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1. Introduction

Our subject combines the ancient charms of number theory with the modern
fascination with algorithmic thinking. Newcomers to the field can appreciate
this conjunction by studying the many elementary pearls in the subject. The aim
here is to describe a few of these gems with the combined goals of providing
background for subsequent articles in this volume, and luring the reader into
pursuing full-length treatments of the subject, such as [Bach and Shallit 1996;
Bressoud and Wagon 2000; Cohen 1993; Crandall and Pomerance 2005; Knuth
1981; von zur Gathen and Gerhard 2003; Shoup 2005].

Many details will be left to the reader, and we will assume that he or she
knows (or can look up) basic facts from number theory, algebra, and elementary
programming.

We tend to focus more on the mathematics and less on the sometimes fascinat-
ing algorithmic details. However, the subject is grounded in, and motivated by,
examples; one can learn interesting and surprising things by actually implement-
ing algorithms in number theory. Implementing almost any of the algorithms
here in a modern programming language isn’t too hard; we encourage budding
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number theorists to follow the venerable tradition of their predecessors: write
programs and think carefully about the output.

2. Algorithmic complexity

Algorithms take input and produce output. The complexity of an algorithm
A is a function CA.n/, defined to be the maximum, over all input I of size at
most n, of the cost of running A on input I . Cost is often measured in terms
of the number of “elemental operations” that the algorithm performs and is in-
tended, in suitable contexts, to approximate the running time of actual computer
programs implementing these algorithms.

A formalization of these ideas requires precise definitions for “algorithm,”
“input,” “output,” “cost,” “elemental operation,” and so on. We will give none.

Instead, we consider a series of number-theoretic algorithms and discuss their
complexity from a fairly naive point of view. Fortunately, this informal and in-
tuitive approach is usually sufficient for purposes of algorithmic number theory.
More precise foundations can be found in many texts on theoretical computer
science or algorithmic complexity such as [Garey and Johnson 1979; Hopcroft
and Ullman 1979; Kozen 2006].

The first problem arises in elementary school.

PROBLEM 1. MULTIPLICATION: Given integers x and y, find their product xy.

From the algorithmic perspective, the problem is woefully underspecified. We
interpret it in the following natural (but by no means only possible) way. An
algorithm that solves MULTIPLICATION takes two strings of symbols as input
and writes a string of symbols as its output. The input strings are base b repre-
sentation of integers x and y, where b > 1 is fixed, and in practice one might
expect b D 2, 10, 232, or 264. The algorithm follows a well-defined procedure
in which the next step is determined by the current state of the computation; one
might imagine a program written in an idealized form of your favorite computer
language that has access to unlimited memory. Its output string represents the
base-b representation of the product xy.

The natural notion of the size of an integer x is the total number of symbols
(base-b digits) in the input, perhaps augmented by a small constant to allow for
delimiting the integer and specifying its sign. For definiteness, we define the
base-b size of x to be

sizeb.x/ WD 1 C dlogb.1 C jxj/e;

where logb is the logarithm to the base b, and due is the ceiling of u — the
smallest integer greater than or equal to u.
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The size of an integer x is O.log jxj/, where g.x/ D O.f .x// is a shorthand
statement saying that g is in the class of functions such that there is a constant C

with jg.x/j�C jf .x/j for sufficiently large x. Note that O.loga x/DO.logb x/

for a; b >1. In particular, if we are interested in complexity only up to a constant
factor the choice of b > 1 is irrelevant.

The usual elementary school multiplication algorithm uses O.n2/ digit oper-
ations to multiply two input integers of size n. More precisely, if x and y have
size n, then approximately n2 digit-sized multiplications and n additions of n-
digit intermediate products are required. Since adding n-digit integers takes time
O.n/, the overall complexity of multiplying n-digit integers using this algorithm
is O.n2/Cn �O.n/ D O.n2/: Notice that the O-notation gracefully summarizes
an upper bound on the running time of the algorithm — the complexity O.n2/ is
independent of the base b, the precise details of measuring the size of an integer,
the definition of size of two inputs (as the maximum of the two integer inputs,
or the total of their sizes), and so on.

An algorithm A is said to take polynomial time if its complexity CA.n/ is
O.nk/ for some integer k. Although this is a flexible definition, with unclear
relevance to computational practice, it has proved to be remarkably robust. In
fact, it is sometimes reasonable to take “polynomial time” as synonymous with
“efficient,” and in any case the notion has proved useful in both theory and
practice.

Once it is known that a problem can be solved in polynomial time, it is in-
teresting to find the smallest possible exponent k. Several improvements to the
O.n2/ multiplication algorithm are known, and the current state of the art is a
striking algorithm of Schönhage [1971] that takes time O.n log n log log n/ to
multiply two n-digit integers. This is sometimes written inexactly as O.n1C"/,
where " denotes an arbitrarily small positive number. Note that O.n/ is an
obvious lower bound since the input has size O.n/ and in order to multiply
integers it is necessary to read them. Algorithms that use the Schönhage al-
gorithm, or related ones, are said to use fast arithmetic, and algorithms that
are close to obvious lower bounds are sometimes said to be asymptotically fast.
Many such algebraic and arithmetic algorithms are known (see [Bernstein 2008]
for examples), and they are becoming increasingly important in computational
practice.

The elemental operations above act on single digits (i.e., bits if b D 2),
and the resulting notion of complexity is sometimes called bit complexity. In
other contexts it might be more useful to assume that any arithmetic operation
takes constant time on integers of arbitrary size; this might be appropriate, for
example, if all integers are known to fit into a single computer word. When
complexity of an algorithm is defined by counting arithmetic operations, the
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results is said to be the arithmetic complexity of the algorithm. In this model the
cost of a single multiplication is O.1/, reminding us that complexity estimates
depends dramatically on the underlying assumptions.

PROBLEM 2. EXPONENTIATION: Given x and a nonnegative integer n, com-
pute xn.

Again, the problem is underspecified as it stands. We will assume that x is an
element of a set that has a well-defined operation (associative with an identity
element) that is written multiplicatively; moreover, we will measure cost as the
number of such operations required to compute xn on input x and n. The size
of the input will be taken to be the size of the integer n.

Although x16 can be computed with 15 multiplications in an obvious way,
it is faster to compute it by 4 squarings. More generally, the binary expansion
n D

P
ai2

i , with ai 2 f0; 1g, implies that

xn
D xa0.x2/a1.x4/a2 � � � (2-1)

which suggests a clever way to interleave multiplications and squarings:

RIGHT-TO-LEFT EXPONENTIATION

Input: x as above, and a nonnegative integer n

Output: xn

1. y WD 1

2. While n > 0

if n is odd, y WD xy // ai is 1
x WD x2, n WD bn=2c

3. Return y

Here “WD” denotes assignment of values to variables, “==” indicates a comment,
“1” denotes the identity for the operation, and the floor buc is the largest integer
less than or equal to u. The correctness of the algorithm is reasonably clear from
equation (2-1) since x2k

is multiplied into y if and only if the kth bit ak of the
binary expansion of n is nonzero. This can be proved more formally by showing
by induction that at the beginning of Step 2, X N D xny holds, where X and
N denote the initial values of the variables x and n. When n is 0 equation says
that X N D y, so that y is the desired power.

The usual inductive definition of Exp.x; n/ WD xn gives an obvious recursive
algorithm:

Exp.x; n/ D

8<:
1 if n D 0;

Exp.x2; n=2/ if n > 0 is even;

x � Exp.x2; .n � 1/=2/ if n is odd.
(2-2)
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Experienced programmers often implement recursive versions of algorithms be-
cause of their elegance and obvious correctness, and when necessary convert
them to equivalent, and perhaps faster, iterative (nonrecursive) algorithms. If
this is done to the recursive program the result is to Right-to-Left algorithm
above.

Curiously, if the inductive definition is replaced by the mathematically equiv-
alent algorithm in which squaring follows the recursive calls,

Exp.x; n/ D

8<:
1 if n D 0;

Exp.x; n=2/2 if n > 0 is even,
x � Exp.x; .n � 1/=2/2 if n is odd,

(2-3)

then the corresponding iterative algorithm is genuinely different.

LEFT-TO-RIGHT EXPONENTIATION

Input: x, a nonnegative integer n, a power of two m D 2a such that
m=2 � n < m

Output: xn

1. y WD 1

2. While m > 1

m WD bm=2c; y WD y2

If n � m then y WD xy; n WD n � m

3. Return y

Correctness follows inductively by proving that at the beginning of Step 2, n<m

and ymxn D xN . In contrast to the earlier algorithm, this version consumes the
bits ai in the binary expansion of n starting with the leftmost (most significant)
bit.

The complexity of any of the versions of this algorithm (collectively called
EXP in the sequel) is O.log n/ since the number of operations is bounded by 2 �

size2.n/. As will be seen, this remarkable efficiency has numerous applications
in algorithmic number theory. Note that the naive idea of computing xn by
repeatedly multiplying by x takes time O.n/, which is exponential in the input
size.

REMARK 1. In a specific but important practical case the left-to-right version
of EXP is better than the right-to-left version. Suppose that our operation is
“multiplying modulo N ” and that x is small relative to N . Then multiplying
by the original x is likely to take less time than modular multiplication by an
arbitrary integer X in the range 0 � X < N . The left-to-right version preserves
the original x (though the squarings involve arbitrary integers), whereas the
right-to-left version modifies x and hence performs almost all operations on
arbitrary elements. In other words, with a different computational model (bit
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complexity, with the specific underlying operation “multiply modulo N ”, and
x small) the left-to-right algorithm, either recursive or iterative, is significantly
better than right-to-left exponentiation.

REMARK 2. If the underlying operation is multiplication of integers, the bit
complexity of computing xn is exponential, since the output has size that is
exponential in the input size log n. Any algorithm will be inefficient, illustrating
yet again the dependence on the underlying computational model.

This discussion of calculating powers barely scratches the surface of a great
deal of theoretical and practical work. The overwhelming importance of ex-
ponentiation has led to many significant practical improvements; perhaps the
most basic is to replace the base-2 expansion of n with a base-b expansion
for b a small power of 2. On the theoretical side, there are interesting results
on finding the absolutely smallest possible number of operations required to
compute xn [Knuth 1981].

PROBLEM 3. GCD: Given positive integers a and b, find the largest integer that
is a divisor of both a and b.

The greatest common divisor (GCD) is denoted gcd.a; b/. Perhaps the most
famous number-theoretic algorithm of all is due to Euclid.

EUCLID’S ALGORITHM

Input: Positive integers a and b

Output: gcd.a; b/

While b > 0

fa; bg := fb; a mod bg

Return a

Here r D a mod b is the remainder when a is divided by b, i.e., the unique
integer r , 0 � r < b, such that there is a q with a D qb C r . The simultaneous
assignment statement fa; bg D fb; a mod bg could be implemented in a more
prosaic programming language by something along the lines of the three state-
ments temp WD b, b D a mod b, a D temp. The correctness of the algorithm
can be verified by showing that the GCD of a and b doesn’t change at each step
of the algorithm, and that when a becomes divisible by b, then b is the GCD.

Just as with multiplication, the remainder a mod b can be found in time
log2.max.a; b// with straightforward algorithms, and time log1C" max.a; b/ for
any positive " if asymptotically fast algorithms are used. (Here logr x is short-
hand for .log x/r .) It isn’t too hard to work out that a > b after one step of
the algorithm, and then the smallest number is halved in (at most) two steps of
the algorithm. This means that the number of times that the loop is executed
(the number of remainder operations) is bounded by O.log max.a; b//. Thus the
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algorithm has complexity O.k3/ on k-bit input, or O.k2C"/ if fast arithmetic
is used. We will have much much more to say about Euclid’s algorithm later.

If gcd.a; b/ D 1 then a and b are said to be relatively prime, or coprime.

PROBLEM 4. PRIMALITY: Given a positive integer n > 1, is n is a prime?

The is an example of a decision problem, for which the output is either “yes” or
“no.”

Perhaps the most straightforward algorithm for PRIMALITY is the trial divi-
sion method: for d D 2; 3; : : : ; test whether n is divisible by d . If n is divisible
by some d �

p
n then n is composite; if n is not divisible by any d �

p
n then n

is prime. The time required is O.
p

n/, which is an exponential function of the
size of n, and this algorithm is impractical for even moderately large n.

Fermat’s Little Theorem says that if n is a prime and a is coprime to n then
an�1 � 1 mod n, which implies that the order of a in .Z=nZ/�/ divides n � 1.
The condition an�1 � 1 mod n is easy to check, using EXP in .Z=nZ/�.

REMARK 3. We take the opportunity to remind the reader that two integers
are congruent modulo n if their difference is divisible by n, that Z=nZ denotes
the set of n classes under this equivalence relation, and that Z=nZ is a ring
under the natural addition and multiplication operations induced from operations
on the integers. Moreover, .Z=nZ/� denotes the group of units in this ring,
i.e., the set of congruence classes containing integers that are coprime to n,
under the operation of multiplication. This group has �.n/ elements, where
�.n/ is the Euler-phi function — the number of positive integers less than n

that are coprime to n. Finally, we let a mod n denote the class of Z=nZ that
contains a. We will tolerate the conflict with earlier usage because the meaning
can be disambiguated from context: if a mod n is an integer then the remainder
is intended, and if a mod n lies in Z=nZ then the congruence class is intended.

In the favorable circumstance in which the prime factorization of n�1 is known,
Fermat’s Little Theorem can be turned on its head to give a proof of primality.

THEOREM 5. If a and n are integers such that an�1 � 1 mod n, and a.n�1/=q 6�

1 mod n for all prime divisors q of n � 1, then n is prime.

PROOF. As noted above, the congruence an�1 � 1 mod n implies that the order
of a mod n in .Z=nZ/�, which we will denote by ordn.a/, is a divisor of n � 1.
Any proper divisor of n � 1 is a divisor of .n � 1/=q for some prime q. The
second condition of the theorem says that ord.a/ does not divide .n � 1/=q for
any q, and we conclude that ord.a/ D n � 1. Thus .Z=nZ/� has n � 1 elements
and n is a prime, as claimed. �

A generalization of this theorem due to Pocklington says that only a partial
factorization of n�1 is necessary: if m is a divisor of n�1 with m >

p
n, then
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n is a prime if an�1 � 1 mod n, and a.n�1/=q 6� 1 mod n for prime divisors q

of m. Loosely, this says that primality is easy to test if n � 1 is half-factored.
Unfortunately, this does not give an efficient primality test: For large n no

algorithm is known that efficiently factors or half-factors n � 1.
As a first try, observe that if n is composite then an�1 should be, intuitively,

a random integer modulo n. Thus we could choose several random a and report
“probable prime” when Fermat’s congruence an�1 � 1 mod n holds for all a,
and “composite” if it fails for any one of them. Unfortunately, there are positive
composite integers called Carmichael numbers (e.g., n D 561 D 3 � 11 � 17; see
[Crandall and Pomerance 2005]) such that the congruence holds for all a that
are relatively prime to n.

As a second try, we “take the square root” of the Fermat congruence. To
explain this it is convenient to review Legendre and Jacobi symbols.

An integer a is a quadratic residue modulo an odd prime p if it is a nonzero
square, i.e., if there is an x (not divisible by p) such that x2 � a mod p. Non-
squares are said to be quadratic nonresidues. This information is encoded in the
Legendre symbol

�
a

p

�
D

8<:
0 if p divides a;

1 if x is a quadratic residue mod p;

�1 if x is a quadratic nonresidue mod p:

Euler’s Criterion gives an explicit congruence for the Legendre symbol�
a

p

�
� a.p�1/=2 mod p; (2-4)

from which the symbol can be computed efficiently using EXP in .Z=pZ/�. The
Jacobi symbol generalizes the Legendre symbol and is defined, for an integer
a and a positive odd positive integer b, by reverting to the Legendre symbol
when b is an odd prime, and enforcing multiplicativity in the denominator; if
b D

Q
bep is the factorization of b into prime powers, then�

a

b

�
D

Y
p

�
a

p

�ep

:

The Jacobi symbol is multiplicative in both the numerator and denominator,
depends only on a mod b, and obeys the famous law of quadratic reciprocity�

a

b

��
b

a

�
D .�1/..a�1/.b�1//=4; a; b odd:

Moreover, two “supplementary laws” hold:�
�1

b

�
D .�1/.b�1/=2;

�
2

b

�
D .�1/.b2�1/=8:
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This leads to a natural recursive algorithm, using the identities�
a

b

�
D

�
a mod b

b

�
;�

a

b

�
D .�1/.b2�1/=8

�
a=2

b

�
;�

a

b

�
D .�1/.a�1/.b�1/=4

�
b

a

�
;

applicable, respectively, when a < 0 or a � b, a is even, or a is odd. The
crucial point is that this is an efficient algorithm even if the factorization of
b is unknown. An actual implementation of this resembles Euclid’s algorithm
augmented with some bookkeeping.

REMARK 4. Let n D Fk WD 22k

C1 be the kth Fermat number. The reader may
enjoy using Theorem 5 and quadratic reciprocity to show that if n D Fk and
3.n�1/=2 � �1 mod n then n is prime, and to prove that if n is prime then the
congruence holds.

Now we return to the problem of giving an efficient algorithm for primality. We
use Euler’s congruence �

a

p

�
� a.p�1/=2 mod p

together with one of the seminal ideas of twentieth century computer science:
it can be beneficial to allow algorithms to make random moves!

A probabilistic (randomized) algorithm extends our earlier implicit notion of
an algorithm in that such an algorithm is allowed to flip a coin as needed and
make its next move depending on the result. Typically a coin flip is deemed
to cost one unit of running time. It is possible to model this more formally by
thinking of the sequence of random bits b 2 f0; 1g as a second input string to the
algorithm. Saying that an algorithm has a property with probability p means
that it has the property for a fraction p of the possible auxiliary input strings
(coin flips). For example, if the algorithm returns a correct answer for two-thirds
of all possible input bit strings, then we say that the probability of correctness
is p D 2=3.

It may seem worse than useless to allow algorithms to make random moves
unrelated to the problem at hand but, as we will see, this additional capability
can be surprisingly powerful.

REMARK 5. Probabilistic algorithms are ubiquitous. In circumstances in which
it is necessary to emphasize that an algorithm is not probabilistic it will be
referred to as a deterministic algorithm.

The following primality test is a famous example of a probabilistic algorithm.
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SOLOVAY–STRASSEN PRIMALITY TEST

Input: A positive integer k, an odd integer n > 1

Output: “Prime” or “Composite”
1. For i D 1; 2; : : : ; k

Choose a randomly from f1; 2; : : : ; n � 1g

If
�

a

n

�
D 0 or

�
a

n

�
¤ a.n�1/=2 mod n then

Output “Composite” and halt.
2. Output “Prime”

REMARK 6. The algorithm chooses a uniformly random element of a finite set.
The reader may enjoy the puzzle of figuring out how to do this using coin flips,
i.e., events of probability 1=2. The goal is to simulate an arbitrary probability,
and to do so in an efficient manner, e.g., to use about log n coin flips on average
to choose a uniformly random element from an n-element set.

There are different flavors of probabilistic algorithms, according to whether the
output (or some possible outputs) are true or just highly likely to be true, whether
running times are bounds, or merely expected running times, etc. The following
theorem clarifies this in the case of Solovay–Strassen, e.g., showing that the
answer “Composite” is always true, the answer “Prime” is highly likely to be
true, and the running time is polynomial in the input size and absolute value of
the logarithm of the error probability.

THEOREM 6. The Solovay–Strassen algorithm returns “Prime” if n is prime,
and returns “Composite” with probability at least 1�1=2k if n is composite. Its
expected running time is bounded by a polynomial in log n and k.

PROOF. (Sketch.) The GCD and exponentiation steps can be done it at most
time O.log3 n/, so each iteration takes polynomial time. The only aspect of the
running time that depends on the input bits is the choice of a random element
of the .Z=nZ/�.

If n is prime, then Euler’s congruence implies that the test returns “Prime.”
If n is composite then the algorithm will return “Composite” unless each of

k random choices of a lies in the subgroup

E.n/ WD

n
a 2 .Z=nZ/�

W

�
a

n

�
� a.n�1/=2 mod n

o
of the multiplicative group .Z=nZ/�, sometimes called the group of “Euler liars”
for the composite number n. The coin flips done by the algorithm allow it to
choose a uniformly random element of .Z=nZ/�. It can be shown [Bach and
Shallit 1996] that jE.n/j � �.n/=2, so that the chance of a composite number
passing all k of these tests is at most 1 � 1=2k . �



BASIC ALGORITHMS IN NUMBER THEORY 35

The technique of repeating a test to quickly drive the probability of bad behavior
to near zero is common in practical probabilistic algorithms. For example, the
probability of failure in one round of Solovay–Strassen is at most 1=2, and that
means that the probability of failure after k independent tests is at most 1=2k ,
so assuring the failure probability of at most " requires log.1="/ tests.

The Jacobi symbol compositeness test inside the Solovay–Strassen algorithm
can be improved. If n is odd, a is coprime to n, and n�1 D 2kr , where r is odd,
let A WD ar mod n. If n is prime then, by Fermat’s Theorem, A2k

� 1 mod n.
Since the only square roots of 1 in a field are ˙1, we know that if n is prime then
either A D 1, or else �1 occurs in the sequence A; A2; A4; : : : ; A2k

D 1 mod n.
If this happens we say that n is an strong probable prime to the base a.

If this does not happen, i.e., either A ¤ 1 mod n and A2j

¤ �1 mod n for
0 � j < k, then n is definitely composite, and we say that a is a witness of n’s
compositeness.

The obvious generalization of Solovay–Strassen using this test is to choose
a series of a’s, and see whether one is a witness of n’s compositeness or n is a
strong probable prime to all of those bases. This is sometimes called the strong
Fermat test.

Here are several nontrivial results related to the above ideas; for a discussion
and details see [Crandall and Pomerance 2005] and [Damgård et al. 1993].

(i) If an odd n is composite then at least 3=4 of the a’s coprime to n are witnesses
to n being composite.

(ii) If a famous conjecture in number theory is true — the Extended Riemann
Hypothesis (ERH) — then any odd composite n has a witness that is less than
2 log2 n. In particular, if we assume the ERH then there is a polynomial-time
primality test (this also applies to the Solovay–Strassen test).

(iii) Let n be an odd integer chosen uniformly randomly between 2k and 2kC1,
and let a be chosen randomly among integers between 1 and n that are co-
prime to n. If n is a strong probable prime to the base a then the probability
that a is composite is less than k2=4

p
k�2. Thus for large n a single probable

prime test can give high confidence of primality.

These ideas can provide overwhelming evidence that a given integer is prime,
but no rigorous proof. If we want absolute proof, the story changes. Many
proof techniques have been considered over the years, and this continues to be
an active area for practical work. The central theoretical question is whether
primality can be proved in polynomial time, and this was settled dramatically in
2002 when Manindra Agrawal, Neeraj Kayal, and Nitin Saxena [Agrawal et al.
2004] discovered a deterministic polynomial-time algorithm. For a description
of this, and algorithms currently used in practice, see [Schoof 2008b].
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PROBLEM 7. QUADRATIC NONRESIDUES: Given an odd prime p, find a qua-
dratic nonresidue modulo p.

This simple problem illustrates stark differences between theory and practice,
and deterministic and probabilistic algorithms.

If p is an odd prime there are .p � 1/=2 quadratic residues and .p � 1/=2

nonresidues mod p, so if a mod p is nonzero, then a has a 50/50 chance of
being a nonresidue. Moreover, quadratic residuosity/nonresiduosity is easy to
establish by calculating a Legendre symbol. Thus there is an obvious proba-
bilistic algorithm: repeatedly choose a at random until a nonresidue is found.
With overwhelming likelihood a nonresidue will be found quickly, and thus
quadratic nonresidues can be found quickly with a probabilistic polynomial-
time algorithm.

However, no deterministic polynomial-time algorithm is known. Nothing
seems to be better than testing a D 2; 3; : : : until arriving at a nonresidue. There
are heuristic grounds to think that there is a nonresidue a D O.log1C" p/. How-
ever, the best that can be proved is that one finds a nonresidue a D O.p1=4/.
The simple-minded (deterministic) algorithm for finding a nonresidue could take
exponential time. It is known that if the Extended Riemann Hypothesis is true,
then there is a nonresidue a < 2 log2 p D O.log2 p/ [Bach 1990].

PROBLEM 8. FACTORING: Given a positive integer n > 1, find a proper divisor
m of n, i.e., a divisor m such that 1 < m < n.

Factoring appears to be much harder than primality, both in theory and prac-
tice. Trial division again gives an obvious algorithm that is impractical unless n

has a small divisor. The problem has fascinated mathematicians for centuries,
and a vast menagerie of algorithms are known. Details of two of the most
important current algorithms are described elsewhere in this volume [Poonen
2008; Stevenhagen 2008b]. Both algorithms require the use of sophisticated
mathematical ideas: one requires the use of elliptic curves, and the other relies
extensively on algebraic number theory.

We now describe a striking factoring algorithm, called the Pollard � algo-
rithm, due to John Pollard [1978].

Let n be a composite integer that is not a prime power. (It is easy to check
whether or not n is a perfect power by taking sufficiently accurate kth roots for
2 � k � log2 n.) Let

f W Z=nZ ! Z=nZ; x ‘ f .x/ D x2
C 1;

and let
f k.x/ D f .f .� � � f .x/ � � �//

denote the kth iterate of f applied to x. The Pollard � algorithm is:
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POLLARD � FACTORING ALGORITHM

Input: A composite n > 1, not a prime power
Output: A nontrivial factor of n

1. Choose a random x 2 f0; 1; : : : ; n � 1g

2. For i WD 1; 2; : : :

g WD gcd.f i.x/; f 2i.x//

If g D 1, go to the next i

If 1 < g < n then output g and halt
If g D n then go back to Step 1 and choose another x

What could possibly be going on here? The birthday paradox in elementary
probability theory says that a collection of 23 or more people is more likely
than not to have two people with the same birthday. More generally, if elements
are chosen randomly from a set of size n, with replacement, a repeat is likely
after O.

p
n/ choices [Knuth 1981].

Let p be an (unknown) prime divisor of n. Evidence suggests that f k.x/ mod
p is indistinguishable from a random sequence. Assuming that this is the case,
the birthday paradox implies that the sequence repeats a value after O.

p
p/

steps, after which time it cycles. Thus the sequence of values mod p has the
form

y1; : : : ; ym; ymC1; : : : ; ymCk D ym; ymCkC1 D ymC1; : : : :

A little calculation shows that if i is the smallest multiple of k that exceeds m

then yi D y2i . (This elegant idea is usually referred to as Floyd’s cycle-finding
algorithm, and it enables the algorithm to use only a very small amount of
memory.) In the context of the Pollard � algorithm this means that p divides
gcd.f i.x/; f 2i.x//. Thus the GCDs in the algorithm will sooner or later be
divisible by p. One catastrophe that can happen is that, by some strange coin-
cidence, all primes dividing n happen to divide the GCD at the same time, but
this is unlikely in practice.

The complexity of this algorithm is O.n1=4/ in the worst case that n is the
product of two roughly equal primes. The Pollard � algorithm does have the
virtue that it finds smaller factors sooner, so that it is reasonable to apply the
algorithm to a composite number when there is no knowledge of the size of the
factors. Many further details and optimizations of this charming algorithm and
variants can be found in [Cohen 1993; Knuth 1981; Teske 2001].

In the last 25 years, a number of algorithms have been proposed for factoring
in subexponential time, i.e., in time less than O.n"/ for all " > 0. All are
probabilistic, and most rely, for this favorable complexity estimate, on highly
plausible, but as yet unproved, assumptions. The conjectured run times are
sometimes said to be the heuristic complexity of these algorithms.
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To describe the complexity of these algorithms, let

LnŒaI c� D exp
�
.c C o.1//.log n/a.log log n/1�a

�
:

where o.1/ denotes a term that goes to 0 as n goes to infinity. This function
interpolates between polynomial time, for aD0, and exponential time, for aD1,
and its peculiar shape arises from formulas for the density of smooth numbers
[Granville 2008] (a number is “y-smooth” if all of its prime factors are less than
or equal to y).

The first of the two new algorithms described elsewhere in this volume is the
Elliptic Curve Method (ECM), due to Hendrik Lenstra [1987]; see also [Poonen
2008]. The algorithm relies on the theory of elliptic curves over finite fields
and some eminently believable heuristics concerning them; the (heuristic) com-
plexity of this probabilistic algorithm is LŒ1=2I 1�. The ECM shares the advan-
tage, with trial division and the Pollard � algorithm, that it finds smaller factors
faster. A number of other factoring algorithms are known that have complexity
LŒ1=2I 1�. An algorithm based on class groups of quadratic fields [Lenstra and
Pomerance 1992] is “rigorous” in the sense that its LŒ1=2I 1� complexity does
not rely on any heuristics.

A few years after the ECM appeared, John Pollard described an algorithm for
factoring numbers of the form n D a �bk Cc for k large. Shortly afterwards, this
was generalized to arbitrary positive integers n. This algorithm is a successor
to the so-called Quadratic Sieve algorithm (QS), and is called the Number Field
Sieve (NFS); its heuristic complexity is LnŒ1=3I 4=32=3� D LnŒ1=3I 1:92 : : : �.
The unproved assertions on which this complexity is based are natural state-
ments concerning the proportion of polynomials values that are smooth; these
assertions seem true in practice but their proof seems beyond current techniques.
The basic idea of this so-called index-calculus algorithm is to find smooth in-
tegers, and smooth elements of algebraic number fields, by sieving, and then
solve a system of linear equations over the field with two elements. The speed
of the algorithm in practice derives from the fact that the basic sieving operation
can be implemented efficiently on modern computers. Details can be found in
[Crandall and Pomerance 2005; Lenstra and Lenstra 1993; Stevenhagen 2008b].

PROBLEM 9. DISCRETE LOGARITHMS: Given an element x of a finite cyclic
group G and a generator g of that group, find a nonnegative integer k such that
x D gk .

The problem is not precise until the representation of elements of, and the
operation in, the finite group is made explicit. The difficulty of the discrete
logarithm problem (DLOG) depends on the size of the group and on its specific
representation. The additive group G D Z=nZ D f0; 1; 2; : : : ; n � 1g is cyclic,
and the discrete logarithm problem in G is easy with the usual representation of
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elements. The discrete logarithm problem for the multiplicative group .Z=pZ/�

is hard, and its difficulty is comparable to the difficulty of factoring an integer
of the size of p. There is a Pollard � algorithm for solving this DLOG problem
[Pomerance 2008; Teske 2001], but the best currently known algorithm for this
group is a sub-exponential index calculus algorithm closely related to the NFS
factoring algorithm, with heuristic complexity Lp Œ1=3I 4 �32=3�; see [Pomerance
2008; Schirokauer 2008].

REMARK 7. Interest in the DLOG problem has been stimulated by crypto-
graphic applications, most notably the famous Diffie–Hellman protocol: If A

and B want to have a public conversation which ends with them sharing a secret
that no onlooker could reasonably discover, then they start by (publicly) agreeing
on a suitable cyclic group G of order n together with a generator g of that group.
Then A chooses a random integer a < n, and communicates ga to B, in public.
Similarly B chooses a random integer b and transmits gb to A over a public
channel. They can then each privately compute a joint secret

s D .ga/b
D .gb/a:

The most obvious way for an eavesdropper to defeat this is to intercept ga, solve
the implicit DLOG problem to find a, to intercept gb and compute s D .gb/a.
More generally, the eavesdropper can succeed if he or she can find gab knowing
g, ga, and gb . No efficient algorithm to do this is known if G is a large cyclic
subgroup of prime order in .Z=pZ/� for some prime p, or for a large cyclic
subgroup G of prime order of the group of points E.Fp/ on a suitable elliptic
curve E over a finite field Fp WD Z=pZ. The representation of a cyclic group
in the group of points of an elliptic curve seems particularly opaque, and in
this case no sub-exponential discrete logarithm algorithms are known at all. For
details on these cases, see [Pomerance 2008; Poonen 2008; Schirokauer 2008].

The difficulty of the abstract discrete logarithm problem in a group is dominated
by the difficulty of the problem in the largest cyclic subgroup of prime order
[Pomerance 2008]. This explains why in the cases of the groups .Z=pZ/� and
E.Fp/ above, one usually considers cyclic subgroups of prime order.

The largest cyclic subgroup of prime order in a cyclic group G of order 2n

has order 2, and there is a particularly efficient DLOG algorithm for G. Let g

be a generator of G. There is a chain of subgroups

1 D G0 � G1 � G2 � � � � � Gn�1 � Gn D G;

where Gm has 2m elements. To find the logarithm of a 2 G with respect to g,
note that a2n�1

is of order 1 or 2. In the first case, a lies in Gn�1. In the second
case, ag lies in the subgroup. In either case we then use recursion.
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PROBLEM 10. SQUARE ROOTS MODULO A PRIME: Given an odd prime p

and a quadratic residue a, find an x such that x2 � a mod p.

We start by showing how to efficiently reduce this problem to QUADRATIC

NONRESIDUES. This means that modular square roots can be found efficiently
once a quadratic nonresidue is known. Let a be a quadratic nonresidue. Write
p�1 D 2tq, where q is odd. The element aq lies in the subgroup G of .Z=pZ/�

of order 2t , and b D gq is a generator of that group. By the observation above
on 2-power cyclic groups, the discrete logarithm in the cyclic 2-group G is easy
and we can efficiently find a k such that

aq
D bk :

Note that k is even since a.p�1/=2 � 1 mod p. Simple calculation shows that
x D a.p�q/=2bk=2 is a square root of a:

x2
D a.p�q/bk

D a.p�q/aq
D ap

� a mod p:

The running time of the this procedure depends on the power of 2 dividing p�1.
The conclusion is that square roots modulo p can be found efficiently if qua-

dratic nonresidues can be found efficiently; using this idea, taking square roots
modulo a prime is easy in practice, and easy in theory if probabilistic algorithms
are allowed.

More recently, René Schoof [1985] discovered a deterministic polynomial-
time algorithm for finding square roots of a fixed integer a modulo a prime,
using elliptic curves. In practice, this algorithm is not competitive with the
probabilistic algorithms above since the exponent on log p is large. However,
Schoof’s paper has had an enormous impact on the study of elliptic curves over
finite fields [Poonen 2008], since it also pioneered new techniques for finding
the order of the group E.Fp/ for large p.

PROBLEM 11. MODULAR SQUARE ROOTS: Given an integer n and an integer
a, determine whether a is a square modulo n, and find an x such that x2 �

a mod n if x exists.

If the prime factorization of n is known, then the algorithm above can be com-
bined with Hensel’s Lemma and the Chinese Remainder Theorem (both dis-
cussed later) to find a square root of a modulo n. However, the working algo-
rithmic number theorist is often confronted with integers n whose prime factor-
ization is unknown. In this case, no efficient modular square root algorithm is
known.

In fact, more is true: MODULAR SQUARE ROOTS is equivalent, in a sense to
be made precise shortly, to FACTORING. This says that in addition to the above
fact — that factoring n enables the square root problem to be solved easily —
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it is also the case that an algorithm for MODULAR SQUARE ROOTS enables
n to be factored efficiently. To factor n, first check that it is odd and not a
perfect power. Then choose a random y and apply the hypothetical MODULAR

SQUARE ROOTS algorithm to a D y2 mod n to get an x such that

x2
� y2 mod n:

Any common divisor of x and y is a factor of n, so assume that x and y have
no common divisor larger than 1. If p is a factor of n then p divides x2 �y2 D

.x �y/.x Cy/. In addition, it divides exactly one of the factors x �y or x Cy

(if it divides both, it would divide their sum 2x and their difference 2y).
If y is random, then any odd prime that divides x2 � y2 has a 50/50 chance

of dividing x Cy or x �y, and any two primes should presumably (i.e., heuris-
tically) have a 50/50 chance of dividing different factors. In that case, greatest
common divisor gcd.x �y; n/ will be a proper factor of n. If this fails, try again
by choosing another random y. After k choices, the probability that n remains
unfactored is 2�k .

Thus FACTORING and MODULAR SQUARE ROOTS are in practice equivalent
in difficulty.

REMARK 8. Replacing square roots by eth roots for e > 2 leads to a problem
closely related to the RSA cryptosystem, perhaps the most famous of all public-
key cryptographic systems. Let n D pq be the product of two large primes,
and G D .Z=nZ/�. The RSA cryptosystem uses exponentiation as a mixing
transformation on G. A message of arbitrary length is broken a sequence of
elements of G, and each element is encrypted separately. If e > 1 is an integer
relatively prime to .p � 1/.q � 1/ then the encryption map EW G ! G defined
by

E.x mod n/ D xe mod n

is a bijection that can be computed efficiently using EXP. The decryption map-
ping is D.y/ D yd where the integer d is defined by the congruence

ed � 1 mod .p � 1/.q � 1/:

The decryption exponent d can be found efficiently, if the factorization of n is
known, using the Extended Euclidean Algorithm described in the next section. If
n and e are chosen suitably, then finding D.y/ without knowing p and q requires
the solution of a modular eth roots problem. It is plausible that breaking this
system is no easier than factoring.

PROBLEM 12. BOUNDED MODULAR SQUARE ROOTS: Given an integer n and
integers a and b, determine whether there is an integer x such that x < b and
x2 � a mod n.
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It may be peculiar to ask for square roots below a given bound, but this additional
condition turns out to make the problem much more difficult than MODULAR

SQUARE ROOTS, assuming the widely believed P ¤ NP conjecture. Specifi-
cally, BOUNDED MODULAR SQUARE ROOTS is known to be NP -complete.

Briefly, a decision problem is in P if there is a polynomial-time algorithm
for it. A decision problem is in NP if there is an algorithm f .x; y/ in P that
takes an instance x of a problem and a “certificate” y as input, such that for
every “yes” instance x there is a certificate y such that f .x; y/ returns “yes.”
BOUNDED MODULAR SQUARE ROOTS is certainly in NP , as are almost all
of the algorithms that we have considered. Indeed, given an instance .a; b; n/,
the integer x is a certificate: the verifications that x < b and x2 � a mod n can
be done in polynomial time. Membership in NP doesn’t imply that finding the
certificate is easy, but merely that it exists; if certificates could be found easily
the problem would be in P .

Finally, a decision problem is NP -complete if it at least as hard as any other
problem in NP , in the sense that any other problem in NP can be reduced to it.
The notion of reduction needs to be defined precisely, and involves ideas similar
to the equivalence of FACTORING and MODULAR SQUARE ROOTS sketched
above. For details see [Garey and Johnson 1979].

A discussion of the complexity of number-theoretic problems would be in-
complete without mentioning a problem for which no algorithm whatsoever
exists.

PROBLEM 13. DIOPHANTINE EQUATIONS: Given a polynomial f .x1; : : : ; xn/

with integral coefficients in n variables, is there n-tuple of integers x such that
f .x/ D 0?

A famous result of Yuri Matijasevic, building on work of Julia Robinson, Martin
Davis, and Hilary Putnam shows that this is an undecidable problem [Matiyase-
vich 1993; Davis 1973]. Although the problem might be easy for a specific f ,
there is no algorithm (efficient or otherwise) that takes f as input and always
determines whether f .x/ D 0 is solvable in integers.

3. Euclid’s algorithm

Euclid’s algorithm, given above, has been an extraordinarily fertile source
of algorithmic ideas, and can be viewed as a special case of famous modern
algorithms, including Hermite normal form algorithms, lattice basis reduction
algorithms, and Gröbner basis algorithms.

The GCD of integers a and b is the unique nonnegative integer d such that
dZ D aZ C bZ. Here dZ denotes the principal ideal in the ring of integers
consisting of all multiples of d , and aZCbZ WD fax Cby W x; y 2 Zg. To prove
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that d exists, it suffices to consider nonzero a and b, in which case d can be
taken to be the least positive element of aZ C bZ. Indeed, if z D ax C by is
an arbitrary element of aZ C bZ then z D qd C r where r D z mod d so that
0 � r < d . Since r D z � qd is a nonnegative element of aZ C bZ, it follows
that r D 0, and z is a multiple of d as claimed.

This shows that for nonzero a and b the GCD d D gcd.a; b/ is the smallest
positive integral linear combination of a and b. In addition, d is the largest inte-
ger that divides both a and b and it is the only positive divisor that is divisible by
all other divisors. Moreover, it is described in terms of the prime factorizations
of positive a and b by

gcd.a; b/ D

Y
p

pmin.ap;bp/; if a D

Y
p

pap ; b D

Y
p

pbp :

The Greeks would have been more comfortable with the following geometric
definition of the GCD: if a > b > 0 consider a rectangle of width a and height b.
Remove a b-by-b square from one end of the rectangle. Continue removing
maximal subsquares (squares with one side being a side of the rectangle) until
the remaining rectangle is a square. The side length of the remaining square is
the “common unit of measure” of a and b, i.e., their GCD.

For instance, if a D 73 and b D 31, then the removal of two maximal
subsquares leaves an 11-by-31 rectangle, the removal of two further maximal
squares leaves an 11-by-9 rectangle, the removal of one maximal subsquare
leaves a 2-by-9 rectangle, the removal of four maximal subsquares leaves a 2-
by-1 rectangle, and the removal of one maximal subsquare leaves a unit square.

This procedure makes sense for arbitrary real numbers, leading to the notion
of a continued fraction; this process terminates for an a-by-b rectangle if and
only if a=b is a rational number.

3.1. Extended Euclidean algorithm. In many applications of the Euclidean
algorithm the identity aZCbZ D dZ needs to be made explicit; i.e., in addition
to finding d , both x and y must be found. To do this it suffices to augment
Euclid’s algorithm.

EXTENDED EUCLIDEAN ALGORITHM (EEA)
Input: Positive integers a and b

Output: x; y; z where z D gcd.a; b/ and z D ax C by

fX; Y; Zg WD f1; 0; ag

fx; y; zg WD f0; 1; bg

While z > 0

q WD bZ=zc

fX; Y; Z; x; y; zg WD fx; y; z; X � qx; Y � qy; Z � qzg

Return X; Y; Z
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Simple algebra shows that at every step

aX C bY D Z; ax C by D z; (3-1)

so that triples .X; Y; Z/ encode elements of the ideal aZ C bZ. Moreover,
Z � qz D Z mod z so that the Z-values recapitulate the ordinary Euclidean
algorithm.

The execution of the algorithm on input a D 73 and b D 31 is summarized in
the following table, where each row describes the state of the computation just
after q is computed.

X Y Z x y z q

1 0 73 0 1 31 2
0 1 31 1 �2 11 2
1 �2 11 �2 5 9 1

�2 5 9 3 �7 2 4
3 �7 2 �14 33 1 2

�14 33 1 31 �73 0

Thus gcd.73; 31/ D 1 and .�14/ � 73 C 33 � 31 D 1.
The reader should notice that from the third row onwards X and Y have

opposite signs, and their values increase in absolute value in successive rows. It
isn’t hard to verify that (for positive a and b) this is always the case.

What is the running time of this algorithm? It can be shown that the number
of arithmetic operations required is linear in the input size. The idea of the
argument is as follows. The maximal number of iterations are required when
the quotients q is always 1. An induction argument shows that if this is the case
and n iterations of the loop are required then a � FnC2, b � FnC1, where Fn

denotes the nth Fibonacci number (F1 D F2 D 1, FnC1 D Fn CFn�1). On the
other hand, the Euclidean algorithm starting with a D FnC1, b D Fn takes n

steps. Using Fn D O.�n/, � D .1 C
p

5/=2, it follows that n D O.log a/, as
desired. A careful accounting of the bit complexity, using the fact that the size
of the integers decreases during the course of the algorithm, shows that the bit
complexity is O.log2 a/.

On occasion it is useful to formulate the Euclidean algorithm in terms of
2-by-2 matrices. Associate the matrix

M WD

�
X Y

x y

�
:

to a row X; Y; Z; x; y; z; q. Then by (3-1)

M

�
a

b

�
D

�
Z

z

�
:
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The matrix M 0 of the next row is

M 0
D

�
0 1

1 �q

�
M:

Iterating this in the specific calculation above gives�
1

0

�
D

�
0 1

1 �2

� �
0 1

1 �4

� �
0 1

1 �1

� �
0 1

1 �2

� �
0 1

1 �2

� �
73

31

�
; (3-2)

so that the Euclidean algorithm can be interpreted as a sequence of 2-by-2 matrix
multiplications by matrices of a special form.

All of the ideas in the EEA apply to any commutative ring in which division
with “smaller” remainder exists. For instance, the ring F Œx� of polynomials over
a field F admits a division algorithm for which the remainder polynomial has
smaller degree than the divisor. The ring ZŒi � WD faCbi W a; b 2 Zg of Gaussian
integers inside the complex numbers has this property if size is measured as the
absolute value, and we take the quotient in the ring to be the result of taking the
quotient in the complex numbers and rounding to the nearest Gaussian integer.

One important application of the EEA is to find inverses in .Z=nZ/�. If
gcd.a; n/ D 1 the EEA can be used to find x; y such that ax C ny D 1, which
implies that ax � 1 mod n and .a mod n/�1 D x mod n.

3.2. Continued fractions. The partial quotients of the continued fraction ex-
pansion of a real number ˛ are the terms of the (finite or infinite) sequence
a0; a1; : : : defined as follows.

CONTINUED FRACTION OF A REAL NUMBER

Input: A real number ˛

Output: A sequence ai of integers
˛0 := ˛

For i WD 0; 1; : : :

Output ai WD b˛ic

Halt if ˛i D ai

˛iC1 WD 1=.˛i � ai/

EXAMPLE 1. If ˛ D 73=31 the partial quotients are 2; 2; 1; 4; 2. If ˛ D
p

11 the
partial quotients are ultimately periodic: 3; 3; 6; 3; 6; 3; 6; : : : .

The reader should verify that this procedure terminates if and only if ˛ is a
rational number.

Although written as if it was an algorithm, this is more of a mathematical
construct than an algorithm for several reasons: (a) it may fail to terminate, (b)
real numbers cannot be represented in finite terms suitable for a computer, and
(c) testing real numbers for equality is (algorithmically) problematic.
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The relationship between ˛i and ˛iC1 can be written as

˛i D ai C
1

˛iC1
: (3-3)

Iterating this for ˛ D 73=31 gives the finite continued fraction

73

31
D 2 C

1

2C
1

1C
1

4C
1

2

D Œ2I 2; 1; 4; 2�;

where Œa0I a1; : : : ; an� denotes the value of a finite continued fraction with partial
quotients ai . The values of the successive partial continued fractions of a real
number are called convergents of the continued fraction; e.g., the convergents
of the continued fraction for 73=31 are

Œ2� D 2; Œ2I 2� D
9

2
; Œ2I 2; 1� D

11

9
; Œ2I 2; 1; 4� D

31

11
; Œ2I 2; 1; 4; 2� D

73

31
:

Periodic continued fractions represent quadratic irrational numbers a C b
p

d ,
where a; b; d are rational numbers (and d is a nonsquare). For instance, if ˛

denotes the purely periodic continued fraction Œ3I 6; 3; 6; 3; 6; : : :� then

˛ D 3 C
1

6C
1

˛

:

Clearing fractions gives 2˛2 � 6˛ � 1 D 0, so that ˛ > 0 implies that ˛ D

.3 C
p

11/=2.

PROPOSITION 14. Let a0; a1; : : : be a sequence of real numbers with ai > 0 for
i > 0. Define a real number Œa0I a1; : : : ; an� recursively by

Œa0I � D a0; Œa0I a1; : : : ; an; anC1� D Œa0I a1; : : : ; anC1=anC1�:

Finally, define sequences xi ; yi recursively by

x�1 D 0;

y�1 D 1;

x0 D 1;

y0 D a0;

xnC1 D anC1xn C xn�1;

ynC1 D anC1yn C yn�1;

n � 0;

n � 0:
(3-4)

Then for nonnegative n,

ynxn�1 � yn�1xn D .�1/n�1; yn=xn D Œa0I a1; : : : ; an�:

Moreover, if the ai are the partial quotients of the continued fraction of a real
number ˛ then the integers xn and yn are coprime, and

˛ D
yn˛nC1 C yn�1

xn˛nC1 C xn�1

: (3-5)
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REMARK. Several notations are commonly used for convergents; the choice
here is dictated by a geometric interpretation to be given shortly.

PROOF. The coprimality of xn and yn follows once xnyn�1 �xn�1yn D .�1/n

is proved. This and all of the other assertions follow from straightforward in-
duction arguments. For instance, assuming that yn=xn D Œa0I a1; : : : ; an� for a
given n and arbitrary ai we have

ynC1

xnC1

D
anC1yn C yn�1

anC1xn C xn�1

D
anC1.anyn�1 C yn�2/ C yn�1

anC1.anxn�1 C xn�2/ C xn�1

D
.an C 1=anC1/yn�1 C yn�2

.an C 1=anC1/xn�1 C xn�2

D Œa0I a1; : : : ; an C 1=anC1� D Œa0I a1; : : : ; an; anC1�: �

As with the Euclidean algorithm, it is sometimes convenient to formulate con-
tinued fractions in terms of 2-by-2 matrices, e.g., defining

Mn WD

�
an 1

1 0

�
; Pn WD

�
yn yn�1

xn xn�1

�
(3-6)

and observing that (3-4) implies that

Pn D M0M1 � � � Mn: (3-7)

A careful look at the convergents of the continued fraction of 73=31 reveals that
they recapitulate the Euclidean algorithm! This is easy to verify using�

a 1

1 0

��1

D

�
0 1

1 �a

�
:

Indeed, multiplying the relation
�

73
31

�
DP4

�
1
0

�
repeatedly on the left by the M �1

k
gives the earlier EEA formula (3-2); moreover, this process can be reversed to
show that the EEA yields a continued fraction.

Since det.Mk/ D �1 and det.Pn/ D ynxn�1 � xnyn�1 the product formula
(3-7) gives another proof of the first statement of the proposition:

ynxn�1 � yn�1xn D .�1/nC1: (3-8)

3.3. Rational approximation. Let ˛; ˛n; an; yn; xn be as in the previous sec-
tion. We wish to quantify the sense in which yn=xn is a good approximation to
˛. Dividing (3-8) by xnxn�1 gives

yn

xn
�

yn�1

xn�1

D
.�1/nC1

xnxn�1

:
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Iterating this identity and using y0=x0 D a0 gives the useful formula
yn

xn
D a0 C

1

x0x1
�

1

x1x2
C � � � C .�1/n 1

xnxnC1
: (3-9)

Since the xn D anxn�1Cxn�2 are strictly increasing it follows that the sequence
of convergents yn=xn converges.

THEOREM 15. The sequence yn=xn converges to ˛. For even n the convergents
increase and approach ˛ from below; for odd n the convergents decrease and
approach ˛ from above. Both yn=xn � ˛ and yn � xn˛ alternate in sign, and
decrease in absolute value. Moreover,

1

xnC2
< jyn � ˛xnj <

1

xnC1
:

PROOF. From (3-5),

yn�˛xn D yn �
xn.yn˛nC1 C yn�1/

xn˛nC1 C xn�1

D
xn�1yn � xnyn�1

xn˛nC1 C xn�1

D
.�1/nC1

xn˛nC1 C xn�1

:

From anC1 D b˛nC1c < ˛nC1 < anC1 C 1 we get

xnC1 D xnanC1 C xn�1

< xn˛nC1 C xn�1 < xn.anC1 C 1/ C xn�1 D xnC1 C xn � xnC2;

and the desired inequalities in the theorem follow by taking reciprocals. It fol-
lows immediately that lim yn=xn D ˛ and the other statements follow from (3-9)
and basic facts about alternating series. �

COROLLARY 16. Any convergent yn=xn in the continued fraction for ˛ satisfies
jyn=xn � ˛j < 1=x2

n .

It is convenient to formalize the notion of a good approximation to ˛ by rational
numbers. If .x; y/ is a point in the XY -plane, then the distance from .x; y/ to
the line Y D ˛X along the vertical line X D x is jy � ˛xj. Say that .x; y/,
x > 0, is a best approximator to ˛ if x and y are coprime and .x; y/ has the
smallest vertical distance to Y D ˛X among all integer points with denominator
at most x, i.e.,

jy � ˛xj < jv � u˛j for all integers u; v with 0 < u < x:

The following theorem says that being a best approximator is equivalent to being
a convergent, and it gives an explicit inequality for a rational number y=x that
is equivalent to being a convergent.

THEOREM 17. Let ˛ be an irrational real number and x; y a pair of coprime
integers with x > 0. Then the following are equivalent:

(a) y=x is a convergent to ˛.
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(b) If x0 is a multiplicative inverse of y mod x (in the sense that yx0 � 1 mod x

and 1 � x0 < x), then

�1

x.2x�x0/
<

y

x
� ˛ <

1

x.xCx0/
: (3-10)

(c) y=x is a best approximator to ˛.

COROLLARY 18. If y=x is a rational number such that
ˇ̌̌y

x
� ˛

ˇ̌̌
<

1

2x2
; then

y=x is a convergent to ˛.

PROOF OF THE COROLLARY. Without loss of generality, x and y are coprime.
If x0 is as in the theorem, then 1 � x0 < x, giving 2x �x0 < 2x and x Cx0 < 2x.
Multiplying by x and taking reciprocals gives

�1

x.2x�x0/
<

�1

2x2
<

y

x
� ˛ <

1

2x2
<

1

x.xCx0/
;

and the corollary follows immediately from the theorem. �

The convergents in the continued fraction of ˛ determine lattice points (i.e.,
points with integer coordinates) in the plane, and they are unusually close to
the line Y D ˛X . The convergents alternate back and forth over the line, and
each point .x; y/ is closer to the line than all points with smaller X . Since
any best approximator yn=xn comes from a convergent, it follows that the open
parallelogram

˚
.x; y/ W 0 < x < xnC1; jy � ˛xj < jyn � ˛xnj

	
contains no

lattice points other than the origin.
If you are standing at the origin of the plane looking in the direction of Y D

˛X , then the lattice points .x; y/2Z2 that are closest to the line occur alternately
on both sides of the line, and become very close to the line. It is difficult to
illustrate this graphically because the convergents approximate so well that they
quickly appear to lie on the line. In Figure 1 an attempt has been made to convey
this by greatly distorting the scale on the y-axis; specifically, a point at distance
d from the line Y D ˛X is displayed at a distance that is proportional to d2=5.
In that figure, ˛ is the golden ratio � D Œ1I 1; 1; 1; : : : �, and the coordinates of
the convergents .Fn; FnC1/ are consecutive Fibonacci numbers. (The figure
suggests a fact, brought to our attention by Bill Casselman, which the reader
may enjoy proving: The even convergents .xn; yn/ are the vertices on the convex
hull of the integer lattice points that lie below the line Y D ˛X , and the odd
convergents are the convex hull of the integer lattice points above the line.)

Before proving Theorem 17, it is convenient to present a lemma.

LEMMA 19. Let x; x0; y; y0 be integers with yx0 � y0x D ˙1, and let ˛ lie in
between y=x and y0=x0. Then there are no lattice points in the interior of the
parallelogram bounded by the lines X D x, X D x0, the line through .x; y/ with
slope ˛, and the line through .x0; y0/ with slope ˛.
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1 2 3 5 8 13 21 34

Figure 1. Approximations to the golden ratio �.

PROOF OF THE LEMMA. To fix the ideas, assume that 0 < x0 < x and y0�˛x0 <

0<y�˛x (any other case is similar). Let .u; v/ be a lattice point with x0 <u<x.
Then .u; v/ is in the stated parallelogram if and only if

y0
� ˛x < v � ˛u < y � ˛x: (3-11)

The condition yx0 � y0x D ˙1 implies that there are integers r; s such that

u D rx0
C sx; v D ry0

C sy:

The first equation implies that r and s are nonzero and have opposite sign;
subtracting ˛ times the first equation from the second gives

v � ˛u D r.y0
� ˛x0/ C s.y � ˛x/:



BASIC ALGORITHMS IN NUMBER THEORY 51

Since y � ˛x and y0 � ˛x0 have opposite sign, the terms on the right hand side
have the same sign. This implies that jv � ˛uj � max.jy � ˛xj; jy0 � ˛x0j/

which contradicts (3-11), showing that .u; v/ does not lie in the parallelogram
and proving the Lemma. �

PROOF OF THEOREM 17. (a) ) (b), i.e., convergents satisfy the inequalities
(3-10): Assume that y=x D yn=xn is a convergent, and that yn�1=xn�1 is the
preceding convergent. If n is odd then yxn�1 � yn�1x D 1 and x0 D xn�1.
From Theorem 15,

0 < y � ˛x D
1

xn˛nC1Cxn�1
<

1

xnCxn�1

and the inequalities (3-10)

�1

x.2x�x0/
< 0 <

y

x
� ˛ <

1

x.xCx0/

follow. The case for even n is similar except that y=x � ˛ is negative, yxn�1 �

yn�1x D �1 requires us to take x0 D x � y, and the left inequality in (b) is the
nontrivial one.

(b) ) (c), the inequalities (3-10) imply that y=x is a best approximator:
Assume that x > 0, x and y are coprime, and y=x satisfies the inequalities. Let
.u; v/ be a supposedly better approximator than .x; y/ so that 0 < u � x. There
are now two cases. First, suppose that y � ˛x > 0. Choose x0 and y0 such that
yx0 �xy0 D 1. Subtracting y=x�y0=x0 D 1=xx0 from y=x�˛ < 1=.x.xCx0//

gives
y0

x0
� ˛ <

1

x.x C x0/
�

1

xx0
D

�1

.x C x0/x
; (3-12)

showing that y0 �x0˛ is negative. The (proof of the) Lemma now shows that an
inequality of the form (3-11) is impossible, which implies that .x; y/ is a best
approximator.

The case y � ˛x < 0 is similar and will be left to the reader.
(c) ) (a): We show that if .u; v/ isn’t a convergent then v=u isn’t a best

approximator. If .u; v/ isn’t a convergent there is an n such that x0 D xn�1 <

u � x D xn. Setting y0 D yn�1; y D yn, the Lemma now applies, and .u; v/ isn’t
a best approximator unless u D xn in which case v=u isn’t a best approximator
unless v=u D yn=xn. �

4. Modular polynomial equations

The goal of this section is to consider the problem of solving polynomial con-
gruences f .x/ � 0 mod n, i.e., to finding roots of polynomials in .Z=nZ/ŒX �.
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We consider the successively more general cases in which n is a prime, prime
power, and arbitrary positive integer.

4.1. Equations modulo primes. The problem of finding integer solutions to
polynomial equations modulo a prime p is (essentially) the problem of finding
roots to polynomials

f .X / 2 Fp ŒX �

with coefficients in the field with p elements. Fermat’s Little Theorem say that
every element of Fp is a root of the polynomial X p � X ; comparing degrees
and leading coefficients shows that

X p
� X D

Y
a2Fp

.X � a/ D

p�1Y
aD0

.X � a/ 2 Fp ŒX �:

It follows that if f .X / 2 Fp ŒX � is an arbitrary polynomial, the gcd of f .X / and
X p � X is the product of all linear factors X � a, where a is a root of f .

Similarly the roots of X .p�1/=2 D 1 are the quadratic residues modulo p, so

X .p�1/=2
� 1 D

Y
a2Rp

.X � a/ 2 Fp ŒX � ;

where Rp denotes the set of quadratic residues modulo p. This suggests the
following elegant algorithm for finding all roots of a polynomial in Fp ŒX �.

CANTOR–ZASSENHAUS (f; p)
Input: A prime p and a polynomial f 2 Fp ŒX �

Output: A list of the roots of f

1. f WD gcd.f; X p � X /

2. If f has degree 1
Return the root of f

3. Choose b at random in Fp

g WD gcd.f .X /; .X C b/.p�1/=2 � 1/

If 0 < deg.g/ < deg.f / then
Return CANTOR–ZASSENHAUS(g,p)

[ CANTOR–ZASSENHAUS(f=g,p)
Else, go to Step 3

The correctness follows from the earlier remarks — at Step 3, f .X / is a product
of distinct linear factors X � a, and then g is the product of all X � a such that
a C b is a quadratic residue. If b is random then we would expect about half of
the linear factors of f to divide g.
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Moreover, the algorithm takes (probabilistic) polynomial time since the input
size for a (general) polynomial over Fp is n log p and all operations take time
bounded by a polynomial in n and log p.

4.2. Equations modulo prime powers. Next we consider prime powers. The
key idea is due to Kurt Hensel and gives an explicit construction that applies
in sufficiently favorable situations to allow us to “lift” a solution to f .X / �

0 mod pn to a solution modulo p2n.
The idea is illustrated cleanly by the example of square roots modulo prime

powers. Suppose that we have found a square root of a mod p, i.e., and integer x

such that x2 � a mod p. Let y D .x2Ca/=.2x/ mod p2. (Since 2x is invertible
mod p it is invertible mod p2.) Some algebraic juggling shows that y2 �

a mod p2. The formula for y comes from Newton’s Lemma from calculus:

y D x �
f .x/

f 0.x/
D x �

x2 � a

2x
D

x2 C a

2x
:

In any event, a root mod p of f .X / D X 2 � a mod p has been lifted to a root
mod p2. The general story is as follows.

THEOREM 20 (HENSEL’S LEMMA). Let p be a prime, f .x/ 2 ZŒX � a polyno-
mial with integer coefficients, and a 2 Z an integer such that

f .a/ � 0 mod pk ; f 0.a/ 6� 0 mod p :

Then b � a � f .a/=f 0.a/ mod p2k is the unique integer modulo p2k that sat-
isfies

f .b/ � 0 mod p2k ; b � a mod pk :

REMARK 9. Since u D f 0.a/ is relatively prime to p it is relatively prime
to any power of p and has an inverse modulo that power, computable with
the EEA. Thus the division in the formula in the theorem makes sense. In-
verses modulo high powers can be found using Newton’s method (for ratio-
nal functions): find the inverse of u modulo prime powers by finding roots of
f .X / D u�1=X . Specifically, if au � 1 mod pk then bu � 1 mod p2k , where
b D a � f .a/=f 0.a/ D a.2 � au/.

PROOF. Replacing f .X / by f .X Ca/, it suffices to prove the result when aD0.
Thus we are trying to find a root of f .X / � 0 mod p2k , given

f .X / D c0 C c1X C c2X 2
C � � � ; c0 D f .0/; c1 D f 0.0/:

By hypothesis, c0 � 0 mod pk and c1 6� 0 mod p. It follows that b D �c0=c1 is
the unique integer modulo p2k such that b � 0 mod pk and f .b/ � 0 mod p2k ,
finishing the proof. �



54 JOE BUHLER AND STAN WAGON

The reader will find it instructive to find a square root of, say, �11 modulo 38.
The elementary form of Hensel’s Lemma above is equivalent to a more ele-

gant and general statement in the p-adic numbers. Since p-adic numbers (and,
more generally, non-archimedean local fields) arise later in this volume, we
digress to explain this idea. See [Cassels 1986], [Koblitz 1984], and [Serre
1973] for a much more thorough treatment.

Fix a prime p and a constant � such that 0 < � < 1. An absolute value can
be defined on the rational numbers Q by

jxjp D �n;

where x D pny, n D vp.x/ is the unique integer (positive or negative) such that
y is a rational number whose numerator and denominator are coprime to p. By
convention, j0jp D 0.

Under this absolute value, powers of p are “small.” The absolute value sat-
isfies the “non-archimedean” inequality jx C yjp � max.jxjp; jyjp/, which is
stronger than the triangle inequality.

The absolute value jxjp gives the rational numbers Q the structure of a metric
space by setting the distance between x and y to be jx�yjp. The completion Qp

of this metric space is called the p-adic numbers, and it can be shown that the
p-adic numbers are a locally compact topological field under natural extensions
of the field operations and metric to the completion. The field is easily seen to
be independent of the choice of �, though in some circumstances in algebraic
number theory it is convenient to make the choice � D 1=p.

A nonzero element a of Qp can be represented concretely as a “Laurent series
in p,”, i.e.,

a D akpk
C akC1pkC1

C akC1pkC2
C � � � ;

where k is an integer, the digits an are integers chosen in the range 0 � an < p,
and ak ¤ 0. Moreover, vp.a/ D k and jaj D �k . Arithmetic operations are easy
to visualize in this Laurent representation, at least approximately, by thinking
of pn as being very small if n is very large (analogous in some ways to the
usual realization of real numbers as decimal expansions). The subset for which
vp.a/ � 0 is the unit disk

Zp D

� X
n�0

anpn

�
D fx 2 Qp W jxjp � 1g;

which is a subring of Qp and is called the ring of p-adic integers.
The p-adic numbers are a bit peculiar when first encountered, but it turns out

that they beautifully capture the idea of calculating “modulo arbitrarily large
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powers of p.” The reader might enjoy proving that

�1 D 1 C 2 C 22
C 23

C � � � in Q2;

and the fact that infinite series in Qp converge if and only if their terms go to
zero.

Suppose that we are interested in roots of f .X / 2 Zp ŒX �. (By multiplying by
a power of p the problem of finding roots for f .X / 2 Qp ŒX � readily reduces to
f .X / 2 Zp ŒX �.) Finding roots x D a0 Ca1pCa2p2 C� � � to f .x/ D 0 amounts
to solving “f .x/ � 0 modulo p1,” and Hensel’s Lemma can be translated to
the statement that for x 2 Z=pZ with jf .x/jp < " and jf 0.x/jp D 1, there is a
unique y 2 Z=pZ such that

f .y/ D 0; jy � xj < ":

A more general form of Hensel’s Lemma, which can be proved along the lines
above, says that if jf .x/j < jf 0.x/j2 then there is a unique y 2 Zp such that
f .y/ D 0, jy � xj � jf .x/=f 0.x/2j.

The problem of finding roots is a special case of finding factors of a poly-
nomial, and an even more general form of Hensel’s Lemma guarantees that
approximate factors can, in suitable circumstances, be lifted to p-adic factors.

If f is a polynomial with p-adic integer coefficients then let f mod p denote
the polynomial obtained by looking at the coefficients modulo p.

THEOREM 21. Assume that f 2 Zp ŒX � factors modulo p as f mod p D gh 2

.Z=pZ/Œx� and g and h are coprime in .Z=pZ/Œx�. Then there are unique G

and H in Zp ŒX � such that f D GH and G and H lift g and h in the sense that
G mod p D g and H mod p D h.

We sketch a proof of the theorem. Since p-adic integers are approximated ar-
bitrarily closely by (ordinary) integers, it suffices to prove a statement about
integer polynomials: if f 2 ZŒx� satisfies f � gh mod p where g and h are
coprime modulo p (i.e., the elements that they determine in Fp ŒX � are coprime),
then for arbitrarily large n there are integer polynomials G; H that are congruent
to g; h, respectively, modulo p and satisfy f � GH mod pn.

To do this it turns out to be essential to simultaneously lift a certificate of the
fact that g and h are relatively prime. Assume that we are given polynomials
f; g; h; r; s with integer coefficients such that

f � gh mod pk ; rg C sh � 1 mod pk ;

where deg.r/ < deg.h/, deg.s/ < deg.g/; our goal is to find G; H; R; S satisfy-
ing a similar congruence modulo p2k . Note that the hypotheses of the theorem
imply that r and s exist for k D1, using the Euclidean Algorithm for polynomials
over Fp. The pair r; s is said to be a coprimality certificate of g and h mod pk .
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Before proving the theorem it is useful to show how to use a coprimality cer-
tificate mod pk to represent any polynomial as a linear combination of g and h

modulo pk .

LEMMA 22. If rgCsh � 1 mod pk , then for all u 2 ZŒX � there are A; B 2 ZŒX �

such that
Ag C Bh � u mod pk :

If deg.u/ < deg.g/ C deg.h/ then we can take deg.A/ < deg.h/, deg.B/ <

deg.g/.

PROOF. Multiplying the assumed equation by u gives u � rguCshu D .ru/gC

.su/h mod pk so the first statement is immediate. To verify the assertion about
degrees, we have to work harder. Let A be the remainder when ru is divided
by h, i.e., ru D q1h C A, deg.A/ < deg.h/. Similarly, let B be the remainder
when su is divided by g, i.e., su D q2g C B, deg.B/ < deg.g/. Then

Ag C Bh D .ru � q1h/g C .su � q2g/h

D .rg C sh/u � .q1 C q2/gh � u C Qgh mod pk ;

where Q D �q1 � q2. Since gh is monic of degree deg.g/ C deg.h/ and all
other terms in the congruence have degree strictly less than deg.g/ C deg.h/

modulo pk , it follows that Q � 0 mod pk , finishing the proof. �

Now we prove the theorem by showing how to lift the factorization, and lift the
certificate, i.e., find the desired G; H; R; S given g; h; r; s.

To lift the factorization write f D ghCpku, and use Lemma 22 to find A, B

with u � Ag C Bh mod pk ; it is straightforward to check that G D g C pkB,
and H D h C pkA satisfy f � GH mod p2k .

To lift the certificate rg C sh D 1 mod pk , write rg C sh D 1 C pku, use
Lemma 22 to find u�AgCBh mod pk , and check that RGCSH �1 mod p2k

where R D r C pkA and S D s C pkB.

4.3. Chinese Remainder Theorem. Finally, we come to the case of solving
polynomial equations modulo arbitrary positive integers n, given that we can
solve the equations modulo the prime power divisors of n. The Chinese Re-
mainder Theorem gives an immediate way for doing this, by giving an explicit
recipe for using solutions f .x1/ � 0 mod n1, f .x2/ � 0 mod n2 to produce
an x in Z=.n1n2/Z such that f .x/ � 0 mod n1n2 when the ni are coprime.

THEOREM 23 (CHINESE REMAINDER THEOREM). If m and n are coprime,
and a and b are arbitrary integers, then there is an integer c such that

c � a mod m; c � b mod n:

Any two such integers c are congruent modulo mn.
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PROOF. Apply the EEA to m and n to find x and y such that mx C ny D 1.
The integer

c D any C bmx

is obviously congruent to a mod m and b mod n.
If c0 also satisfies these congruences then d D c�c0 is divisible by the coprime

integers m and n, and hence by mn. Thus c and c0 are congruent modulo mn

as claimed. �

This can be stated more algebraically as follows.

COROLLARY 24. If gcd.m; n/ D 1 then the rings Z=.mn/Z and Z=mZ�Z=nZ

are isomorphic via the map

x mod mn ‘ .x mod m; x mod n/:

Also, �.mn/ D �.m/�.n/ where � is the Euler �-function.

Indeed, the first statement in the Chinese Remainder Theorem above says that
the map is surjective, and the second says that it is injective. Units in the direct
product of two rings are pairs .u; v/ where u and v are units in the respective
rings, so the multiplicativity of ' follows from the first statement.

As promised, the theorem shows how to combine modular solutions to poly-
nomial equations: if f .a/ � 0 mod m and f .b/ � 0 mod n then apply the
Chinese Remainder Theorem to find a c such that c �a mod m and c �b mod n;
these congruences imply that f .c/ � 0 mod mn. By induction, this technique
generalizes to more than 2 moduli: if n1; n2; : : : ; nk are pairwise coprime, and
ai are given then there is an integer x, unique modulo the product of the ni ,
such that x � ai mod ni for 1 � i � k.

In fact, there are two natural inductive proofs. The product of k moduli
n D

Q
ni could be reduced to the k D 2 case by n D n1m, where m is the

product of the ni for i > 1, or n D m1m2 where each mi is the product of
approximately half of the ni . The latter method is significantly more efficient in
practice: with reasonable assumptions, the first method takes O.k2/ arithmetic
operations, and the second takes O.k log k/ arithmetic operations.

5. Quadratic extensions

A quadratic extension K of a field F is a field containing F such that the
dimension of K as an F -vector space is 2. This means that K is isomorphic
to F ŒX �=.f .X // where f .X / 2 F ŒX � is an irreducible quadratic polynomial.
More concretely, K D fa C b˛ W a; b 2 Fg where ˛ 2 K satisfies an irreducible
quadratic equation with coefficients in F . Finally, if F D Q then any qua-
dratic extension is (isomorphic to) a subset of the complex numbers of the form
Q.

p
d/ D fa C b

p
dg, where d is a nonsquare in Q.
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In this section we consider four algorithms that are either illuminated by, or
directly apply to, quadratic field extensions.

5.1. Cipolla. Let p be an odd prime. A natural and direct algorithm, originally
due to Cipolla [1902], finds square roots modulo p by taking a single expo-
nentiation in a quadratic extension of Fp D Z=pZ. Unlike the modular square
root algorithm presented earlier, it has a running time that is independent of the
power of 2 that divides p � 1.

A polynomial f .X / D X 2 � aX C b 2 Fp ŒX � is irreducible if and only if
its discriminant D WD a2 � 4b is a quadratic nonresidue. Let ˛ D ŒX � be the
coset of X in K WD Fp ŒX �=.f .X // so that K can be viewed as the set of linear
polynomials fa C b˛ W a; b 2 Fpg added in the usual way, and multiplied using
the identity ˛2 D a˛ � b.

In any field that contains Fp the map '.x/ D xp is a field automorphism
of K, sometimes called the Frobenius map. Indeed, it is obvious that ' is
multiplicative, and '.x C y/ D .x C y/p D xp C yp follows from the fact
that the interior binomial coefficients are divisible by p. Moreover '.x/ D x if
and only if x 2 Fp, since every element of Fp is a root of the polynomial xp �x,
and a polynomial of degree p can have at most p roots in a field.

CIPOLLA’S MODULAR SQUARE ROOT ALGORITHM

Input: An odd prime p and a quadratic residue b 2 Fp

Output: u 2 Fp such that u2 D b

1. Select random a until a2 � 4b is a nonresidue modulo p

2. Return ˛.pC1/=2, where ˛ WD a root of x2 � ax C b

Once an a has been found in Step 1, then f .X / D X 2 � aX C b is irreducible,
and the above notation applies. Apply the Frobenius automorphism ' to the
equation ˛2 � a˛ C b D 0 to find that ˇ WD ˛p is also a root of f , so that
f .X / D .X � ˛/.X � ˇ/. Comparing coefficients gives

b D ˛ � ˇ D ˛ � ˛p
D ˛.pC1/

so that ˛.pC1/=2 is a square root of b, proving correctness of the algorithm.
Although the exponentiation is done in K, the final result lies in Fp.

EXAMPLE 2. Let p D 37, a D 34. Easy Legendre symbol calculations show that
34 is a quadratic residue modulo 37, and b D 1 produces a nonresidue in Step 1,
so that f .x/ D x2 � x C 34 is irreducible. We compute ˛.pC1/=2 D ˛19 using
EXP; at each step of the calculation we replace ˛2 by ˛�34 D ˛C3 and reduce
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the coefficients modulo 37. The following table summarizes the calculation:

k ˛k

2 ˛ C 3

4 ˛2 C 6˛ C 9 D 7˛ C 12

8 49˛2 C 168˛ C 144 D 32˛ C 32 D �5.˛ C 1/

9 �5.˛2 C ˛/ D �5.2˛ C 3/

18 25.4˛2 C 12˛ C 9/ D 30˛ C 7

19 30˛2 C 7˛ D 16

As predicted, the final result lies in the field with 37 elements, and 162 �34 mod
97.

5.2. Lucas–Lehmer. Theorem 5 gives a method for verifying primality of n

when the factorization of n � 1 is known. A similar primality test, attributed to
Lucas and Lehmer, enables the primality of n to be established efficiently if the
prime factorization of n C 1 is known.

Let f .X / D X 2 � aX C b 2 ZŒx� be an irreducible polynomial with integer
coefficients, D WDa2�4b its discriminant, and R WDZŒX �=.f .X //. Let ˛ WD ŒX �

and ˇ WD a � ˛ be the two roots of f in R.
For k � 0 define Vk D ˛k C ˇk 2 R. Both sequences f˛kg and fˇkg satisfy

the recursion
skC1 D ask � bsk�1;

so their sum Vk also does, by linearity. Since V0 D 2 and V1 D a are integers
it follows that all of the Vk are integers. More elaborate “doubling” recursions
are easy to discover, allowing the Vk to be computed in O.log k/ arithmetic
operations; these are equivalent to using EXP to calculate high powers of a
matrix, noticing that �

VkC2 VkC1

VkC1 Vk

�
D

�
a �b

1 0

�k �
V2 V1

V1 V0

�
:

THEOREM 25. Let n be an odd positive integer, and a; b integers such that
D D a2 � 4b satisfies �

D

n

�
D �1:

Define Vk as above, and let mD .nC1/=2. If Vm �0 mod n and gcd.Vm=q; n/D

1 for all prime divisors q of m, then n is prime.

PROOF. Let p be a prime divisor of n with�
D

p

�
D �1:
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Working modulo p, i.e., in

K WD R=pR D ZŒx�=.p; f .x// D Fp Œx�=.f .x//;

we see that f .x/ 2 Fp Œx� is irreducible so that the ideas of the preceding sec-
tion apply. Since the roots ˛ and ˇ of an irreducible quadratic polynomial are
nonzero, we can define

u D ˇ=˛ D ˛p=˛ D ˛p�1
2 K:

The equation Vm �0 mod p implies that ˛m D�ˇm, i.e., um D�1 and u2m D1.
Similarly, the equations Vm=q 6� 0 mod p imply that u2m=q ¤ 1 for all prime
divisors q of m.

Therefore u has order 2m D n C 1 in K. Since

upC1
D

�
˛p�1

�pC1
D ˛p2�1

D 1;

it follows that p C 1 is divisible by n C 1, which implies that n D p, i.e., that n

is a prime as claimed. �

REMARK 10. As in the earlier primality test relying on the factorization of
n�1, it can be shown that it suffices to restrict attention to primes q that divide
a factor F >

p
n of n C 1.

5.3. Units in quadratic fields. If d is a rational number that is not a perfect
square, then the quadratic extension F D Q.

p
d/ D faCb

p
d W a; b 2 Qg over Q

is unchanged if we replace d by de2. We will from now on assume that d is a
squarefree integer, i.e., not divisible by any perfect square n2 > 1. If d < 0 then
Q.

p
d/ is said to be an imaginary quadratic field, and if d > 0 Q.

p
d/ is said

to be a real quadratic field.
A number field is a field having finite degree over Q. These fields are the

core subject matter of algebraic number theory, and are of critical importance
in several subsequent articles in this volume, e.g., [Stevenhagen 2008a; 2008b].
Quadratic fields Q.

p
d/ already illustrate many of the ideas that come up in

studying number fields in general, and are a vast and fertile area of study.
Let F D Q.

p
d/. The ring of integers OF in F is the set of v 2 F that are

roots of a monic polynomial with integer coefficients; this ring plays the role,
in F , that the integers do in Q.

PROPOSITION 26. With the above notation, OF D ZŒ!� where

! D

�p
d if d � 2 or 3 mod 4;

.1 C
p

d/=2 if d � 1 mod 4:
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Thus OF D ZŒ
p

d � if d � 2 or 3 mod 4, and

OF D ZŒ!� D

n
xCy

p
d

2
W x; y 2 Z; x � y mod 2

o
if d � 1 mod 4.

The key idea of the proof is that if v D x C y
p

d 2 F is an algebraic integer
then it satisfies the equation X 2 � 2xX C .x2 � dy2/ D 0, which implies that
x and therefore y are either integers or half-integers; we leave the details to the
reader.

The algorithmically inclined reader will observe that the ring of integers is an
unfriendly object. For instance, we have been assuming in this discussion that
the integer d is squarefree. In fact, it is difficult to detect or verify whether a
large integer is squarefree, and therefore impossible to find the ring of integers
in F D Q.

p
d/ for general d . See [Stevenhagen 2008a] for a discussion of how

algorithmic number theorists deal with this issue for arbitrary number fields.
We now turn our attention to finding units in rings of integers of quadratic

fields.
The only units (elements with multiplicative inverses) in Z are ˙1. In order

to find units in quadratic fields we introduce some standard terminology.

� If v D x C y
p

d 2 F then v0 D x � y
p

d is the conjugate of v.
� The norm of v D x C y

p
d 2 F is

N.v/ D vv0
D .x C y

p
d /.x � y

p
d / D x2

� dy2
2 Q:

The map u ‘ u0 is easily checked to be an automorphism, and .uv/0 D u0v0

implies that the norm map is multiplicative: N.uv/ D N.u/N.v/.
Note that if d � 2 or 3 mod 4 then N.x C y!/ D .x C y!/.x � y!/ D

x2 � dy2, while if d � 1 mod 4 and ! D .1 C
p

d/=2 then

N.x C y!/ D .x C y!/.x C y!0/ D x2
� xy �

d �1

4
y2:

LEMMA 27. An element u in OF is a unit if and only if N.u/ D ˙1.

PROOF. If N.u/ D ˙1 then u.˙u0/ D 1 and u is a unit. If v is a unit then there
is a u 2 OF such that uv D 1. Taking the norm and using the multiplicativity of
the norm gives N.u/N.v/ D 1, so that N.u/ is a unit in Z, i.e., N.u/ D ˙1. �

In imaginary quadratic fields there are only finitely many units, and they are
easy to determine by considering the explicit form of the norm mapping given
above; the details of are again left to the reader, and the result is:
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THEOREM 28. Units in an imaginary quadratic field F D Q.
p

d/, d < 0, are:

O�
F D

8<:
f˙1; ˙ig if d D �1;

f˙1; ˙!; ˙!2g if d D �3;

f˙1g if d < �3:

The units of the ring ZŒ
p

d � are f˙1g, unless d D �1.

Finding units in (the ring of integers of) real quadratic fields is considerably
more interesting. If d � 2 or 3 mod 4 then OF D ZŒ

p
d � and finding units is

equivalent to solving Pell’s equation [Lenstra 2008]

x2
� dy2

D ˙1:

If d � 1 mod 4 then units u D x C y! correspond to solutions to x2 � xy �

y2.d � 1/=4 D ˙1. After multiplying by 4 and completing the square this is
equivalent to integer solutions to X 2 � dY 2 D ˙4.

In either case, the problem of finding units reduces to solving Pell’s equation
or a variant. This can be done by finding the continued fraction of !.

THEOREM 29. If F D Q.
p

d/, d > 0, and u D x � y! is a unit in O�
F

with x

and y positive, then x=y is a convergent in the continued fraction expansion of
!.

If u D x Cy! is a unit then �u, u0, and �u0 are all units. If u is a unit, then one
of ˙u; ˙u0 has the form x �y! with x; y positive, so the restriction to positive
x, y is unimportant: any unit can be obtained from a convergent by changing
the sign and/or taking a conjugate.

PROOF. Assume that u D x � y! is a unit with x and y positive. If d �

2 or 3 mod 4, then x2 � dy2 D ˙1. Moreover d � 2 and

x

y
C

p
d D

r
d ˙

1

y2
C

p
d � 1 C

p
2 > 2: (5-1)

From this equation and .x=y �
p

d /.x=y C
p

d / D ˙1=y2 we getˇ̌̌
x

y
�

p
d

ˇ̌̌
<

1

2y2
;

so that, by Corollary 18, x=y is a convergent in the continued fraction of !.
The case d � 1 mod 4 is similar, but slightly more involved. If u D x �y! is

a unit then N.u/ D x2�xy�.d �1/y2=4 D ˙1. Solving the quadratic equation
.x=y/2 �.x=y/�.d �1/=4˙1=y2 D 0 for x=y and doing some algebra shows
that

x

y
� !0

� 2; (5-2)



BASIC ALGORITHMS IN NUMBER THEORY 63

except possibly in the case d D 5; y D 1. Indeed, this inequality is equivalent top
d ˙ 4=y2

C
p

d � 4;

which is easy to verify if d > 5 (so that d � 13), or if y � 2. If either of these
hold, proceed as above: .x=y � !/.x=y � !0/ D ˙1=y2 and (5-2) imply that
jx=y �!j < 1=2y2 and the theorem follows as before. If d D 5 and y D 1 then
the theorem can be checked directly: both 2=1 and 1=1 are convergents. �

There is much more to say about continued fractions of arbitrary quadratic irra-
tionals. We enumerate some of the most important facts.

(i) The continued fraction of a real number ˛ is periodic if and only if ˛ is a
quadratic irrational.

(ii) The continued fraction of a quadratic irrational ˛ is purely periodic if and
only if ˛ > 1 and �1 < ˛0 < 0.

(iii) The continued fraction of a quadratic irrational ˛ can be computed entirely
with integer arithmetic; ˛k has the form .Pk C

p
d/=Qk for integers Pk , Qk ,

where Qk divides d �P2
k

, and these integers are determined by the recursions

ak D b˛kc; PkC1 D akQk � Pk ; QkC1 D
d � P2

kC1

Qk

:

(iv) The period of the continued fraction of ! is O.
p

d log d/. The continued
fractions of

p
d and .1 C

p
d/=2 have the respective shapes

ŒaI P; 2a�; Œa; P; 2a � 1�;

where a is a positive integer, the sequence P D a1; a2; : : : ; a2; a1 is a palin-
drome, and the ai are less than a.

(v) If the period of the continued fraction is r , then the .r�1/st convergent
corresponds to a so-called fundamental unit u, and any other unit of the form
˙un for integers n; i.e.,

O�
F D f˙un

W n 2 Zg ' Z � Z=2Z:

(vi) The index of ZŒ
p

d �� in O�
F

is 1 or 3.

(vii) The fundamental generating unit of Q.
p

d/ has norm �1 if and only if
P has even length. If this is the case, the units of norm one are of the form
˙u2k .



64 JOE BUHLER AND STAN WAGON

5.4. The Smith–Cornacchia algorithm. Throughout this section integers d

and n satisfy 0 < d < n, and we consider integer solutions x; y to

x2
C dy2

D n: (5-3)

Note that the problem of solving this equation is equivalent to

.x C y
p

�d /.x � y
p

�d / D n;

i.e., finding elements of ZŒ
p

�d � of norm n. Fix d and let R D ZŒ
p

�d �.
A coprime solution x; y is said to be primitive. Any coprime solution deter-

mines a square root t D x=y mod n of �d modulo n; indeed,

t2
C d D .x2

C dy2/=y2
� 0 mod nI

the unique such t with 1� t <n is sometimes called the signature of the solution.
A signature determines a map from R to Z=nZ defined by taking

p
�d to t .

The kernel of this ring homomorphism is the principal ideal

It D .x C y
p

�d/R D nR C .t C
p

�d/R:

The Smith–Cornacchia algorithm has two steps: determine all potential sig-
natures t , and use the Euclidean algorithm to determine which of the ideals
It WD nR C .t C

p
�d/R are principal.

Given a primitive solution .x; y/ to x2 C dy2 D n with signature t define an
integer z by

z D
ty�x

n
;

so that x D ty � nz. Dividing the inequality

j2xyj � x2
C y2

� x2
C dy2

D n

by 2ny2 gives ˇ̌̌
x

ny

ˇ̌̌
D

ˇ̌̌
t

n
�

z

y

ˇ̌̌
�

1

2y2
:

Corollary 18 implies that z=y is a convergent of the (finite) continued fraction
of t=n.

Thus to solve (5-3) it suffices to compute the convergents in the continued
fraction of t=n and see whether any of the denominators give valid solutions y

in the equation x2 C dy2 D n.
In fact, it is slightly simpler to merely keep track of the remainders in the

Euclidean algorithm applied to t and n; indeed jxj is a remainder, and the
equation x2 C dy2 D n can be solved for y. Since x �

p
n, the remainders

have to be calculated at least to the point that they drop below
p

n.
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EXAMPLE 3. If d D 5 and n D 12829 then we first have to find a square root t

of �5 modulo 12829. Since n is a prime, the square root is unique up to sign; in
fact, Cipolla’s algorithm gives t D ˙3705 without difficulty. The sequence of
remainders in the Euclidean algorithm is 12829; 3705; 1714; 277; 52; 17; 1. The
first x below

p
12829 works:

x D 52; y D

p
.n � x2/=5 D 45; 522

C 5 � 452
D 12829:

THEOREM 30. If a primitive solution to x2 C dy2 D n has signature t then
jxj is the largest (i.e., first encountered) remainder that is less than

p
n in the

Euclidean algorithm applied to n and t . Moreover, .x; y/ is (essentially) the
unique solution with signature t : if .u; v/ is another such solution then .x; y/ D

˙.u; v/ if d > 1, and if d D 1 reversal might occur, i.e., .x; y/ D ˙.u; v/ or
.x; y/ D ˙.v; u/.

PROOF. (See also [Nitaj 1995; Schoof 1995].) Let x be the first remainder less
than

p
n. Assume that the equation has some solution .u; v/ with signature t :

u2 C dv2 D n, u � ty mod n. Assume that u ¤ ˙x. Then juj is a subsequent
term in the remainder sequence for t and n. By the Euclidean algorithm, there
are z, z0 such that x D yt � zn and u D vt � z0n. The remainders decrease in
absolute value, so x > u, and the coefficients of t increase in absolute value, so
jyj < jvj. We know that x2 C dy2 � .t2 C d/y2 � 0 mod n. Moreover,

x2
C dy2 < n C dv2

D n C d �
n�dv2

d
< 2n:

Since we also know that x2 Cdy2 is divisible by n it follows that x2 Cdy2 D n.
Two different solutions x; y and u; v determine generators x C y

p
�d and

u C v
p

�d of It and hence there is a unit a in R such that x C y
p

�d D

a.uCv
p

�d /. If d > 1 the only units are ˙1. If d D 1 then a D ˙i is possible,
and these account for all cases in the theorem. �

The algorithm that implements this is obvious.

SMITH–CORNACCHIA ALGORITHM

Input: Relatively prime positive integers d and n

Output: All primitive solutions to x2 C dy2 D n (possibly none)
1. Find all positive solutions (less than n) to t2 C d � 0 mod n

2. For each solution t , find the first remainder x less than
p

n in the
Euclidean algorithm applied to n and t ; if y WD

p
.n � x2/=d is an

integer, output .x; y/

The second step of the algorithm is efficient. Unfortunately, the first step isn’t
in general, since it requires a modular square root. However, in the special case
that n is a prime, this step can be done efficiently by a probabilistic algorithm.
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EXAMPLE 4. The special case d D 1 is interesting as it is the classic problem
of writing an integer as the sum of two squares. By Euler’s criterion, �1 is a
quadratic residue modulo an odd prime p if and only if p is congruent to 1

modulo 4, and this algorithm gives a constructive proof of Euler’s result that
these are exactly the primes that are the sum of two squares. Moreover, it shows
that if z is a Gaussian integer then the factorization of z in ZŒi � reduces to the
problem of factoring N.z/ in the integers. See [Bressoud and Wagon 2000] for
further details.
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