementioned results dealt with the existence question (A) for
K = Q.

Later several families of simple linear groups were realized as Galois groups
over Q (see Malle and Matzat [M&M2]).

It should be noted that all these realization results of simple groups were
achieved via the rigidity method (see section 0.7 below) and the Hilbert Irre-
ducibility Theorem (see Chapter 3).

0.3. The Noether Problem and Its History

In this monograph, we will be mostly concerned with constructive aspects of the
Inverse Galois Problem. We will be focusing on the question (C), construction
of generic polynomials having prescribed finite groups as Galois groups.

The Noether Problem (NP) concerning rational extensions over Q has a long
preceding history.

An extension L/K is called rational if there exists a transcendence basis
{βi}i∈I such that L = K({βi}i∈I), in which case L is K-isomorphic to the field
K({ti}i∈I) of rational functions in the ti’s.

In 1875, Lüroth [Lü] (for a more contemporary reference, see Jacobson [Ja2,
8.14]) proved the following result:

Theorem 0.3.1. (Lüroth) Let L/K be a rational field extension of tran-
scendence degree 1. Then any subfield of L containing K is either K or a rational
extension K(t) where t is an indeterminate.
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In this connection, there arose the so-called Lüroth problem:

(0.3.2) The Lüroth Problem. Let L be an arbitrary rational extension of
a field K. Is any subfield of L containing K rational over K?

Some positive answers to the Lüroth Problem were obtained. In 1894, Castel-
nuovo showed the following result:

Theorem 0.3.3. (Castelnuovo [Ca]) Let K be algebraically closed of char-
acteristic 0. If L is a rational extension over K of transcendence degree 2, then
any subfield of L containing K is rational over K.

However, it was shown by Zariski [Z] in 1958 that this is no longer true if K
has positive characteristic.

To state more results on the Lüroth problem and related topics, we now
introduce the notion of unirational and stably rational extensions of fields.

A field extension L/K is said to be unirational if L is a subfield of a rational
extension of K, and stably rational if L(u1, u2, . . . , ur) is rational over K for
some r, that is, if L becomes rational over K after adjoining a finite number of
indeterminates.

In geometric terms an irreducible algebraic variety defined over K is ratio-
nal, resp. unirational, resp. stably rational if its fields of rational functions is a
rational, resp. unirational, resp. stably rational extension of K.

Clearly, we have the following implications:

rational ⇒ stably rational ⇒ unirational.

However, the arrows are not reversible. The first candidates for examples show-
ing that ‘unirational’ does not imply ‘rational’ were discussed by Enriques [En]
in 1897, and G. Fano [Fn] in 1904. The first correct and well-documented ex-
amples are due to B. Segre, who considered smooth cubic surfaces X ⊂ P3

K and
wrote a series of papers on that subject in the decade 1940–1950. He proved that
such a surface is unirational if it has a K-rational point. His simplest example
of a unirational but non-rational surface is a smooth cubic surface X/K over
K = R such that the topological space X(R) has two connected components.
See [Sg1], as well as [Sg2].

The first example of a stably rational but not rational extension was given by
Beauville, Colliot-Thélène, Sansuc and Swinnerton-Dyer [Be&al]. Their example
is a non-rational surface which is stably rational over Q. We will give an example
of a field which is unirational but not stably rational on p. 57 in Chapter 2.

We should here mention some other known examples of unirational but not
rational extensions. Segre (cited above) gave examples of unirational but not
rational surfaces, developing along the way the theory of linear systems with
base points. Clemens and Griffiths (in [C&G]) constructed the intermediate
Jacobian of the cubic threefold. This Jacobian is a unirational but not a ratio-
nal variety over C. Another example was constructed by Iskovskih and Manin
[I&M] as a counterexample to the Lüroth Problem, using generalization of the
theory of linear systems with base points. Their example was a quartic threefold



0.3. THE NOETHER PROBLEM AND ITS HISTORY 7

in P4 over C. For non-algebraically closed fields, there are several articles ad-
dressing non-rationality question of varieties (mostly surfaces). Also, elementary
examples were given by Artin and Mumford in [Ar&M]. We are not going into
a detailed discussion of those examples, but refer the interested reader to the
papers cited above, as well as Ojanguren [Oj], and the references therein.

The Lüroth Problem led to a related problem. Let G be a finite group acting
faithfully on L/Q (i.e., G is a group of automorphisms of L fixing the base field
Q), and pick a special subfield of L, namely the fixed field LG. Then the Lüroth
Problem in this context is the Noether Problem (NP) formulated in (0.2.2) for
K = Q. Prior to Noether, Burnside considered the problem concerning the
fixed point fields of automorphisms of rational function fields (which later was
popularised by the name of ‘the Noether Problem’), and he obtained several
results:

Theorem 0.3.4. (Burnside 1908, [Bs]) The fixed field of C3 acting regu-
larly on K(t1, t2, t3) is rational over K provided that K contains the third roots
of unity. Similarly, the fixed field of A4 acting regularly on K(t1, t2, t3, t4) is
rational (under some conditions on the ground field K).

By the classical theorem that any symmetric rational function is a rational
function in the elementary symmetric polynomials, it follows that the Noether
Problem has a positive answer for the symmetric group Sn. E. Noether and
some of her contemporaries gave positive answers for several other groups of
small degree. Here are some results for solvable groups:

Theorem 0.3.5. (a) (Furtwängler 1925, [Fu]) The Noether Problem has
a positive solution for every solvable transitive subgroup G of Sp, where p =
3, 5, 7, 11, for K = Q and G acting as a regular permutation group of the inde-
terminates t1, . . . , tn, n = |G|.

(b) (Gröbner 1934, [Grö]) The Noether Problem has a positive answer for
the quaternion group Q8.

For the alternating groups An, the Noether Problem is still open: For A5 the
answer is affirmative, and this was proved by Maeda [Mae] in 1989. However,
for An, n ≥ 6, the answer remains unknown.

It turns out that the Noether Problem does not always have a positive answer.
This raises yet another question: For which groups G does it fail to have an
affirmative solution?

In 1925, Furtwängler noticed that his argument (proving point (a) in the The-
orem above) did not work for the cyclic group C47. Swan and V. E. Voskresenskii
(working independently) gave counter-examples to the Noether Problem for the
cyclic groups C47, C113, C223, etc., in their papers [Swn1, 1969] and [Vo1, 1970].
Later, more conceptual and accessible, and also stronger, results were obtained
by H. Lenstra [Len]: For instance, he shows that the smallest group for which
the Noether Problem fails is the cyclic group C8, and further he gave a complete
classification of abelian groups for which the Noether Problem fails. (See also
Saltman [Sa1, 1982].)
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0.4. Strategies

As we mentioned above, a positive solution to the Noether Problem for a finite
group G over Q yields a positive solution to the question (A), concerning the
existence of a G-extension, and moreover it gives rise to a positive answer to the
question (C), about generic polynomials. We will push Noether’s strategy to its
fuller extent.

Noether’s strategy: Invariant theory. Noether’s strategy may work well
for the symmetric groups Sn, but as we have seen above, it becomes complicated
for other groups, even of small order.

Closer analysis concerning the existence (and construction) of polynomials
with Galois group G turns out to be more productive if we consider generalisa-
tions of the original Noether Problem. Of course, the Noether Problem can be
formulated over any field, rather than just Q. Also we may take different actions
of G on the function fields.

Let K be any field and let M = K(t1, t2, . . . , tn) be the field of rational
functions over K in n indeterminates t = (t1, t2, . . . , tn). Let G be a finite
group. Depending on the action of G on the field M , we have several variants
of the Noether Problem. We now formulate the Noether Problem (NP), Linear
Noether Problem (LNP), and General Noether Problem (GNP) depending on
the action of G.

(0.4.1) The Noether Problem (NP). Assume that G acts on M as a
transitive permutation group on the set t = (t1, t2, . . . , tn) of indeterminates,
and let L = MG. Is L rational over K?

(0.4.2) The Linear Noether Problem (LNP). Let G be a (finite) sub-
group of GLn(K), and define a G-action on M by σti = a1it1 + · · ·+ anitn when
(a1i, . . . , ani) ∈ Kn is the image of the ith canonical basis vector under σ. Let
L = MG. Is L rational over K?

(0.4.3) The General Noether Problem (GNP). Let G be a (finite)
subgroup of the K-automorphism group AutK(M), and let L = MG. Is L
rational over K?

The inclusions are NP ⊂ LNP ⊂ GNP.

From now on we assume that our ground field K is infinite. We note that, by
a Theorem of Kuyk [Ku, Thm. 1], an affirmative answer to the Noether Problem
(NP) for a group G over an infinite field K implies the existence of a generic
polynomial for G-extensions over K (cf. also section 5.1 in Chapter 5).

Now we will encode various implications in the following diagram. We consider
a pair (G,K) where we assume that G is a finite group and K is an infinite field.

NP ⇒ Generic Poly ⇒ Regular Ext ⇒
(∗)

Galois Ext

⇑ ⇑

LNP GNP
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Here (∗) means that K is assumed to be Hilbertian, cf. Chapter 3. Note that
the reverse implications do not hold. Parametric polynomials are not included
in the diagram. It is obvious that

Generic Polynomial ⇒ Parametric Polynomial.

However, there are examples of pairs (G,K) for which parametric polynomials
can be constructed over K, while generic polynomial cannot. For instance, the
pair (C8,Q) gives an example of C8-parametric polynomials over Q, but no
generic C8-polynomials.

0.5. Description of Each Chapter

The main theme of this monograph is the construction of generic polynomials
having a prescribed finite group G as Galois group.

Chapter 1, ‘Preliminaries’, contains, as the name implies, some basic results
needed in the remainder of the text, mostly on linear representations of finite
groups.

In Chapter 2, we confine ourselves to groups of small degree. Specifically
we look into the following problem: Let K be a field and let f(X) = Xn +
an−1X

n−1+· · ·+a1X+a0 ∈ K[X ] be irreducible and separable. Then Gal(f/K)
is a transitive subgroup of the symmetric group Sn. We restrict ourselves to
groups of degree 3, 4, 5, 6, 7 and 11, although it is already known that all groups
of degree ≤ 15 occur as Galois groups over Q. (See [M&M2] and [Kl&M].) Our
main concern is to give criteria for recognising a polynomial with a specified
group as Galois group by making use of the resolvent polynomials. We also
exhibit generic polynomials for the groups of degree 3, 4 and 5. For instance, we
have the following result:

Theorem 0.5.1. (Brumer) A generic polynomial for the dihedral group D5

of degree 5 over an arbitrary field K is given as follows:

f(s, t,X) = X5 + (t− 3)X4 + (s− t+ 3)X3 + (t2 − t− 2s− 1)X2 + sX + t

over K(s, t) where s and t are indeterminates.

We also demonstrate the non-existence of a generic C8-polynomial over Q,
and as a consequence get the following two examples of fixed subfields of the
function field Q(s, t, u) in three indeterminates s, t, u, both with a C4-action,
where one is rational and the other not:

Theorem 0.5.2. (a) Let σ be the automorphism on Q(s, t, u) given by

σ : s 7→ t, t 7→ u, u 7→ −
1

stu
.

Then σ has order 4 and Q(s, t, u)C4/Q is not rational.
(b) Let τ be the automorphism on Q(s, t, u) given by

τ : s 7→ t, t 7→ u, u 7→
1

stu
.

Then τ has order 4 and Q(s, t, u)C4/Q is rational.
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The example (a) in the above theorem is perhaps the simplest (easiest to
prove) example of a unirational but non-rational field extension, having tran-
scendence degree 3 over Q. For a proof of this theorem, see Chapter 2. Colliot-
Thélène has communicated to us an example of a unirational but non-rational
extension of transcendence degree 2 over Q, namely the quotient field of the ring

Q[x, y, z]/(x3 − x− y2 − z2),

cf. also Ojanguren in [Oj] and Beauville et al. in [Be&al].

In Chapter 3, we give a complete proof of the Hilbert Irreducibility Theorem.
This theorem plays an important role to establish the existence of polynomials
with a prescribed finite group as a Galois group. In fact, most of the posi-
tive results in the Inverse Galois Problem depend on the Hilbert Irreducibility
Theorem, more precisely, on producing regular extensions over Q.

In this chapter, we also consider (briefly) the Regular Inverse Galois Problem
mentioned earlier. For the symmetric group Sn and the alternating group An,
regular extensions are constructed over Q.

Unfortunately, the Hilbert Irreducibility Theorem, as we prove it, is not con-
structive, i.e., it does not indicate how to pick a suitable specialisation to produce
polynomials over Q (or an algebraic number field) for a given group G. This is
not a serious difficulty, however, since the set of suitable specialisations is dense,
and choosing at random has a pretty good chance of success.

In Chapter 4, we present a generalisation of the usual Galois theory of fields to
a Galois theory of commutative rings. For extensions of fields (so-called Galois
algebras), this generalisation was first carried out independently by D. K. Fad-
deev and H. Hasse.1 For a nice exposition of this topic, the reader is referred
to the original work by Chase, Harrison and Rosenberg [CH&R], as well as De-
Meyer and Ingraham [D&I], and Greither [Gr]. Our account of the theory is
mostly based on [D&I], although we have avoided any reference to separable
algebras (which is the central topic of that work). An advantage of introducing
this general notion of a Galois extension is to avoid case by case analysis based
on whether the ground fields contain roots of unity or not. In short, this theory
may be regarded as a base change theory and also as refinement of ‘reduction
modulo primes’ allowing us to treat specialisations in more streamlined fashion.

Chapter 5 is the backbone of this monograph. In this chapter we give a thor-
ough discussion about generic extensions and generic polynomials. Incidentally,
when the ground field K is infinite, the notions of generic extensions and generic
polynomials do coincide as proved by Ledet in [Le10]. As we remarked above,
not all finite groups, even abelian groups, have generic polynomials. The first
question of our interest is the characterisation of finite abelian groups for which
generic polynomials exist.

Theorem 0.5.3. (Lenstra) Let G be a finite abelian group and K = Q.
Then generic polynomials exist for (G,Q) if and only if G has no elements of
order 8.

1In the 1940’s, when communication between Germany and Russia was less than perfect.
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Group Field Generic polynomial

C2, C4 Arbitrary Yes

Cn, n odd Arbitrary Yes

C2e , e > 2 Q No

p-group Char. p Yes

Q8 Char. 6= 2 Yes

Dn, n odd Arbitrary Yes

D8, QD8, M16 Arbitrary Yes

Fp` Q Yes, if 8 - `

Sn Arbitrary Yes

A4 Arbitrary Yes

A5 Arbitrary Yes

Table 1. Generic Polynomials

This Theorem is a composite of results from Chapters 2 and 5.

Summary of the existence of generic polynomials is tabulated in Table 1.
Certain other cases are known as well, of course, such as the cyclic group Cn

of order n, over fields containing the primitive nth roots of unity. Also, abelian
groups can be considered by writing them as direct products of cyclic groups. For
n > 5, it is unknown whether An has a generic polynomial (over any field). Most
known negative results stem from the non-existence of generic C2e -polynomials,
e > 2, over Q, which also excludes abelian groups containing elements of order 8,
as well as Frobenius groups Fp` with 8 | `. In [Sa3], Saltman exhibits some p-
groups of high order (p9) that do not possess generic polynomials over any field
of characteristic 0.

Remarks. (1) The crucial fact in proving that there is no generic C8-poly-
nomial over Q is that the unramified C8-extension of the field Q2 of 2-adic
numbers is not induced (by scalar extension) from a C8-extension of Q. It would
seem plausible that something similar might work in other cases, but nothing is
known.

(2) The smallest group for which the question of existence of a generic poly-
nomial over Q is unanswered is the quaternion group of order 16, cf. Chapter 6.
The next is the special linear group SL(2, 3) of order 24.

We also give a treatment of p-groups in characteristic p > 0. More specifically,
we prove that generic polynomials always exist in that case, a result basically
due to Gaschütz [Ga].

In Chapter 6 we will consider certain p-groups in characteristic 6= p, mostly
for p = 2. These include dihedral groups D2n , the quasi-dihedral groups QD2n

and the quaternion groups Q2n , as well as the the Heisenberg group of order p3.
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We construct generic polynomials over field K of characteristic different from
2 for Q8, QD8 as well as for the central product QC of Q8 and C4.

Chapter 7 is concerned with some other solvable groups, i.e., dihedral groups
and Frobenius groups of prime degree. (For our purposes, a Frobenius group is
a semi-direct product Fp` = Cp oC`, where ` | p− 1, and C` acts faithfully. See
also [Pa].) We prove:

Theorem 0.5.4. (a) Let p be an odd prime, and let ` | p− 1. Then a generic
polynomial for the frobenius group Fp` over Q exists if and only if 8 - `.

(b) For the Frobenius groups Fp(p−1)/2 where p is a prime with p ≡ 3 (mod 4),
there is an explicit family of polynomials over Q with Galois group Fp(p−1)/2.

Finally in Chapter 8, we will address question (D), i.e., the question of how
many parameters are needed in a generic polynomial. Let (G,K) be a pair
of a finite group G and a field K. When there is a generic polynomial over
K realising G as a Galois group, a lower bound for the number of parameters
is given by the essential dimension, edK G, which is defined by Buhler and
Reichstein [B&R1] as follows: Suppose that G acts regularly on the rational
extension K(t1, t2, . . . , tn) where n = |G|. Consider all G-extensions M/L such
that K ⊆ L ⊆ K(t1, t2, . . . , tn)G and K(t1, t2, . . . , tn) is the compositum of M
and K(t1, t2, . . . , tn)G. The essential dimension edK G of G over K is then the
minimum of the transcendence degrees tr. degK L, where L runs through all fields
considered above.

Theorem 0.5.5. (a) If there is a generic polynomial over K for a group G,
then the number of parameters is at least edK G.

(b) Let (G,K) be a pair of a finite group G and a field K. A necessary
condition for the existence of a generic G-polynomial with one parameter is that
G embeds into PGL2(K).

However, if G is a finite group for which there exists a generic G-polynomial
over K, it is an open problem whether there is a generic G-polynomial with
exactly edK G parameters. In general it is rather difficult to find the exact
number of parameters in a generic polynomial for a group G. We have only
rudimentary results. Even for cyclic groups, we do not have entirely satisfactory
answers.

Theorem 0.5.6. (Smith) For Cpn , where pn is an odd prime power, there
is a generic polynomial over Q with pn−1(p− 1)/2 parameters.

This is not an optimal result, however: For pn = 7, it can be shown (in a non-
explicit way) that there is a generic polynomial with two parameters. Similarly,
there is a generic C11-polynomial over Q with only four parameters. On the
other hand, Smith’s result is completely constructive, and allows us to produce
the polynomial if desired.

In Chapter 8, we also prove the following result:

Theorem 0.5.7. (Buhler & Reichstein) Let pn be a prime power. Then
the essential dimension for the cyclic group Cpn over Q is at most ϕ(p−1)pn−1,
where ϕ is the Euler ϕ-function.
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It appears plausible that this may in fact give the exact value of the essential
dimension. Also, for pn = 2, 3, 4, 5, 7, 9, 11 and 13, it can be shown that generic
polynomials exist with the number of parameters exactly equal to the upper
bound on the essential dimension. (For pn = 8, there is no generic polynomial
over Q.) Thus, one may pose the following ‘double conjecture’:

Conjecture. The essential dimension over Q for the cyclic group Cpn , pn

a prime power, is exactly ϕ(p − 1)pn−1, and when pn is odd there is a generic
Cpn -polynomial over Q with ϕ(p− 1)pn−1 parameters.

More generally, ϕ(p−1)pn−1 gives an upper bound for the essential dimension
of the semi-direct product Z/pn o (Z/pn)∗. In particular, for n = 1 it provides
an upper bound on the essential dimension of any solvable group of degree p.

For non-prime powers, we can get bounds using an ‘addition formula’: For
groups G and H , Corollary 8.2.9 from Chapter 8 gives edK(G×H) ≤ edK G+
edK H . This can be shown to give the exact value of edQ Cn for a few compos-
ite n, notably n = 6, 10 and 12, and one may conjecture that it works generally.

This Chapter also contains a summary of results on the essential dimension
for p-groups in characteristic p > 0, and some remarks regarding the generic
dimension of a finite group over a field, which we define to be the minimal
number of parameters in a generic polynomial.

We conjecture that that the generic dimension coincides with the essential
dimension when both are finite.

Finally we should point out that a generic polynomial over Q for a finite
group G can have no two consecutive coefficients equal to 0, cf. Exercise 5.4
in Chapter 5. For instance, no trinomials of degree n ≥ 4 can be a generic
polynomial for a finite group.

In this connection a problem arises: When a finite group G is realisable as a
Galois group over Q, can G be realised as a Galois group of a totally real number
field?

Regarding this problem, it has been shown by Serre that if every finite group
is realisable as a Galois group over Q, then it is in fact possible to realise them
inside R. (This result will be published in a paper by J. Klüners and G. Malle.)

Appendix A contains various technical results and definitions that are relevant
to the main text, but did not fit into it. This includes: The ‘Seen one, seen them
all’ Lemma, Tensor products, Linear disjointness and the Hilbert Nullstellensatz.

Appendix B contains a brief account of invariant theory, needed for the treat-
ment of quintic equations in Chapter 2.

0.6. Notations and Conventions

Groups. The groups and related concepts are
Sn: the symmetric group of degree n, of order n!.
An: the alternating group of degree n, of order n!/2.
Cn: the cyclic group of order n.
Dn: the dihedral group of order 2n.
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Fp`: The Frobenius group of order p`, with ` | p− 1.
QD2n−1 : the quasi-dihedral group of order 2n.
Q2n : the quaternion group of order 2n.
M2n : the modular group of order 2n.
Hp3 : The Heisenberg group of order p3.
M11,M12,M22,M23,M24: the Mathieu groups
PSL2(Fq): the projective special linear group of 2 × 2 matrices over the finite

field Fq of q elements.
PSL(2, p) = PSL2(Fp), where p is a prime.
GLn(K): the general linear group of n× n matrices with entries in K.
GL(n, q) = GLn(Fq).
PGLn(K): the projective general linear group of n×nmatrices with entries inK.
PGL(n, q) = PGLn(Fq).
Gn: The direct product of n copies of the group G.
G1 oG2: the wreath product of two groups G1 and G2.
|G|: the order of a finite group G.
Z(G): the center of a group G.
µn: the group of nth roots of unity (within a field).

Fields and rings. From commutative algebra, we use
Q: the field of rational numbers.
R: the field of real numbers
C: the field of complex numbers
Qp: the field of p-adic rational numbers.
Kv: the completion/localisation of the field K with respect to a discrete valua-

tion v.
K(µn): the nth cyclotomic field over K.
K(t) = K(t1, t2, . . . , tn): the field of rational functions in the indeterminates

t = (t1, t2, . . . , tn) over a field K.
K[s] = K[s1, s2, . . . , sr]: the polynomial ring in the indeterminates s = (s1, s2,

. . . , sr) over a field K.
Rp: The localisation of the commutative ring R in the prime ideal p, i.e., the

ring of fractions r/s with r ∈ R and s ∈ R \ p.
Ra: The localisation of the commutative ring in the powers of the element a ∈ R,

i.e., the ring of fractions r/an with r ∈ R and n ∈ N.
Rn: The direct sum of n copies of the ring R.
Wn(L): the ring on n-dimensional Witt vectors over a field L.
℘: the map Wn(L) → Wn(L) given by

℘ : (a0, . . . , an−1) 7→ (ap
0, . . . , a

p
n−1) − (a0, . . . , an−1).

Invariants. Various constants associated with fields and groups:
`(K): the level of a field K, which is the smallest natural number n for which −1

is a sum of n squares in K, with `(K) = ∞ if −1 is not a sum of squares.
tr. degK L: the transcendence degree of a field L over a field K.
edK G: the essential dimension of a finite group G over a field K.
gdK G: the generic dimension of a finite group G over a field K.
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0.7. Other Methods

We should mention that this monograph is not meant to discuss ‘all’ exist-
ing methods on the Inverse Galois Problem. There are already a number of
other monographs and textbooks available: Conner and Perlis [C&P], Malle and
Matzat [M&M2], Völklein [Vö], Schneps and Lochak [S&L], Serre [Se2], among
others.

The rigidity method: Galois coverings of P1. Let P1 = P1(C) denote
the projective line over C. It is a rational curve of genus g = 0, i.e., the Riemann
sphere. Let C be a projective non-singular algebraic curve defined over C, of
genus g ≥ 1. Let Aut(C) denote the group of automorphisms of C. It is known
that if g ≥ 2, then Aut(C) is a finite group. In fact, if g ≥ 2, then Aut(C) is a
finite group of order ≤ 84(g − 1), cf. Hurwitz in [Hw]. (If g = 1, Aut(C) may
be infinite.) Let G be a finite group contained in Aut(C). By a G-covering, we
mean a quadruple Λ = (C,P1, π, φ), where

(i) P1 is the projective line over C,
(ii) C is a projective non-singular algebraic curve of genus g > 1,
(iii) π : C → P1 is a surjective rational mapping, and
(iv) φ : G ↪→ Aut(C) is a monomorphism,

such that the function field of C is a Galois extension of the function field of
P1 and φ(G) ⊆ Aut(C) coincides with the group of covering transformations of
π : C → P1.

Now suppose that we are given a finite group G. The problem is to construct
a Galois covering Λ = (C̃,P1, π, φ) having G as the group of automorphisms of

C̃. A natural choice for such a curve is C̃ = C/G. Then the function field of C̃

is C(C)G ⊂ C(C) such that C(C) is Galois over C(C̃) with Galois group G.
For a fuller exposition of this approach, the readers are referred to the mono-

graph by Malle and Matzat [M&M2], and for the geometric version of the rigidity
method to the recent monograph of Völklein [Vö]. Another account is Serre’s
book [Se2], which discusses, among other things, the rigidity method and the
regular inverse Galois problem.

Trace forms. Whenever we have a finite Galois extension M/K with Galois
group G = Gal(M/K), we can consider G as a transitive subgroup of the sym-

metric group Sn for some natural number n. Let S̃n be the stem cover of Sn,
i.e., the double cover

1 → {±1} → S̃n → Sn → 1

in which transpositions lift to elements of order 2, and products of two disjoint

transpositions lift to elements of order 4. We then get a double cover G̃ of G,

and we can ask: Can M/K be extended to a G̃-extension F/K? The answer
to that question involves the study of trace forms, i.e., quadratic forms of the
type x 7→ TrL/K(x2) defined on a field extension L/K, and have been used by
Mestre [Mes] and others to realise stem covers of alternating groups as regular
extensions over Q. Realisation of the stem covers of Sn and An will not be
discussed in this monograph. A survey on trace forms can be found in the
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monographs of Conner and Perlis [C&P]. Serre [Se2] studied the trace form
TrL/K(x2) in detail.

Methods of Ihara, Schneps, etc. There is an excellent MSRI Conference
Proceedings Galois Groups over Q, [IR&S], edited by Ihara, Ribet and Serre.
There the absolute Galois groups acting on algebraic fundamental groups were
extensively discussed.

There are also a two-volume work by Schneps and Lochak, [S&L], where
Grothendieck’s theory of dessins d’enfants (Combinatorial Galois Theory) is
treated. The main objects are the moduli spaces Mg,n of genus g curves with n
marked points. Combinatorial Galois theory is developed addressing the question
to what extent the absolute Galois group of Q is determined as a profinite group
by its action on the fundamental group of the moduli space Mg,n.

These works are mostly concerned with realisations of pro-finite groups as Ga-
lois groups, and accordingly will lead us too far from the Inverse Galois Problem
treated here.



CHAPTER 1

Preliminaries

In this chapter, we collect some results necessary for the subsequent discussions
of Galois theory and the Inverse Galois Problem. These include linear represen-
tations and their relation to (the existence of) generic polynomials, as well as a
brief introduction to resolvent polynomials. The material is of a somewhat tech-
nical nature, but as we will be making extensive use of it right from the outset,
it will not interrupt the progression of the material to put it at this place, rather
than in an appendix.

1.1. Linear Representations and Generic Polynomials

We start with some considerations relating to the Noether Problem which will
make finding generic polynomials somewhat easier:

Let G be a finite group, and consider a representation of G, i.e., a homomor-
phism G → GLK(V ), where GLK(V ) is the general linear group for a finite-
dimensional K-vector space V . This simply means that V can be considered as
a left K[G]-module, where K[G] is the group ring.1

If M/K is a Galois extension with group G, the Galois action of G on M
gives a representation (with M as V ), and by the Normal Basis Theorem the
K[G]-module M is free of rank 1, i.e., isomorphic to K[G] itself.

More generally: LetG be a finite group. We may representG as a permutation
group on a set X with n elements for some n. In this case, we say that G has
a permutation representation of degree n, that is, G is regarded as a subgroup
of Sn. Corresponding to this is a linear representation, in which G acts on the
n-dimensional K-vector space Kn by permuting the canonical basis vectors. By
abuse of notation, we will refer to this linear representation also as a permutation
representation.

We can always representG as a permutation group of degree |G| by considering
it as permuting the elements of G itself by left multiplication. This is the regular
representation of G, and it is transitive, i.e., for all α, β ∈ X = G there is a
σ ∈ G with σα = β.

A representation is faithful, if the homomorphism G → GLK(V ) is injective,
i.e., if no non-trivial element in G acts as the identity on V . Thus the above
example is faithful.

1In this text, only left modules will be considered. So, from now on, ‘module’ will mean
‘left module’.

17
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As our interest is in Galois theory, we will first look at the question of when
the K[G]-module V can be considered as a submodule of K[G]. To this end,
we introduce the dual space of V , V ∗ = HomK(V,K). It is a K[G]-module by
σ(ϕ) : v 7→ ϕ(σ−1v) for σ ∈ G and ϕ ∈ V ∗ (giving us the so-called contragredient
representation, cf. [Hu, V.§16 Def. 16.11]), and it is easily seen that V and V ∗∗

are isomorphic as K[G]-modules. Also, −∗ is an exact contravariant functor: If
ψ : U → V is a K[G]-linear map, there is an induced map ψ∗ = ψ◦ : V ∗ → U∗,
and ψ is injective (resp. surjective) if and only if ψ∗ is surjective (resp. injective).

As a (simple) example, we point out that K[G]∗ ' K[G].
It is now clear that V can be embedded in K[G] if and only if V ∗ is cyclic,

i.e., a homomorphic image of K[G]. And working out the details, we get the
following: If V ∗ is generated (over K[G]) by ϕ, an embedding of V into K[G] is
given by

v 7→
∑

σ∈G

ϕ(σ−1v)σ, v ∈ V.

Reintroducing the G-extension from the Example above, we have:

Proposition 1.1.1. Let M/K be a G-extension, and let there be given a
representation G → GLK(V ). If the dual representation G → GLK(V ∗) is
cyclic, then the K-vector space V can be embedded in M in a way that respects
the group action.

We note that one case in which the dual representation is cyclic is when there
is a subgroup H of G and a vector u ∈ V , such that (σu)σ∈H is a basis for V .

We also note that, by Maschke’s Theorem ([Ja2, 5.2 p. 253], or Exercise 7.2
in Chapter 7 below), K[G] is the direct sum of all the irreducible representations
of G over K, whenever charK - |G|. Thus, in this case, V can be embedded
in K[G] if and only if the irreducible constituents of V all have multiplicity 1.

The Linear Noether Problem. If V is a finite-dimensional vector space
over the field K, we let K(V ) denote a rational function field in which the
homogeneous linear polynomials have been identified with V . Thus, a K-basis
for V is a transcendence basis for K(V )/K. The action of the general linear
group GLK(V ) then extends to K(V ). Similarly, we will use K[V ] to denote
a polynomial ring with the homogeneous linear polynomials identified with V .
(Formally: K[V ] is the commutative tensor algebra for V over K, and K(V ) is
the quotient field of K[V ].)

Now, let G be a finite subgroup of GLK(V ). We then have G acting on K(V ).
This generalises the permutation representations considered in connection with
the Noether Problem, since Sn can be identified with the subgroup of GLn(K)
consisting of matrices with exactly one 1 in each row and each column, and 0’s
elsewhere. (In other words: Sn acts on Kn by permuting the coordinates.)

This makes it natural to generalise Noether’s approach, cf. also the Introduc-
tion:

(1.1.2) The Linear Noether Problem (LNP). If the finite group G is
considered as a subgroup of a general linear group GLK(V ) over the field K,
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we can let it act on K(V ). The question is then as with the original Noether
Problem: Is the fixed field K(V )G a purely transcendental extension of K?

Example. (Abhyankar, [Ab]) Let q be a prime power, and let K be a
field containing Fq. Also, let GL(n, q) = GLn(Fq), and let s = (s1, . . . , sn) be
indeterminates. Denote the splitting field of the polynomial

f(X) = Xqn

+ s1X
qn−1

+ · · · + snX

over K(s) by M. It is relatively easy to see that the roots of f(X) make up
an n-dimensional Fq-vector space. We will refer to such a polynomial as vecto-
rial. Also, if t = (t1, . . . , tn) is a basis for this space, the ti’s are algebraically
independent and M = K(t).

Thus, if we let GL(n, q) act linearly on K(t), the fixed field has the form K(s)
for indeterminates s = (s1, . . . , sn) in K[t], and so we have a GL(n, q)-extension
K(t)/K(s).2

If M/K is a GL(n, q)-extension, we can embed F n
q (and in fact Kn) into M

in a way that preserves the linear action. The image of F n
q in M necessarily gen-

erates M over K, and M is the splitting field of the corresponding specialisation
of f(X).

Hence, f(X) ∈ Fq(s)[X ] is generic for GL(n, q)-extensions over Fq.

In fact, a positive answer to a Linear Noether Problem will — under one
slight restriction— always give rise to generic polynomials, as the following result
from [K&Mt, Thm. 7] shows:

Proposition 1.1.3. Let G be a finite group, and let K be an infinite field.
Also, let G be embedded into GLK(V ) for some V , and assume that the corre-
sponding Linear Noether Problem has an affirmative answer. Then there is a
generic G-polynomial over K with n = dimK V parameters.

Remark. In [Kn, 1955] Kuniyoshi proved that the Noether Problem always
has an affirmative answer for p-groups in characteristic p, and in [Ga, 1959]
Gaschütz proved the same for any Linear Noether Problem. Thus, we can con-
clude that generic polynomials always exist for p-groups over an infinite field in
characteristic p.

We will give a proof of Gaschütz’ result in section 5.6 of Chapter 5 below,
together with a more ‘cost-effective’ construction of generic polynomials.

We obtain Proposition 1.1.3 as an obvious corollary to the following

Proposition 1.1.4. Let G be a finite group, and let K be an infinite field.
Also, let G be embedded into GLK(V ) for some V , and let K(u) = K(u1, . . . , ur)
be a rational function field. Furthermore, let F (u, X) ∈ K(u)[X ] be a monic
polynomial, and assume that K(V ) is the splitting field over K(V )G of a special-
isation of F (u, X). Then any G-extension M/L with L ⊇ K is obtained as the
splitting field of a specialisation of F (u, X) (over L).

2As well as an argument that a polynomial where the roots form an n-dimensional �q -vector

space has the same form as f(X).
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Proof. First, note that, for any ϕ ∈ V ∗, the kernel of the map gϕ : V →
K[G], given by

gϕ : v 7→
∑

σ∈G

ϕ(σ−1v)σ, v ∈ V,

and considered above, is
⋂

σ∈G kerσ(ϕ). In particular, ker gϕ ⊆ kerϕ, and so we
can pick ϕ1, . . . , ϕd ∈ V ∗ (for some d) such that

⋂
i ker gϕi

= 0. This gives us an
injective K[G]-linear map

v 7→ (gϕ1
(v), . . . , gϕd

(v))

from V into K[G]d, i.e., V ↪→ K[G]d. Thus, if s1, . . . , sd are d sets of |G|
indeterminates, each permuted regularly by G, we have an embedding K[V ] ↪→
K[s1, . . . , sd].

Now, let f(s1, . . . , sd) be any non-zero polynomial in K[s1, . . . , sd]. Then, if
q2 ∈ N is picked greater than the highest exponent of any indeterminate in s1, the
polynomial f(s1, s

q2

1 , s3, . . . , sd) is non-zero as well. (Here, sq2

1 means the ordered
set of qth2 powers of the indeterminates in s1.) It follows that, for a suitable
choice of q2, . . . , qd, the polynomial f(s1, s

q2

1 , . . . , s
qd

1 ) is non-zero. Also, the map
g(s1, . . . , sd) 7→ g(s1, s

q2

1 , . . . , s
qd

d ) is a K-algebra homomorphism K[s1, . . . , sd] �

K[s1] respecting the G-action.

Assume now that K(V ) is the splitting field over K(V )G of a specialisation
F (t, X), v = (t1, . . . , tr) ∈ (K(V )G)r. For a suitable w ∈ K[V ] \ 0, we have
that t1, . . . , tr belong to the localised ring K[V ]w (i.e., the ring of elements of
the form a/we for a ∈ K[V ] and e ∈ N), and also that F (v, X) ∈ K[V ]w[X ].
Moreover, we can— for each σ ∈ G \ 1 – pick a root ξ ∈ K[V ]w of F (t, X)
with σξ 6= ξ and require 1/(σξ − ξ) ∈ K[V ]w. Let w′ be the image of w in
K[s1, . . . , sd], and pick the qi’s as above to ensure that w′ maps to a non-zero
element w′′ ∈ K[s1]. We then have homomorphisms

K[V ]w ↪→ K[s1, . . . , sd]w′ � K[s1]w′′ ,

all respecting the G-action.

IfM/L is aG-extension, we can, by the algebraic independence of the elements
in G over M (Theorem 4.3.7 in Chapter 4 below, or [Ja1, 4.14]), find θ ∈M such
that θ = (σθ)σ∈G is a normal basis for M/L and w′′(θ) 6= 0. Thus, we have

K[V ]w ↪→ K[s1, . . . , sd]w′ � K[s1]w′′ →M,

with the last map defined as follows: If s1 = (sσ)σ∈G with σsτ = sστ , we map sσ

to σθ. This gives us a K-algebra homomorphism K[V ]w →M respecting the G-
action. Letting a = (a1, . . . , ar) be the images of t in M , we see that a1, . . . , ar ∈
L and that F (a, X) splits completely in M [X ]. Also, G acts faithfully on the
roots of F (a, X): For σ ∈ G \ 1 we have that σξ − ξ is invertible in K[V ]w for
some root ξ of F (t, X), and so the image σξ̄ − ξ̄ cannot be 0 in M , meaning
that σ acts non-trivially on ξ. Hence, M must be the splitting field of F (a, X)
over L. �

From this Proposition, we immediately get various other Corollaries:
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Proposition 1.1.5. Let K be an infinite field and G a finite group. A monic
G-polynomial P (s, X) over K(s) is generic if and only if some ‘Noether exten-
sion’ K(V )/K(V )G is obtained by specialisation, i.e., if and only if K(V ) is the
splitting field over K(V )G of P (a, X) for some specialisation a of s in K(V )G.

In particular: If there is a generic G-polynomial overK, there is an irreducible
generic G-polynomial, since we can replace P (s, X) by an irreducible polynomial
in K(s)[X ] with the same splitting field.

Corollary 1.1.6. Let K be an infinite field and G a finite group, and let
(Pi(si, X))i∈I be a family of G-polynomials over rational function fields K(si),
such that every G-extension of fields containing K is obtained by specialising
some Pj(sj , X). Then one of the Pi(si, X)’s is generic.

Hence, the obvious ‘loosening’ of the definition of generic polynomials— al-
lowing a family of cases rather than a single case— does not lead to anything
new.

Another consequence is the following result from [K&Mt, Thm. 3]:

Proposition 1.1.7. Let K be an infinite field and G a finite group. Consider
a faithful linear action of G on the K-vector space V , and assume that M/K is
a subextension of K(V )/K on which G acts faithfully. If the fixed field MG is
rational over K with generating transcendence basis s1, . . . , sr, there is a generic
G-polynomial over K with parameters s1, . . . , sr.

It is also clear from the Proposition that a construction ofG-extensions overK
is generic, if it only makes use of properties of K that are inherited by exten-
sion fields in which K is relatively algebraically closed, such as the degree of
cyclotomic extensions.

Remark. In [DM], DeMeyer uses a seemingly stronger concept of generic
polynomial than the one we are using: He demands that it produce not only
all G-extensions, but also all H-extensions for subgroups H of G. Call such a
polynomial ‘descent-generic’.

Since our Proposition above did not include anything about the Galois group
of F (s, X) over K(s), and since a specialisation giving K(V ) over K(V )G also
gives K(V ) over K(V )H for any H ⊆ G, we now have

Proposition 1.1.8. (Kemper, [Ke2]) Over an infinite field, a generic poly-
nomial is ‘descent-generic’.

Returning now to the Linear Noether Problem, we note a few simple results
from invariant theory, that will prove helpful later on. First of all, we record

The Invariant Basis Lemma. Let M/K be a finite Galois extension of
fields with Galois group G = Gal(M/K), and let W be a finite-dimensional M -
vector space on which G acts semi-linearly, i.e., such that σ(aw) = σa σw for
a ∈M and w ∈W . Then W has an invariant basis, i.e., an M -basis of vectors
in the K-subspace WG of G-invariant elements.

Clearly, any K-basis for WG is then an M -basis for W .

Proof. We follow the argument given in [K&M]: If (θ1, . . . , θs) is a basis
for M over K, then

∑
σ σθi σw ∈ WG for i and all w. Proposition 4.3.6 in
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Chapter 4 below (or [Ja1, 4.14]) now gives us that the elements of WG gener-
ate W over M . �

The next result follows from the Invariant Basis Lemma.

The No-name Lemma. Let G be a finite group acting faithfully on a finite-
dimensional K-vector space V , and let U be a faithful K[G]-submodule of V .
Then the extension K(V )G/K(U)G is rational.

Proof. Inside K(V ), we have the K(U)-vector space K(U) · V generated
by V . It is easily seen that dimK(U)W = dimK V − dimK U + 1, and since the
G-action is semi-linear, there is — by the Invariant Basis Lemma— an invari-
ant basis 1, w1, . . . , ws. Since s is the transcendence degree of K(V )/K(U), we
get that w1, . . . , ws are algebraically independent over K(U) and that K(V ) =
K(U)(w1, . . . , ws), from which we get K(V )G = K(U)G(w1, . . . , ws). �

In particular: If G is a transitive subgroup of order n in Sm, we can consider
G as acting on both V = Kn and U = Km by permuting coordinates. Also, we
can embed U into V as a K[G]-module. (Proof: In G, we have a subgroup H of
index m corresponding to the embedding G ⊆ Sm, and G permutes the canonical
basis vectors in U in the same way it permutes the cosets σH in G. To each basis
vector in U , we now associate the sum over the corresponding coset of canonical
basis vectors in V .) It follows that K(V )G/K is rational if K(U)G/K is.

Example. Let Sn act transitively on n! = n · (n− 1) · · · 2 · 1 indeterminates
t = (t1, . . . , tn!). Then K(t)Sn/K is rational.

Finally, let us make the following observation, taken from [Ke1, Prop. 1.1(a)]:
Let G ↪→ GLK(V ) for a finite-dimensional K-vector space V , and consider the
subfield K(V )0 of homogeneous elements of degree 0. (A homogeneous element
in K(V ) is an element of the form f/g, where f, g ∈ K[V ] are homogeneous.
The degree is then defined as deg f − deg g.) Then G acts on K(V )0 through
the projective linear group PGLK(V ). In fact, K(V )0 = K(v2/v1, . . . , vn/v1),
when v1, . . . , vn is a K-basis for V , and the action of GLK(V ) on K(V ) becomes
an action of PGLK(V ) on K(V )0. Moreover, we have K(V )G = K(V )G

0 (x),
when x ∈ K(V )G \ (0) is homogeneous of minimal positive degree: There are
non-zero homogeneous elements in K(V )G of positive degree, since G acts on
the homogeneous components of the elements in K[V ], meaning that K[V ]G,
and hence K(V )G, is in fact generated by homogeneous elements. (Since any
element in K(V ) can be written as f/g for some f ∈ K[V ] and some g ∈ K[V ]G.)
Now, let x be non-zero homogeneous of minimal positive degree d > 0, and let
f ∈ K(V )G be homogeneous of degree e. We may write e = qd+r for 0 ≤ r < d,
getting f/xq homogeneous of degree r. By assumption, we must then have r = 0
and f/xq ∈ K(V )G

0 , and therefore f ∈ K(V )G
0 (x).

When we start with a two-dimensional representation, this ‘homogenisation’
brings us down to transcendence degree 1, where everything is rational by Lüroth
(Theorem 0.3.1 in the Introduction). For convenience, we prove Lüroth’s Theo-
rem in the special form we need:



1.2. RESOLVENT POLYNOMIALS 23

Lüroth’s Theorem (Special case). Let K be a field and G ⊆ PGL2(K)
a finite group of order n acting on K(X). Let

Y n + rn−1Y
n−1 + · · · + r0 =

∏

σ∈G

(Y − σX) ∈ K(X)G[Y ].

Then there is an i ∈ {0, . . . , n − 1} with ri /∈ K, and for any such i, we have
K(X)G = K(ri).

Proof. Obviously, ri /∈ K for some i ∈ {0, . . . , n−1}. Since ri is a polynomial
of degree ≤ n in (σX)σ∈G, we can write it as ri = fi/gi, where fi, gi ∈ K[X ]
have degrees ≤ n. It follows that [K(X) :K(ri)] ≤ n, and since K(ri) ⊆ K(X)G

and [K(X) :K(X)G] = n, we must have K(X)G = K(ri). �

Remark. Thus, if G ↪→ GL2(K) the fixed field K(x, y)G is rational over K,
and we have an explicit procedure for finding a generating transcendence basis.

In this connection, we can also note two additional simple facts, cf. [Ke1,
Prop. 1.3]: The kernel of G’s action on K(V )0 is the subgroup G ∩K∗ of scalar
matrices in G, and the degree d above equals the order of G∩K∗. (The first part
follows trivially by considering the action on vi/v1 and using the unique factori-
sation in K[V ]. As for the second: By Galois theory, K(V )0(x) = K(V )G∩K∗

,
and by [Ja2, Thm. 8.38] we have [K(V ) :K(V )0(x)] = d since x/vd

1 ∈ K(V )0.)

1.2. Resolvent Polynomials

Let f(X) be an irreducible polynomial over K of degree n ≥ 1 and let α1, . . . , αn

be the roots of f(x) in its splitting field M over K. The symmetric group Sn

acts (as always) on K[x1, . . . , xn] by permuting the indeterminates xi. For an
element P ∈ K[x1, . . . , xn], let PSn = {P1, P2, . . . , P`} be the orbit of P under
the action of Sn.

Definition 1.2.1. The resolvent polynomial is defined by

R(P, f)(X) =
∏̀

i=1

(X − Pi(α1, . . . , αn)).

Since the coefficients of R(P, f)(X) are symmetric polynomials in the αi’s,
the resolvent is defined over K.

Example. If P = c1x1 + c2x2 + · · · + ckxk, where c1, c2, . . . , ck ∈ K and
k ≤ n, we call R(P, f)(X) a linear resolvent polynomial. If there is no possibility
of misunderstanding (i.e., if f(X) is implicitly meant), we will often denote this
resolvent by PN (X), where N =

(
n
k

)
is its degree. Thus, for instance,

Pn(n−1)/2(X) = R(x1 + x2, f)(X) =
∏

1≤i<j≤n

(X − (αi + αj)).

Lemma 1.2.2. Let p be a prime, and let f(X) be an irreducible polynomial of
degree p over a field K of characteristic 0. Also, let P = b1x1 + b2x2 + · · ·+ bpxp

with bi ∈ Q. Then R(P, f)(X) always has distinct roots.
Furthermore, if R(P, f)(X) has an irreducible factor of degree p over K, then

its splitting field over K is the same as that of f(X).
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Proof. The first part is a consequence of the following

Sublemma. Let σ ∈ Gal(f/K) have order p, and let α1 = α, α2 = σα, . . . ,
αp = σp−1α be the roots of f(X). If, for c1, . . . , cp ∈ K, we have c1α1 + · · · +
cpαp ∈ K, then the polynomial

g(X) = c1 + c2X + · · · + cpX
p−1

has a root that is a primitive pth root of unity.3

Proof of Sublemma. Let L = K(α) and M = K(α1, . . . , αp). Consider
the map

ϕ = c11 + c2σ + · · · + cpσ
p−1 : L→M.

If c1 + · · · + cp = 0, we replace each ci by ci + 1.
Now, by assumption, ϕ(α) ∈ K. Moreover, since ϕ(K) = K, we can find

a ∈ K with ϕ(α) = ϕ(a), and hence β = α− a ∈ kerϕ \ 0.
Next, we replace K, L and M by the pth cyclotomic fields K ′ = K(µp), L

′ =
L(µp) and M ′ = M(µp). Letting P = 〈σ〉 be a p-Sylow subgroup in Gal(M ′/K ′),
we then consider the fixed field F = M ′P instead of K, and the single field M ′

instead of L and M . We still have a linear map ϕF : M ′ → M ′, and since
ϕF (β) = 0, we have kerϕF 6= 0.

Clearly, M ′/F is a Cp-extension, and so M ′ = F ( p
√
b) for some b ∈ F . Also,

σ( p
√
b) = ζ · p

√
b for a primitive pth root of unity ζ. In the basis

(1,
p
√
b, . . . , (

p
√
b)p−1),

ϕF is given by the diagonal matrix



g(1)
g(ζ)

g(ζ2)
. . .

g(ζp−1)



,

and since it is not injective, we must have g(ξ) = 0 for some primitive pth root
of unity ξ.

Switching back, if necessary, to the original ci’s, we will of course still have
g(ξ) = 0. Q.E.D.

To prove the first part of Lemma 1.2.2, we proceed as follows: If R(P, f)(X)
has a multiple root, it means that c1α1 + · · · + cpαp = 0 for some choice of the
ci ∈ Q with c1 + · · ·+cp = 0 and not all ci’s equal to 0. In particular, the ci’s are
not all equal. Thus, by the Sublemma, the polynomial c1 +c2X+ · · ·+cpX

p−1 ∈
Q[X ] must have a non-trivial common divisor with Xp−1 + · · · +X + 1. This,
however, is only possible if all the ci’s are equal.

As for the second part: If q(X) is an irreducible factor of R(P, f)(X) of de-
gree p, the splitting field M of f(X) over K obviously contains the splitting

3The Sublemma is true for any field K of characteristic 6= p. By implication, Lemma 1.2.2 is
true for any field of characteristic ` > 0, provided that ` 6= p and the pth cyclotomic extension
of �` has degree p − 1.
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field M ′ of q(x) over K. By [Hu, II.§1 Sätze 1.3 & 1.5] the group Gal(M/M ′)
is trivial, since its order is not divisible by p. (Sketch of proof: The orbits
in {α1, . . . , αp} under N = Gal(M/M ′) are permuted transitively by G =
Gal(M/Q). Hence, p equals the number of orbits times the number of elements
in an orbit. If N 6= 1, there is more than one element in an orbit, and so N acts
transitively on {α1, . . . , αp}, contradicting p - |N |.) Thus, M ′ = M . �

Remarks. (1) The lemma is no longer true if p is replaced by a composite
number, as X4−2 shows. Similarly, it may fail if the coefficients ai are not in Q:
If ζ is a primitive third root of unity, the linear resolvent

R(x1 − ζx2, X
3 − a)(X) = X6 − 3(2ζ + 1)aX3

has 0 as a triple root.
(2) The linear resolvents R(x1 + · · ·+xk, f)(X) and R(x1 + · · ·+xp−k, f)(X),

1 ≤ k ≤ p − 1, are just transformations of each other, and so we will generally
look only at the case k ≤ (p− 1)/2.

Proposition 1.2.3. (Soicher & McKay) Let f(X) ∈ K[X ] be an irre-
ducible and separable polynomial over K of degree n ≥ 2. Let P = c1x1 + c2x2

with c1, c2 distinct non-zero elements in K such that R(P, f)(X) has distinct
roots. Then Gal(f/K) has order n if and only if R(P, f)(X) factors into a
product of irreducible polynomials of degree n over K.

This result is taken from [S&M], and the proof is elementary.

Following Williamson ([Wil], quoting Soicher’s thesis), we now describe a
practical way of computing resolvent polynomials: For polynomials f(X) =
Xm +am−1X

m−1 + · · ·+a0 and g(X) = Xn + bn−1X
n−1 + · · ·+ b0, the Sylvester

resultant is defined as the (m+ n) × (m+ n) determinant

Res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 am−1 am−2 . . . a0

1 am−1 am−2 . . . a0

. . .
. . .

1 am−1 am−2 . . . a0

1 bn−1 . . . b1 b0
1 bn−1 . . . b1 b0

. . .
. . .

1 bn−1 . . . b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

cf. [Syl]. It is then well-known and fairly elementary, as shown for instance
in [Ja1, Thm. 5.7], that Res(f, g) = 0 if and only if f(X) and g(X) have a
common root, from which it is easy to deduce that

Res(f, g) =
∏

i,j

(αi − βj),

where α1, . . . , αm and β1, . . . , βn are the roots of f(X) and g(X), respectively.
(Sketch of proof: Considering the α’s and β’s as indeterminates, we obviously
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have that the right side divides the left, and that the quotient introduces no addi-
tional roots. Since they have the same constant term considered as polynomials
in the α’s, the quotient has constant term 1, and so must be equal to 1.)

Now, if c1, c2 are distinct non-zero elements, as in Proposition 1.2.3 above, we
get

R(c1x1 + c2x2, f)(X) =
Res((−c2)

nf((X − Y )/c2), c
n
1f(Y/c1))

(c1 + c2)nf(X/(c1 + c2))
,

where the resultant is taken with respect to a new indeterminate Y , and the
denominator is understood to be Xn when c1 = −c2. On the other hand, for
c1 = c2 = 1 we get instead

Res((−1)nf(X − Y ), f(Y )) = 2nf(X/2)R(x1 + x2, f)(X)2.

These methods generalise to linear resolvents with respect to other first-degree
polynomials. In this way resolvent polynomials can be computed efficiently.

Remarks. (1) If the purpose of computing R(c1x1 + c2x2, f)(X) is to study
the action of Gal(f/K) on ordered pairs of roots, the simplest choice of c1 and c2
is c1 = 1 and c2 = t an indeterminate, i.e., to work over K(t). This generalises
to ordered tuples in the obvious way.

(2) From the well-known formula

d(f) = (−1)n(n−1)/2
n∏

i=1

f ′(αi)

for the discriminant of a polynomial f(X) = Xn + an−1X
n−1 + · · · + a0 with

roots α1, . . . , αn, it is easily seen that

d(f) = (−1)n(n−1)/2nn Res(f, f ′/n).

In particular, for a trinomial f(X) = Xn + aX + b, we get

d(f) = (−1)n(n−1)/2
(
(1 − n)n−1an + nnbn−1

)
.

Exercises

Exercise 1.1. Let

f(X) = Xn + tn−1X
n−1 + · · · + t1X + t0

be the ‘general’ nth-degree polynomial (that is, t0, . . . , tn−1 are indeterminates).
Prove that d(f) is an irreducible polynomial in the t’s.

Exercise 1.2. Prove that the resultant of two monic polynomials f(X)
and g(X) in K[X ] is zero, if and only if f(X) and g(X) have a common root.

Exercise 1.3. Let f(X), g(X) and h(X) be monic polynomials over the same
field. Prove that

Res(fg, h) = Res(f, h)Res(g, h).

Exercise 1.4. Let f(X) and g(X) be monic polynomials over the same field.
Prove that

d(fg) = Res(f, g)2d(f)d(g).
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Exercise 1.5. (1) Let n > m > 0 with gcd(m,n) = 1. Find a formula for
the discriminant of Xn + aXm + b. [Hint: Formula on p. 80.]

(2) Let f(X) be a monic polynomial, and let g(X) = f(Xn) for some n.
Express d(g) in terms of f(0) and d(f).

Exercise 1.6. Let the (m,n)-resultant of two polynomials

f(X) = amX
m + am−1X

m−1 + · · · + a0

and
g(X) = anX

n + bn−1X
n−1 + · · · + b0

be given as the (m+ n) × (m+ n) determinant

Res(m,n)(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 am−2 . . . a0

am am−1 am−2 . . . a0

. . .
. . .

am am−1 am−2 . . . a0

bn bn−1 . . . b1 b0
bn bn−1 . . . b1 b0

. . .
. . .

bn bn−1 . . . b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

What does Res(m,n)(f, g) look like if am, bn 6= 0? If one of am and bn is zero? If
both are?

(3) Consider a polynomial

f(X) = amX
m + am−1X

m−1 + · · · + a0 ∈ K[X ],

as well as the associated ‘binary form’

Fm(X,Y ) = amX
m + am−1X

m−1Y + · · · + a1XY
m−1 + a0Y

m

in two indeterminates X and Y . (Note that Fm(X,Y ) depends on both f(X)
andm, sincem need not be the actual degree of f(X).) Prove that the non-trivial
zeroes in K2 for Fm(X,Y ) (i.e., zeroes other than (0, 0)) lie on lines through the
origin (so-called ‘projective points’). Prove that the ordinary zeroes α of f(X)
correspond to projective zeroes through (α, 1). Prove that Fm(X,Y ) may have
one additional projective zero, namely the line through (1, 0) (‘infinity’). Finally,
prove that Res(m,n)(f, g) = 0 if and only if the corresponding forms Fm(X,Y )
and Gn(X,Y ) have a common projective zero. (We refer to Appendix B for
more on binary forms and projetive zeroes.)


