
More Games of No Chance
MSRI Publications
Volume 42, 2002

A Memory Efficient Retrograde Algorithm and

Its Application To Chinese Chess Endgames

REN WU AND DONALD F. BEAL

Abstract. We present an improved, memory efficient retrograde algorithm

we developed during our research on solving Chinese chess endgames. This

domain-independent retrograde algorithm, along with a carefully designed

domain-specific indexing function, has enabled us to solve many interesting

Chinese chess endgame on standard consumer class hardware.

We also report some of the most interesting results here. Some of these are

real surprises for human Chinese chess experts. For example, the aegp-aaee1

ending is a theoretical win, not as previously believed, a draw. Human analysis

for this endgame over many years by top players has been proved to be wrong.

1. Introduction

Endgame databases have several benefits. First, the knowledge they provide

about the game is perfect knowledge. Second, the databases, because of their

complete knowledge about certain domains, are a useful background for Artifi-

cial Intelligence research, especially in machine learning. Third, the databases

often provide knowledge beyond that achieved by humans, (and increasingly,

beyond that achievable by humans). Many endgame databases in many games

have been constructed since Ströhlein’s pioneering work (Ströhlein, 1970). In

Chess, Thompson (1986) generated almost all 5-men chess endgame databases

and made them widely available in CD format. Databases construction also en-

able Gasser (1996) to solve the game of Nine Men’s Morris. Perhaps the most

impressive endgame database construction so far is Schaeffer’s work (Schaeffer

et al., 1994) on Checkers. His program created all 8 men endgame databases and

comprised more than 440 billion (4.4 × 1011) positions. The databases played a

very important role in Chinook’s success.

1One side with King, one Assistant, one Elephant, one Gunner, and one Pawn against

another side with King, two Assistants, and two Elephants.

213

214 REN WU AND DONALD F. BEAL

We started our work on constructing Chinese chess endgame databases back

in 1992. We have constructed many Chinese chess endgame databases since. We

wanted our program to solve as many endgames as possible using only moderate

hardware we had access to. So a major effort was made to improve the retrograde

algorithm as well as examine ways to reduce the size of the database.

Armed with careful analysis to reduce the databases’ size and our fast, memory

efficient retrograde algorithm, we were able to solve one class of very interesting

Chinese chess endgames. In this class of endgames, one side has no attacking

pieces left but have various defending pieces, while the other side has various

attacking pieces. In this paper, we describe our new retrograde algorithm, the

database indexing we employed to reduce the size of the database, as well as the

results we found, include the result for the aegp-aaee endgame. The database

reveals a surprise for human players.

2. Fast, Memory Efficient Retrograde Algorithm

The retrograde algorithm used to construct the databases demand large com-

puting resources. Thompson’s 1986 algorithm (Thompson, 1986) needs two bits

of RAM for every board configuration, or random access to disc files, and it only

gives one side’s result. Stiller’s algorithms (Stiller, 1995) need a highly-parallel

supercomputer. Others also need similarly large amounts of memory or need a

very long time to build a moderate database. In chess for example, Edwards

reported that a 5-man endgame database took 89 days on a 486 PC (Edwards,

1996). Six-men chess databases have to deal with approximately 64 billion posi-

tions, although symmetries reduce this, and careful indexing to eliminate illegal

positions can reduce this to 6 billion for some positions (Nalimov, 2000). Data-

base construction is hardware-limited. This will remain so indefinitely. Although

hardware advances continually bring computations that were previously out of

reach into the realm of practicality, each additional piece multiplies the size of

the task (of creating a complete set of databases) by around three orders of

magnitude. Hence efficient algorithms, as well as the indexing methods that

minimize hardware resources will always be desired. We present our fast and

memory efficient algorithm here first, and discuss the indexing methods in the

next section.

2.1. Previous Work. The first widely-known description of the basic ret-

rograde algorithm was by Ströhlein (1970). It was independently re-invented

by many people, including Clarke (1977) and Thompson (1986, 1996). Herik

and Herschberg (1985) give a tutorial introduction to the retrograde concept.

Thompson’s first paper (1986) gives a brief but clear outline of his algorithm.

His second paper (Thompson, 1996) gives details of an improved algorithm he

used to solve 6-piece chess endgames.

A MEMORY EFFICIENT RETROGRADE ALGORITHM 215

These algorithms all assume one side is stronger than another and only calcu-

late the distance to conversion (DTC), which is the number of moves the stronger

side needs to either mate the weaker side or transfer into a known win position

in a subgame. There are two problems here:

• The algorithm assumes that if the stronger side does not win a position, it

must be a draw. This is only true for some endgames. Other endgames need

a separate database to be constructed for the other side. And even with

two separate databases, one has to be very careful when using this database

system. Some endgame types now need one database to be probed, others

need two, and there are additional technical inconveniences and hazards, in

using the databases after construction.

• Sometimes the distance to mate (DTM) may be preferred to the distance to

conversion.

To address these problems, variations on the basic algorithm have been used.

Wu and Beal (1993) designed an algorithm that retains full information for both

sides when generating databases. Edwards (1996) also designed an algorithm

which can generate chess endgame database containing both side’s distance to

mate/loss. However, these algorithms usually need access the main database

during the construction, and so require much more memory than Thompson’s

algorithm. To use these algorithms, one either has to run it on very high-end

machine, or wait while it takes very long time to run. For example it took

Edwards’ program more than 89 days to build a 5 piece chess endgame database

on a 486 PC (Edwards, 1996). In the most recent work on chess endgame

KQQKQQ Nalimov had to use a 500 MHz server machine with 2GB of memory

to build this 1.2 billion entries database (Nalimov 1999, 2000).

2.2. Fast, Memory Efficient Retrograde Algorithm We devised an algo-

rithm which only needs one bit per position like Thompson’s algorithm, but can

still generate full information for both sides, like other algorithms. Furthermore,

it can compute either distance to mate (DTM) or distance to conversion (DTC),

controlled by a boolean variable.

We present our new retrograde algorithm on the next page in a pseudo C

format:

The algorithm generates a pair of databases, one for each side. And the result

gives the exact distances for win/lose/draw. In other words, it generates full

information about the endgame.

The algorithm itself can be understood in terms of relatively simple operations

on bitmaps, in the style first used by Thompson (1986). The summary below

gives the memory and access requirement for this algorithm.

• DoInitialize() uses sequential access to database W , B and bitmap S. It also

uses random access for bitmap R.

• Load() use sequential access to one database and one bitmap.

216 REN WU AND DONALD F. BEAL

DATABASE W, B; // full databases (i.e. depth to win/loss for each position),

// W for White-to-move positions, B for Black-to-move,

// sequential access only

SBITS S; // sequential access only bitmap

RBITS R; // random access bitmap

void TopLevel

{

DoInitialize();

n = 0; // depth to mate or conversion

while (!DoneWhite() && !DoneBlack())

{

if (!DoneWhite()) // last pass added new positions

{

S = Load(W, WIN_IN_N(n)); // S = WTM win_in_n

R = Predecessor(S); // R = BTM predecessors of S

S = Load(B, UNKNOWN); // S = BTM unknown

S = S & R; // S = BTM maylose_in_n

R = Load(W, WIN_<=_N(n)); // R = WTM win_in_n or less

S = ProveSuccessor(S, R); // S = BTM lose_in_n

B = Add(S, LOSE_IN_N(n)); // B += S

if (dtm) // distance_to_mate?

S = Load(B, LOSE_IN_N(n)); // S = BTM lose_in_n

R = Predecessor(S); // R = WTM maybe win_in_n+1

S = Load(W, UNKNOWN); // S = WTM unknown

S = S & R; // S = WTM win_in_n+1

W = Add(S, WIN_IN_N(n+1)); // W += S

}

if (!DoneBlack()) // done for BTM?

{

S = Load(B, WIN_IN_N(n)); // S = BTM win_in_n

R = Predecessor(S); // R = WTM predecessors of S

S = Load(W, UNKNOWN); // S = WTM unknown

S = S & R; // S = WTM maylose_in_n

R = Load(B, WIN_<=_N(n)); // R = BTM win_in_n or less

S = ProveSuccessor(S, R); // S = WTM lose_in_n

W = Add(S, LOSE_IN_N(n)); // W += S

if (dtm) // distance_to_mate?

S = Load(W, LOSE_IN_N(n)); // S = WTM lose_in_n

R = Predecessor(S); // R = BTM maybe win_in_n+1

S = Load(B, UNKNOWN); // S = BTM unknown

S = S & R; // S = BTM win_in_n+1

B = Add(S, WIN_IN_N(n+1)); // B += S

}

n = n + 1;

}

}

A MEMORY EFFICIENT RETROGRADE ALGORITHM 217

• Predecessor() use sequential access for bitmap S and random access for bitmap

R.

• ProveSuccessor() use sequential access for bitmap S and random access for

bitmap R.

• Add() uses sequential access for one database and bitmap S.

Thus the peak memory requirement is only random access for one bitmap

and sequential access for one bitmap and two databases. Because the sequential

file access is many times faster than random access, we keep the random access

bitmaps to a minimum, and require just one bitmap in memory. Apart from the

chess/Chinese chess specific routines, the rest is just simple load and boolean

operations over the files.

The algorithm is a generic one, and can be used to construct databases for

other games. For example, to construct a 5-men pawn-less chess endgame data-

base, 15MB RAM is sufficient to avoid random disc access. The algorithm will

enable such databases to be built on a modest desktop PC in the matter of hours.

3. Reducing the Size of the Database

The Chinese chess board has 90 squares, so the simplest formula for the size of

a sufficiently-large database is simply 90n, where n is the number of the pieces in

that endgame. For almost all interesting endgames, this is too large for today’s

technology to handle. However, the size of database can be greatly reduced by

careful analysis of geometric and combinational symmetries, and game-specific

details. In the following sections, we detail the methods we used to reduce the

size of our database. Our methods may be compared with those of Nalimov and

Heinz (2000) for western chess.

3.1. Limiting the Pieces’ Placement to Legal Squares. In Chinese chess,

certain type of pieces can only move inside certain parts of the board. For

example, the king can only be inside the palace, the assistants can only move

in the five squares inside the palace, the elephants only have seven squares, and

the pawn can only move forward before it crosses the river. Table 1 gives each

kind of piece and its possible squares.

So a direct way to calculate the size of a more compact database is to enu-

merate all possible squares for every pieces in that endgame. This brings the

size down considerably, but again for most interesting endgames, it is still too

big for the hardware we have access to. Fortunately, there are further ways to

reduce the size, as described in the next few sections.

3.2. Vertical Symmetry. The Chinese chess board has vertical symmetry

and this gives us a reduction factor of almost 2. It is almost rather than exact,

because it is possible for all pieces to be in the centre file, and such positions

are their own mirror position, leading to no reduction. Moreover, there is a

218 REN WU AND DONALD F. BEAL

Name Notation Squares

King k 9

Assistant a 5

Elephant e 7

Horse h 90

Chariot c 90

Gunner g 90

Pawn p 55

Table 1.

significant processing cost to obtain the full reduction, because the program

must process all pieces in turn to reflect all piece locations, and this operation

has to be re-done every time a move is made. The retrograde analysis program is

both space intensive and compute intensive, so this is unwelcome. If we simplify

the processing to only consider the first piece in the symmetry reduction, we

achieve about half the possible reduction, as shown in Table 2.

3.3. Multiple Piece Symmetry. If in an endgame, there is more than one

piece of the same type, we can exchange these pieces’ places without altering

the position. In other words, the pieces of the same type together have a single

contribution to the database. The size of the contribution can be determined by

the combinatorial arithmetic as follows.

If an endgame has n of the same type of piece and this type of piece can only

move in m Squares, and then the size of this contribution is:

So for the endgames with one side having two of the same type of pieces, this

reduces its size by more than half, and the saving is even greater if one side has

more than two of the same type of piece.

Name Notation Total VSR Saving

King k 9 6 33.33%

Assistant a 5 3 40.00%

Elephant e 7 4 42.86%

Horse h 90 50 44.44%

Chariot c 90 50 44.44%

Gunner g 90 50 44.44%

Pawn p 55 31 43.64%

Table 2.

A MEMORY EFFICIENT RETROGRADE ALGORITHM 219

Name Size VSR Saving

kaa 70 38 45.71%

ka 40 21 47.50%

kae 275 138 49.82%

ke 62 32 48.39%

kee 183 96 47.54%

ee 21 12 42.86%

hh 4005 2045 48.94%

cc 4005 2045 48.94%

gg 4005 2045 48.94%

rp2 1485 765 48.48%

bp2 1485 765 48.48%

rp3 26235 13135 49.93%

bp3 26235 13135 49.93%

Table 3.

3.4. Piece Grouping. In Chinese chess, both king and assistants can only

move inside the palace, and this allows us another possible way to reduce the

database’s size. We can consider a few different type of pieces together, or piece

grouping. These pieces will be considered together and form a single contri-

bution. This offers increased reduction over applying space-enumeration and

symmetry to the pieces separately, because the group enumeration can eliminate

impossible positions in which pieces occupy the same square. This saving is

significant for Chinese chess.

Taking a king and two assistants (kaa) as an example, we can enumerate all

possible patterns for these three pieces in the palace, and assign a unique id

to each pattern. It turns out that kaa only has 70 different patterns, which

compares to 9 × 10 = 90 if we do it separately.

Moreover, we can combine the piece group enumerations with vertical symme-

try. In the case of kaa, 32 out of possible 70 patterns are just mirrors of others.

In other words, there are only 38 different patterns if we take the vertical sym-

metry into account. The saving here is 32/70 = 0.457, which is better than the

savings we get from the best single-piece vertical symmetry reduction.

There are more situations in which a few pieces can be considered together

and give a single contribution. Table 3 lists more of the possible piece groupings

that can be utilised.

Note the kae contribution in Table 3. kae has 275 possible patterns , and 138

if we consider the vertical symmetry reduction. The saving here is 0.498, which is

slightly greater than the kaa contribution, and very close to the full saving of 0.5

that represents the theoretical symmetry limit. So in practice, we should always

220 REN WU AND DONALD F. BEAL

endgame database size

h-aaee 646,380

c-aaee 646,380

g-aaee 646,380

hp-aaee 35,550,900

cp-aaee 35,550,900

gp-aaee 35,550,900

hh-aaee 27,055,350

cc-aaee 27,055,350

gg-aaee 27,055,350

hc-aaee 58,174,200

hg-aaee 58,174,200

cg-aaee 58,174,200

agp-aaee 152,806,500

endgame database size

egp-aaee 232,848,000

aagp-aaee 276,507,000

eegp-aaee 698,544,000

aegp-aaee 1,004,157,000

agg-aaee 123,634,350

egg-aaee 188,395,200

aagg-aaee 223,719,300

eegg-aaee 565,185,600

aegg-aaee 812,454,300

pp-aaee 10,120,950

hpp-aaee 910,885,500

gpp-aaee 910,885,500

cpp-aaee 910,885,500

Table 4.

use the group with maximum savings to incorporate the symmetry reduction,

rather than apply separate symmetry reductions.

4. Results from the Database

We concentrate on the most interesting class of endgames. In these endgames,

one side has no attacking pieces left but only defensive pieces, while the other

side has various attacking pieces. Players always are keen to know what kind of

piece combinations are enough to win, how hard or how easy it is to win, and

how long it will take to win.

The perfect knowledge contained in the databases is invaluable for anyone

who is serious about Chinese chess. Moreover, our databases show that current

human understanding about this kind of endgames is far from perfect. Table 4

lists the endgames that we have solved.

To build any endgame database, the program has to build all its subgame

databases first. For example, c-aaee endgame have 9 subgames, k-k, c-k, c-a, c-

e, c-aa, c-ee, c-ae, c-aae, and c-aee. For the endgames we list above, if we count

all subgames as well, there will be 378 in total, with about 35 billion entries

in the resulting databases. Our construction program solves all these subgames

automatically.

Our results are summarized on the next page, with some comments made in

the next few paragrpahs. In the table, “db size” (database size) is the size of

the database for this endgame. If we take out the illegal positions, and disregard

the various symmetry reductions, we have a more human-like classification. We

call this the “real size”. This is more useful to humans when we talk about a

particular endgame. All the percentage data are based on “real size” in this

A MEMORY EFFICIENT RETROGRADE ALGORITHM 221

RTM(%) BTM(%)

database db size real size DTC W D D L

h-aaee 646,380 3,363,048 1 5.58 94.42 99.88 0.12
c-aaee 646,380 3,363,048 18 84.60 15.40 48.56 51.44

g-aaee 646,380 3,363,048 1 7.68 92.32 99.63 0.37

hp-aaee 35,550,900 169,290,216 31 31.06 68.94 94.47 5.53

(highpawn) 59,694,192 31 35.47 64.53 92.33 7.67

cp-aaee 35,550,900 169,290,216 14 99.99 0.01 8.12 91.88

(highpawn) 59,694,192 9 100.00 0.00 7.05 92.95

gp-aaee 35,550,900 169,290,216 12 14.15 85.85 99.31 0.69
(highpawn) 59,694,192 8 12.52 87.48 99.12 0.88

hh-aaee 27,055,350 284,348,544 17 99.34 0.66 12.70 87.30
cc-aaee 27,055,350 284,348,544 3 100.00 0.00 2.26 97.74

gg-aaee 27,055,350 284,348,544 29 40.49 59.51 92.23 7.77

hc-aaee 58,174,200 284,348,544 9 99.98 0.02 7.43 92.57

hg-aaee 58,174,200 284,348,544 22 99.40 0.60 12.73 87.27
cg-aaee 58,174,200 284,348,544 7 100.00 0.00 7.30 92.70

agp-aaee 152,806,500 765,989,832 32 44.95 55.05 86.32 13.68

(highpawn) 269,533,904 32 60.22 39.78 75.66 24.34
egp-aaee 232,848,000 1154,955,840 26 26.99 73.01 95.60 4.40

(highpawn) 409,481,824 26 39.12 60.88 89.93 10.07

aagp-aaee 276,507,000 2730,979,776 39 45.43 54.57 86.02 13.98

(highpawn) 958,979,200 39 60.74 39.26 75.22 24.78
eegp-aaee 698,544,000 6752,096,208 34 27.01 72.99 95.62 4.38

(highpawn) 2407,076,064 34 39.06 60.94 90.07 9.93

aegp-aaee 1004,157,000 5211,916,080 95 70.52 29.48 50.51 49.49

(highpawn) 1844,080,608 73 99.60 0.40 10.91 89.09

agg-aaee 123,634,350 1270,822,608 20 99.65 0.35 12.37 87.63

egg-aaee 188,395,200 1928,810,256 42 53.36 46.64 82.02 17.98

aagg-aaee 223,719,300 4474,606,752 21 99.64 0.36 12.54 87.46
eegg-aaee 565,185,600 11210,239,584 29 99.45 0.55 12.93 87.07

aegg-aaee 812,454,300 8595,899,712 20 99.64 0.36 12.53 87.47

pp-aaee 10,120,950 99,964,368 11 12.44 87.56 99.19 0.81
hpp-aaee 910,885,500 8338,089,024 34 96.72 3.28 23.93 76.07

gpp-aaee 910,885,500 8338,089,024 40 89.54 10.46 34.34 65.66

cpp-aaee 910,885,500 8338,089,024 12 100.00 0.00 5.77 94.23

aegp-aae 334,719,000 907,504,776 36 94.11 5.89 22.16 77.84

gpp-ee 113,395,950 549,454,356 39 94.03 5.97 23.92 76.08

hpp-aee 520,506,000 2,414,172,384 46 98.67 1.33 10.79 89.21
aagp-aee 152,806,500 786,450,264 49 85.37 14.63 31.46 68.54

egg-aee 107,654,400 541,173,192 51 30.59 69.41 95.66 4.34

222 REN WU AND DONALD F. BEAL

paper. DTC is the maximum distance for the stronger side to capture a piece

and transfer to a known winning subgame. W, D, and L stand for percentage

of wins, draws, and losses. The L column under RTM and the W column under

BTM are omitted since the values are zero in every case.

4.1. One Major Piece. From the first section of the table on page 221, we can

see that when the attacking side has only one major piece, the game is usually a

draw. However if the major piece is a chariot, the stronger side does have some

chance to win, especially if it is the stronger side move first. In other word, the

right to move, or initiative is very important here. The winning rate is 84.60%

if the stronger side moves first, and drops to 51.44% if the opponent moves first.

4.2. One Major Piece Plus a Pawn. These results are given in the second

section of the table on page 221. The second row for each endgame is the

statistics if we assume the pawn is a high pawn. Most Chinese chess textbooks

use this term to help classify endgames.

Chariot plus a pawn is too much to defend, and this comes with no surprise,

because one can always use the pawn to exchange a minor piece, and a chariot

against the rest of defense is a sure win.

Gunner plus a pawn is proved to be not enough to win. The gunner needs

helps from minor pieces to really take effect, and in this case there are no helping

pieces.

Horse plus a pawn is a very powerful combination, and it requires a very high

level of skill to play well. The results here show that horse and pawn is not

enough to break the best defense, even though it does have some chances.

4.3. Two Major Pieces. See third section of the table. If the stronger side

have two major pieces, the advantage is usually overwhelming, except if both

major pieces are gunners. Gunners need help from minor pieces, and lack of

those minor pieces prevents the win.

4.4. One Gunner, One Pawn Plus Some Minor Pieces. See fourth section

of the table. If we have a gunner, a pawn, what else we need to win? Having a

single minor piece, either an Assistant, or an Elephant is not enough to secure a

win. Two minor pieces of same type are also not enough. One has to have one

minor piece of each kind to win, and if the pawn is a high pawn, the winning is

guaranteed. This is a real surprise discovery, and will be discussed in detail at

next section.

4.5. Two Gunners Plus Some Minor Pieces. See fifth section of the

table. Two gunners plus a Assistant is already enough for win. And so two

Assistants, or one Assistant and one Elephant, is also a win. But two gunners

plus an Elephant is a totally different story. It most likely will end up as a draw,

especially if the opponent moves first.

A MEMORY EFFICIENT RETROGRADE ALGORITHM 223

4.6. Two Pawns Plus One Major Piece. See penultimate section of the

table. Two pawns without any major piece is not enough to win. However,

one major piece and two pawns are usually too much to defend. Chariot and

one pawn is already a sure win, two pawns can only make the winning sooner.

Horse and two pawns are also a win, no matter how bad the pawn’s positions

are. Gunner and two pawns can also be regarded as a win, but the maximum

DTC of 40 indicate it can be hard to play this endgame sometime.

4.7. Some of the Hard Subgames. We list some of the hard subgame results

in the last section of the table on page 221. Results for all subgames can be found

online at http://www.msri.org/publications/books/Book40/files/wu-beal.txt.

These endgames are mostly winning for stronger side except for egg-aee. How-

ever, the distance-to-conversion is rather long and so it can be hard to play them

accurately.

5. The aegp-aaee Endgame

Among the many Chinese chess endgames we solved so far, the most inter-

esting discovery is the aegp-aaee endgame. It is interesting not only because

humans had made a thorough investigation on this endgame and it is very well

known amongst experts, but also because our research reveals that this endgame

is a theoretical win for the stronger side (aegp), contrary to current human be-

lief. Furthermore, the maximum distance to conversion (the maximum number

of moves the stronger side need to capture the first piece) is 95, which is 35 more

than the maximum move allowed in official Chinese chess rules.

5.1. Human Analyses. Gunner and Pawn is a well-known class of endgames,

where the strong side has only one Gunner and one Pawn as the attack force, plus

a few defending pieces, while the opponent usually have the best defence possible,

that is have both elephants, and assistants. One of the very early Chinese chess

endgame books, the Shi Qin Ya Qu, first published in 1570, has already a few

positions in this class. The most famous work on this class of endgame in human

history, however, has to be the excellent work by Chen Lianrong at 1930s. His

book, Pao Bin Endgames, is dedicated to this class of endgame, and has been

regarded as a milestone in modern Chinese chess endgame theory.

In his book, he showed that the aeegp-aaee endgame is theory win for the

stronger side. That was a real surprise for the Chinese chess community at that

time, because the common belief at that time was that even aaeegp-aaee is a

draw game! This is one of the biggest contribution of his book.

However, our research has produced a stronger result by showing that even

with one elephant, the stronger side has already enough to win, even though it

can take as many as 95 moves to capture the first piece!

224 REN WU AND DONALD F. BEAL

5.2. Computer Analysis. To produce the computer analysis, the program

ran on a Pentium Pro 200 machine with 128 MB memory under Windows NT

4.0. It took about 92 hours to generate the database for this endgame containing

both sides full information using the distance-to-conversion (DTC) metric.

Here is a further breakdown of the surprise result, that aegp-aaee is actually

a mostly-winning endgame. It is a win provided that the pawn has passed the

river or can pass the river safely, and is not an old-pawn2.

Database: 110011-220000 Database Size: 1004157000

RTM BTM

Illegal 244406400 (24.34%) 265487568 (26.44%)

Lose 0 (0.00%) 358203335 (35.67%)

Draw 290685444 (28.95%) 380466097 (37.89%)

Win 469065156 (46.71%) 0 (0.00%)

Total 1004157000 (100.00%) 1004157000 (100.00%)

Maximum Distance-to-conversion: 95

If we take out the illegal positions, and disregard the various symmetry re-

ductions, we have a better, or more human like, classification, as follows:

Database: 110011-220000 Real size: 5211916080

RTM BTM

Lose 0 (0.00%) 2579230888 (49.49%)

Draw 1536511488 (29.48%) 2632685192 (50.51%)

Win 3675404592 (70.52%) 0 (0.00%)

Total 5211916080 (100.00%) 5211916080 (100.00%)

Maximum Distance-to-conversion: 95

If we assume the pawn is a high-pawn, we have:

Database: 110011-220000 HighPawn: 1844080608

RTM BTM

Lose 0 (0.00%) 1642833536 (89.09%)

Draw 7324704 (0.40%) 201247072 (10.91%)

Win 1836755904 (99.60%) 0 (0.00%)

Total 1844080608 (100.00%) 1844080608 (100.00%)

Maximum Distance-to-conversion: 73

We give a position with the maximum distance to conversion on the next

page. We use Chinese notation, where each side counts the column from his

right hand side, ‘=’ means move side ways, ‘+’ means move forward and ‘−’

means move backward. The first letter is the type of moving piece, followed by

a number indicating which column the moving piece resides in. In case there is

A MEMORY EFFICIENT RETROGRADE ALGORITHM 225

3a1Ge2/9/e2ak4/9/9/9/2P6/4E4/3K5/5A3/r ---- 407963625

RTM 407963625

1. G4-8 k5=6 2. A4+5 k6-1 3. A5+4 k6=5 4. G4=5 k5=6 5. G5=2 a4-5 6. G2=4 a5+6

7. E5+3 e7+9 8. G4=3 k6-1(k6=5,a4+5,a6-5,e1-3,e1+3) 9. K6=5(K6-1,G3+1,G3+2,

G3-1,P7+1) k6+1(a4+5,a6-5,e1-3,e1+3) 10. K5-1(G3+1,G3+2,G3-1,P7+1) k6-1(a6-5,

e1-3,e1+3) 11. G3+1(G3+2,G3-1,P7+1) k6+1(a6-5,e1-3,e1+3) 12. G3+1(G3-2,P7+1)

k6-1(a6-5,e1-3,e1+3) 13. G3-2(P7+1) k6+1(a6-5) 14. K5=4(P7+1) a6-5 15. P7+1

a5+4 16. G3=4 k6=5 17. G4=6 k5-1 18. G6=3 k5+1 19. A4-5 k5=4 20. K4=5(A5+6,

G3-1) a4-5 21. A5+6 a5+4 22. K5+1(G3-1) a4-5 23. G3-1 a5+4 24. K5=6 a4-5 25. E3-5

(G3=5) a5-6(e9-7,e9+7) 26. G3=5 a4+5(e9-7,e9+7) 27. K6=5 k4-1(e9-7, e9+7) 28. E5-7

k4=5(e9-7,e9+7,e1-3) 29. E7+9 k5=4(e9-7,e9+7,e1-3) 30. K5=6 (G5=9) k4+1(a5+6,

e9-7,e9+7,e1-3) 31. G5=9 e1-3 32. K6-1(G9+1,P7+1) k4-1(e9-7,e9+7) 33. P7+1 k4=5

(a5+6,e9-7,e9+7,e3+5) 34. A6-5(E9+7,G9=7,G9+1,P7+1,P7=6) a5-4(e9-7,e9+7) 35.

G9=7(P7+1) e3+1(e3+5) 36. P7+1(P7=6) a6+5 37. K6=5(E9+7,P7=6) k5=6 38. E9+7

(P7=6) e1-3 39. P7=6 e3+5 40. P6=5 k6+1(a5+4,e9-7,e9+7,e5-7) 41. G7+1(G7+2,G7+3,

P5=4) k6-1(e9-7) 42. P5=4 k6=5(k6+1,a5+4,e9-7,e9+7,e5-7) 43. P4=3 k5=6(e9-7,e9+7)

44. A5+4(P3=2) k6=5(a5+4,e9-7,e9+7,e5-7) 45. P3=2 k5=6(a5-6,a5+4,a5+6,e9-7,e5-7,

e5+7) 46. P2=1 e9-7(e9+7) 47. K5=4 e5+7 48. G7=4 k6=5 49. G4=3(G4=8,G4=9) e7-5

50. G3=2 k5=6 51. G2+8 k6+1 52. E7-5 e5+3(e5+7) 53. G2-8 k6-1 54. G2=4 k6=5 55.

G4=8 a5-6 56. K4=5 a4+5(e7+5,e3-1) 57. K5=6 a5+4(e7+5) 58. G8+8(P1=2) e7+5(e3-5,

e3-1) 59. P1=2 a6+5(e5-7,e5+7,e3-1) 60. P2=3 k5=6(e5+7) 61. P3=4 k6+1 62. P4=5

k6-1(e5+7) 63. K6=5(E5+3,P5=6) e5+7 64. K5=4(E5+3,P5=6) e3-1 65. E5+3(P5=6)

e7-9 66. P5=6 e9+7 67. G8-8 e7-5 68. P6=5 e1-3 69. G8+8 k6+1 70. P5=4 e5+3(e3+1)

71. A4-5(E3-5) e3+5 72. A5-6(E3-5) k6-1(a5-6,e5-3) 73. K4+1 k6+1(e3-1) 74. K4+1

k6-1(e3-1) 75. K4=5(A6+5) k6=5(e3-1) 76. A6+5 e3-1 77. P4=5 e5+7 78. K5=4 a5+6

79. G8-9 e1+3 80. K4=5(G8=5) k5=6(e3-5,e3-1,e7-5) 81. A5+4(G8=5,G8=4) k6=5

(a4-5,e7-5) 82. G8=6(G8=4) e7-9 83. K5=6 a4-5 84. A4-5(P5=4) k5=6(a5-6,e3-1,e9-7,

e9+7) 85. A5-4(P5=4) k6=5(k6+1,e3-5,e3-1,e9-7,e9+7) 86. P5=4 k5=6(e3-5,e9-7) 87.

P4=3 k6=5(k6+1,e3-5,e3-1,e9-7,e9+7) 88. G6=5(P3+1) k5=6(e3-5) 89. P3+1 e3-5

(e9-7,e9+7) 90. K6=5 e9-7(e9+7) 91. K5=4 e5-3(e5+3,e5+7) 92. K4-1(E3-1,G5+1)

e3+1(e7+9) 93. A4+5(E3-5) k6+1 94. P3+1 k6-1 95. G5+8

226 REN WU AND DONALD F. BEAL

more than one same type of pieces in same column, ‘F’ and ’B’ can be used to

specify “front” or “back”. The last number can be the relative ranks this move

take, if the move is within the same column, or it can be the target column, if

the target square is in a different column.

6. Conclusion

In this paper, we have described a improved, memory efficient retrograde

algorithm. We have also outlined some methods we employed to reduce the size

of the Chinese Chess endgame databases. Then we give the results for some of

the Chinese chess endgames. One example in detail is the aegp-aaee endgame.

The discovery that the aegp-aaee is a winning endgame is very interesting. Our

research has shown that human understanding about this endgame is still far

from perfect.

And the maximum distance of 95 will certainly be a challenge to human capac-

ity, if not beyond it. This result is likely to shock the Chinese chess community,

and makes a significant addition to knowledge of the world’s most popular game.

References

[1] Clarke, M. R. B. (1977). A Quantitative Study of King and Pawn against King.
Advances in Computer Chess 1, 108-118. Edinburgh University Press, Edinburgh.

[2] Edwards, S. J. (1996). An Examination of the endgame KBBKN. ICCA Journal,
Vol. 19, No. 1. 24-32.

[3] Gasser, R. (1996). Solving Nine Men’s Morris. Games of No Chance (ed. R. J.
Nowakowski), pp. 101-113. MSRI Publications, v29, CUP, Cambridge, England.
ISBN 0-521-64652-9.

[4] Herik, H. J. and Herschberg, I. S. (1985). The Construction of an Omniscient
endgame data base. ICCA Journal, Vol. 8, No.2, 66-87.

[5] Lake, R. , Schaeffer J., and Lu, P. Solving Large Retrograde Analysis Problems
Using a Network of Workstations. Advances in Computer Chess 7, Maastricht,
Netherlands, 1994, 135-162.

[6] Nalimov, E. V. and Heinz, E. A. (2000). Space-Efficient Indexing of Endgame
Databases for Chess. Advances in Computer Chess 9. (eds. H. J. van den Herik and
B. Monien)

[7] Nalimov, E. V., Wirth C. and Haworth G. Mc. C., (2000) KQQKQQ and the
Kasparov-World Game, ICCA Journal, Vol 22, No. 4, pp.195-212

[8] Stiller, L. B. (1995). Exploiting Symmetry On Parallel Architectures. Ph.D. thesis.
The John Hopkins University, Baltimore, Maryland.

[9] Ströhlein, T. (1970). Untersuchungen über kombinatorische Spiele. Dissertation,
Fakultät für Allgemeine Wissenschaften der Technischen Hochschule München.

[10] Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal,
Vol. 9, No. 3. 131-139.

[11] Thompson, K. (1996). 6-Piece Endgames.

A MEMORY EFFICIENT RETROGRADE ALGORITHM 227

[12] Wu, R and Beal, D. F. (1993). Retrograde Analysis of some Chinese Chess
Endgames. Technical Report. QMW 1993.

[13] Xu, Zhi (1570) Shi Qin Ya Qu.

[14] Chen, Lianrong (1930). Pao Bin Endgames.

Ren Wu

ren_wu@hp.com

Donald F. Beal

Department of Computer Science

Queen Mary & Westfield College

London E1 4NS

United Kingdom

don@dcs.qmw.ac.uk

