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Abstract. Coideal subalgebras of the quantized enveloping algebra are
surveyed, with selected proofs included. The first half of the paper stud-
ies generators, Harish-Chandra modules, and associated quantum homo-
geneous spaces. The second half discusses various well known quantum
coideal subalgebras and the implications of the abstract theory on these
examples. The focus is on the locally finite part of the quantized envelop-
ing algebra, analogs of enveloping algebras of nilpotent Lie subalgebras,
and coideals used to form quantum symmetric pairs. The last family of
examples is explored in detail. Connections are made to the construction
of quantum symmetric spaces.

The introduction of quantum groups in the early 1980’s has had a tremen-
dous influence on the theory of Hopf algebras. Indeed, quantum groups provide
a source of new and interesting examples. We shall discuss the reverse impact:
the theory of quantum groups uses the Hopf structure extensively. This spe-
cial structure is often hidden in the classical setting, while it is prominent and
fundamental for quantum analogs.

Let g be a semisimple Lie algebra and write G for the corresponding con-
nected, simply connected algebraic group. There are two standard types of
quantum groups associated to g and G. The first is the quantized enveloping
algebra which is a quantum analog of the enveloping algebra of g. The second is
the quantized function algebra which is a quantum analog of the algebra of regu-
lar functions on G. We will be focusing on a particular aspect of the Hopf theory
of both types of quantum groups: the study of (one-sided) coideal subalgebras.

One of the reasons coideal subalgebras are so important in the study of quan-
tum groups is that quantum groups do not have “enough” Hopf subalgebras.
This shortage of Hopf subalgebras is especially notable for quantized envelop-
ing algebras. Consider a Lie subalgebra t of the Lie algebra g. The enveloping
algebra U(t) of t is a Hopf subalgebra of U(g). However, upon passage to the
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quantum case, Uq(t), even when it is defined, is often not isomorphic to a Hopf
subalgebra of Uq(g). In many cases, there are subalgebras of Uq(g) which are not
Hopf subalgebras but are still good quantum analogs of U(t). Moreover, these
subalgebras often turn out to be coideals. For example, let g = n− ⊕ h⊕ n+ be
the triangular decomposition of g. There is a natural subalgebra U+ of Uq(g)
which is an analog of the subalgebra U(n+) of U(g). This subalgebra U+ is a
coideal but is not a Hopf subalgebra of the quantizing enveloping algebra. Of
more interest to us is the fixed Lie subalgebra gθ corresponding to an involution
θ of g. In the classical case, the symmetric pair gθ,g is used to form symmetric
spaces. However, in the quantum case, Uq(gθ) does not usually embed inside
of Uq(g). Thus it was initially unclear how to develop the theory of quantum
symmetric spaces. In [K], Koornwinder constructed two-sided coideal analogs
of gθ in type A1 and used them to produce quantum symmetric spaces. More
families of coideal analogs were discovered in [N], [NS],[DN], and [L1]. In [L2],
a uniform approach was developed in the maximally split case using one-sided
coideal subalgebras of the quantized enveloping algebra. The one-sided coideal
condition turned out to be critical in characterizing these quantum analogs of
U(gθ).

Quantum symmetric spaces were first defined using the quantized function
algebra. (See for example [KS, 11.6.3 and 11.6.4].) Koornwinder’s work [K]
inspired the development of a quantum symmetric space theory using analogs
of gθ contained in Uq(g). The axiomatic theory of quantum symmetric spaces
(see [Di]) proceeded more rapidly than the discovery of a general way to con-
struct examples. Indeed, Dijkhuizen [Di, end of Section 3] outlined the desirable
properties that analogs of gθ contained in Uq(g) should have in order to form
“nice” quantum symmetric spaces. As in Koornwinder’s work [K], one of the key
properties is the coideal condition. Another crucial property of an analog is that
its finite-dimensional spherical modules be characterized in a similar way to the
characterization in the classical case. This is obtained in [L3] for the coideal sub-
algebras of [L2]. The proof uses quantum Harish-Chandra modules associated
to quantum symmetric pairs. The coideal condition plays a prominent role in
defining and developing the theory of quantum Harish-Chandra modules ([L3]).

This paper is based on a talk given at the MSRI Hopf Algebra Workshop.
It offers a panorama of the use of coideal subalgebras in constructing quantum
symmetric pairs, in forming quantum Harish-Chandra modules, and in producing
quantum symmetric spaces. In the first half of the paper, we present topics
in the general theory of quantum coideal subalgebras. Section 1 sets notation
and presents some basic facts about coideal subalgebras inside arbitrary Hopf
algebras. In Section 2, we define Harish-Chandra modules associated to quantum
“reductive” pairs. We prove a basic result: every Uq(g) module contains a large
Harish-Chandra module associated to a quantum reductive pair. In Section 3,
we discuss how coideal subalgebras of the quantized enveloping algebra can be
used in the dual quantum function algebra setting. Connections are made to
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the theory of quantum homogeneous spaces. Section 4 studies filtrations on
the quantized enveloping algebra and their impact on coideal subalgebras. As
a result, we obtain a nice description of the generators of a coideal subalgebra
under mild restrictions.

The final three sections are devoted to specific coideal subalgebras of the
quantized enveloping algebra. Section 5 discusses the locally finite part, F (U),
of Uq(g). It is well known that the classical enveloping algebra U(g) can be
written as a direct sum of finite-dimensional adg modules. This result plays an
important role in understanding the structure of U(g) and classifying its prim-
itive ideals. Unfortunately, the quantized enveloping algebra contains infinite
dimensional Uq(g) modules with respect to the adjoint action. Thus it is often
necessary to use the locally finite part, F (U), which is the maximal subalgebra
of Uq(g) that can be written as a direct sum of finite-dimensional simple ad
Uq(g) modules. This algebra F (U) is not a Hopf subalgebra of Uq(g), but it is
a coideal. The structure of this coideal subalgebra is briefly reviewed with some
consideration for the implications of the results of Section 4. Certain quantum
Harish-Chandra modules defined originally in [JL3] using F (U) are elucidated in
terms of the general approach presented in Section 2. Section 6 considers coideal
subalgebra analogs of enveloping algebras of nilpotent and parabolic Lie subal-
gebras of g. Much of the material in this section is based on [Ke]. The last part,
Section 7, is devoted to the theory of quantum symmetric pairs. This material is
largely drawn from [L2] and [L3]. However, since the papers appeared, we have
found simpler approaches which are presented here with many proofs included.
We show how to lift a maximally split involution θ of g to the quantum setting.
Exploiting this lift, we define a coideal subalgebra Bθ of Uq(g). As in [L2], Bθ

is characterized as the “unique” maximal coideal subalgebra of Uq(gθ) which
specializes to U(gθ) as q goes to 1. Using the results of Section 4, we give a
new proof of this uniqueness theorem which does not involve the intricate spe-
cialization arguments found in [L2]. We also take the opportunity to make some
corrections in the case work necessary to make the uniqueness tight. Results on
the Harish-Chandra module and quantum symmetric space theory associated to
these pairs are described.
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for his valuable comments. The author would also like to thank the referee for
a painstakingly careful reading of the first draft and many useful suggestions.
Finally, the author would like to thank Dan Farkas whose support transcends
multiple revisions.
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1. Background and Notation

Let H be a Hopf algebra over a field k with comultiplication ∆, antipodal map
σ, and counit ε. Given any a ∈ H, write ∆(a) =

∑
a(1) ⊗ a(2) using Sweedler

notation. A vector subspace I of H is called a left coideal if

∆(I) ⊂ H ⊗ I.

Similarly, I is called a right coideal if ∆(I) ⊂ I ⊗ H. In particular, a left
(resp. right) coideal is a left (resp. right) H comodule contained in H. If I

is both a left (resp. right) coideal and a subalgebra of H, then we simply say
that I is a left (resp. right) coideal subalgebra. There is also a notion of two sided
coideals but those are generally not considered here. We will usually choose to
discuss left coideals and left coideal subalgebras; analogous results can be proved
for the right-handed versions.

We first present two general results about coideals inside of an arbitrary Hopf
algebra. First, assume that H contains the group algebra kG of a group G.
Choose a vector space complement Y to kG in H. Let P be the projection map
of H onto kG as vector spaces using the decomposition H = kG ⊕ Y . Assume
that H is a left kG comodule where the comodule structure comes from the
comultiplication and the projection P . In particular, H is the direct sum of
vector subspaces Hg where

(P ⊗ Id)∆(Hg) ⊂ g ⊗Hg. (1.1)

Given any left coideal I of H, set Ig = I ∩Hg.

Lemma 1.1. A left coideal I contained in H is equal to a direct sum of the vector
spaces Ig. Thus I is a left kG comodule.

Proof. Write a ∈ I as a =
∑

g∈G ag where each ag ∈ Hg. The lemma follows
if we show that each ag ∈ I. By (1.1),

∆(a) ∈
∑

g∈G

g ⊗ ag + Y ⊗H.

The coideal property now ensures that each ag ∈ I. ¤

Every Hopf algebra H comes equipped with a (left) adjoint action. Using this
adjoint action, H becomes an (ad H) module. In particular, given a, b ∈ H,

(ad a)b =
∑

a(1)bσ(a(2)). (1.2)

In the quantum case, it is often interesting to consider ad-invariant coideals. The
following result (which is basically [Jo, Lemma 1.3.5]) is particularly useful.

Lemma 1.2. Let I be a left coideal in H and let M be a Hopf subalgebra of H.
Then (adM)I is an ad M invariant left coideal of H.
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Proof. First note that ([Jo, 1.1.10])

∆(σ(a)) =
∑

σ(a(2))⊗ σ(a(1)). (1.3)

Hence

∆((ad a)b) = ∆(
∑

a(1)bσ(a(2))) =
∑

(a(1)b(1)σ(a(4)))⊗ (a(2)b(2)σ(a(3))).

The result follows from the fact that ∆(a(2)) =
∑

a(2) ⊗ a(3). ¤

Before defining the quantized enveloping algebra, we recall some basic facts about
semisimple Lie algebras. Denote the set of nonnegative integers by N, the com-
plex numbers by C, and the real numbers by R. Let g be a complex semisimple
Lie algebra with triangular decomposition n− ⊕ h⊕ n+. Write h1, . . . , hn for a
basis of h∗. Let ∆ denote the root system of g and write ∆+ for the set of positive
roots. Recall that ∆ is a subset of h∗. Furthermore, n+ (resp. n−) has a basis of
root vectors {eβ |β ∈ ∆+} (resp. {f−β |β ∈ ∆+}). These root vectors are common
eigenvectors, called weight vectors, for the adjoint action of h on g. In partic-
ular, (adhi)eβ = [hi, eβ ] = β(hi)eβ and (ad hi)f−β = [hi, f−β ] = −β(hi)f−β for
each β ∈ ∆+. We further assume that {eβ , f−β |β ∈ ∆+} ∪ {h1, . . . , hn} is a
Chevalley basis for g ([H, Theorem 25.2]). Let π = {α1, . . . , αn} denote the set
of simple roots in ∆+ and ( , ) denote the Cartan inner product on h∗. Recall
further that ( , ) is positive definite on the real vector space spanned by π. The
set π is a basis for h∗. Given αi ∈ π, we write ei (resp. fi) for eαi (resp. f−αi).
The Cartan matrix associated to the root system ∆ is the matrix with entries
aij = 2(αi, αj)/(αi, αi). (The reader is referred to [H, Chapters II and III] for
additional information on semisimple Lie algebras and root systems.)

Let q be an indeterminate and set qi = q(αi,αi)/2. Let [m]q denote the q

number (qm−q−m)/(q−q−1) and [m]q! denote the q factorial [m]q[m−1]q · · · [1]q.
The q binomial coefficients are defined by

[
m

j

]

q

=
[m]!q

[j]!q[m− j]!q
.

The quantized enveloping algebra U = Uq(g) is generated by x1, . . . , xn, t±1
1 ,

. . . , t±1
n , y1, . . . , yn over C(q) with the relations listed below (see for example

[Jo, 3.2.9] or [DK, Section 1]).

(1.4) xiyj − yjxi = δij(ti − t−1
i )/(qi − q−1

i ) for each 1 ≤ i ≤ n.
(1.5) The t±1

1 , . . . , t±1
n generate a free abelian group T of rank n.

(1.6) tixj = q(αi,αj)xjti and tiyj = q−(αi,αj)yjti for all 1 ≤ i, j ≤ n.
(1.7) The quantum Serre relations:

1−aij∑
m=0

(−1)m

[
1− aij

m

]

qi

x
1−aij−m
i xjx

m
i = 0



122 GAIL LETZTER

and
1−aij∑
m=0

(−1)m

[
1− aij

m

]

qi

y
1−aij−m
i yjy

m
i = 0

for all 1 ≤ i, j ≤ n with i 6= j.

The algebra U is a Hopf algebra with comultiplication ∆, antipode σ, and counit
ε defined on generators as follows.

(1.8) ∆(t) = t⊗ t ε(t) = 1 σ(t) = t−1 for all t in T

(1.9) ∆(xi) = xi ⊗ 1 + ti ⊗ xi ε(xi) = 0 σ(xi) = −t−1
i xi

(1.10) ∆(yi) = yi ⊗ t−1
i + 1⊗ yi ε(yi) = 0 σ(yi) = −yiti

for 1 ≤ i ≤ n.
It is well known that the algebra U specializes to U(g) as q goes to 1. This

can be made more precise as follows. Set A equal to C[q, q−1](q−1). Let Û be
the A subalgebra of U generated by xi, yi, t

±1
i , and (ti−1)/(q−1) for 1 ≤ i ≤ n.

Then Û ⊗A C is isomorphic to U(g). (See for example [L2, beginning of Section
2]). Given a subalgebra S of U , set Ŝ = S ∩ Û . We say that S specializes to the
subalgebra S̄ of U(g) if the image of Ŝ in Û ⊗A C is S̄.

Set Q(π) equal to the integral lattice generated by π. Let Q+(π) (resp. Q−(π))
be the subset of Q(π) consisting of nonnegative (resp. nonpositive) integer linear
combinations of elements in π. The standard partial ordering on the root lattice
Q(π) is defined by λ ≥ µ provided λ − µ is in Q+(π). Let P+(π) denote the
set of dominant integral weights associated to π. In particular, λ ∈ h∗ is an
element of P+(π) if and only if 2(λ, αi)/(αi, αi) is a nonnegative integer for all
1 ≤ i ≤ n. There is an isomorphism τ of abelian groups from Q(π) to T defined
by τ(αi) = ti, for 1 ≤ i ≤ n. Using this isomorphism, we can replace condition
(1.6) with

τ(λ)xiτ(λ)−1 = q(λ,αi)xi and τ(λ)yiτ(λ)−1 = q−(λ,αi)yi (1.11)

for all τ(λ) ∈ T and 1 ≤ i ≤ n.
Let M be a U module. A nonzero vector v ∈ U has weight γ ∈ h∗ provided

that τ(λ) · v = q(λ,γ)v for all τ(λ) ∈ T . Given a subspace V ⊂ M , the subspace
of V spanned by the γ weight vectors is called the γ weight space of V and
denoted by Vγ . Now U can be given the structure of a U module using the
quantum adjoint action (1.2). Let v be an element of U . We say that v has
weight γ provided that it is a γ weight vector in terms of this adjoint action. In
particular, v has weight γ if τ(λ)vτ(λ)−1 = q(λ,γ)v for all τ(λ) ∈ T .

Let G+ be the subalgebra of U generated by x1t
−1
1 , . . . , xnt−1

n . Similarly, let
U− be the subalgebra of U generated by y1, . . . , yn. Let Uo be the group algebra
of T . It is well known that both U− and G+ are a direct sum of their weight
spaces. The quantized enveloping algebra U admits a triangular decomposition.
More precisely, there is an isomorphism of vector spaces using the multiplication
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map ([R]):
U ∼= U− ⊗ Uo ⊗G+. (1.12)

It follows that there is a direct sum decomposition

U =
⊕

t∈T

U−G+t. (1.13)

Let G+
+ (resp. U−

+ ) denote the augmentation ideal of G+ (resp. U−) and set Y

equal to the vector space (U−
+ G+Uo +U−G+

+Uo). The direct sum decomposition
(1.13) implies that

U = Uo ⊕ Y. (1.14)

Using the definition of the comultiplication of U , it is straightforward to check
that for any b ∈ U−G+t

∆(b) ∈ t⊗ b + Y ⊗ U.

Thus the projection of ∆(U) onto Uo⊗U makes U into a left Uo comodule with
Ut = U−G+t. Hence we have the following version of Lemma 1.1 for quantized
enveloping algebras.

Lemma 1.3. Let I be left coideal of U . Then

I =
⊕

t∈T

(I ∩ U−G+t).

2. Harish-Chandra Modules

Consider a Lie subalgebra k of the semisimple Lie algebra g. A Harish-
Chandra module associated to the pair g,k is a g module which can be written
as a direct sum of finite-dimensional simple k modules. Harish-Chandra modules
are an important tool in classical representation theory. This is especially true
when g,k is a symmetric pair. Harish-Chandra modules associated to symmetric
pairs provide an algebraic approach to the representation theory of real reductive
Lie groups.

There is a nice introduction to the theory of Harish-Chandra modules pre-
sented in [D, Chapter 9] from an algebraic point of view. The first section of [D,
Chapter 9] only assumes that k is reductive in g. A basic result which is used
repeatedly in this chapter of [D] is the following.

Theorem 2.1 [D, Proposition 1.7.9]. The direct sum of all the finite-dimensional
simple k modules inside a g module is a Harish-Chandra module for the pair g,k.

This theorem allows one to find large Harish-Chandra modules inside of infinite-
dimensional g modules. Its proof uses the fact that k is reductive in g and that
U(g) is a locally finite adU(g) module.

In the quantum setting, Uq(k) is not always a subalgebra of Uq(g) when k is
a Lie subalgebra of g. However, one often finds a quantum analog of U(k) which
is a one-sided coideal subalgebra of Uq(g). Thus any good theory of quantum
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Harish-Chandra modules must work for pairs Uq(g), I where I is a one-sided
coideal subalgebra of Uq(g). In order to begin such a theory, it is necessary to
have an analog of Theorem 2.1. This presents two difficulties. The first is that
U , in contrast to the classical situation, is not a locally finite ad U module. (We
will return to this obstruction in Section 4.) The second is: what does it mean
for a coideal subalgebra to be reductive in U?

In this section, we present a quantum version of Theorem 2.1 using the locally
finite part F (U) of U and a certain condition on coideal subalgebras which
substitutes for reductivity. The material of this section is based on [L1, Section
4] and [L3, Section 3]. This result sets the stage for the development of a quantum
Harish-Chandra module theory. Indeed, the author has checked that many of
the results of [D, Section 9.1] and their proofs carry over to coideal subalgebras
satisfying this quantum version of Theorem 2.1. Some properties of quantum
principal series modules analogous to those in [D, Section 9.3] are proved in [L3,
Section 6]. Spherical modules (see [D, 9.5.4]) have been classified in the quantum
case (see Section 7, Theorem 7.7 and [L3, Section 4]). This is discussed further
in Section 7.

Recall the definition of the adjoint action (1.2) and define

F (U) = {v ∈ U |dim(ad U)v < ∞}. (2.1)

By [JL1, Corollary 2.3, Theorem 5.12, and Theorem 6.4], F (U) is an algebra, it
can be written as a direct sum of finite-dimensional simple U modules, and it is
“large” in U . It is also true that F (U) is a left coideal of U , a subject we will
return to in Section 5.

Fix a left coideal subalgebra I of U . Note that

F (U)I = {
∑

firi|fi ∈ F (U), ri ∈ I}
is also a subalgebra of U . This follows from the fact that rf =

∑
r(1)ε(r(2))f =∑

((ad r(1))f)r(2) for any r ∈ I and f ∈ F (U). Since I is a left coideal, each
r(2) ∈ I. Furthermore the ad-invariance of F (U) implies that (ad r(1))f is in
F (U). We use F (U)I to define Harish-Chandra modules.

Definition 2.2. A Harish-Chandra module for the pair U, I is an F (U)I module
which is a direct sum of finite-dimensional simple I modules.

Let us take a closer look at the condition that k is reductive in g. Reductivity
means that (adk) acts semisimply on g. This assumption is enough to prove
that k is itself reductive and that the center of k can be extended to a Cartan
subalgebra of g. It is unclear what the corresponding assumption in the quantum
case, namely that (ad I) acts semisimply on F (U), implies. It seems unlikely that
this assumption alone will yield an analog of Theorem 2.1.

Of course, there would be no problem if I acted semisimply on all finite-
dimensional I modules. When I turns out to be a Hopf subalgebra of U isomor-
phic to a quantized enveloping algebra of a semisimple Lie subalgebra of g, this
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is certainly true. However, complete reducibility does not hold in general for
the large class of coideal subalgebras considered in Section 7. Thus we need a
replacement for the notion of reductive in g. This substitute is invariance under
the action of a certain conjugate linear antiautomorphism of U .

Let κ denote the conjugate linear form of the quantum Chevalley antiauto-
morphism. In particular, let UR(q) denote the R(q) subalgebra of U generated
by xi, yi, t

±1
i , for 1 ≤ i ≤ n. The antiautomorphism κ of UR(q) is defined by

κ(xi) = yiti, κ(yi) = t−1
i xi and κ(t) = t for all t ∈ T . We then extend κ to U us-

ing conjugation. More precisely, given a ∈ C, write ā for the complex conjugate
of a. Set q̄ = q. Then κ(au) = āκ(u) for all u ∈ UR(q).

It is straightforward to check using (1.8), (1.9), and (1.10) that

∆(κ(b)) = (κ⊗ κ)∆(b) (2.2)

for all b ∈ U . Moreover κ gives U the structure of a Hopf ∗ algebra where ∗ = κ

([CP, Section 4.1F ]).
For the remainder of this section, we assume that I is a left coideal subalgebra

such that κ(I) = I. Thus one can think of I as a ∗ subalgebra of U .
The field R(q) can be made into a real ordered field ([J, Section 11.1]) where

the positive elements are defined as follows. Write a polynomial f(q) in the form
(q − 1)s(fm(q − 1)m + · · · + f1(q − 1) + f0) where each fi ∈ R and m, s ∈ N.
Then f(q) is positive if and only if f0 > 0. An element h ∈ R(q) is positive if
and only if h can be written as a quotient of positive polynomials. This induces
a total order on R(q).

We next specify a class of “nice” finite-dimensional I modules.

Definition 2.3. An I module W is called unitary if it admits a sesquilinear
form SW (i.e. linear in the first variable and conjugate linear in the second
variable) such that

(i) SW (av, w) = SW (v, κ(a)w) for all a ∈ I and v, w in W

(ii) SW (v, v) is a positive element of R(q) for each nonzero vector v ∈ W

(iii) SW (v, w) = SW (w, v) for all v and w in W .

Let W be a finite-dimensional unitary I module. Choose a nonzero vector v ∈ W

such that SW (v, v) = 1. Now suppose that w ∈ W such that SW (w, v) = 0. By
Definition 2.3(iii), it follows that SW (v, w) also equals zero. Hence one can show
using induction that W has an orthonormal basis with respect to SW .

The following result and its corollary show that I has an extensive family
of unitary modules, namely the finite-dimensional simple I submodules of any
finite-dimensional simple U module.

Theorem 2.4. Every finite-dimensional unitary I module can be written as a
direct sum of finite-dimensional simple unitary I modules.

Proof. Let W be a finite-dimensional unitary I module with sesquilinear form
S = SW as in Definition 2.3. Let V be a finite-dimensional simple I submodule
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inside of W . By Definition 2.3, the restriction of S to W again satisfies conditions
(i), (ii), and (iii). Furthermore, Definition 2.3(i) implies that the orthogonal
complement W⊥ of W with respect to S is an I module. Hence V ∼= W ⊕W⊥,
a direct sum of unitary I modules with smaller dimension. The proof follows by
induction on dim V . ¤

Corollary 2.5. Every finite-dimensional simple U module V is a Harish-
Chandra module for the pair U , I.

Proof. Let V be a finite-dimensional simple U module. It is well known that
finite-dimensional U modules are a direct sum of their weight spaces. Moreover,
the weight space of maximal weight is one dimensional. Let v be a basis vector
for this highest weight space and note that v generates V as a U module. The
vector v is called a highest weight generating vector of V . Recall that U−

+ denotes
the augmentation ideal of U−. Note that U−

+ v is the subspace of V spanned by
those weight vectors whose weights are strictly less than that of v. Furthermore,
V is the direct sum of C(q)v and U−

+ v.
Let ϕ be the projection of U onto Uo using the direct sum decomposition

U = Uo ⊕ Y (1.14). Define a sesquilinear form S on V by S(v, v) = 1 and
S(av, bv) = S(v, ϕ(κ(a)b)v) for all a, b ∈ U . Since ϕ(b) = 0 for all b in U−

+ , it
follows that S(v, U−

+ v) = 0.
Note that S satisfies Definition 2.3(i). As in say ([L1, Lemma 4.2]), S special-

izes to the classical positive definite Shapovalov form of [Ka, 11.5 and Theorem
11.7]. Thus ([L1, Lemma 4.2]) S(w, w) 6= 0 for any nonzero vector w ∈ V . It
is straightforward to check that S restricts to a R(q) bilinear form on UR(q)v.
Moreover, S restricted to ÛR(q) takes values in R[q, q−1](q−1). Let w be an ele-
ment in ÛR(q)v. We can write S(w, w) = f(q) with f(q) in R[q, q−1](q−1). Since
the specialization of S is positive definite, we must have that f(1) ≥ 0. It follows
that f(q) ≥ 0. This fact and the nondegeneracy property implies that S satisfies
Definition 2.3(ii).

Recall the direct sum decomposition (1.14) of U . Note that κ(Y ) = Y and
κ(a) = a for all a ∈ Uo ∩ UR(q). Therefore ϕ(κ(b)) = ϕ(b) for all b ∈ UR(q). It
follows that S is symmetric when restricted to UR(q)v. In particular, S satisfies
Definition 2.3(iii). Thus V is a unitary I module. The result now follows from
Theorem 2.4. ¤

Note that we cannot expect ∆(I) to be a subset of I ⊗ I. Hence the tensor
product of two I modules does not necessarily admit an action of I via the
comultiplication of U . However, since I is a left coideal, the tensor product
V ⊗ W of a U module V with an I module W is an I module. In particular,
a(v ⊗ w) =

∑
a(1)v ⊗ a(2)w for all v ⊗ w ∈ V ⊗W and a ∈ I. The next lemma

shows that the notion of unitary behaves well with respect to the tensor product
of a U module with an I module.



COIDEAL SUBALGEBRAS AND QUANTUM SYMMETRIC PAIRS 127

Lemma 2.6. Let V be a finite-dimensional U module and let W be a finite-
dimensional unitary I module. Then V ⊗ W is a finite-dimensional unitary I

module.

Proof. Let SV (resp. SW ) denote the sesquilinear form on V (resp. W ) sat-
isfying the conditions of Definition 2.3. Define a sesquilinear form S = SV⊗W

on V ⊗W by setting S(a ⊗ b, a′ ⊗ b′) = SV (a, a′)SW (b, b′). It is easy to check
Definition 2.3(iii) holds for S. Let {vi} be an orthonormal basis for V with re-
spect to SV and let {wi} be an orthonormal basis for W with respect to SW .
Then S(

∑
bijvi ⊗ wj ,

∑
bijvi ⊗ wj) =

∑
bij b̄ij . Thus Definition 2.3(ii) holds

for S. Condition (2.2) on κ ensures that S satisfies Definition 2.3(i). In par-
ticular, for c ∈ I, we have S(c(a ⊗ b), a′ ⊗ b′) = S(

∑
c(1)a ⊗ c(2)b, a

′ ⊗ b′) =
S(a⊗ b,

∑
κ(c(1))a′ ⊗ κ(c(2))b′) = S(a⊗ b, κ(c)(a′ ⊗ b′)). ¤

We now obtain a quantum analog of Theorem 2.1.

Theorem 2.7. The sum of all the finite-dimensional simple unitary I modules
inside of the F (U)I module M is a Harish-Chandra module for the pair U, I.

Proof. Assume that W is a finite-dimensional simple unitary I module con-
tained in M . It suffices to show that the F (U)I module generated by W is a
direct sum of finite-dimensional simple unitary modules. Note that F (U)IW =
F (U)W = IF (U)W is an I module. The vector space F (U) ⊗W is also an I

module where the action is given by

a · (f ⊗ w) =
∑

(ad a(1))f ⊗ a(2)w

for all f ∈ F (U), w ∈ W , and a ∈ I. Furthermore, F (U)W is a homomorphic
image of the I module F (U) ⊗W . Recall that F (U) is a direct sum of finite-
dimensional simple (ad U) modules. By Corollary 2.5, each finite-dimensional
simple (ad U) module is a unitary I module. Thus by Lemma 2.6, F (U) ⊗W ,
and hence F (U)W , splits into a direct sum of finite-dimensional simple unitary
I modules. ¤

Let HR be the set of all Hopf algebra automorphisms of U which restrict to a
Hopf algebra automorphism of UR(q). Let Υ ∈ HR . Suppose that I is a left
coideal subalgebra such that Υ−1κΥ(I) = I. Then the results of this section
hold for I where we define unitary I modules using Υ−1κΥ instead of κ.

3. The Dual Picture

In this section, we consider the connection between coideal subalgebras of U

and coideal subalgebras inside the Hopf dual of U . The results presented in this
section are well known and are related to the theory of quantum homogeneous
spaces. A good reference for most of the material presented here and for other
basic results about quantum homogeneous spaces is [KS, Chapter 11] (see also
[Jo, 1.4.15]).
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Let Rq[G] denote the quantized function algebra of the connected, simply
connected algebraic Lie group G with Lie algebra g. (See [Jo, Section 9.1] for
a precise definition.) Note that up to a finite group, Rq[G] is the Hopf dual of
U . Furthermore, Rq[G] satisfies a Peter–Weyl theorem ([Jo, 9.1.1 and 1.4.13]).
That is, there is an isomorphism of U bimodules

Rq[G] ∼=
⊕

λ∈P+(π)

L(λ)⊗ L(λ)∗. (3.1)

Here L(λ) is the (left) finite-dimensional simple U module with highest weight
λ contained in the set P+(π) of dominant integral weights. Moreover, L(λ)∗

is thought of as a right U module. Thus, the right U module action on Rq[G]
comes from the action of U on L(λ)∗, while the left action comes from the action
of U on L(λ).

Given a left coideal I of U and a (left) U module M , a (left) invariant is an
m ∈ M such that am = ε(a)m for all a ∈ I. Write M I

l for the collection of all left
invariants in M . Equivalently, M I

l is equal to the elements of M annihilated (on
the left) by the augmentation ideal of I. Consider the special case where I is the
quantum analog of the enveloping algebra of a Lie subalgebra of g corresponding
to a subgroup H of G. Then Rq[G]Il is often written as Rq[G/H]. In particular,
Rq[G/H] is thought of as the quantized function algebra on the quotient space
G/H.

Theorem 3.1. For any left coideal I of U , Rq[G]Il is a left coideal subalgebra of
Rq[G].

Proof. Let φ, φ′ be elements of Rq[G]Il and r an element of I. We first show
that φφ′ is also in Rq[G]Il . To see this, consider

r · (φφ′) =
∑

(r(1) · φ)(r(2) · φ′)
=

∑
(r(1) · φ)ε(r(2))φ′ = (r · φ)φ′ = ε(r)φφ′.

We now check the coideal condition. One can show using the precise definition
of the action of U on Rq[G] and the coalgebra structure of Rq[G] that

∆(r · φ) = (1⊗ r)∆(φ) =
∑

φ(1) ⊗ r · φ(2). (3.2)

On the other hand,

∆(r · φ) = ∆(ε(r)φ) =
∑

φ(1) ⊗ ε(r)φ(2). (3.3)

Since we can choose the φ(1) to be linearly independent, (3.2) and (3.3) force
r · φ(2) = ε(r)φ(2). Thus each φ(2) ∈ Rq[G]Il . ¤

In [KS, Chapter 11.6], a quantum homogeneous space associated to Rq[G] is
defined up to isomorphism as a one-sided coideal subalgebra of Rq[G]. (Note
that quantum homogeneous spaces are actually quantum analogs of the algebra
of regular functions on classical homogeneous spaces.) Thus the theorem above
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shows there is a left quantum homogeneous space, Rq[G]II , associated to each
left coideal subalgebra I. Using the Peter–Weyl decomposition (3.1), we obtain
the following nice description of Rq[G]Il .

Rq[G]Il ∼=
⊕

λ∈P+(π)

L(λ)I
l ⊗ L(λ)∗. (3.4)

Now Rq[G]Il is the set of left I invariants of Rq[G]. We may similarly define
the set of right I invariants Rq[G]Ir . Using the fact that the right action satisfies
∆(φ ·r) = ∆(φ) ·(r⊗1), the same argument as in the proof of Theorem 3.1 shows
that Rq[G]Ir is a right coideal subalgebra of Rq[G]. One may also study the set
of bi-invariants Rq[G]Ibi = Rq[G]Il ∩Rq[G]Ir . As above, Rq[G]Ibi is a subalgebra of
Rq[G]I . However, it is not a coideal.

4. Generators and Filtrations

Consider the Hopf algebra U(L), the universal enveloping algebra of a complex
Lie algebra L. Since U(L) is cocommutative, the one-sided coideal subalgebras
of U(L) are exactly the subbialgebras of U(L). It is very easy to understand
the coideal subalgebras of U(L). Indeed,the next observation is well known. It
follows from say [Mo, Theorem 5.6.5] and the fact that every subcoalgebra of
U(L) is connected ([Mo, Definition 5.1.5 and Lemma 5.1.9]). (Theorem 5.6.5 of
[Mo] is stated for Hopf algebras, however, the proof also works for bialgebras.)

Theorem 4.1. The set of (left) coideal subalgebras of U(L) is the set of en-
veloping algebras U(L′) of Lie subalgebras L′ of L.

An immediate consequence of the above result is that any coideal subalgebra
of U(L) is generated by elements of the underlying Lie algebra L. We would
like to obtain a similar result for coideal subalgebras of the quantized enveloping
algebra. However, passing to the quantum case, the situation becomes more
complicated. Indeed the coalgebra structure is not cocommutative for quantized
enveloping algebras. So the set of coideal subalgebras of the quantized enveloping
algebra is much larger than the set of subbialgebras. By analyzing and deepening
Lemma 1.3 and studying the comultiplication of U , we are able to obtain detailed
information about coideal subalgebras and their generators.

The next result is known as well. It describes the coideal subalgebras of a
group algebra.

Lemma 4.2. Let I be a (left) coideal subalgebra of the group algebra of the group
G. Then I ∩G is a semigroup and I ∩ kG is spanned by I ∩G as a vector space.

We introduce two subalgebras of U which are similar to U− and G+. Let U+

be the subalgebra of U generated by x1, . . . , xn and G− be the subalgebra of U

generated by y1t1, . . . , yntn. Once again, we have that U+ and G− are a direct
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sum of their weight spaces. We may replace U− by G− and G+ by U+ to obtain
the following version of the triangular decomposition.

U ∼= G− ⊗ Uo ⊗ U+. (4.1)

In this section, we show how to break up a coideal subalgebra into three parts
corresponding to coideal subalgebras of G−, Uo, and U+ respectively. First,
however, we obtain basic properties of coideal subalgebras of G− and U+.

Using the formulas for comultiplicaton (1.8), (1.9), and (1.10), it is straight-
forward to check that G− and U+ are left coideal subalgebras of U . Consider
now an arbitrary coideal subalgebra J of U which is either a subset of G− or
U+. Note that if J is also an ad T module, then J can be written as a direct sum
of its weight spaces. We obtain a nice result on the generators of J analogous to
Theorem 4.1 when J is an ad T module.

Lemma 4.3. Let J be an adT submodule and a coideal subalgebra of G−

(resp. U+). Then there exists a subset ∆′ of ∆+ and weight vectors f̃−γ of
weight −γ, γ ∈ ∆′ (resp. ẽγ of weight γ ∈ ∆′) which generate J as an algebra.
Moreover , each f̃−γ (resp. ẽγ) specializes to the root vector f−γ (resp. eγ) as q

goes to 1.

Proof. Note that the weight spaces of G− are finite-dimensional. Hence J has
finite-dimensional weight spaces. Let J̄ denote the specialization of J as q goes
to 1. Consider a weight space Jµ of J . We have that Ĵµ = Û ∩ Jµ = Ĝ− ∩ Jµ.
Also, G− is a free A module and A is a principal ideal domain with unique
maximal ideal generated by (q− 1). Hence one can find a basis for Jµ which is a
subset of Ĵµ and remains linearly independent modulo (q − 1)Û . In particular,
the specialization of this basis as q goes to 1 is a basis for J̄µ. Hence the weight
spaces of J̄ have the same dimension as the weight spaces of J .

Note that the comultiplication of U specializes to the comultiplication of U(g).
Hence J̄ is a coideal subalgebra of U(n−). By Theorem 4.1, J̄ is an enveloping
algebra of a Lie subalgebra, say a, of n−. Now J̄ is a direct sum of its weight
spaces. Hence there exists a subset ∆′ of ∆+ such that the set {f−γ |γ ∈ ∆′} is
a basis of a. Thus for each γ ∈ ∆′, we can find a vector f̃−γ of weight −γ in J

such the image of f̃−γ under specialization is f−γ . Write ∆′ = {γ1, . . . , γm}. A
standard argument shows that the set

Bη = {f i1−γ1
. . . f im−γm

|ij ∈ N for 1 ≤ j ≤ m and i1γ1 + . . . + imγm = η}

is a basis for the −η weight space of U(a). Furthermore B = ∪ηBη is a basis
for U(a). Since the dimensions of the −η weight spaces of U(a) and J agree,
the corresponding set B̃η with f̃ playing the role of f is a basis of Jη. Thus the
set B̃ = ∪ηB̃η is a basis for J . It follows that the f̃−γ , γ ∈ ∆′ generate J as an
algebra.

The same analysis applies to coideal subalgebras of U+. ¤
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The direct sum decomposition (1.13) can be made finer using weight spaces. It
is well known that the set of weights of G+ and U+ equals Q+(π) and the set of
weights of G− and U− equals Q−(π). Thus there are direct sum decompositions

U = ⊕λ,µU−
−λG+

µ Uo and U = ⊕λ,µ,tU
−
−λG+

µ t (4.2)

where λ and µ run over elements of Q+(π) and t runs over elements in T . Let
πλ,µ be the projection of U onto the subspace U−

−λG+
µ Uo. Write [λ, µ] for a

typical element in Q(π)×Q(π) (so as to avoid confusion with the Cartan inner
product).

Consider elements c ∈ U−
−λ and d ∈ G+

µ . It follows from the definition of the
comultiplication map on the generators of U ((1.8), (1.9), and (1.10)) that

(πλ,µ ⊗ Id)∆(cd) = cd⊗ τ(−λ− µ), (4.3)

(πλ,0 ⊗ Id)∆(cd) =
∑

c⊗ τ(−λ)d, (4.4)

(π0,µ ⊗ Id)∆(cd) =
∑

d⊗ cτ(−µ). (4.5)

In the next theorem, we consider coideal subalgebras of U which behave rather
nicely in terms of the second decomposition in (4.2).

Theorem 4.4. Let I be a left coideal subalgebra of U such that

I =
∑

λ,µ,t

(I ∩ U−
−λG+

µ t) (4.6)

and I ∩ T is a group. Then I ∩ G−, I ∩ Uo, and I ∩ U+ are adT submodules
and left coideal subalgebras of I. Moreover , the multiplication map induces an
isomorphism

I ∼= (I ∩G−)⊗ (I ∩ U+)⊗ (I ∩ Uo)

of vector spaces.

Proof. Since I,G−, Uo, and U+ are all left coideal subalgebras, so are I ∩G−,
I ∩ Uo, and I ∩ U+. Note that every element in U−

−λG+
µ t is a weight vector of

weight −λ + µ. Thus I is a direct sum of its weight spaces and I is an ad T

module. It follows that I ∩G−, I ∩ Uo, and I ∩ U+ are all ad T modules.
The triangular decomposition of U (4.1) ensures that the multiplication map

induces an injection

(I ∩G−)⊗ (I ∩ U+)⊗ (I ∩ Uo) → I

of vector spaces. We obtain an isomorphism by showing that each element of I

is contained in (I ∩G−)(I ∩ U+)(I ∩ Uo).
Recall the direct sum decomposition of I given in Lemma 1.3. Let b be an

element of I ∩ U−
−λG+

µ t where t ∈ T . There exists ci ∈ U−
−λ and di ∈ G+

µ so
that b =

∑
i cidit. We may further assume that {ci} and {di} are each linearly

independent sets. By (1.8) and (4.3), (πλ,µ ⊗ Id)∆(b) = b⊗ τ(−λ− µ)t. Hence
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τ(−λ − µ)t is an element of I ∩ T . Since I ∩ T is a group, τ(λ + µ)t−1 is also
contained in I ∩ T .

Equation (4.4) implies that

(πλ,0 ⊗ Id)∆(b) =
∑

i

cit⊗ τ(−λ)dit.

Hence each τ(−λ)dit ∈ I. Recall that di is a weight vector of weight µ in G+.
Thus, multiplying τ(−λ)dit by τ(λ + µ)t−1 yields that diτ(µ) is an element of
U+

µ ∩ I. Similarly, (4.5) ensures that

(π0,µ ⊗ Id)∆(b) =
∑

i

dit⊗ ciτ(−µ)t.

So ciτ(−µ)t ∈ I and hence ciτ(−µ)tτ(λ+µ)t−1 = ciτ(λ) is an element of I∩G−.
Therefore,

b =
∑

i

cidit =
∑

i

q(−λ,µ)(ciτ(λ))(diτ(µ))τ(−λ− µ)t

∈ (I ∩G−)(I ∩ U+)(I ∩ Uo). ¤

Let I be a left coideal subalgebra of U such that I ∩ T is a group and I satisfies
(4.6). Then Theorem 4.4 combined with Lemmas 4.2 and 4.3 imply that I is
generated by I ∩ T and quantum analogs of root vectors in G− and U+. This
description of the generators can be thought of as an analog of Theorem 4.1 for
these special coideal subalgebras. Below, we generalize these results to other
coideal subalgebras by introducing filtrations and associated gradings of U .

Filtration I. Define the filtration F on U using the degree function:

deg xit
−1
i = deg yi = 1 deg ti = −1

for all 1 ≤ i ≤ n. Write grFU for the associated graded algebra of this filtration.
This filtration is invariant under the adjoint action and used to understand the
locally finite part of U (see [JL2, Section 2.2]). (It should be noted that the
quantized enveloping algebra is defined in a different though equivalent manner
in [JL2]. So the xi (resp. ti) in this paper corresponds to xiti (resp. t2i ) in [JL2].
Furthermore the degree of an element as defined in [JL2] is twice the degree of
the corresponding element given here.)

Given γ =
∑

αi∈π miαi, set ht(γ) =
∑

i mi. Note that any nonzero element of
U−
−λG+

µ has degree ht(λ + µ). Let x ∈ U and set supp(x) = {[λ, µ]|πλ,µ(x) 6= 0}.
Further, for x an element of U−G+t for some t ∈ T , set

maxht(x) = {[λ, µ]|[λ, µ] ∈ supp(x) and ht(λ + µ) = deg(x)− deg(t)}.

The next lemma connects the filtration F with the height function.
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Lemma 4.5. Let I be a left coideal of U and let b be an element of I ∩ U−G+t

for some t ∈ T . Then

b =
∑

{[λ,µ]| [λ,µ]∈maxht(b)}
πλ,µ(b) + lower degree terms.

Proof. The lemma follows from the fact that deg πλ,µ(b) = deg b if and only if
[λ, µ] ∈ maxht(b). ¤
By induction on ht(λ + µ) and the definition of the comultiplication (1.8), (1.9),
and (1.10), we have the following:

∆(U−
−λG+

µ ) ⊂
∑

γ+β=λ,α+ξ=µ

U−
−γG+

α ⊗ U−
−βG+

ξ τ(−γ − α). (4.7)

Consider a subset S of Q+(π) × Q+(π). Set |S| equal to the number of
elements in S. We call S transversal if whenever both [λ, µ] and [λ′, µ′] are in S

and [λ, µ] 6= [λ′, µ′] then λ 6= λ′ and µ 6= µ′. Now assume that b ∈ U−G+t and
that maxht(b) is transversal. Given [λ, µ] ∈ maxht(b), find ci ∈ U−

−λ and di ∈ G+
µ

such that πλ,µ(b) =
∑

i cidit. As in the proof of Theorem 4.4, we may further
assume that {ci} and {di} are each linearly independent sets. It follows from
(4.7), (4.3), (4.4), and (4.5) that

(πλ,µ ⊗ Id)∆(b) =
∑

i

cidit⊗ τ(−λ− µ)t, (4.8)

(πλ,0 ⊗ Id)∆(b) =
∑

i

cit⊗ (τ(−λ)dit + terms of lower degree) (4.9)

(π0,µ ⊗ Id)∆(b) =
∑

dit⊗ (ciτ(−µ)t + terms of lower degree) (4.10)

A consequence of the next lemma is that any left coideal subalgebra which
is also an ad T module has a basis B such that maxht(b) is transversal for each
b ∈ B. This in turn is used to generalize Theorem 4.4.

Lemma 4.6. Let b ∈ U be a weight vector . Then maxht(b) is transveral .

Proof. Fix η and let b be an element in U of weight η. Note that πλ,µ(b) 6=
0 implies that−λ+µ = η. Now assume that both [λ, µ] and [λ′, µ′] are in supp(b).
Hence −λ + µ = −λ′ + µ′. Thus λ = λ′ if and only if µ = µ′. In particular,
supp(b) is transversal. The lemma now follows from the fact that maxht(b) is a
subset of supp(b). ¤
Given a left coideal subalgebra I of U , set I−η equal to the subset of G− such
that I ∩G−τ(η) = I−η τ(η). Similarly, set I+

η equal to the subset of U+ such that
I ∩ U+τ(η) = I+

η τ(η). The following result can be thought of as an analog of
Theorem 4.4 for coideal subalgebras which admit an adT module structure.

Theorem 4.7. Let I be a left coideal subalgebra and adT submodule of U . Then

grFI ⊂
∑

{η|τ(η)∈I∩T}
grFI−η I+

η τ(η).
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Proof. Let b be a weight vector of I which is also contained in I∩U−G+τ(β) for
some τ(β) ∈ T . By Lemma 4.6, maxht(b) is transversal. We prove the theorem
when maxht(b) contains exactly one element [λ, µ]. The same argument works in
general. We argue as in the proof of Theorem 4.4. Find ci ∈ U−

−λ and di ∈ G+
µ

so that πλ,µ(b) =
∑

i cidiτ(β). We may further assume that {ci} and {di} are
each linearly independent sets. By our assumption on maxht(b) and Lemma 4.5,

b =
∑

i

cidiτ(β) + lower degree terms.

Set η = −λ− µ + β. By (4.8), τ(η) is in I. Now (4.9) implies that there exist
elements τ(−λ)Diτ(β) ∈ I such that Di = di+ lower degree terms and

(πλ,0 ⊗ Id)∆(b) =
∑

i

ci ⊗ τ(−λ)Diτ(β).

Note that (4.7) ensures that Di − di is an element of U−G+τ(−λ + β). Also,
di is in G+

µ τ(−λ + β). Thus di has degree ht(µ + λ − β). By Lemma 4.5,
[ξ, γ] ∈ supp(Di − di) implies that ht(ξ + γ) < ht(µ). Since ξ is in Q+(π), we
also have ht(−ξ + γ) < ht(µ) and thus −ξ + γ is not equal to µ. Therefore, for
each [ξ, γ] ∈ supp(Di−di), πξ,γ(Di−di) has weight −ξ+γ which is different from
the weight µ of di. Since I is an ad T module, it follows that the µ weight term
of τ(−λ)Diτ(β), namely τ(−λ)diτ(β), is contained in I. Hence diτ(µ)τ(η) ∈
I ∩ U+τ(η) and diτ(µ) ∈ I+

η . A similar argument shows that ciτ(λ) ∈ I−η .
Therefore

grFb = grF

∑

i

cidiτ(η) = grF

∑

i

q−(λ,µ)(ciτ(λ))(diτ(µ))τ(η)

is an element of grFI−η I+
η τ(η). ¤

Filtration II. Order the set N × N lexicographically from left to right. Define
a filtration on U by

Gm,n(U) = {u ∈ U | (ht(λ), ht(µ)) ≤ (m, n) for all [λ, µ] ∈ supp(u)}.

The associated graded algebra for this filtration is defined by setting

grm,n
G (U) = Gm,n(U)

/ ∑

(m′,n′)<(m,n)

Gm,n(U)

and

grG(U) =
⊕
m,n

grm,n
G (U).

Given a subset S of Q+(π) ×Q+(π), set ‖S‖1 = max[λ,µ]∈S{ht(λ)}. We can
define a bidegree: for x in U , we say that bideg(x) = (m, n) if (m,n) is the
smallest element of N × N such that x ∈ Gm,n(U). Set max(x) = {[λ, µ]|[λ, µ] ∈
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supp(x) and bideg(x) = (ht(λ), ht(µ))}. Now consider an element b ∈ U−G+t

for some t ∈ T . The inclusion (4.7) implies the following variation of (4.3):

(πλ,µ ⊗ Id)(b) = πλ,µ(b)⊗ tτ(−λ− µ) for all [λ, µ] ∈ max(b). (4.11)

Lemma 4.8. Let I be a left coideal subalgebra such that I ∩ T is a group. Then
I has a basis B such that for each b ∈ B, max(b) is transversal .

Proof. Recall that I is a direct sum of the subspaces I ∩ U−G+t. Let C =
{x ∈ I|max(x) is transversal}. It is enough to show that for each t ∈ T , every
element of I ∩ U−G+t is contained in the span of C. Consider b ∈ I ∩ U−G+t.
We prove this result under the additional assumption that max(b) consists of
exactly two elements [λ, µ] and [λ, µ′]. A similar argument works in the general
case using induction on |max(b)| and ‖max(b)‖1. Note that

b = πλ,µ(b) + πλ,µ′(b) + terms of lower bidegree.

By (4.11), tτ(−λ − µ) and tτ(−λ − µ′) are both elements of the group I ∩ T .
Hence τ(µ− µ′) is contained in I ∩ T . Consider the element

b′ = τ(µ− µ′)bτ(µ− µ′)−1 = q(−λ+µ,µ−µ′)πλ,µ(b) + q(−λ+µ′,µ−µ′)πλ,µ′(b)

+ terms of lower bidegree.

Now (µ − µ′, µ − µ′) is positive since ( , ) is positive definite on Q(π). Hence
q(−λ+µ,µ−µ′) 6= q(−λ+µ′,µ−µ′). Taking linear combinations of b and b′, it follows
that there exists b1 and b2 in U−G+t ∩ I such that {[λ, µ]} = max(b1) and
{[λ, µ′]} = max(b2). In particular, both max(b1) and max(b2) are transversal
and b is a linear combination of b1 and b2. ¤

Now assume that b ∈ U−G+t and that max(b) is transversal. We have versions of
(4.4) and (4.5) similar to (4.9) and (4.10) in the discussion of the first filtration.
Given [λ, µ] ∈ max(b), find ci ∈ U−

−λ and di ∈ G+
µ so that πλ,µ(b) =

∑
i cidit

and that {ci} and {di} are each linearly independent sets. It follows from (4.7),
(4.4), and (4.5) that

(πλ,0 ⊗ Id)∆(b) =
∑

i

cit⊗ (τ(−λ)dit + terms of lower bidegree) (4.12)

(π0,µ ⊗ Id)∆(b) =
∑

dit⊗ (ciτ(−µ)t + terms of lower bidegree). (4.13)

The filtration G restricts to filtrations on the subalgebras G+, U− and Uo.
Indeed, Uo = G0,0(U) and so grGUo ∼= Uo as algebras. Upon restriction to G+,
the filtration G becomes filtration by the degree function associated to the first
filtration F. The subalgebra of G+ satisfies exactly the same relations as U+. In
particular, the only relations satisfied by the elements of G+ are the quantum
Serre relations (1.7) (see the discussion in Section 7 concerning (7.18)) which are
homogeneous with respect to degree. Hence we have an algebra isomorphism
grGG+ ∼= G+. A similar argument shows that grGU− ∼= U−. Since the elements
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in T have bidegree (0, 0), we further have that grGG− ∼= G− and grGU+ ∼= U+.
For the rest of the paper, we will often identify grGG− with G−, grGU+ with
U+, and grGUo with Uo.

Now the images of xi and yj commute with each other inside the associated
graded algebra of U with respect to G. (See relation (1.4) of U .) It follows that
the image of U−U+ in the associated graded algebra is isomorphic to the tensor
product U− ⊗ U+ as an algebra. If we replace U− by G−, the images of the
elements xi and yjtj do not commute. However, they do commute up to a power
of q. Thus the image of G−U+ in the associated graded algebra can be thought
of as a q form of the tensor product which we write as G− ⊗q U+.

The group algebra Uo acts on weight vectors by τ(λ) · aµ = τ(λ)aµτ(λ)−1 =
q(λ,µ)aµ for aµ ∈ Uµ. Thus we obtain the following algebra isomorphism using a
smash product construction:

grG(U) ∼= Uo#(G− ⊗q U+). (4.14)

(Compare this with a similar result for a different filtration in [Jo, 7.4.7].)

Theorem 4.9. Let I be a left coideal subalgebra such that I ∩ T is a group.
Then

grG(I) ∼= (I ∩ Uo)#((grG(I) ∩G−)⊗q ((grG(I) ∩ U+)).

Proof. The proof is a graded version of the proof of Theorem 4.4. Using Lemma
1.3 and Lemma 4.8, we can find a basis B of I such that B =

⋃
t(B ∩ U−G+t)

and max(b) is transversal for each b ∈ B. By (4.14),

(I ∩ Uo)#((grG(I) ∩G)− ⊗q ((grG(I) ∩ U+))

is isomorphic to a subalgebra of grGI. To show this subalgebra is all of grGI it is
sufficient to show that each element of B is contained in ((grG(I)∩G−)((grG(I)∩
U+))grG(I ∩ Uo).

Let t be an element of T and let b be an element of B ∩ U−G+t. Choose
[λ, µ] ∈ max(b). There exists ci ∈ U−

−λ and di ∈ G+
µ so that πλ,µ(b) =

∑
i cidit

and the {ci} and {di} are each linearly independent sets. Using (4.11), (4.12),
and (4.13) and arguing as in the proofs of Theorem 4.4 and Theorem 4.7, I

contains τ(−λ− µ)t and τ(λ + µ)t−1 and elements d̃i and c̃i such that

d̃i = diτ(µ) + terms of lower bidegree

and

c̃i = ciτ(λ) + terms of lower bidegree.

Note that grGd̃i ∈ grG(I) ∩ U+ and grGc̃i ∈ grG(I) ∩G−. Set

b′ = b−
∑

i

q−(λ,µ)c̃id̃iτ(−µ− λ)t.
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Note that b′ is in I. By construction, πλ,µ(b′) = 0. Thus either max(b′) =
max(b)− {[λ, µ]} or the bidegree of b′ is strictly smaller than the bidegree of b.
The theorem now follows by induction on |max(b)| and the bidegree of b. ¤

Consider a left coideal subalgebra I such that I ∩ T is a group. Given x in
U , set tip(x) =

∑
[λ,µ]∈max(x) πλ,µ(x). The element tip(x) can be thought of

as the highest bidegree term of x. Note that grG(I) ∩ grG(G−) identifies with
tip(I) ∩ G− under the isomorphism G− ∼= grG(G−). Thus tip(I) ∩ G− is a
subalgebra of G−. Consider the elements c̃i in the proof of Theorem 4.9. Note
that each tip(c̃i) is a weight vector. In particular, it follows implicitly from the
proof of Theorem 4.9 that tip(I) ∩ G− is spanned by weight vectors and hence
is an ad T module. One can further show using (4.7) that tip(I) ∩ G− is a left
coideal of G−. Thus tip(I)∩G− is a left coideal subalgebra and ad T submodule
of G−. Similarly, tip(I)∩U+ is a left coideal subalgebra and ad T submodule of
U+. Thus combining Theorem 4.9 with Lemmas 4.2 and 4.3 yields the following.

Corollary 4.10. Let I be a left coideal subalgebra of U such that I ∩ T is
a subgroup of T . Then there exists subsets ∆′ and ∆′′ of ∆+ such that I is
generated by elements c−γ , γ ∈ ∆′; dβ , β ∈ ∆′′; and I∩T . Moreover each tip(c−γ)
(resp. tip(dβ)) is a weight vector of weight −γ (resp. β) which specializes to the
root vector f−γ (resp. eβ) of U(g).

5. The Locally Finite Part of U

One of the most important coideal subalgebras contained in the quantized
enveloping algebra is the locally finite part, F (U), defined by (2.1). This subal-
gebra is studied extensively in [JL1] and [JL2] (see also [Jo]). Here we present
some of the known results about this algebra by directly showing that F (U) is
a coideal subalgebra of U . We will see some of the implications of Section 4 on
the structure of F (U).

Recall that F (U) is defined using the quantum adjoint action in Section 2. It
is helpful to see how the generators of U act via the adjoint action. In particular

(ad yi)b = yibti − byiti (ad xi)b = xib− tibt
−1
i xi (ad ti)b = tibt

−1
i

for all 1 ≤ i ≤ n and b ∈ U .

Theorem 5.1. F (U) is a left coideal subalgebra of U .

Proof. Let b ∈ F (U). A straightforward computation shows

∆((ad xi)b) =
∑

xib(1) ⊗ b(2) −
∑

tib(1)t
−1
i xi ⊗ tib(2)t

−1
i

+
∑

tib(1) ⊗ (adxi)b(2) (5.1)

for each 1 ≤ i ≤ n.
We may write ∆(b) as a sum

∑s
j=1 cj⊗bj where the bj , 1 ≤ j ≤ s, are linearly

independent weight vectors in U of weight λj respectively. Extend the standard
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partial ordering on the integral lattice Q(π) to a total archimedean ordering.
(This can be done by embedding Q+(π) in the nonnegative real numbers.) We
may further suppose that λ1 ≥ λ2 ≥ · · · ≥ λs. For sake of simplicity, assume
that these inequalities are all strict. (A similar argument works in general.)

Let Ui be the subalgebra of U generated by xi, yi, t
±1
i . Note that Ui is iso-

morphic to Uq(sl 2). We show below that each bj generates a finite-dimensional
ad Ui module for 1 ≤ i ≤ n. By [JL1, Theorem 5.9], this forces each bj to be an
element of F (U) (see also the proof of [JL1, Proposition 6.5]).

Suppose that (ad xi)mb = 0. Using (5.1) and induction, we obtain

∆((ad xi)mb) ∈ tmi c1 ⊗ (ad xi)mb1 +
∑

β<λ1+mαi

U ⊗ Uβ .

Hence (ad xi)mb1 = 0. Choose r such that (m− 1)αi +λ1 < (m+ r)αi +λ2. We
further have that

∆((ad xi)m+rb) ∈ tm+r
i c2 ⊗ (ad xi)m+rb2 +

∑

β<λ2+(m+r)αi

U ⊗ Uβ .

Thus (adxi)mb = 0 also implies that (ad xi)m+rb2 = 0. By induction, it follows
that there exists M > 0 such that (ad xi)Mbj = 0 for all 1 ≤ j ≤ s and 1 ≤ i ≤ n.
One obtains a similar property for the action of each ad yi on b. In particular,
for each 1 ≤ i ≤ n and each 1 ≤ j ≤ s, both ad yi and ad xi act nilpotently on
bj . Since bj is a weight vector, it further follows that ad ti acts semisimply on
bj . Thus bj generates a finite-dimensional adUi module for all 1 ≤ i ≤ n and all
1 ≤ j ≤ s. Therefore each bj ∈ F (U). ¤

Set TF = T ∩ F (U). It follows from Lemma 4.2 that the algebra generated
by TF is equal to the intersection of Uo with F (U). By [JL1, 6.2], τ(λ) ∈
F (U) if and only if (adxi) and (ad yi) act nilpotently on τ(λ) for 1 ≤ i ≤ n.
Furthermore, ([JL1, the proof of Lemma 6.1]) s is the least positive integer such
that (ad xi)sτ(λ) = 0 and (ad yi)sτ(λ) = 0 if and only if

(λ, αi)
(αi, αi)

= −s + 1.

Thus, τ(λ) ∈ F (U) if and only if (λ, αi)/(αi, αi) is a nonpositive integer for all
1 ≤ i ≤ n. In particular, −λ/2 is a dominant integral weight. So τ(λ) is in
F (U) if and only if λ is in R(π) := Q(π) ∩−2P+(π). (This is [JL1, Lemma 6.1.
Note that the notation in [JL1] is different than in this paper. In particular,
ti here corresponds to t2i in [JL1]. Thus divisibility by 4 in [JL1, Lemma 6.1]
corresponds to divisibility by 2 in this paper.) For example, when g is sl 2, then
TF is just the set

{t−m|m ∈ N}.
Note that this set is a semigroup but is not a group. This is true in general for
TF .
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Recall F, the first filtration discussed in Section 4. For each ξ ∈ R(π), set
K−

ξ equal to the subspace of G− such that F (U)∩G−τ(ξ) = K−
ξ τ(ξ). Similarly,

set K+
ξ equal to the subspace of U+ such that F (U) ∩ U+τ(ξ) = K+

ξ τ(ξ). It is
shown in [JL2, Section 4.9, 4.10] that

grF(F (U)) = ⊕ξ∈R(π)grF(K−
ξ K+

ξ τ(ξ)). (5.2)

Note that the inclusion of the left hand side of (5.2) inside the right hand side is
just Theorem 4.7 applied to F (U). In particular, Theorem 4.7 gives a new proof
of this inclusion. Moreover, Theorem 4.7 can be thought of as a generalization of
this part of (5.2) to other left coideal subalgebras which admit an adT module
structure.

The analysis in [JL2, Section 4, see Section 4.10], shows that

grF(K−
ξ K+

ξ τ(ξ)) = (ad U)grFτ(ξ).

Moreover,

(ad U)grFτ(ξ) ∼= (ad U)τ(ξ)

as ad U modules for each τ(ξ) ∈ TF . Thus one has the direct sum decomposition
in the nongraded case [JL2, Corollary 4.11]):

F (U) = ⊕t∈TF
(ad U)t. (5.3)

Now (5.3) implies that F (U) is the ad U module generated by the algebra F (U)∩
Uo. The fact that F (U) is a left coideal was originally proved using this fact and
a weakened version of Lemma 1.2 ( [JL3, Lemma 5.3]).

Note that (ad U)t is an ad-invariant left coideal of U for each t ∈ T . On the
other hand, (4.11) guarantees that any left coideal of U contains an element of
T . Thus by (5.3) the minimal ad-invariant left coideals of U contained in F (U)
are exactly the vector subspaces (ad U)t where t ∈ TF . This argument and result
is due to [HS, Theorem 3.9] where it is actually proved in the dual setting. The
description of the minimal ad-invariant left coideals is, in turn, a crucial step
in the classification of bicovariant differential calculi on the quantized function
algebra Rq[G].

The algebra F (U) can be localized by the normal elements TF to obtain
the larger coideal subalgebra F = F (U)T−1

F . Now F ∩ T is just the subgroup
generated by TF . It is straightforward to show that F is generated by xi, yiti,
and F∩T for 1 ≤ i ≤ n. In particular, given i, there exists some t ∈ TF such that
(ad xi)t is a nonzero multiple of xit. Hence xit ∈ F (U) and xi ∈ F. A similar
argument shows that yiti ∈ F for all 1 ≤ i ≤ n. Thus F contains F ∩ T , xi, and
yiti, for 1 ≤ i ≤ n. In the notation of Corollary 4.10, we get that ∆′ = ∆′′ = ∆+,
and, moreover, F ∩ T , xi, and yiti, 1 ≤ i ≤ n, generate F. It further follows
that G− and U+ are subalgebras of F and that G−U+t is a subset of F for each
t ∈ F ∩ T . Recall the notation of Theorem 4.7. Note that F−η = G− ⊂ F and
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F+
η = U+ ⊂ F for all η ∈ Q(π). Hence Theorem 4.7 implies the following direct

sum decomposition of F:

F = ⊕t∈F∩T G−U+t.

Since F ∩ T is a subgroup of finite index in T , we see that F, and hence F (U),
is “large” in U (For a stronger version of this, see [JL1, Theorem 6.4]).

A particular type of quantum Harish-Chandra module, defined differently
(and earlier) than those of Section 2, was introduced in [JL3] in order to classify
the primitive ideals of U . These modules were originally specified as a subcate-
gory of the F (U) bimodules with a “compatible” ad U action (see [JL3, 5.4] or
[Jo, 8.2.3 and 8.4.1]). In [JL3, 5.4], an F (U) bimodule M has a compatible ad U

module structure provided that
∑

((ad a)(b ·m · c) =
∑

(ad a(1))b · (ad a(2))m · (ad a(3))c (5.5)

and

(ad t)m · t = t ·m (5.6)

for all a ∈ U , b and c in F (U), m ∈ M , and t ∈ F (U)∩ T . A different definition
of compatible is given in [Jo, 8.2.3]. In particular, the adU action must satisfy
the following condition in [Jo, 8.2.3]:

∑
((ad a(1))m) · a(2) = a ·m (5.7)

for all a ∈ F (U) and m ∈ M . Note that (5.6) follows from (5.7) by setting a = t.
The purpose of introducing the compatibility conditions (5.5) and (5.6) was to

study the specific Harish-Chandra module category Hχ associated to a dominant
regular weight Λ defined in [JL3, Section 5.7]. By [JL3, 5.12] and [Jo, 8.4.11],
this category is the same as the one described in [Jo, 8.4.1] using condition (5.7).
Hence this category consists of modules with an F (U) bimodule structure and
(ad U) module action which satisfy both (5.5) and (5.7). In this paper, we say
that F (U) has a compatible ad U module action if both (5.5) and (5.7) hold.
We show here that F (U) bimodules with a compatible ad U module action fit
exactly into the framework of Section 2.

Let Uop denote the Hopf algebra with underlying vector space U , the opposite
multiplication, the same comultiplication and counit as U , and with antipode
σ−1 ([Jo, 1.1.12]). Note that the algebra U ⊗ Uop can be made into a Hopf
algebra with comultiplication ∆(a⊗ b) = (Id⊗tw⊗ Id)(∆⊗∆)(a⊗ b) where tw
denotes the twist map sending a⊗ b to b⊗ a. The other Hopf operations can be
defined similarly. Observe that U ⊗ Uop is isomorphic to Uq(g ⊕ g∗) as a Hopf
algebra. There is an algebra embedding ψ of U into U ⊗ Uop which sends an
element u to

∑
u(1)⊗σ(u(2)). The image of U in U ⊗Uop under ψ is not a Hopf

subalgebra of U ⊗ Uop. However, by the next lemma it is a coideal subalgebra.

Lemma 5.2. The algebra ψ(U) is a left coideal of U ⊗ Uop.
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Proof. By (1.3),

∆(
∑

u(1) ⊗ σ(u(2))) =
∑

(u(1) ⊗ σ(u(4)))⊗ (u(2) ⊗ σ(u(3))).

Thus ψ(U) is a left coideal since ∆(u(2)) =
∑

u(2) ⊗ u(3). ¤

Let F (U ⊗ Uop) denote the locally finite part of U ⊗ Uop. We show that F (U)
modules with compatible ad U module action are F (U⊗Uop)ψ(U) modules. The
next lemma relates F (U ⊗ Uop) to the locally finite part F (U) of U .

Lemma 5.3. F (U ⊗ Uop) = F (U)⊗ F (U)op

Proof. Let adop denote the (left) adjoint action of Uop. With sufficient
care to indentification of elements in U and Uop, one checks using (1.3) that
(adopσ(a))b = (ad a)b. Thus F (Uop) = F (U)op as algebras. ¤

Recall that since ψ(U) is a left coideal and F (U ⊗Uop) is an adU ⊗Uop module,
we have that F (U ⊗Uop)ψ(U) = ψ(U)F (U ⊗Uop). The next lemma shows that
F (U) is a free as a left ψ(U) module.

Lemma 5.4. The multiplication map induces an isomorphism φ of vector spaces

ψ(U)⊗ (1⊗ F (U)op) → ψ(U)F (U ⊗ Uop).

Proof. Let a ∈ F (U). Note that

a⊗ 1 =
∑

a(1)ε(a(2))⊗ 1 =
∑

a(1) ⊗ ε(a(2))

=
∑

a(1) ⊗ a(3)σ(a(2)) =
∑

ψ(a(1))(1⊗ a(2)) (5.8)

for all a ∈ U . It follows that

ψ(U)F (U ⊗ Uop) = ψ(U)(1⊗ F (U)op).

This proves that φ is surjective.
Suppose that

∑
i ψ(ci)(1⊗bi) = 0 where the set {bi} is a linearly independent

subset of F (U)op. We argue that each ψ(ci) = 0. This in turn implies that φ is
injective.

There is a version of Lemma 1.3 for right coideal subalgebras. In particular,
U = ⊕tG

−U+t and each G−U+t is a right coideal of U . We may write ci =
∑

t cit

where each cit ∈ G−U+t. It follows that ψ(cit)(1 ⊗ bi) ∈ G−U+t ⊗ U for each
i and t ∈ T . Thus

∑
i ψ(cit)(1 ⊗ bi) = 0. This allows us to reduce to the case

where there exists t ∈ T such that ci is in G−U+t for all i.
Recall the notation of Section 4, Filtration II. Let (M, N) be the maximum

value of the set of bidegrees of the ci. Reordering if necessary, we may assume
that c1 has bidegree (M, N). Choose [λ, µ] ∈ max(c1). By say (4.11), we have

(πλ,µ ⊗ Id)
∑

i

ψ(ci)(1⊗ bi) =
∑

i

πλ,µ(ci)⊗ σ(t)bi.
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Note that σ(t) = t−1. Since the set {bi} is linearly independent, the set {σ(t)bi}
is also linearly independent. Hence πλ,µ(ci) = 0 for each i. The choice of [λ, µ]
now forces ci = 0 for each i. ¤

The next result shows that F (U) modules with compatible ad U modules are
just F (U ⊗ Uop)ψ(U) modules.

Theorem 5.5. The set of F (U) bimodules with compatible adU module action
can be identified with the set of F (U ⊗ Uop)ψ(U) modules.

Proof. Let M be a F (U⊗Uop)ψ(U) module. Note that M is a F (U) bimodule
in a natural way. In particular, set a ·m · b = (a ⊗ b)m for all a, b ∈ F (U) and
m ∈ M . We define an action of ad U on M by setting (ad c)m = ψ(c)m for all
c ∈ U . By (5.8), it follows that this adU action satisfies (5.7). A straightforward
computation shows that this action satisfies (5.5) as well.

Now let M be an F (U) bimodule with compatible adU module action. Make
M into a F (U ⊗ Uop)ψ(U) module by setting

(a⊗ b)m = a ·m · b and (ψ(c))m = (ad c)m (5.9)

for all a⊗ b ∈ F (U ⊗ Uop), c ∈ U , and m ∈ M .
One checks that ψ(c)(1⊗b) =

∑
(1⊗(ad c(2))b)ψ(c(1)). By (5.5), (ad c)(m·b) =

(ad c(1) ·m) · ((ad c(2))b). Hence the action of ψ(c) on (1⊗ b)m described in (5.9)
agrees with the action of (1 ⊗ (ad c(2))b) on ψ(c(1))m. Therefore, to show that
the action in (5.9) is well defined it is sufficient to show that the action of an
element x ∈ F (U ⊗ Uop)ψ(U) on M is independent of the way x is written as a
sum of terms of the form bu where b ∈ F (U ⊗ Uop) and u ∈ ψ(U).

The compatibility condition (5.7) ensures that

(ad c)(a ·m · b) =
∑

(ad ca(1))(m · ba(2))

for all a ⊗ b ∈ F (U ⊗ Uop), c ∈ U , and m ∈ M . Thus using (5.9) formally, we
see that

ψ(c)((a⊗ b)m) = ψ(c)((a ·m · b)) =
∑

ψ(ca(1))(m · ba(2))

=
∑

ψ(ca(1))((1⊗ ba(2))m).

In particular the action of ψ(c)(a⊗ b) agrees with the action of
∑

ψ(ca(1))(1⊗
ba(2)) on M . By Lemma 5.4, every element in F (U⊗Uop)ψ(U) can be expressed
uniquely in the form

∑
i ψ(ai)(1 ⊗ bi) where {bi} is a basis of F (U)op. The

theorem now follows. ¤

One can apply the results of Section 2 to the study of Harish-Chandra modules
for the pair U ⊗Uop, ψ(U). Identify the algebra U ⊗Uop with Uq(g⊕g∗). Let κ̃

denote the conjugate linear Chevalley antiautomorphism of Section 2 associated
here to the quantized enveloping algebra Uq(g⊕g∗). One can find a Hopf algebra
automorphism Υ ∈ HR such that Υ(ψ(U)) is invariant under κ̃. Thus the results
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in Section 2 apply here. However, the main results of Section 2, such as Theorem
2.7, can be proved easily in this case since ψ(U) is isomorphic as an algebra to
Uq(g). Thus it acts completely reducibly on all finite-dimensional ψ(U) modules.
Furthermore, one checks that all finite-dimensional ψ(U) modules are unitary
using the fact that this is true for Uq(g).

For an example of a Harish-Chandra module associated to the pair U ⊗ Uop,
ψ(U), consider two left U modules M and N . Define the U bimodule Hom(M, N)
by (a ·f · b)(m) = af(bm). As explained in [JL3, 5.4] and [Jo, 8.2.3], Hom(M, N)
has a compatible (ad U) module structure in the sense of (5.5) and (5.7) given
by (ad a)f =

∑
a(1) · f · σ(a(2)). Thus from the above Theorem 5.5, we see that

Hom(M,N) is a (F (U) ⊗ F (U)op)ψ(U) module. By Theorem 2.7, the sum of
all finite-dimensional ad U modules F (M,N) inside of Hom(M, N) is a Harish-
Chandra module for the pair U ⊗ Uop, ψ(U).

In [JL3, Theorem 5.13] (see also [Jo, Chapter 8]), the theory of Harish-
Chandra modules associated to the pair U ⊗ Uop, ψ(U) is used to prove an
equivalence of categories between certain Harish-Chandra modules and various
category O modules. This is critical in obtaining the quantum version of Duflo’s
theorem: every primitive ideal of U is the annihilator of a highest weight simple
module ([JL3, Corollary 6.4] or [Jo, 8.4.17]).

6. Nilpotent and Parabolic Coideal Subalgebras

Yet another left coideal subalgebra of U is G−, an obvious quantum analog
of U(n−). In this section, we consider coideal subalgebras of G− which corre-
spond to classical enveloping algebras of Lie subalgebras of n− and related Lie
subalgebras of g. Most of the results presented here are from [Ke].

Let π′ be a subset of the simple roots π of g. There are a number of Lie sub-
algebras of g which can be associated to π′. The most obvious is the semisimple
Lie subalgebra m of g generated by the ei, fi, hi, for those i with αi ∈ π′. Since
the simple roots π′ associated to the root system of m are contained in the simple
roots π of g, the entire picture can be lifted to the quantum setting. In partic-
ular, Uq(g) contains a Hopf subalgebra M isomorphic to Uq(m) and generated
by the xi, yi, ti, t

−1
i for the same i. Set M− = M ∩G− and M+ = M ∩ U+.

Let ∆′ denote the set of positive roots associated to the simple roots π′. The
vector space n−π′ spanned by the root vectors f−γ , γ in ∆+−∆′, is a second Lie
subalgebra of n−. Let m− denote the Lie subalgebra of m generated by the fi

for αi ∈ π′. Then
n− = n−π′ ⊕m−.

Thus the multiplication map defines a vector space isomorphism:

U(n−) ∼= U(n−π′)⊗ U(m−). (6.1)

We shall see that the algebra U(n−π′) can be lifted to the quantum setting using
a coideal subalgebra.
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Let G−π−π′ be the subalgebra of G− generated by the yiti such that αi is
in π − π′. Note that G−π−π′ is a left coideal subalgebra of G−. Now G−π−π′

is generated by weight vectors and in particular, (ad T )G−π−π′ = G−π−π′ . Also,
(ad xi)yjtj = 0 for all i 6= j. Thus (ad (M+T ))G−π−π′ ⊂ G−π−π′ . Recall that M is
equal to the quantized enveloping Uq(m). Hence the triangular decomposition
(1.12) implies that MT = M−M+T . Hence (ad M−)G−π−π′ equals (ad M)G−π−π′ .
By Lemma 1.2, (ad M−)G−π−π′ is a left coideal. Let N−

π′ be the subalgebra of G−

generated by (ad M−)G−π−π′ . It is a left coideal subalgebra since (adM−)G−π−π′

is a left coideal.
By [Ke], one has a quantum analog of (6.1). Namely there is an isomorphism

of vector spaces

G− ∼= N−
π′ ⊗M−. (6.2)

Kébé actually proves a stronger result with this as a consequence, namely, G−

is isomorphic to the smash product of N−
π′ and M−.

By construction, N−
π′ is generated by weight vectors and hence is a direct sum

of its weight spaces. By Lemma 4.3, we can find a subset ∆1 of ∆+ such that
N−

π′ is generated by weight vectors f̃−γ of weight γ ∈ ∆1 which specialize to
root vectors in U(n+). By [L3, proof of Proposition 2.2], ∆1 consists of those
positive roots which are not linear combinations of roots in π′. In particular,
N−

π′ specializes to U(n−π′) as q goes to 1 ([L3, proof of Proposition 2.2]). Thus
the left coideal subalgebra N−

π′ is a natural choice of quantum analog of U(n−π′)
inside of U(g).

It is instructive to look at the generators of N−
π′ . Let I be a tuple (i1, . . . , ir)

of (arbitrary) length r and suppose that αis is in π − π′ for 1 ≤ s ≤ r. By the
argument in [L3, Proposition 2.2], the algebra N−

π′ is generated by elements of
the form

YI,j = (ad yi1 · · · yir )yjtj

where αj /∈ π′.
Now each YI,j is an element of the subcoideal (ad M−)yjtj of N−

π′ as well as
an element of G−. Hence

(Id⊗π0,0)∆(YI,j) = YI,j ⊗ 1.

Thus

∆(YI,j) = YI,j ⊗ 1 +
∑

Yi ⊗ Y ′
i

where Yi is in U and Y ′
i is in (ad M−)yjtj . We can actually say more about the

Yi. First recall that YI,j is in G−. Set λ = αi1 + · · · + αir + αj and note that
the weight of YI,j is −λ. Set µ = 0. We may apply (4.7) to YI,jτ(−λ) using
this λ and µ. By (4.7) and weight space considerations, each Yi is in M∩G−Uo.
Furthermore, (4.7) implies that each Yi ∈ U−τ(λ). Since τ(λ) ∈ Mtj , it follows
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that each Yi is an element of (M∩U−Uo)tj . In particular, we get that (see [AJS,
Proposition C.5])

∆(YI,j) ∈ YI,j ⊗ 1 + (M ∩ U−Uo)tj ⊗ (ad M−)(yjtj). (6.3)

The elements YI,j also satisfy a uniqueness property. In particular, by [L2,
Proposition 4.1], if Y is an element of G− of weight −λ such that

∆(Y ) ∈ Y ⊗ 1 + (M ∩ U−Uo)tj ⊗ (adM−)(yjtj)

then Y is a nonzero scalar multiple of YI,j . This uniqueness property will be
used in the uniqueness result Theorem 7.5 concerning quantum symmetric pairs.

Let n+
π′ be the Lie subalgebra of n+ spanned by the root vectors eγ , where γ

runs over ∆+ −∆′. One can similarly define left coideal subalgebras N+
π′ of U+

which are analogs of U(n+
π′). These can be constructed directly using the same

methods described above for N−
π′ .

Of course, one could take the perspective of right coideal subalgebras instead
of left coideal subalgebras. This will be useful in the next section. For example,
right coideal analogs of U(n+

π′) are subalgebras of G+ defined using the right
adjoint action,

(adra)b =
∑

σ(a(1))ba(2) (6.4)

for all a and b in U . Let G+
π−π′ be the subalgebra of G+ generated by the

xit
−1
i for all i such that αi ∈ π − π′. Then the subalgebra N+

π′,r generated by
(adrM

+)G+
π−π′ is a right coideal subalgebra of G+ and an analog of U(n+

π′). The
algebra N+

π′,r is generated by elements of the form

XI,j = (adrxi1 · · ·xir )xjt
−1
j

where each αis ∈ π′ and αj /∈ π′. Moreover the comultiplication of these elements
is similar to that of the YI,j , e.g.,

∆(XI,j) ∈ 1⊗XI,j + (adrM
+)(xjt

−1
j )⊗ (M ∩G+Uo)t−1

j . (6.5)

Using N−
π′ , N+

π′ , and M−, one can construct what are called generalized Verma
modules. Let P be the subalgebra of U generated by M, Uo, and N+

π′ . Note that
P is a left coideal subalgebra since it is generated by left coideal subalgebras. It is
an analog of the enveloping algebra of the parabolic Lie subalgebra (m+h)⊕n+

π′ .
Using (6.2), one obtains an isomorphism of vector spaces via the multiplication
map

U ∼= N−
π′ ⊗ P. (6.6)

Let W be a finite-dimensional simple M module. Extend the action of M on
W to Uo by insisting that the highest weight generating vector of W is a weight
vector of say weight Λ with respect to the action of T . Extend further the action
on W to N+

π′ by insisting that the augmentation ideal of N+
π′ acts as zero on

all vectors in W . These extensions make W into a P module. The generalized
Verma module Mπ′(Λ) is defined to be U ⊗P W . In particular, elements of U
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act by left multiplication and pu⊗w =
∑

(ad p(1))u⊗p(2)w for all p ∈ P, u ∈ U ,
and w ∈ W . As a left N−

π′ module, U⊗P W ∼= N−
π′⊗W . Furthermore, the action

of M on N−π′ is both locally finite and semisimple. Hence the generalized Verma
module Mπ′(Λ) is a Harish-Chandra module for the pair U , M.

Using the coideal subalgebras discussed in this section, one can form quan-
tized homogenous spaces as in Section 3. For example, the homogeneous space
associated to G−, Rq[G/N ] = Rq[G]G

−
l is studied in [Jo, Chapter 9] where it is

used to obtain the complete description of the prime and primitive spectra of
the quantized function algebra Rq[G].

7. Quantum Symmetric Pairs

We turn now to the theory of quantum symmetric pairs. First, we present the
construction and characterization of the coideal subalgebras used to form such
pairs. The results are drawn from [L2] and [L3], but the methods in this paper
are often simpler. The involutions used to construct these algebras are given in
a concrete fashion here. The relations for the coideal subalgebras as algebras are
also presented more explicitly. Moreover, using the results of Section 4, we give
a new, less intricate, proof of the uniqueness characterization for the subalgebras
used to form quantum symmetric pairs (see Theorem 7.5 below.) The Harish-
Chandra module and symmetric space theory associated to these pairs is also
described with the aid of Sections 2 and 3.

A symmetric pair is defined for each Lie algebra involution (equivalently, a
Lie algebra automorphism of order 2) of g. More precisely, let θ be a Lie algebra
involution of g. Write gθ for the Lie subalgebra of g consisting of elements fixed
by θ. The pair g,gθ is a classical symmetric pair. A classification of involutions
and classical symmetric pairs up to isomorphism can be found in [He1, Chapter
10, Sections 2, 5, and 6] and [OV, Section 4.1.4].

Let p = {v ∈ g|θ(v) = −v}. A commutative Lie subalgebra of g which is
reductive in g and is equal to its centralizer in p is called a Cartan subspace of
p (see [D, 1.13.5].) A Cartan subalgebra h′ of g is called maximally split ([V,
Section 0.4.1]) with respect to θ provided that h′ ∩ p is a Cartan subspace of p.
By [D, 1.13.6, 1.13.7], p contains Cartan subspaces and moreover each Cartan
subspace can be extended to a Cartan subalgebra of g.

Recall that we have already specified a Cartan subalgebra h of g. Let θ be
an involution of g such that h is maximally split with respect to θ. Let L be the
set of Lie algebra automorphisms ψ of g such that ψ(p ∩ h) is a subset of h. If
ψ ∈ L then h is also maximally split with respect to the involution ψθψ−1. By
[D, 1.13.7 and 1.13.8], one can replace θ by ψθψ−1 for some ψ ∈ L so that θ also
satisfies the following conditions:

θ(h) = h; (7.1)

if θ(hi) = hi then θ(ei) = ei and θ(fi) = fi; (7.2)



COIDEAL SUBALGEBRAS AND QUANTUM SYMMETRIC PAIRS 147

if θ(hi) 6= hi then θ(ei) is a nonzero root vector in n−

and θ(fi) is a nonzero root vector in n+. (7.3)

By [D, 1.13.8], θ also induces an automorphism Θ of the root system ∆.
if θ(hi) 6= hi then θ(ei) is a nonzero root vector in n−

Now consider an arbitrary involution θ′ of g. One can find a Lie algebra
automorphism Υ of g so that h is maximally split with respect to the involution
Υθ′Υ−1. In the quantum case, we do not have as much flexibility in “moving”
involutions around using an automorphism of U . In particular, there is only one
choice of quantum Cartan subalgebra, since the only invertible elements of U

are the nonzero scalars and the elements of T . Hence any automorphism of U

restricts to an automorphism of T . Thus the relationship between an involution
of g and the particular Cartan subalgebra h is important in lifting the involution
to the quantum case. In this section, we call an involution θ of g a maximally
split involution if h is maximally split with respect to θ and θ satisfies (7.1), (7.2),
and (7.3). (Similar terminology was introduced in [Di, Section 5].) We discuss
lifts of maximally split involutions and the associated quantum symmetric pairs.
There are also a few scattered results on quantum symmetric pairs when the
involution is not maximally split. The reader is referred to [G] and [BF] for
more information.

For the remainder of this section, let θ be a maximally split involution with
respect to the fixed Cartan subalgebra h. Consider the Cartan subspace a = p∩h
of p. Since a is subset of h, the action of ad a on g is semisimple. Given λ ∈ a∗,
set

gλ = {x ∈ g|(ad a)x = λ(a)x for all a ∈ a}.
Let

Σ = {λ ∈ a∗| gλ 6= 0}.
We can write g = ⊕λ∈Σgλ. Furthermore, by [OV, Theorem 3.4.2], Σ is an ab-
stract root system called the restricted root system associated to θ (or more
precisely, to g,a.) A classification of restricted root systems associated to in-
volutions can be found in [Kn, Chapter VI, Section 11] (see also [He1, Chapter
X, Section F under Exercises and Further Results]). Note that an abstract root
system is slightly more general than an ordinary root system (often called a re-
duced root system) described in [H, Chapter III]. Good references for abstract
root systems are [Kn, Chapter II, Section 5] and [OV, Chapter 3, Section 1.1].
The abstract root systems have been classified as the set of reduced root systems
and one additional nonreduced family referred to as type BC ([Kn, Chapter II,
Section 8]).

Before discussing the quantum case, we further describe the action of θ on the
generators of g. Set ∆Θ = {α ∈ ∆|Θ(α) = α} where Θ is the associated root
system automorphism. This is the root system for the semisimple Lie subalgebra
m of g generated by the ei, fi, hi with θ(hi) = hi. Write m = m− ⊕mo ⊕m+

for the obvious triangular decomposition of m. Set πΘ = ∆Θ ∩ π. Note that πΘ
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is a set of positive simple roots for the root system ∆Θ. Write Q(πΘ) for the
lattice of integral linear combinations of the simple roots in πΘ. Let Q+(πΘ) be
the set of nonnegative integral linear combinations of the elements in πΘ.

Note that πΘ = Θ(π) ∩ π. Also, Θ(−αi) ∈ ∆+ for all αi /∈ πΘ by (7.3). It
follows that

Θ(−αi) ∈
∑

αj /∈πΘ

Nαj + Q+(πΘ) (7.4)

for each αi /∈ πΘ. Since Θ is a root system automorphism, every element of
∆ can be written as an integral linear combination of roots in {Θ(αi)|αi ∈ π}
where either all the coefficients are positive or all the coefficients are negative.
Hence each αi /∈ πΘ can be written as a linear combination of elements in
{Θ(αi)|αi /∈ πΘ} ∪ πΘ with just negative integers as coefficients. Observation
(7.4) thus implies that there exists a permutation p on the set {i |αi ∈ π − πΘ}
such that for each αi ∈ π − πΘ,

Θ(−αi)− αp(i) ∈ Q+(πΘ). (7.5)

Choose a maximal subset π∗ of π − πΘ such that if j = p(j) then αj ∈ π∗

and if j 6= p(j), then exactly one of the pair αj , αp(j) is in π∗. Consider i

such that αi ∈ π∗. The root vector ep(i) associated to the simple root αp(i)

satisfies (ad fj)ep(i) = [fj , ep(i)] = 0 for all αj ∈ πΘ. Thus ep(i) is a lowest weight
vector for the action of adm−. Let V be the corresponding simple adm module
generated by ep(i). By (7.3), θ(fi) is a root vector in n+. Furthermore (7.5)
implies that the weight of this root vector is αp(i) plus some element in Q+(πΘ).
Thus θ(fi) can be written as a bracket [a1[a2, . . . , [as−1, as] . . .] where exactly
one of the aj equals ep(i) and the others are elements of m+. Using the Jacobi
identity, we see that θ(fi) is an element of (adm+)ep(i). In particular θ(fi) is
an element of V . Furthermore, since elements of m+ commute with fi and thus
with θ(fi), we see that θ(fi) must be a highest weight vector of V . Thus we can
find a sequence of elements αi1 , . . . , αir in πΘ and a sequence of positive integers
m1, . . . ,mr such that (up to a slight adjustment of θ)

θ(fi) = (ad e
(m1)
i1

· · · e(mr)
ir

)ep(i). (7.6)

Here e
(m)
j = em

j /m!. We may further assume that both the sequence of roots

and the sequence of integers are chosen so that each (ad e
(ms)
is

· · · e(mr)
ir

)ep(i),
1 ≤ s ≤ r, is an extreme vector of V . (In particular, (ad e

(ms)
is

· · · e(mr)
ir

)ep(i)

is a highest weight vector for the action of ad eis and (ad e
(ms−1)
is−1

· · · e(mr)
ir

)ep(i)

is a lowest weight vector for the action of ad fis .) Suppose that the sequence
αj1 , . . . , αjs of elements in πΘ and the positive integers n1, . . . , ns also satisfy
this condition on extreme vectors and that

∑
k mkαik

=
∑

k nkαjk
. By [Ve],

(ad e
(m1)
i1

· · · e(mr)
ir

)ep(i) = (ad e
(n1)
j1

· · · e(ns)
js

)ep(i). Thus (7.6) is independent of
the choice of such sequences.
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Using lowest weight vectors instead of highest weight vectors, we obtain

θ(ep(i)) = (ad f
(mr)
ir

· · · f (m1)
i1

)fi (7.7)

up to a nonzero scalar. A straightforward sl 2 computation shows that

(ad e
(m1)
i1

· · · e(mr)
ir

)[(ad f
(mr)
ir

· · · f (m1)
i1

)fi] = fi

and
(ad f

(mr)
ir

· · · f (m1)
i1

)[(ad e
(m1)
i1

· · · e(mr)
ir

)ep(i)] = ep(i). (7.8)

Since θ2 is the identity, the scalar in (7.7) must be 1.
Set m(i) = m1 + . . . + mr. Now [θ(ei), θ(fi)] = θ(hi) is an element of h

by (7.1). Furthermore, by (7.2) and (7.3), θ(hi) must be the coroot hΘ(αi)

associated to the root Θ(αi). The description of the Chevalley basis for g given
in [H, Proposition 25.2 and Theorem 25.2] ensures that both θ(ei) and θ(fi) are
Chevalley basis vectors up to a sign. Furthermore, by [H, Proposition 25.2(b)]
and (7.6),we must have

θ(ei) = (−1)m(i)(ad f
(m1)
i1

· · · f (mr)
ir

)fp(i).

Similarly, by [H, Proposition 25.2(b)] and (7.7)

θ(fp(i)) = (−1)m(i)(ad e
(mr)
ir

· · · e(m1)
i1

)ei.

Note that when p(i) = i, we have

(ad e
(mr)
ir

· · · e(m1)
i1

)ei = (ad e
(m1)
i1

· · · e(mr)
ir

)ei.

Hence m(i) is even in this case.
The above analysis allows us to better describe the root space automorphism

Θ. Let W ′ denote the Weyl group associated to the root system ∆Θ of m
considered as a subgroup of the Weyl group of ∆. Let wo denote the longest
element of W ′. Note that wo is a product of reflections in W ′ but can also be
considered as an element of W . Let d be the diagram automorphism on πΘ such
that d = −wo when restricted to πΘ. Note that d induces a permutation on the
set {i|αi ∈ πΘ} which we also denote by d. In particular, given αi ∈ πΘ, d(αi) =
αd(i). Extend d to a function on π, and thus to ∆, by setting d(αi) = αp(i) for
αi /∈ πΘ. It follows that Θ = −wod. Note that this forces d to be a diagram
automorphism of the larger root system ∆.

Before lifting θ to the quantum case, we recall and introduce more notation.
The right adjoint action is defined by (6.4). This action on the generators of U

is given by:

(adryi)b = byi − yitibt
−1
i (adrxi)b = t−1

i bxi − t−1
i xib (adrti)b = t−1

i bti

for 1 ≤ i ≤ n. Recall the definitions of [m]q and qi used to define the quantized
enveloping algebra ((1.4)-(1.7)). The divided powers of xi and yi are defined by
x

(m)
i = xm

i /[m]qi ! and y
(m)
i = ym

i /[m]qi !. (Note that these are quantum analogs
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of the divided power e
(m)
i .) Let M denote the subalgebra of U generated by the

corresponding elements xi, yi, ti, t
−1
i where θ(hi) = hi. Note that M is just a

copy of the quantized enveloping algebra Uq(m) so this notation is consistent
with that of Section 6. Let ι be the C algebra automorphism of U fixing xit

−1
i

and tiyi for 1 ≤ i ≤ n, sending t to t−1 for all t ∈ T and q to q−1. Recall
the sequences αi1 , . . . , αir

and m1, . . . , mr used in (7.6) and (7.7). (As in the
classical case, using [Lu, Proposition 39.3.7], the description of θ̃(yi) in (7.12)
below is independent of the choice of such sequences.)

In the next theorem, we lift θ to a C algebra automorphism of U . This is in
the spirit of [L2, Theorem 3.1]. The main difference here is that we do not insist
that θ̃ is a C algebra involution on all of U .

Theorem 7.1. There exists a C algebra automorphism θ̃ on U such that :

θ̃(xi) = xi and θ̃(yi) = yi for all αi ∈ πΘ. (7.9)

θ̃(τ(λ)) = τ(Θ(−λ)) for all τ(λ) ∈ T. (7.10)

θ̃(q) = q−1. (7.11)

For αi ∈ π∗, we have θ̃(yi) = [(adrx
(m1)
i1

· · ·x(mr)
ir

)t−1
p(i)xp(i)] and

θ̃(yp(i)) = (−1)m(i)[(adrx
(mr)
ir

· · ·x(m1)
i1

)t−1
i xi] . (7.12)

Furthermore, θ̃2 is the identity when restricted to M and to T . Finally , θ̃ spe-
cializes to θ as q goes to 1.

Proof. To show that θ̃ extends to a C algebra automorphism of U , we relate
it to Lusztig’s automorphisms. Let Two be Lusztig’s automorphism associated
to wo, the longest element of W ′. We follow the notation of [DK, Section 1.6].
Fix αi ∈ πΘ. Recall that −wo(αi) = αd(i). By [DK, Section 1.6 and Proposition
1.6], Two sends yi to a nonzero scalar multiple of xd(i)t

−1
d(i), sends xi to a nonzero

scalar multiple of yd(i)td(i), and sends ti to t−1
d(i). Furthermore, one checks using

[DK, Remark 1.6] that for each αi /∈ πΘ the composition

(ι ◦ Two)(t
−1
p(i)xp(i)) = ui[(adrx

(m1)
i1

· · ·x(mr)
ir

)t−1
p(i)xp(i)]

for some nonzero scalar ui.
Define a function θ̃ on the generators of U using (7.9), (7.10), (7.11), (7.12),

and setting

θ̃(xi) = u−1
i (ι ◦ Two)(yp(i)tp(i)) and θ̃(xp(i)) = (−1)m(i)u−1

p(i)(ι ◦ Two)(yiti)

for each αi ∈ π∗. It is clear from (7.9) and (7.10) that θ̃ extends to a C algebra
automorphism on both M and T . Now θ̃2 is clearly the identity on M. Since
Θ is an involution on the root system of g, condition (7.10) ensures that θ̃ also
restricts to an involution on the group T .

We check that θ̃ extends to a C algebra automorphism of U . In particular,
θ̃(yi)θ̃(xi) − θ̃(xi)θ̃(yi) = (ι ◦ Two)(yp(i)xp(i) − xp(i)yp(i)) = θ̃(yixi − xiyi) for
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αi /∈ πΘ. Furthermore, for αi ∈ πΘ, (ι ◦ Two
)(td(i)xd(i)) = yi = θ̃(yi) up to some

nonzero scalar. Hence the θ̃(yi), 1 ≤ i ≤ n satisfy the quantum Serre relations
(1.7). Similarly, (ι ◦ Two)(yiti) = xd(i) = θ̃(xd(i)) up to a nonzero scalar when
αi ∈ πΘ. It follows that the θ̃(xi) for 1 ≤ i ≤ n satisfy the quantum Serre
relations (1.7). Moreover, θ̃ preserves the relations between the xi and the yj for
1 ≤ i, j ≤ n. Thus θ̃ extends to a C algebra automorphism θ̃ of U .

Now consider an element b in M ∪ T ∪ {yi|1 ≤ i ≤ n} and write b̄ for its
specialization as q goes to 1. Note that the specialization of θ̃(b) is just θ(b̄).
This is enough to force θ̃ to specialize to θ. ¤

We are now ready to introduce the quantum analog of U(gθ). Set

TΘ = {τ(λ)|Θ(λ) = λ},

a subgroup of T . Let B = Bθ̃ be the subalgebra of U generated by M, TΘ, and
the elements

Bi = yiti + θ̃(yi)ti

for αi /∈ πΘ. The next result shows that B is a coideal subalgebra of U . This
fact combined with the results of Sections 1 and 4 is used below to describe the
relations satisfied by these generators. As a consequence, we show below that B

specializes to U(gθ) as q goes to 1.

Theorem 7.2. B is a left coideal subalgebra of U .

Proof. We need to check that

∆(b) ∈ U ⊗B (7.13)

for all b ∈ B. Since ∆ is an algebra homomorphism from U to U ⊗ U , it is
sufficient to check (7.13) for a set of generators of B. Now B is generated by
the elements Bi, for αi /∈ πΘ, and two Hopf algebras: M and the group algebra
generated by TΘ. In particular, each b ∈ M and each b ∈ TΘ satisfies (7.13).
Hence it is sufficient to check (7.13) holds for the remaining generators, namely
when b = Bi for αi /∈ πΘ.

Set M+ = U+ ∩M. Note that tit
−1
p(i) is in TΘ for all i with αi /∈ πΘ. Thus

by (6.5) and the definition of θ̃, the element θ̃(yi)ti satisfies the following nice
property with respect to the comultiplication of U :

∆(θ̃(yi)ti) ∈ ti ⊗ θ̃(yi)ti + U ⊗ (M ∩G+Uo)t−1
p(i)ti

⊂ ti ⊗ θ̃(yi)ti + U ⊗M+TΘ.
(7.14)

This combined with the formula for ∆(yiti) (see (1.8) and (1.10) ) yields

∆(Bi) ∈ ti ⊗Bi + U ⊗M+TΘ ⊂ U ⊗B (7.15)

and the theorem follows. ¤
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We turn now to understanding the relations satisfied by the generators of B.
The elements Bi have already been defined when αi /∈ πΘ. Set Bi = yiti for
αi ∈ πΘ. Given a tuple I = (i1, . . . , ir), set |I| = r, wt(I) = αi1 + . . . + αir ,
BI = Bi1 · · ·Bir , and YI = yi1ti1 · · · yir tir .

Recall ((1.4) and (1.11)) that xiyjtj = q(−αi,αj)yjtjxi whenever j 6= i. By
Theorem 7.1, θ̃(xi) = xi whenever αi ∈ πΘ. Furthermore, θ̃(yj) and yj have the
same weight with respect to the adjoint action of TΘ. Hence

xiBj = q(−αi,αj)Bjxi and τ(λ)Bj = q(λ,−αj)Bjτ(λ) (7.16)

for all αi ∈ πΘ with αj /∈ πΘ, and τ(λ) ∈ TΘ. It follows that

B =
∑

I

BIM
+TΘ. (7.17)

Let J be a set such that {YJ |J ∈ J} is a basis for G−. Note that BJ = YJ +
(terms of higher weight) for each tuple J . The triangular decomposition (4.1)
of U implies that the subspaces {YJM+TΘ|J ∈ J}, and hence the subspaces
{BJM+TΘ|J ∈ J}, are linearly independent.

Let Fij be the function in two variables X1 and X2 defined by

Fij(X1, X2) =
1−aij∑
m=0

(−1)m

[
1− aij

m

]

qi

X
1−aij−m
1 X2X

m
1 .

The quantum Serre relations (1.7) are the set of equations Fij(yi, yj) = 0 for
i 6= j. A straightforward computation shows that if (λi, αj) = (λj , αi) then
Fij(yiτ(λi), yjτ(λj)) = 0. Hence

Fij(yiti, yjtj) = 0. (7.18)

It follows that the generators yiti of G− satisfy the same relations as the gener-
ators of U−. Furthermore, since (Θ(−αi), αj) = (Θ(−αj), αi), we have

Fij(θ̃(yi)ti, θ̃(yj)tj) = 0. (7.19)

We show below that the Bi for 1 ≤ i ≤ n satisfy relations which come from
the quantum Serre relations on G−. First, we consider the evaluation of the
function Fij at Bi, Bj in a few special cases.

If both αi and αj are in πΘ, then Fij(Bi, Bj) = Fij(yiti, yjtj). Similarly, if
αi ∈ πΘ and αj /∈ πΘ, then Fij(Bi, Bj) = Fij(yiti, yjtj) + Fij(θ̃(yi)ti, θ̃(yj)tj).
Hence (7.18) and (7.19) imply that

if αi ∈ πΘ then Fij(Bi, Bj) = 0. (7.20)

Now suppose that i and j are chosen such that π0,0(Yij) is nonzero. It follows
that Yij must have a zero weight summand. Checking the possibilities for the
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quantum Serre relations, we must have aij = 0 and Θ(αi) = −αj . In partic-
ular, Bi = yiti + q−2

i xjt
−1
j ti and Bj = yjtj + q−2

i xit
−1
i tj . A straightforward

computation shows that

aij = 0 and Θ(αi) = −αj imply Fij(Bi, Bj) = BiBj −BjBi =
t−1
i tj−t−1

j ti

qi−q−1
i

.

(7.21)
Given λ ∈ Q(π), let Pλ be the projection of B onto U−G+τ(λ) with respect

to the direct sum decomposition of Lemma 1.3 applied to the coideal B. The
next lemma provides more detailed information about Fij(Bi, Bj).

Lemma 7.3. Let Yij = Fij(Bi, Bj) for i 6= j and λij = (1 − aij)αi + αj . If
(πβ,γ ◦ Pλij

)(Yij) 6= 0 then [β, γ] 6= 0, τ(λij − β) /∈ TΘ, and τ(λij − γ) /∈ TΘ.

Proof. Set Pij = Pλij
. Suppose that (π0,0 ◦ Pij)(Yij) 6= 0. It follows that

π0,0(Yij) 6= 0. Hence aij = 0 and Θ(αi) = −αj . Now λij = αi + αj in this
case. By (7.21) Pij(Yij) = Pij(t−1

i tj − t−1
j ti) = 0. Therefore, π0,0(Yij) = 0 for

all choices of i and j.
By (7.20), we may assume that αi is not in πΘ. Assume that β and γ are

chosen so that πβ,γ(Yij) 6= 0. Note that Yij can be written as a sum of monomials
in 2−aij terms where 1−aij of those terms are from the set {yiti, θ̃(yi)ti} and the
other term is from the set {yjtj , θ̃(yj)tj}. It follows that γ = s1αp(i) +s2αp(j) +η

for some η ∈ Q+(πΘ) and nonnegative integers s1 and s2 such that s1 ≤ 1− aij

and s2 ≤ 1. Set γ′ = s1αi + s2αj and note that τ(γ − γ′) is in TΘ. The above
description of the monomials which add to Yij further implies that γ′ + β ≤ λij .
Moreover, by (7.18), 0 ≤ β < λij and by (7.19), 0 ≤ γ′ < λij . Now β and γ′ are
both linear combinations of αi and αj . Thus the lemma follows if neither αi nor
αj are elements of Q+(πΘ). In the case when αj ∈ πΘ, (7.19) further implies
that that 0 ≤ γ′ < λij − αj and 0 ≤ β < λij − αi. The lemma thus follows in
this case as well. ¤

The next result gives a description of the generators and relations of B.

Theorem 7.4. Let B̃ be the algebra freely generated over M+TΘ by the elements
B̃i, 1 ≤ i ≤ n. Then there exist elements cij

J ∈ M+TΘ such that B ∼= B̃/L where
L is the ideal generated by the following elements:

(i) τ(λ)B̃iτ(−λ)− q−(λ,αi)B̃i for all τ(λ) ∈ TΘ and αi /∈ πΘ.
(ii) t−1

j xjB̃i− B̃it
−1
j xj − δij(tj − t−1

j )/(qj − q−1
j ) for all αj ∈ πΘ and 1 ≤ i ≤ n.

(iii)

1−aij∑
m=0

(−1)m

[
1− aij

m

]

qi

B̃
1−aij−m
i B̃jB̃

m
i −

∑

{J∈J|wt(J)<(1−aij)αi+αj}
B̃Jcij

J

for each i 6= j, 1 ≤ i, j ≤ n.
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Proof. Relations (i) and (ii) follow from (7.16) and (1.4). We now show that
the Bi, 1 ≤ i ≤ n, satisfy the relations described in (iii). Fix a quantum Serre
relation Y = Fij(Bi, Bj) for given αi, αj with i 6= j. Set λ = (1 − aij)αi + αj

and Z = Pλ(Y ). By (4.7), ((Pλ ◦ π0,0)⊗ Id)∆(Y ) = (π0,0 ⊗ Id)∆(Z). Moreover,
(4.7) ensures that

(π0,0 ⊗ Id)∆(Z) = τ(λ)⊗ Z.

By (7.15) and (7.17), we have

∆(Y ) ∈ τ(λ)⊗ Y +
∑

{J| wt(J)<λ}
U ⊗BJM+TΘ. (7.22)

Now if J has weight less than λ, one checks from (1.7) that there is no quantum
Serre relation of weight greater than or equal to −λ. Hence if wt(J) < λ then J

is an element of the set J. Now, (7.22) implies that

((Pλ ◦ π0,0)⊗ Id)∆(Y ) ∈ τ(λ)⊗ (Y +
∑

{J∈J| wt(J)<λ}
BJM+TΘ)

Thus we can find X ∈ ∑
{J∈J|wt(J)<λ}BJM+TΘ such that Y + X = Z. We

obtain a relation of the form described in (iii) by proving Z = 0.
Recall the notation of Section 4, Filtration II. Assume that Z is nonzero and

hence max(Z) is nonempty. Choose [β, γ] ∈ max(Z). It follows that πβ,γ(Z) 6=
0. By Lemma 7.3, [β, γ] 6= [0, 0], and neither τ(λ − β) nor τ(λ − γ) is an
element of TΘ. Write (πβ,0⊗ Id)(∆(Z)) =

∑
vi⊗ ui where the vi ∈ U−

β τ(λ) and
the ui ∈ G+T . We may assume that the vi are linearly independent elements
of U−

−βτ(λ). Note that at least one of the ui has a (nonzero) summand of
weight γ in G+

γ τ(λ − β). By (7.19), the maximality of [β, γ], and the fact that
β 6= 0, each ui is in G+T ∩∑

{J∈J|wt(J)<λ}BJM+TΘ. This intersection is just
M+TΘ. Hence τ(λ − β) ∈ TΘ, a contradiction. This forces β = 0. It follows
that (π0,γ ⊗ Id)(∆(Z)) ∈ U ⊗ τ(λ − γ). Again τ(λ − γ) must be in TΘ. This
contradiction forces max(Z) to be empty. In particular, Z = 0.

We have shown that B is isomorphic to a homomorphic image of B̃/L. A
consequence of relations (i), (ii), and (iii) is that M+TΘB̃I ⊂

∑
J∈J B̃JM+TΘ+L

for each tuple I. Thus

B̃/L =
⊕

J∈J

(B̃JM+TΘ + L).

Since the elements Bi in B satisfy the relations (i), (ii), (iii), we also have the
following direct sum decomposition:

B =
⊕

J∈J

(BJM+TΘ).

Therefore B ∼= B̃/L. ¤ ¤
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Note that (7.20) and (7.21) both provide examples of the relations described in
Theorem 7.4 (iii). We illustrate how to compute the cij

J in a more complicated
example. Consider the case where Θ(αi) = −αi, Θ(αj) = −αj and aij = −1. So
Bi = yiti + q−2

i xi and Bj = yjtj + q−2
j xj and Y = B2

i Bj − (qi + q−1
i )BiBjBi +

BjB
2
i . Thus by (1.9) and (1.10),

∆(Br) = Br ⊗ 1 + tr ⊗Br

for r = i, j. It follows that

∆(Y ) = t2i tj ⊗ Y + (B2
i tj − (qi + q−1

i )BitjBi + tjB
2
i )⊗Bj + W ⊗B

for some W which satisfies π0,0(W ) = 0. A straightforward computation using
the relations of U shows that Pλ ◦ π0,0((B2

i tj − (qi + q−1
i )BitjBi + tjB

2
i ) =

−q−1
i t2i tj . Thus

0 = (Pλ ◦ π0,0)⊗ Id(∆(Y ) = t2i tj ⊗ Y − q−1
i t2i tj ⊗Bj .

It follows that

B2
i Bj − (qi + q−1

i )BiBjBi + BjB
2
i = −q2

i Bj .

(This relation is also computed in [L1, Lemma 2.2 (2.2)]. The generators for U

and B are somewhat different in [L1]. In particular, when αi = −Θ(αi), Bi in
[L1] is equal to yiti +xi in the notation of this paper. Thus using a Hopf algebra
automorphism of U , the Bi in [L1] corresponds to q−1

i times the Bi defined in
this paper. This explains the difference in coefficient of Bj found in the two
papers.) Note that a similar argument shows that cij

J = 0 whenever −αi 6= αp(i)

and −αi 6= αp(j). The cij
J are computed in [L1, Lemma 2.2] for the cases when

aij ≥ −2 and Θ(−αi) = αp(i).

Note that the generators of B specialize to the generators of U(gθ) as q goes to
1. Thus the specialization of BJM+TΘ is contained in U(gθ). Moreover the set
of spaces {BJM+TΘ, J ∈ J} remain linearly independent after specialization.
As q goes to 1, since these spaces span B, we conclude that B specializes to
U(gθ).

The algebra B also satisfies a maximality condition. Indeed, suppose that C

is a subalgebra of U containing B and that C also specializes to U(gθ). Then
by [L2, Theorem 4.9], C = B. The proof in [L2] uses a quantum version of the
Iwasawa decomposition. The result also follows directly from Theorem 7.4. The
idea is as follows. Recall the notation of Section 6. Set N+

Θ = N+
πΘ

. By (6.6)
(interchanging the roles of N+

π′ with N−
π′), we have

U =
∑

J∈J

YJM+TN+
Θ .

By induction on |J | (as in [L2, Lemma 4.3]), one can show that U is spanned
by the spaces B; Bt, t /∈ TΘ; and BT (N+

Θ )+ where (N+
Θ )+ is the augmentation
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ideal of N+
Θ . Let X be in C. Subtracting an element of B if necessary, we may

assume that X is a linear combination of elements in B(t−1)/(q−1) for t /∈ TΘ,
and BT (N+

Θ )+. Assume that X is nonzero. Rescale X by a power of (q − 1) so
that it is an element of Ĉ − (q− 1)Ĉ. It follows that X does not specialize to an
element of U(gθ). This contradiction forces X = 0 and thus B = C.

We have shown that the algebra B satisfies the following properties.

B is a left coideal in U . (7.23)

B specializes to U(gθ). (7.24)

If B ⊂ C and C is a subalgebra of U specializing to U(gθ) then B = C. (7.25)

We now turn to characterizing all subalgebras of U which satisfy (7.23), (7.24),
and (7.25). First, we present two variations which satisfy these conditions as
well.

Variation 1. For sake of simplicity, we assume first that g is simple. Recall
the permutation p used in (7.5). Suppose that there exists an r ∈ {1, 2, . . . , n}
such that αr /∈ πΘ and p(r) 6= r. Assume further that (αr, Θ(αr)) 6= 0. Recall
the Cartan subspace a = {x ∈ h|θ(x) = −x} and the restricted root system Σ
associated to θ introduced at the beginning of this section. Let β be the restricted
root corresponding to er. Note that β is just the restriction of αr ∈ h∗ to a∗.
Furthermore, (ad a)[er, Θ(fr)] = 2β(a)[er, Θ(fr)] for all a ∈ a. In particular, the
restricted root system Σ contains both β and 2β. Thus Σ is nonreduced and
hence must be of type BC. One can choose the positive roots of Σ so that each
αj restricted to a∗ is either zero or a simple positive root in Σ. Furthermore, αr

and αj restrict to the same root if and only if j = r or j = p(r). It follows from
[Kn, Chapter II, Section 8] that there is exactly one positive simple root in Σ
such that twice this root is also in Σ. Hence r and p(r) are the only values of j

such that (αj , Θ(αj)) 6= 0.
Let c be an element in A = C[q, q−1](q−1) that specializes to 1 as q goes to 1.

Define the C algebra automorphism θ̃c of U by requiring that

θ̃c(yr) = c−1θ̃(yr), θ̃c(xr) = cθ̃(xr),

and that θ̃c agrees with θ̃ on all other generators of U . Note that θ̃c is also a
C algebra automorphism of U which specializes to θ and restricts to θ̃ on MTΘ.
Define Bθ̃c

in the same way as Bθ̃ using θ̃c instead of θ̃. Thus Bθ̃c
is generated

by M, TΘ, and elements Bc
i = yiti + θ̃c(yi)ti for αi /∈ πΘ. Moreover, Bc

i = Bi for
i 6= r. Since θ̃c(yi) is a scalar multiple of θ̃(yi) for all i, the proof of Theorem
7.2 also works for Bθ̃c

. Hence Bθ̃c
is a left coideal subalgebra of U . Consider

a quantum Serre relation Fij(yi, yj) where either i or j equals r. Note that if
Θ(αi) = −αj then, by the assumptions on r, {i, j} = {r, p(r)} and (αi, αj) 6= 0.
Thus as in the proof of Lemma 7.3, (π0,0 ◦Pij)(Fij(Bc

i , B
c
j )) 6= 0 whenever i 6= j.

Hence the arguments for Bθ̃ used to prove Lemma 7.3 and Theorem 7.4 work for
Bθ̃c

as well. In particular, Bθ̃c
satisfies conditions (7.23), (7.24), and (7.25).
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Note that Bθ̃c
is not isomorphic to Bθ̃ via a Hopf algebra automorphism of U

for c 6= 1. It appears unlikely in general that two such algebras are isomorphic
using just an algebra isomorphism. It should be noted that the existence of this
one parameter family of analogs is implicit in the proof of [L2, Theorem 5.8].
However, it was mistakenly concluded in the paragraph directly preceding [L2,
Theorem 5.8] that all the analogs of Variation 1 were isomorphic to Bθ̃ via a
Hopf algebra automorphism.

In the general semisimple case, the one parameter c is replaced by a multipa-
rameter c. In particular, each parameter corresponds to a pair of roots αij

, αp(ij)

such that (αij
,Θ(αij

)) 6= 0. The automorphism θ̃c is defined in a similar fash-
ion to θ̃c. Let [Θ] be the set of automorphisms of the form θ̃c. Following the
convention in [L3], we refer to Bθ̃′ , θ̃′ ∈ [Θ] as a standard analog of U(gθ).

Variation 2. Let S1 be the subset of π − πΘ consisting of those roots αi such
that Θ(αi) = −αi. Let S be the subset of S1 such that if αi ∈ S and αj ∈ S1

then 2(αi, αj)/(αj , αj) is even. Let S be the set of n tuples s = (s1, . . . , sn) such
that each si is in A = C[q, q−1](q−1) and si 6= 0 implies αi ∈ S. Given θ̂ ∈ [Θ],
let Bθ̂,s be the subalgebra of U generated by TΘ, M, the Bi for αi ∈ π − S, and
the Bi,s defined by

Bi,s = yiti + q−(αi,αi)xi + siti

for αi ∈ S. In particular, when the entries of s are all zero, Bi,s is just equal to
Bi.

Note that
∆(Bi,s) = ti ⊗Bi + (yiti + q−(αi,αi)xi)⊗ 1.

Thus by the same arguments as in Theorem 7.2 , Bθ̂,s is a left coideal subalgebra
of U . Note that if τ(λ) ∈ TΘ and αi ∈ S then (λ, αi) = 0. It follows that
aBi,s = Bi,sa for all αi ∈ S and a ∈ MTΘ. Recall the notation of Lemma 7.3.
To show that Bθ̂,s satisfies the conditions (7.23), (7.24), and (7.25), it suffices
to check for all i, j, i 6= j, that (π0,0 ◦ Pij)(Fij(Bi,s, Bj,s)) = 0. A lengthy but
routine computation shows that this holds exactly when the n tuple s is in S.

Following the convention in [L3], the Bθ̂,s, θ̂ ∈ [Θ] are called nonstandard
analogs of U(gθ). A nonstandard analog Bθ̂,s is not isomorphic to a standard
analog using a Hopf algebra automorphism of U . However, ([L2, Lemma 5.7])
Bθ̂,s is isomorphic as an algebra to Bθ̂.

Nonstandard analogs were first observed (to the suprise of the author) in [L2,
Section 5]. In [L3, Section 2], nonstandard analogs were claimed to exist when
S is defined using the larger set S1 instead of S. (See in particular the definition
of S given following [L3, (2.11) and Theorem 2.1.]) Our analysis in Variation 2
corrects this point.

We are now ready to show that the only possible subalgebras of U which satisfy
(7.23), (7.24), and (7.25) are our standard and nonstandard analogs associated



158 GAIL LETZTER

to an automorphism in [Θ]. In particular, we give a new proof of [L2, Theorem
5.8] using the approach and results of Section 4. Note that when the restricted
roots Σ associated to the involution θ do not contain a component of type BC,
then all the analogs described below are isomorphic to each other as algebras.
This is precisely what Theorem 5.8 in [L2] states. On the other hand, by the
discussion of Variation 1, if Σ contains m components of type BC, then there is
an m parameter family of analogs up to algebra isomorphism.

Theorem 7.5. A subalgebra B of U satisfies (7.23), (7.24), and (7.25) if and
only if B is isomorphic as an algebra to Bθ̂ for some θ̂ ∈ [Θ]. In particular , B

is isomorphic to a standard or nonstandard analog of U(gθ) corresponding to an
element θ̂ in [Θ] and an element s in S via a Hopf algebra automorphism of U .

Proof. We use the notation of the second filtration introduced in Section 4.
Let B be a subalgebra of U which satisfies (7.23), (7.24), and (7.25). The proof
of this theorem has three steps:

(i) B ∩ T = TΘ

(ii) B ∩ U+ = M+

(iii) grGB ∩G− = G−.

More precisely, we first prove that B ∩ T is a subgroup of TΘ and B ∩ UoU+ is
a coideal subalgebra of M+TΘ. We then use the second filtration introduced in
Section 4 to analyze grGB ∩ G− and thus prove (iii). This information is then
used to show that B ∩U+Uo specializes to U(gθ) ∩U(n+ + h). Next we obtain
(i) and (ii). The last part of the proof takes a closer look at the generators of B

whose tip is in G− and show they are of the desired form. The details follow.

Consider the set B ∩ T . By (7.24), B ∩ T is a subset of TΘ. Hence B ∩ T =
B ∩ TΘ. Note that any element of B can be written as a direct sum of weight
vectors with respect to B ∩ T . Hence by (7.25), we may assume that B ∩ TΘ

is a group. Condition (7.23) and Lemma 4.2 ensure that B ∩ Uo is the group
algebra generated by B ∩ TΘ. Since TΘ is free abelian of finite rank, B ∩ TΘ is
free abelian of rank at most the rank of TΘ.

Consider the coideal subalgebra B ∩ U+Uo of B. We show that B ∩ U+Uo

is a subalgebra of M+TΘ. By Lemma 1.3, B ∩ UoU+ is a direct sum of the
vector spaces B ∩ G+τ(µ), where τ(µ) ∈ T . Suppose that c ∈ B ∩ G+τ(µ).
Choose γ maximal with respect to the standard partial ordering on Q+(π) so
that π0,γ(c) 6= 0 and γ ∈ Q+(πΘ). Then by (4.7),

π0,γ(c) ∈ G+
γ τ(µ)⊗ Y

where Y ∈ τ(µ − γ) +
∑

γ′>γ G+
γ′−γτ(µ − γ). Since B is a coideal, Y is an

element of B. Rescaling if necessary, we may assume that Y is in B̂ − (q − 1)B̂.
Hence Y specializes to a nonzero element in U(gθ). The choice of γ implies
that γ′ − γ /∈ Q+(πΘ) for all γ′ which appear in the definition of Y . Hence,
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Y ∈ τ(µ− γ) + (q − 1)
∑

γ′>γ Ĝ+
γ′−γτ(µ− γ). But then (q − 1)−1(Y − 1) is also

in B̂ and thus specializes to an element of U(gθ). This forces τ(µ− γ), and thus
τ(µ), to be in TΘ. Now consider λ maximal such that π0,λ(c) 6= 0. Then by (4.7),
τ(µ − λ) ∈ TΘ. Hence λ ∈ Q+(πΘ). Note that if λ′ ∈ Q+(π) and λ′ < λ then
λ′ is also in Q+(πΘ). It follows that c is a sum of weight vectors with weights in
Q+(πΘ). In particular, c ∈ M+TΘ and B ∩ UoU+ is a subalgebra of M+TΘ.

We next analyze the part of B whose top degree terms are in G−. To do this,
we introduce the left B module B/N where N is the left ideal B(B∩(U+Uo)+) of
B. (Here (U+Uo)+ is equal to the augmentation ideal of U+Uo.) The filtration G

on B induces a filtration which we also denote by G on B/N which makes grGB/N

into a grGB module. By Theorem 4.9, the only important contributions to this
graded module occur in bidegree (m, 0) for m ≥ 0. In particular, grGB/N is
spanned by elements b+N where b ∈ B and tip(b) ∈ G−. Note that the subspace
of G− of elements of bidegree less than or equal to (m, 0) is finite dimensional.
Thus the filtration on B/N is a finite discrete filtration. Moreover, grGB is
finitely generated by the image of the generators of B described in Corollary
4.10. Hence we have equality of Gelfand Kirillov dimension: GKdim grG(B/N) =
GKdim B/N ([KL, Prop. 6.6]). Now grGB/N identifies with grG(B) ∩G− as a
left grG(B) ∩G− module. It is straightforward to check that the GK dimension
of grGB/N as a grGB module is equal to the GK dimension of grGB/N as a
grG(B)∩G− module. Hence, the form of the generators of B given in Corollary
4.10 implies that GKdim grGB/N ≤ dimn−.

Let r be a Lie subalgebra of gθ. A standard argument similar to the argument
in the previous paragraph yields that the U(gθ) module U(gθ)/(U(gθ)r) has GK
dimension equal to dimgθ−dim r. (This follows for example from [D, Proposition
2.2.7].) Consider the B̂ module B̂/N̂ . Write N̄ for the specialization of N at
q = 1. By Theorem 4.1, B ∩ (U+Uo) specializes to the enveloping algebra of a
Lie subalgebra, say s, of gθ. Note that N̄ = U(gθ)s. Now B ∩ U+Uo ⊂ M+TΘ.
Hence s is a Lie subalgebra of m+ + (gθ ∩h). The map which sends each b + N̂

in B̂/N̂ to b̄ + N̄ in U(gθ)/N̄ allows us to specialize the left B̂ module B̂/N̂

to the U(gθ) module U(gθ)/N̄ at q = 1. We can choose generating sets for B

and B/N which specialize to generating sets of U(gθ) and U(gθ)/N̄ respectively.
Hence GKdim B/N ≥ GKdim U(gθ)/N̄ . Note that

GKdim U(gθ)/N̄ = dimgθ − dim s ≥ dimgθ − dim(m+ + (gθ ∩ h)) = dimn−.

By the previous paragraph, this inequality is an equality. Hence

GKdim U(gθ)/N̄ = GKdim n− = GKdim G−.

Moreover dim s = dim(m++(gθ∩h)). Since s is a subalgebra of m++(gθ∩h), it
follows that s = m+ +(gθ∩h). Thus B∩U+Uo specializes to U(m+ +(gθ∩h)).

Recall the set ∆′ of Corollary 4.10 used to define the generators of B whose
top degree term is in G−. The description of the generators of B in Corollary 4.10
implies that GKdim B/N is equal to the number of elements in ∆′. Since the
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number of elements in ∆+ is just the dimension of n−, it follows that ∆′ = ∆+.
Hence by Corollary 4.10, B contains elements yiti + bi, 1 ≤ i ≤ n, where bi is in
U+Uo. It follows that tip(B) ∩G− = G−. This proves (iii).

Let N ′ be the left ideal of B ∩ U+Uo generated by the augmentation ideal
of B ∩ Uo. We can analyze the left B ∩ U+Uo module (B ∩ U+Uo)/N ′ in a
similar fashion to the analysis of B/N . It follows that B ∩ U+Uo = B ∩M+TΘ

contains elements xi+ci ∈ B̂ for each αi ∈ πΘ. Furthermore, ci ∈ Uo and B∩Uo

specializes to U(gθ ∩ h). Now B ∩ Uo is just the group algebra generated by
B ∩TΘ. Therefore, rank B ∩TΘ = rank TΘ. Hence we can find generators of TΘ

such that a power of each generator lies in B. This in turn implies that B can
be written as a direct sum of TΘ weight spaces. By the maximality condition
(7.25) of B, we obtain B ∩ TΘ = TΘ. This completes the proof of step (i).

Since TΘ ⊂ B, any element in U+Uo ∩B = M+TΘ ∩B is a sum of TΘ weight
vectors contained in B. Thus xi + ci ∈ B implies xi ∈ B. In particular B

contains xi for all αi ∈ πΘ. Hence B ∩ U+Uo = M+TΘ and (ii) follows.
Fix i and consider again the element yiti+bi in B where bi ∈ U+Uo. Replacing

bi by another element in U+Uo if necessary, we may assume that yiti + bi is a
weight vector for the action of TΘ. By Lemma 1.3, we may further assume that
bi ∈ G+ti. First consider the case when αi ∈ πΘ. Choose β maximal with
respect to the standard partial ordering on Q(π) such that π0,β(bi) 6= 0. By
(4.7), (π0,β ⊗ Id)∆(yiti + bi) is a nonzero element of G+

β ti ⊗ τ(−β)ti. Hence
τ(−β)ti ∈ TΘ and β ∈ Q+(πΘ). If 0 < γ < β, then γ is also in Q+(πΘ). Thus
supp(bi) is a subset of {0} ×Q+(πΘ). This forces bi to be an element of M+TΘ

and so yiti ∈ B.
Now assume that αi /∈ πΘ. Choose β such that [0, β] ∈ max(b). Then by

(4.11), (π0,β⊗Id)∆(yiti+bi) is a nonzero element of G+
β ti⊗τ(−β)ti. In particular,

τ(−β)ti = τ(−β+αi) is in TΘ. Since β ∈ Q+(π), it follows that β ∈ αi+Q+(πΘ)
or β ∈ αp(i) + Q+(πΘ). However, β must also be of the same TΘ weight as −αi.
The only possibility is β = Θ(−αi). By the uniqueness property of the YI,j

and XI,j discussed in Section 6 (see (6.3) and the following discussion), the β

weight term is a scalar multiple of θ̃(yi)ti. Indeed this is necessary in order for
∆(yiti + bi) to be an element of U ⊗ B. Therefore bi = cθ̃(yi)ti + dti for some
scalar c and element d ∈ G+ of bidegree less than bideg(θ̃(yi)ti). By (7.23),

∆(yiti + bi) ∈ ti ⊗ (yiti + bi) + U ⊗B.

By (1.8), (1.10), and (7.14), it follows that

∆(dti) ∈ ti ⊗ dti + U ⊗M+TΘ.

Since αi /∈ πΘ, this forces dti to be a scalar multiple of ti. Hence, up to a Hopf
algebra automorphism of U , the only possibility for B is one of the standard or
nonstandard analogs of U(gθ). ¤
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Let us return for now to our first analog Bθ̃. Recall the definition of the anti-
automorphism κ. One checks that κ((adrxj)b) = −((adryj)κ(b)) for any b ∈ U

and 1 ≤ j ≤ n. Recall that m(i) = m1 + · · ·+ mr. Hence

κ[(adrx
(m1)
i1

· · ·x(mr)
ir

)t−1
p(i)xp(i)] = (−1)m(i)(adry

(m1)
i1

· · · y(mr)
ir

)yp(i).

A straightforward Uq(sl 2) computation as in the classical case (see (7.8)) yields

(adry
(m1)
i1

· · · y(mr)
ir

)(adrx
(mr)
ir

· · ·x(m1)
i1

)t−1
i xi = t−1

i xi.

Set yj · btp(i) = btp(i)q
(αp(i),αj)yj − yjtjbtp(i)t

−1
j for any b ∈ U and 1 ≤ i, j ≤ n.

Note that yj · btp(i) = ((adryj)b)tp(i). Recall the definition of π∗ immediately
following (7.5). We have

(−1)m(i)[y(m1)
i1

· · · y(mr)
ir

·Bp(i)]t−1
p(i)ti

= ([(−1)m(i)(adry
(m1)
i1

· · · y(mr)
ir

)yp(i)]ti + t−1
i xiti

= κ(θ̃(yi)ti) + q−(αi,αi)κ(yiti)

is an element of Bθ̃ for each αi ∈ π∗. A similar argument shows that

κ(θ̃(yp(i))tp(i)) + q−(αi,αi)κ(yp(i)tp(i))

is also in Bθ̃ for each αi ∈ π∗. Thus one can find a Hopf algebra automorphism
Υ in HR such that Υ restricts to the identity on M and TΘ and Υ(B) contains
κ(Υ(Bi)) for each αi /∈ πΘ. Furthermore, one can show that Υ(B) is generated
by M, TΘ, and the κ(Υ(Bi)), αi /∈ πΘ. Now κ(Υ(M)) = M and κ(Υ(TΘ)) = TΘ.
It follows that κ(Υ(B)) = Υ(B). Hence the results of Section 2 hold for B.

The same argument works for analogs of Variations 1 and 2 provided that all
entries of the tuples involved are from R(q). In particular, let [Θ]r be the set {θb|
all entries of b are in R(q)}. We refer to analogs of the form Bθb,s for θb ∈ [Θ]r
and all entries of s are in R(q) as real analogs of U(gθ). Given θb ∈ [Θ]r, one can
find Υ ∈ HR such that Υ−1κΥ(Bθb

) = Bθb
. Furthermore, for any s such that

all of its entries are in R(q), we also have that Υ−1κΥ(Bθb,s) = Bθb,s. Hence,
we may apply results of Section 2 to all real analogs of U(gΘ).

Consider a real analog B of U(gθ). Given a U module M , set X(M) equal
to the sum of all the finite-dimensional unitary B submodules of M . The next
result on basic Harish-Chandra modules associated to the pair U,B follows from
Section 2.

Theorem 7.6. Let B be a real analog of U(gθ) and let M be a U module. Then
any finite-dimensional U module is a B unitary module and a Harish-Chandra
module for the pair U,B. Furthermore both F (U) and X(M) are Harish-Chandra
modules for the pair U,B.

We continue the assumption that B is a real analog of U(gθ). Using the approach
of Section 3, we can define the quantum homogeneous space associated to B.
The left invariants Rq[G]Bl are often referred to as Rq[G/K] (or Aq[G/K]) in the



162 GAIL LETZTER

literature (see for example [NS,(2.5)]). Here K can be thought of merely as a
symbol or as the complexification of the compact Lie group in G with Lie algebra
gθ. Thus the homogeneous space G/K is a symmetric space. The notation
Rq[G/K] suggests that the right B invariants of Rq[G] is the quantum analog
of the ring of regular functions on G/K. In [L3], it is shown that B is a “good”
analog of U(gθ) for constructing quantum symmetric spaces in the sense of [Di,
end of Section 3]. In particular, Rq[G/K] has the same left U module structure
as its classical counterpart (see Theorem 7.8 below). We summarize this and
related results here. A good survey on how to construct quantum symmetric
spaces which includes a description of the classical situation is [Di]. For further
information about classical symmetric spaces, the reader is referred to [He1] and
[He2].

A finite-dimensional U module V is called a spherical module for B if the
space of invariants V B has dimension 1. Recall the notion of Cartan subspace
and restricted root system introduced at the beginning of this section. Let a be
the Cartan subspace {x ∈ h|θ(x) = −x} and let Σ be the associated restricted
root system. Let P+

Θ be the subset of P+(π) containing those λ such that

(i) (λ, β) = 0 for all β ∈ Q(π) such that Θ(β) = β;
(ii) the restriction λ̃ of λ to a∗ satisfies (λ̃, β)/(β, β) is an integer for every

restricted root β.

The set P+
Θ is exactly the set of dominant integral weights such that the corre-

sponding finite-dimensional simple g module is spherical ([Kn, Theorem 8.49]).
By [L3, Theorem 4.2 and Theorem 4.3] we have the same classification in the
quantum case.

Theorem 7.7. Let L(λ) be a finite-dimensional U module with highest weight
λ up to some possible roots of unity . Then

dim L(λ)B ≤ 1. (i)

Moreover ,
dim L(λ)B = 1 if and only if λ ∈ P+

Θ . (ii)

Sketch of proof. (See [L3] for full details.) Let vλ denote the highest weight
generating vector of L(λ). Recall that for each y ∈ G− there exists a b ∈ B

such that b = y+ higher weight terms. Now L(λ) is spanned by weight vectors
of the form yvλ where y ∈ G−. Hence dim L(λ)/B+vλ ≤ 1 where B+ is the
augmentation ideal of B. Statement (i) follows from the fact that B+vλ∩L(λ)B

is empty. A careful analysis using the form of the generators of B further shows
that vλ ∈ B+vλ if and only if λ /∈ P+

Θ . This in turn implies (ii). The argument
turns out to be much more delicate when B is a nonstandard analog. ¤

Theorem 7.7, the Peter–Weyl decomposition of Rq[G], (3.1), and (3.4) imply the
following characterization of Rq[G]Bl as a right U module.
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Theorem 7.8. There is an isomorphism of right U modules

Rq[G]Bl ∼=
⊕

λ∈P+
Θ

L(λ)∗

There is an analogous statement for the right B invariants of Rq[G]. One can
also describe the B bi-invariants in a nice way. Identifying L(λ) with a subspace
of Rq[G]Bl , set H(λ) = Rq[G]Bbi∩L(λ). Note that H(λ) is a trivial left and right B

module. Moreover, by Theorem 7.7, H(λ) is one-dimensional if λ ∈ P+
Θ and zero

otherwise. The following direct sum decomposition into trivial one-dimensional
B bimodules is thus an immediate consequence of Theorem 7.8.

Rq[G]Bbi
∼=

⊕

λ∈P+
Θ

H(λ).

Let A be the subgroup of T consisting of those elements τ(λ) such that Θ(λ) =
−λ. Thus A can be thought of as a quantum version of a. Let WΘ denote the
Weyl group associated to the restricted root system Σ. Since Σ ⊂ a∗, a and
hence A inherit an action of WΘ. The author has recently shown that, Rq[G]Bbi

is commutative and moreover is isomorphic to C(q)[A]WΘ . Thus, the H(λ) are
natural choices of quantum zonal spherical functions (see [Di, the discussion
concerning (3.4)]). In special cases, these quantum zonal spherical functions
have been determined to be Macdonald polynomials or other q hypergeometric
series (see for example [K], [N], [DN], [NS]). Preliminary work by the author
suggests that this should be true in general.

It should be noted that these papers use analogs of U(gθ) whose definition
differs from the definition of the Bθ̃ and its variations found in this paper. In
[NM], one-sided coideal subalgebras are used. By [L2, Section 6], using Theorem
7.5, these are shown to be examples of the analogs presented here. In other
papers, two-sided coideals analogs of gθ are used. The specialization of these
two-sided coideals generate a much larger subalgebra than U(gθ). The important
object in these papers, used to define quantum symmetric spaces, is the left ideal
generated by these two-sided coideals analogs of gθ. It seems likely that these
left ideals can be shown to be generated by the augmentation ideal of one of the
analogs presented here. This is certainly true for the left coideals studied in [K]
and also for those in [N] (combine [N, Section 2.4] with [L2, Section 6]).
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Birkhäuser, Boston (1981).

Gail Letzter
Mathematics Department
Virginia Polytechnic Institute State University
Blacksburg, VA 24061

letzter@math.vt.edu


