
More Games of No Chance
MSRI Publications
Volume 42, 2002

Go Endgames Are PSPACE-Hard

DAVID WOLFE

Abstract. In a Go endgame, each local area of play has a polynomial

size canonical game tree and is insulated from all other local areas by live

stones. Using techniques from combinatorial game theory, we prove that

the Go endgame is PSPACE-hard.

1. Introduction

Go is an ancient game which has been played for several millennia throughout

Asia. Although playable rules are relatively simple (tournament rules can include

many technicalities), the game is strategically very challenging. Go is replacing

Chess as the pure strategy game of choice to serve as a test-bed for artificial

intelligence ideas [9] [7] [6].

Go was proved PSPACE-hard by Lichtenstein and Sipser [8], and was later

proved EXPTIME-complete (Japanese rules) by Robson [12]. More recently,

Crâşmaru and Tromp [5] proved that Go positions called ladders are PSPACE-

complete. Yedwab conjectured that the Go endgame is hard [14]. The endgame

occurs when each local area of play has a polynomial size canonical game tree

and is insulated from all other local areas by live stones. A combinatorial game

theorist will recognize this as a sum of simple local positions.1

Morris succeeded in proving that sums of small local game trees are PSPACE-

complete [11]. Yedwab restricted the games to be of depth 2 [14], and Moews

showed that sums of games with only three branches are NP-hard [10] [1, p. 109].

(Each of Moew’s games is of the form {a || b | c} where a, b and c are integers.)

Since Yedwab’s and Moews’ Go-like game trees depend upon scores which are

exponential in magnitude (yet polynomial in the number of bits of the scores),

they did not translate to polynomial sized Go positions.

Key words and phrases. Go, PSPACE, endgame, games.

1Another possible definition of endgame is when each play gains at most a constant number

of points; we don’t address that notion here. Go endgames with ko’s might be outside PSPACE.

125

126 DAVID WOLFE

Berlekamp and Wolfe show how to analyze certain one-point Go endgames [1].

Some of these endgame positions have values which are linearly related to dyadic

rationals of the form x = m
2n . Since these endgame positions are polynomial in

size in the number of bits of the numerator and denominator of x, their techniques

can be combined with those of Yedwab and Moews to prove that the Go endgame

is PSPACE-hard.

Robson observed that in Japanese rules (where repetitions of a recent position

are forbidden), Go is easily seen to be in EXPTIME. However, he conjectures

that according to Chinese rules (where any previous position is forbidden), Go

is EXPSPACE-complete [13]. This paper fails to resolve his conjecture, but the

techniques may be applicable.

2. Proof Sketch

We’ll prove that the Go endgame is PSPACE-hard using a series of reductions,

as suggested by Yedwab [14] shown in Figure 1.

3-QBF

⇓ Yedwab

PARTITION GAME

⇓ Yedwab, Moews

SWITCH PICK GAME

⇓

FRACTIONAL SWITCH GAME

⇓ (Yedwab, Moews)

GAME SUM

⇓

GO ENDGAME

Figure 1. Proof outline. Yedwab and Moews reduced something like the

SWITCH PICK GAME directly to GAME SUM. The FRACTIONAL SWITCH

GAME is introduced here to to keep the GO ENDGAME polynomial in size.

This paper will introduce each of these problems and reductions in sequence.

GO ENDGAMES ARE PSPACE-HARD 127

3. The Artificial Games

We begin reducing from the canonical PSPACE-complete problem Quanti-

fied Boolean Formula (QBF) in conjunctive normal form with three literals per

clause:

3-QBF

Instance: A formula of the form

∃x1∀x2∃x3∀x4 . . . ∃xn : C1 ∧ C2 ∧ C3 ∧ · · · ∧ Cm

where each of the clauses Ci is a disjunct of three literals (li1 ∨

li2 ∨ li3), and each literal is either some variable, say xk, or its

complement, xk , for 1 ≤ k ≤ n.

Question: Is the formula true?

We reduce 3-QBF to the following partition game:

PARTITION GAME

Instance: A collection of 2N non-negative integers Xi and Xi, 1 ≤

i ≤ N and a target integer T .

Question: Players Left (L) and Right (R) alternate selecting num-

bers for inclusion in the set S. Left chooses X1 or X1, Right

chooses X2 or X2 and so forth. At the end of the game, S will

have N elements. Left wins if the elements sum to exactly T .

Lemma 0.1. The PARTITION GAME is PSPACE-complete.

Proof. An example of the reduction is shown in Figure 2.

From a 3-CNF formula, F , with n variables and m clauses, construct n+12m

pairs of integers each with 4m base b digits, where b is sufficiently large to prevent

carries. (A choice of b = 2n + m + 1 will work.) The 4m digits are allocated as

follows: One for each lij and one for each Ci. Denote by D(Ci) (or D(lij)) the

value of an integer with the digit position Ci (or lij) set to 1, all other positions

0. D(Ci) will be a power of b.

As in the figure, the n + 12m pairs of integers are as follows:

(n variable pairs): One pair for each variable xk:

∑

xk=lij

D(lij) and
∑

xk=lij

D(lij).

(6m clause pairs): Two pairs for each literal lij : Left’s pair is 0 and D(Ci) +

D(lij). Right’s pair is 0 and 0.

(6m garbage collection pairs): Two pairs for each literal lij : Left’s pair is

D(lij) and 0. Right’s pair is 0 and 0.

The sum T has a 1 in every digit position.

128 DAVID WOLFE

(3-QBF) F = ∃x1∀x2∃x3 : (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

l11 l12 l13 l21 l22 l23

x1 x2 x3 x1 x2 x3 C1 C2

X1 = 1 0 0 0 0 0 0 0

X1 = 0 0 0 1 0 0 0 0

X2 = 0 1 0 0 0 0 0 0

X2 = 0 0 0 0 1 0 0 0

X3 = 0 0 1 0 0 1 0 0

X3 = 0 0 0 0 0 0 0 0

X5 = 1 0 0 0 0 0 1 0 X4 = X4 = X5 = 0

X7 = 0 1 0 0 0 0 1 0 X6 = X6 = X7 = 0

X9 = 0 0 1 0 0 0 1 0 X8 = X8 = X9 = 0

X11 = 0 0 0 1 0 0 0 1 X10 = X10 = X11 = 0

X13 = 0 0 0 0 1 0 0 1 X12 = X12 = X13 = 0

X15 = 0 0 0 0 0 1 0 1 X14 = X14 = X15 = 0

X17 = 1 0 0 0 0 0 0 0 X16 = X16 = X17 = 0

X19 = 0 1 0 0 0 0 0 0 X18 = X18 = X19 = 0

X21 = 0 0 1 0 0 0 0 0 X20 = X20 = X21 = 0

X23 = 0 0 0 1 0 0 0 0 X22 = X22 = X23 = 0

X25 = 0 0 0 0 1 0 0 0 X24 = X24 = X25 = 0

X27 = 0 0 0 0 0 1 0 0 X26 = X26 = X27 = 0

T = 1 1 1 1 1 1 1 1

Figure 2. A sample reduction of 3-QBF to PARTITION GAME. All integers are

in base 9. All omitted Xi and Xi are chosen to be 0.

If F is satisfiable, Left should be able to win a “formula game” against Right

in which Left and Right alternate selecting truth values for the variables, and

Left wins if the formula evaluates to True.

This yields a strategy for Left to win the PARTITION GAME as follows.

Left’s challenge is to assure that exactly one “1” digit has been selected for each

column Ci. First, for each variable xk which Left selects TRUE Left chooses

the integer Xk. For each variable xk which Left selects FALSE, Left chooses the

integer Xk. Left interprets Right’s choices of variable pairs similarly. Left then

has full control over the remaining clause pairs and garbage collection pairs.

Now, since F is true, each clause has some true literal lij . Left selects the

integer with the two digits, one digit corresponding to the true variable, and one

digit corresponding to Ci. Left uses the garbage collection pairs to include any

remaining literal columns.

The converse, that a winning strategy for the PARTITION GAME yields a

winning strategy for the 3-QBF formula game, is similar. �

GO ENDGAMES ARE PSPACE-HARD 129

4. Games and Game Sums

For a more complete introduction to combinatorial game theory, refer to [3],

[4] or [1, Ch. 3]. This section briefly reviews the definitions and key results

needed to get through the PSPACE-hardness reduction.

A game G = {GL | GR} is defined recursively as a pair of sets of games GL and

GR. The two players, named Left and Right, or Black and White (respectively),

play alternately. If it is Left’s move, she selects an element from GL which then

becomes the current position. Right, if it is his move, would move to one of GR.

If a player cannot move (because GL or GR is empty), that player loses.

In a sum of games G + H , a player can move on either G or H , leaving the

other unchanged. Formally,

G + H = {(GL + H) ∪ (G +HL) | (GR + H) ∪ (G +HR)}

Here, a game added to a set adds the game to each element of the set. I.e.,

GL + H = {GL + H : GL ∈ GL}

In order to reduce the number of braces, we often omit them, depending on

the | to separate the Left and Right options. Also, we write || as a lower

precedence | . So, A || B | C means {{A} | {{B} | {C}}}

The negative of the game G, −G = {−GR | −GL}, reverses the roles of the

players.

A game G = 0 if the player to move (whether Left or Right) is doomed to

lose (under perfect play). G > 0 if Left wins whether she moves first or second.

G < 0 if Right always wins. If the first player to move can force a win, we say

that G is incomparable with 0 and write G <> 0. Observe that these are the

only four possibilities.

To compare two games, G ≥ H if and only if G−H ≥ 0. Under this definition,

games form a group with a partial order, where the zero of the group consists of

all games G = 0.

Certain elements of the group, defined below, are numbers which (in finite

games) are always dyadic rational integers. Here, n, a, and b are integers.

0 = { | }

n = {n−1 | } n > 0

n = { | n+1} n < 0
a
2b =

{

a−1

2b

∣

∣

a+1

2b

}

a odd, b > 0

These games add as expected, so for instance 1

2
+ 1

4
= 3

4
. The number avoidance

theorem states that when playing a sum of games G+x where x is a number and

G is not, it is best to move on the summand G. I.e., if there exists a winning

move from G + x, then there exists a winning move to some GL + x, GL ∈ GL.

130 DAVID WOLFE

Three more game values are relevant in this paper:

∗ = {0 | 0}

↑ = {0 | ∗}

⇑ = ↑ + ↑

All three are infinitesimal, smaller than all positive numbers and larger than all

negative numbers. The game ∗ is its own negative and is incomparable with 0.

The game ↑ exceeds 0 but is incomparable with ∗. Lastly, ⇑ > ∗.

5. Switch Games

A switch ±x is the game {x | −x}. Our games will typically involve a finale

consisting of a collection of switches {±x1,±x2, . . . ,±xn}, where x1 ≥ x2 ≥

· · · ≥ xn ≥ 0. Players alternately choose the largest available switch ±xi, so

that after play the final score will be x1 − x2 + x3 − x4 · · · ± xn. This final score

is the outcome of the switch game.

Fact 1. A player can successfully choose a switch which is not the largest (and

still achieve the outcome) only if the highest occurs with even multiplicity. Sim-

ilarly, if the switch values are each a multiple of ε, then each time a player

bypasses a large switch of odd multiplicity in lieu of a smaller switch, the player

will lose at least ε but at most x1 relative to the outcome.

SWITCH PICK GAME

Instance: A target T and a set X of n pairs of switches,

X = {(±X1,±X1), (±X2,±X2), . . . , (±Xn,±Xn)}.

All values are integers.

Question: Can Left guarantee a win the following game? Left be-

gins by selecting either ±X1 or ±X1. Right then selects ±X2

or ±X2. Players alternate until one from each of the n pairs

of switches has been selected. Let Z be this set of n selected

switches. Left wins if the switch game Z has outcome T .

Lemma 0.2. SWITCH PICK GAME is PSPACE-complete.

Sketch of proof (by example). An example of the reduction is shown in Figure 3.

The reader can verify that plays on one game correspond exactly to plays on the

other. �

We can normalize all switches by dividing by the smallest power of 2 which

exceeds all Xi, Xi and T . Letting this power be 2β we arrive at the following

PSPACE-complete variant:

GO ENDGAMES ARE PSPACE-HARD 131

PARTITION GAME

X1 = 3 X1 = 4

X2 = 2 X2 = 7

X3 = 1 X3 = 4

X4 = 0 X4 = 0

X5 = 1 X5 = 5

T = 14

SWITCH PICK GAME

X1 = ±(2t+5 + 3) X1 = ±(2t+5 + 4)

X2 = ±(2t+4 − 2) X2 = ±(2t+4 − 7)

X3 = ±(2t+3 + 1) X3 = ±(2t+3 + 4)

X4 = ±(2t+2 − 0) X4 = ±(2t+2 − 0)

X5 = ±(2t+1 + 1) X5 = ±(2t+1 + 5)

T = 14 + 2t+5 − 2t+4 + 2t+3 − 2t+2 + 2t+1

Figure 3. Reducing PARTITION to SWITCH PICK GAME. The quantity t is

chosen to be large enough to dictate the order of play in the selected switch

game, e.g., so 2t exceeds all the PARTITION GAME’s Xi and Xi. Here, t = 3

suffices.

FRACTIONAL SWITCH GAME

Instance: The same input as SWITCH PICK GAME, but all val-

ues Xi, Xi, T are dyadic rationals less than 1 and all are an even

multiple of 2−β .

Question: Can Left win this game as in the SWITCH PICK

GAME?

We will now show that the following problem, GAME-SUM, is PSPACE-hard

by reduction from FRACTIONAL SWITCH GAME. The quantity k = 6β + 2

is chosen to be sufficiently large to admit construction of the game sum on a Go

board.

GAME-SUM

Instance: A sum of games S each of the form a || b | c or a | b || c for

dyadic rationals a ≥ b ≥ c. Each of these numbers has a polyno-

mial number of bits, and has an integer part which is polynomial

in magnitude. Furthermore a − b > k and b − c > k.

Question: Can Left force a win moving first on S?

The constraints on a, b and c will make translation to a Go board possible.

For a given instance of FRACTIONAL SWITCH GAME (n, X and T), we

will construct a game sum with several components:

S =
∑

Gi +
∑

Gi +
∑

Hi + I + I + ⇑

The temperatures2 of all components will be sufficiently far apart to almost assure

that players must play on the hottest available summand to have a hope of

winning. We’d like to force the order of play to be:

2The terms “temperature” and “hot” are technical concepts of combinatorial game theory.

Their inclusion in this paper will aid the intuition of the combinatorial game theorist. Other

readers can safely ignore the terms.

132 DAVID WOLFE

G1 and G1 (in either order)

H1

G2 and G2

H2

...

Gn−1 and Gn−1

Hn−1

Gn and Gn

I

I

To achieve this, Gi and Gi will have equal temperatures ti = (2n − 2i + 4)k

which decrease with increasing i. Hi will have temperature t−i = ti−k. In truth,

the first player will be able to play H1 before G1 or G1, but we’ll see that this

will be no better than playing according to the agenda.

If i is odd,

Gi = ti || − ti + Xi + k | − ti − Xi − k

Gi = ti || − ti + Xi + k | − ti − Xi − k

Hi = 0 || − 2t−i | − 2t−i

= 0 || − 2t−i ∗

If i is even,

Gi = ti + Xi + k | ti − Xi − k || − ti

Gi = ti + Xi + k | ti − Xi − k || − ti

Hi = 2t−i ∗ || 0 (except omit Hn)

Left chooses to play on either G1 or G1 and Right is compelled to play on the

other. Thus, Left decides whether ±X1 or ±X1 is included in the switch game

Z. Left is then compelled to play H1 to 0. If Left were to play on H1 before

G1 or G1, this is tantamount to giving Right the option as to whether ±X1 or

±X1 is included in Z. Play on a later game such as G2 or one of the ±Xi is too

costly as a consequence of Fact 1. The amount gained by such a maneuver is at

most the largest X1, and this is less than the amount lost which is at least k.

Next, Right selects whether ±X2 or ±X2 is included and Left and Right

continue alternating until the last two plays of this phase on Gn and Gn (since

we omitted Hn). It is now Right’s turn, who is free to choose between the games:

I = k | − T || − 2k

I = T + 2k || ∗

and Left will reply on the other. If the switch game Z is lost by Left because the

alternating sum is less than T , Right will choose to play I , Left will reply on I ,

and Right will move I to −T , which is sufficient to win out over the alternating

GO ENDGAMES ARE PSPACE-HARD 133

sum. If, however, Z is lost by Left because the alternating sum exceeds T , Right

will choose to play I to −2k, Left will move I to T + 2k, and Right will be the

first to play on the alternating sum.

At this point, the players will play the switch game {(±(k +Xi),±(k +Xi))}.

Since there are an even number of terms, the alternating sum will have the same

outcome as {(±Xi,±Xi)}; the k’s will cancel. If this outcome is exactly T , then

however Right played I and I , Left can play the switches until the whole total

is 0 or ∗. The infinitesimal ⇑ included in S is then sufficiently large to assure

Left’s win. Thus, Left can win if and only if she can arrange that the alternating

sum adds to exactly the number T .

6. Switch games in Go

The following warming operator is a special case of the Norton product of two

games “g.h” [3, p. 246], or of the overheating operator defined in [2], “
∫ t

s
g”. If

g = {gL | gR}, define

∫

g
def
=

∫ 1

1∗

g = g.1∗ =







g if G is an even integer,

g + ∗ if G is an odd integer,

{1 +
∫

gL | −1 +
∫

gR} otherwise.

As a consequence of being a Norton multiple, the warming operator has the

following properties [3, p. 246]:

1. linearity:
∫

g +
∫

h =
∫

(g + h),

2. order preserving: If g ≥ h then
∫

g ≥
∫

h.

The following blocked corridor in Go has value n− 2 +
∫

21−n, where n is the

number of empty nodes in the corridor [1]. (In this example, n = 5.)

= 3 +

∫

1

16
= {4 |||| 3 ||| 2 || 1 | ∗}

Since the warming operator is linear and order preserving, it suffices to convert

the sum of abstract games to Go positions of value
∫

{a || b | c}, where b−a ≥ k,

c − b > k and a, b and c are multiples of 1

2β . I’ll describe the conversion by

example. We’ll first analyze the following specific position, and then argue that

the position can be augmented to achieve any
∫

{a || b | c}.

134 DAVID WOLFE

D H I M P

C G ∆ L

B F ∆ K ∆
∆ ∆ ∆ ∆ ∆

A E J

The white group including stone A is assumed to be alive, and all black stones

are alive. Black has 2 sure points in region P , and there is one zero point play (or

dame, “dah-meh”) above A. Together these are worth 2∗. In addition, if Black

plays at E, Black captures 56 points to the right of E. The blocked corridor at

B is worth
∫

1

2
, C is worth 1

∫

1

4
(i.e., 1+

∫

1

4
) and area D is 3 points of territory.

These total to 60
∫

3

4
. If White plays at E and Black replies at J , Black nets

34 ∗
∫

11

8
. The ∗ represents the zero point play (or dame) at I . Lastly, if White

plays at E and J , the resulting position is worth 12 ∗
∫

17

8
. Thus the original

position is worth

2 ∗ +

{

60

∫

3

4

∣

∣

∣

∣

∣

∣

∣

∣

35 ∗

∫

11

8

∣

∣

∣

∣

12 ∗

∫

17

8

}

which, by applying the definition of
∫

is

= 2 ∗ + ∗ +

∫
{

59
3

4

∣

∣

∣

∣

∣

∣

∣

∣

35
3

8

∣

∣

∣

∣

16
1

8

}

=

∫
{

61
3

4

∣

∣

∣

∣

∣

∣

∣

∣

37
3

8

∣

∣

∣

∣

18
1

8

}

An informal recipe should convince the reader that there are enough degrees

of freedom to generate any Go position
∫

{a || b | c} (where a, b and c are

constrained as above):

1. A group (A) invading β corridors of increasing length. (In the example,

β = 3 and the corridors are marked B, C and D.) The binary expansion of

the fractional part a − bac dictates which of these β corridors are blocked.

(Here, a − bac = .110, so only the third corridor is blocked.)

2. A second group invading β corridors which threatens to connect to A. These

corridors are blocked according to the quantity b − a − bb − ac. The third

group’s corridors should account for c − b − a − bc − b − ac.)

3. Adjustments to the integer differences bb−ac and bc−bc are made by extending

the White stones marked ∆. Each additional stone adds two points; an empty

node at, say, I , adds one.

4. Lastly, shift the value of the Go position by any integer by adding territory

to Black or White (area P). Include a dame (say, at the point above A) as

needed to adjust by ∗.

GO ENDGAMES ARE PSPACE-HARD 135

The construction of one switch
∫

{a || b | c} requires a number of White stones

which is linear in β. The choice of k = 6β + 2 suffices. Using the fact that

=

∫

↑ =

∫

{0 | ∗},

the last games
∫

I =
∫

{T + 2k || ∗} and
∫

⇑ are also constructible on a Go

board.

References

[1] Elwyn Berlekamp and David Wolfe. Mathematical Go: Chilling Gets the Last Point.
A K Peters, Ltd., Wellesley, Massachusetts, 1994.

[2] Elwyn R. Berlekamp. Blockbusting and domineering. Journal of Combinatorial

Theory, 49(1):67–116, September 1988.

[3] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways.
Academic Press, New York, 1982.

[4] John H. Conway. On Numbers and Games. Academic Press, London/New York,
1976.

[5] Marcel Crâşmaru and John Tromp. Ladders are pspace-complete. In T. A. Marsland
and I. Frank, editors, Computers and Games: Second International Conference, CG

2000, Hamamatsu, Japan, October 2000, pages 241–249. Springer, 2001.

[6] George Johnson. To test a powerful computer, play an ancient game. New York

Times, July 29, 1997.

[7] Anders Kierulf. Smart Game Board: a Workbench for Game-Playing Programs, with

Go and Othello as Case Studies. PhD thesis, Swiss Federal Institute of Technology
(ETH) Zürich, 1990. Nr. 9135.

[8] David Lichtenstein and Michael Sipser. Go is polynomial-space hard. Journal of

the Association for Computing Machinery, 27(2):393–401, April 1980.

[9] J. McCarthy. Chess as the drosophila of AI. In T. A. Marsland and J. Schaeffer,
editors, Computers, Chess, and Cognition, pages 227–237. Springer Verlag, New
York, 1990. Other games replacing chess in AI.

[10] David Moews. On Some Combinatorial Games Related to Go. PhD thesis,
University of California, Berkeley, 1993.

[11] F. L. Morris. Playing disjunctive sums is polynomial space complete. International

Journal of Game Theory, 10:195–205, 1981.

[12] J. M. Robson. The complexity of Go. In Information Processing; proceedings of

IFIP Congress, pages 413–417, 1983.

[13] J. M. Robson. Combinatorial games with exponential space complete decision
problems. In Lecture Notes in Computer Science. Mathematical Foundations of

Computer Science 1984, pages 498–506. Springer-Verlag, 1984.

[14] Laura Yedwab. On playing well in a sum of games. Master’s thesis, M.I.T., August
1985. MIT/LCS/TR-348.

136 DAVID WOLFE

David Wolfe

Department of Mathematics and Computer Science

Gustavus Adolphus College

800 West College Avenue

Saint Peter, MN 56082

United States

wolfe@gustavus.edu
http://www.gustavus.edu/˜wolfe

