
More Games of No Chance
MSRI Publications
Volume 42, 2002

The Abstract Structure of the Group of Games

DAVID MOEWS

Abstract. We compute the abstract group structure of the group Ug of

partizan games and the group ShUg of short partizan games. We also

determine which partially ordered cyclic groups are subgroups of Ug and

ShUg.

As in [2], let Ug be the group of all partizan combinatorial games, let No be

the field of surreal numbers, and for G in Ug, let L(G) and R(G) be the Left

and Right sections of G, respectively. If L(G) is the section just to the left or

right of some number z, we say that z is the Left stop of G, and similarly for

R(G) and the Right stop. Let ShUg be the group of all short games in Ug; that

is, ShUg is the set of all games born before day ω, or of all games which can be

expressed in a form with only finitely many positions. For games U and integers

n, we write

nU = n.U =







0, if n = 0;

U +· · ·+U (n summands), if n is a positive integer;

(−U)+· · ·+(−U) (−n summands), if n is a negative integer.

Also, recall from [1, Chapter 8] the definition of Norton multiplication, for a

game G and a game U > 0:

G.U =







as above, if G equals an integer;

{GL.U +UL, GL.U +(U +U−UR)|

GR.U−UL, GR.U−(U +U−UR)}, otherwise.

(0–1)

Here, GL, GR, UL, and UR range independently over the left options of G, right

options of G, left options of U , and right options of U , respectively. To define

G.U , we must fix a form of G and sets of Left and Right options for U .

We will say that a subgroup X of Ug has the integer translation property if

it contains the integers and, whenever either Left or Right has a winning move

in a sum A1+· · ·+An of games from X, not all integers, he also has a winning

move in an Aj which is not equal to an integer.

Lemma 1. The real numbers have the integer translation property.
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Proof. Let x be an integer and G be a nonintegral real number, and set G′ =

{GL+x|GR+x}. It will do to show that G′ = G+x. Let L = supGL R(GL) and

R = infGR L(GR). Then since G is a number, L < R, and G is the simplest

number satisfying L < G < R [2, Theorem 56]. But supGL R(GL+x) equals

L+x, infGR L(GR+x) equals R+x, and L+x < R+x, so G′ will be the simplest

number satisfying L+x < G′ < R+x. Since L+x < G+x < R+x, to prove

G′ = G+x, we only need to show that no simpler number than G+x satisfies

L+x < G+x < R+x. Suppose S is born before G+x and satisfies L+x <

S < R+x. Since G+x is real, and hence born on or before day ω, S must

be a dyadic rational, and obviously L < S−x < R; but also, since G is the

simplest number between L and R, G must be born before or at the same time

as S−x, so G is a dyadic rational, G = (2m+1)/2n, say, for integers n > 0

and m. Then for G to be the simplest number between L and R, we must have

m/2n−1 ≤ L < (2m+1)/2n and (2m+1)/2n < R ≤ (m+1)/2n−1. Therefore,

(m+2n−1x)/2n−1 ≤ L+x < (2m+1+2nx)/2n

and

(2m+1+2nx)/2n < R+x ≤ (m+1+2n−1x)/2n−1,

so (2m+1+2nx)/2n = G+x is in fact the simplest number between L+x and

R+x. �

Theorem 2. Suppose we have a subgroup X of Ug with the integer translation

property, and such that every H ∈ X can be written in a form Ĥ, where all

positions of Ĥ are in X. Fix a game U > 0 and sets of Left and Right options for

U , and define G.U for each G in X by using (0–1) with the form Ĝ for G and the

given sets of options for U . Then, for all G and H in X, (G+H).U = G.U+H.U ,

and if G ≥ H, then G.U ≥ H.U .

Proof. [1, Chapter 8]. �

Let X be the subgroup of real numbers. We fix forms for each real number by

letting each dyadic rational have its canonical form; that is,

0 = {|},

n = {n−1|} and −n = {|−(n−1)}

for integers n > 0, and

(2m+1)/2n = {m/2n−1|(m+1)/2n−1}

for integers n > 0 and m. We let each real r that is not a dyadic rational have

form

r = {brc, b2rc/2, b4rc/4, . . . | . . . , d4re/4, d2re/2, dre}.

By Lemma 1, the real numbers have the integer translation property, so we can

now apply Theorem 2 to define r.U , where r is a real number and U > 0 is a

game with specified sets of options.
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Corollary 3. For all real numbers r and s, and all games U > 0 with specified

sets of options, (r+s).U = r.U +s.U , and if r ≥ s, then r.U ≥ s.U .

Proof. Immediate. �

Lemma 4. If n ≥ 2 is an integer and x ∈ No is positive, then Gnx =

(2/n).{2x|x}−3x/n has order n. The nonzero multiples of Gnx all have Left

stops of x/n or larger.

Proof. By Corollary 3, Gnx has order dividing n. Let U = {2x|x}; then UL =

U +U−UR = 2x. Observe that 0.U has Right stop 0 and 1.U has Left stop 2x.

It follows by induction that for all dyadic rationals d in (0, 1), d.U has Left stop

2x and Right stop 0, and then, for r real in (0, 1), r.U also has stops 2x and 0.

Similarly, since 1.U has Right stop x and 2.U = 3x has Left stop 3x, r.U has

stops 3x and x for all r real in (1, 2), and 1.U = U clearly has stops 2x and

x. This implies that r.U is not a number for real r in (0, 2), so m.Gnx 6= 0 for

m = 1, . . . , n−1. Our claim on the Left stop of the multiples of Gnx follows

from the computation of the stops of r.U . �

No is the unique, up to isomorphism, universally embedding totally ordered

field [2, Theorems 28 and 29]. We will prove a similar result about Ug.

An abelian group X is universally embedding if, given any abelian group G
whose members form a set, and an embedding of a subgroup H of G in X, the

embedding can be extended to an embedding of G in X. The members of such a

group necessarily form a proper class.

Theorem 5. Ug is a universally embedding abelian group.

Proof. By Zorn’s Lemma, it will do to show that if an abelian group G is gen-

erated by its subgroup H and its member x /∈ H, and there is an embedding

j of H in Ug, then there is an embedding of G in Ug extending j. Let M

be the set of integers m with mx ∈ H. M is a subgroup of the integers. If

M = 0, pick a large ordinal α, exceeding every element of j(H), and embed G
in Ug by sending x to α. Otherwise, M is cyclic, generated by m > 1, say. If

G0 = j(mx), pick an ordinal β > −G0 and sets of options for G0+β, and set

G1 = (1/m).(G0+β)−β/m. Obviously, m.G1 = G0. Let X be the subgroup of

Ug generated by j(H) and G1, and let α be an ordinal such that α/2m exceeds

every element of X. Now we can map G to Ug by sending x to G1+Gmα, and this

will be an embedding if q.(G1+Gmα) 6= j(h) for all h ∈ H and q ∈ {1, . . . , m−1}.

But if q.(G1+Gmα) = j(h), then q.Gmα ∈ X, and since q.Gmα has Left stop at

least α/m, α/2m 6≥ q.Gmα. This contradicts our choice of α. Hence we have

embedded G into Ug. �

Theorem 6. Any universally embedding abelian group is isomorphic to Ug.

Proof. Transfinite induction and a back-and-forth argument suffice to construct

an isomorphism between any two universally embedding abelian groups. �
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Call a subgroup G of ShUg odd-closed if whenever G is a short game, n is an

odd integer, and n.G ∈ G, then G ∈ G. Call it position-closed if whenever H is

a position of the canonical form of G ∈ G, then H ∈ G.

Theorem 7. Position-closed subgroups of ShUg are odd-closed.

Proof. By a remark in [2], if G is short and n is odd, G is an integral linear

combination of positions of (any form of) n.G. �

Theorem 8. [2, Theorem 92] All short games have infinite order or order a

power of 2.

We now determine the abstract group structure of ShUg. Let D be the

additive group of dyadic rationals.

Theorem 9. ShUg is isomorphic to the direct sum of countably many Ds and

countably many D/Zs.

Proof. We will find subgroups S0, S1, S2, . . . and G0, G1, G2, . . . of ShUg such

that:

(i) Each Gl is a direct sum of S0, . . . , Sl.

(ii)
⋃

l≥0 Gl = ShUg.

(iii) Each Gl is position-closed (and hence odd-closed.)

(iv) Each Sl is isomorphic to either D or D/Z.

This will prove that ShUg is a countable direct sum of Ds and D/Zs; this proves

the theorem, unless possibly only finitely many Ds or D/Zs appear in the sum.

If there were only finitely many D/Zs, k, say, then the subgroup of ShUg of

games of order 2 would be (Z/2Z)k, which contradicts the existence of infinitely

many games (∗, ∗2, ∗3, ∗4, . . . ) of order 2. Also, the tinies +1, +2, +3, . . . ,

generate a subgroup of ShUg isomorphic to the direct sum of countably many

Zs. Since this subgroup is torsion-free, it will map to an isomorphic subgroup

of the quotient of ShUg by its torsion subgroup. If there are only finitely many

Ds in ShUg, k say, Dk will then have a subgroup isomorphic to Zk+1, which is

impossible. Therefore, the direct sum must be as claimed.

We now proceed to the proof of 1–4. Well-order ShUg so that all options of

H always precede H . (In this proof, by options and positions of a short game,

we will always mean the options and positions of its canonical form.) We induce

on l. Let G0 = S0 = D. Clearly, 1, 3, and 4 are then true for l = 0. Otherwise,

assume 1, 3, and 4 for l = 0, . . . , i. Let qi be the first short game not in Gi,

according to our order (so all options of qi are in Gi), and let ri be an element

of qi +Gi with minimal order. Suppose that 2btri is in Gi, where t is odd and

b ≥ 0. By odd-closure, 2bri = z, say, is in Gi. Since Gi is 2-divisible, we see that

there is y in Gi with 2by = z. Then 2b(ri−y) = 0, so ri−y has order dividing 2b;

by minimality of order, ri also has order dividing 2b, so 2bri = 0 and therefore

2btri = 0. Hence Gi+Zri is a direct sum. In fact, it is also position-closed; to
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see this, it will do to show that all positions of ri are in Gi+Zri. Let ri = qi+x,

x ∈ Gi; all positions of ri will equal q′+x′, where q′ is a position of qi and x′

is a position of x. If q′ isn’t equal to qi, then q′+x′ is already in Gi; otherwise,

qi+x′ = ri+(x′−x) is in Gi+Zri. This proves position-closure. Now for short

games H , define

φ(H) = 1
2 .(H+2NH)−NH

where NH is the minimal nonnegative integer such that H+2NH > 0. By our

earlier remarks, 2φ(H) = H for all H . Define

rij =

{

ri, j = 0,

φ(ri(j−1)), j > 0.

Let Si+1 =
⋃

j≥0 Zrij . Evidently, Si+1 is isomorphic to D (if ri has infinite order)

or D/Z (if ri has order a power of 2.) Let Gi+1 = Gi+Si+1. 4 is then certainly

true. 1 will be true if the sum is direct. Let 2ktrij be in Gi, t odd, k ≥ 0. By

odd-closure, 2krij is in Gi; if k ≤ j, then 2j−k2krij = 2jrij = ri is in Gi, which

is impossible. If k > j, then 2krij = 2k−jri is in Gi, and thus equals zero, since

Gi +Zri was direct. Hence Gi+Si+1 is direct. For 3 to be true, we need Gi+1

position-closed. It will do to show that for all j, all positions of rij are in Gi+1.

We induce on j. If j = 0, we have proved this above. Otherwise, we observe that

any position of 1
2 .K, except 1

2 .K, is an integral linear combination of positions of

K; therefore, any position of rij = φ(ri(j−1)) is either an integer translate of rij

or an integer translate of an integral linear combination of positions of ri(j−1).

The result then follows from the induction hypothesis.

This concludes the induction, proving that 1, 3, and 4 are true for all i. For

2, if some short game is not in
⋃

l≥0 Gl, let K be the first such game, in our

order. K will then eventually be chosen as some qi; but qi ∈ Gi+1, which is a

contradiction. This concludes the proof. �

We would like to determine the abstract structure of Ug and ShUg as abstract

partially ordered abelian groups. We have not done this, but we can approach

the problem by first looking at cyclic subgroups of both groups. Any finite cyclic

subgroup of Ug or ShUg must have all nonzero members incomparable with 0;

so look at an infinite cyclic subgroup of either one, generated by G, say. We can’t

have n.G > 0 and m.G < 0 for positive m and n, since then mn.G would have

to be both positive and negative. Therefore either all positive multiples of G are

positive or incomparable with 0, or all positive multiples of G are negative or

incomparable with 0. By replacing G by −G if necessary, we can assume that all

positive multiples of G are positive or incomparable with 0. In this case, the set

S of nonnegative integers n such that n.G ≥ 0 must obviously be a submonoid

of Z≥0. We will show that for G ∈ ShUg, and hence also for G ∈ Ug, all such

submonoids can occur.

Lemma 10. F = {2|−1, {0|−4}} has n.F incomparable with 0, for all nonzero

integers n.



54 DAVID MOEWS

Proof. First, we induce on n to show that 2+n.F ≥ 0 for all n ≥ 0. If n = 0,

this is clear. Otherwise, look at Right’s first move. It can be to 1+(n−1).F .

Left has then won if n = 1; otherwise, he can respond on F to to 3+(n−2).F ,

which is positive or zero by the induction hypothesis. Right’s other first move

is to 2+{0|−4}+(n−1).F . In this case, Left should respond on {0|−4}, leaving

2+(n−1).F , which is positive or zero by the induction hypothesis.

Now, it will do to show that both players have a winning first move from n.F

for all positive integers n. If n > 0, Left can move from n.F to 2+(n−1).F , and

this is positive or zero by the above remarks. To show that Right has a winning

first move, we induce on n. If n = 1, Right can move from F to −1 and win.

If n ≥ 2, Right’s first move should be to {0|−4}+(n−1).F . If Left responds to

(n−1).F , we have a good move by the induction hypothesis. Otherwise, Left

must respond to 2+{0|−4}+(n−2).F . If n = 2, Right can move to −2 and win.

If n = 3, Right can move to 2+{0|−4}+{0|−4}= −2 and win. Finally, if n ≥ 4,

Right can move to −2+(n−2).F . Left’s only response is then to (n−3).F , and

we can win this by the induction hypothesis. �

F has temperature 2 and mean value 0, so for all numbers ε > 0 and integers

n, we have −2−ε < n.F < 2+ε.

Lemma 11. All submonoids of Z≥0 are finitely generated.

Proof. Let S be a submonoid of Z≥0. If it has no nonzero members, the result

is obvious. Otherwise, let n > 0 be in S, and for each i > 0, let Si = {j ∈

{0, . . . , n−1}|j+ni ∈ S}. Then S1, S2, . . . is a nondecreasing sequence of subsets

of {0, . . . , n−1}, so there must be some i0 for which Si = Si0 for all i ≥ i0. Then

S is generated by S∩{1, 2, . . . , n(i0+1)−1}. �

Theorem 12. If S is a submonoid of Z≥0, generated by positive integers a1,

. . . , an, then for all integers m > 0 and M > 6,

G = {M, M +a1.F, M +a2.F, . . . , M +an.F |−M−F}

will have 2m.G > 0 if m is in S, and 2m.G||0 otherwise.

Proof. Let a0 = 0, and let T = {a0, a1, . . . , an}. We make the following claims.

Claim 1. For all integers b and nonnegative integers c, d, e, and q where c+

d+e ≥ 2, Vbcdeq = (c+d+e).M +b.F−2c−d+e.{0|−4}+q.G is positive or zero.

Proof of Claim 1. We induce on q. Let e′ be the remainder when e is divided

by 2. If q = 0, Vbcdeq ≥ b.F +(c+d+e).(M−2)+e′.{2|−2}. But since M > 6,

(c+d+e).(M−2) > 8, so this is positive. If q > 0, look at Right’s first move in

Vbcdeq . If it is in {0|−4}, we reply from G to M ; we are then in a position equal to

Vbcd(e+1)(q−1), which is positive or zero by the induction hypothesis. If it is in F

or −F , we reply from G to M ; we are then in a position V(b+β)(c+γ)(d+δ)(e+ε)(q−1),

where β is 1 or −1, γ, δ, and ε are each 0 or 1, and γ+δ+ε = 1. In any case,
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this is positive or zero by the induction hypothesis. The only other possibility

for Right’s first move is that it is in G. If q ≥ 2, we reply from G to M . We are

then at V(b−1)cde(q−2), which is positive or zero by the induction hypothesis. If

q = 1, Right’s move was to

(c+d+e−1).M +(b−1).F−2c−d+e.{0|−4}

≥ (c+d+e−1).(M−2)+(b−1).F−2+e′.{2|−2},

and since M > 6, (c+d+e−1).(M−2) > 4, so

(c+d+e−1).(M−2)−2+e′.{2|−2} > 0.

Since (b−1).F is not negative, we have a position which is positive or incompa-

rable with zero, which we can win. �

Claim 2. For all nonnegative integers m and n, not both zero, there is a winning

strategy for Left playing first in 2m.G−n.F .

Proof of Claim 2. We induce on m. We know the claim already if m = 0.

Otherwise, Left should open to M+(2m−1).G−n.F . Right may respond on G, to

(2m−2).G−(n+1).F ; we have a good move from this by the induction hypothesis.

If n > 0, Right may also respond on −F , to M +(2m−1).G−(n−1).F−2. In

this case, we should respond on G to 2M +(2m−2).G−(n−1).F−2, which is

positive or zero by Claim 1. �

Claim 3. For all integers b and nonnegative integers c, d, e, and q where c+

d+e ≥ 1, Wbcdeq = −(1+c+d+e).M +b.F +2c+d+e.{4|0}+q.G is negative or

zero.

Proof of Claim 3. We induce on q. Let e′ be the remainder when e is divided

by 2. If q = 0, Wbcdeq ≤ b.F−M +(c+d+e).(2−M)+e′.{2|−2}. Since M > 6,

−M +(c+d+e).(2−M) < −10, so this is negative. If q > 0, look at Left’s first

move in Wbcdeq . If it is in {4|0}, we reply from G to −M−F ; we are then in a

position equal to W(b−1)cd(e+1)(q−1), which is negative or zero by the induction

hypothesis. If it is in F or −F , we also reply in G; we are then in a position

W(b+β)(c+γ)(d+δ)(e+ε)(q−1), where β is 0 or −2, γ, δ, and ε are each 0 or 1, and

γ+δ+ε = 1. This is negative or zero by the induction hypothesis. The only

other possibility is that it is in G. If q ≥ 2, we reply from G to −M−F , leaving

a position of Wb′cde(q−2), for some integer b′. This is negative or zero by the

induction hypothesis. If q = 1, Left’s move was to

−(c+d+e).M +b′.F +2c+d+e.{4|0} (for some integer b′)

≤ (c+d+e).(2−M)+b′.F +e′.{2|−2},

and since M > 6, (c+d+e).(2−M) < −4, so this is negative. �

Claim 4. For all nonnegative integers m not in S, there is a winning strategy

for Right playing first in 2m.G.
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Proof of Claim 4. We open by moving from G to −M−F , and we continue doing

this as long as Left’s reply to our play is also in G. If this goes on for 2m moves,

we will end up moving from some position (b1+· · ·+bm−m).F , where b1, . . . ,

bm ∈ T . This cannot be zero as m /∈ S, so, by Lemma 10, we are moving from

a game incomparable with 0 and will hence win. If this does not go on for 2m

moves, Left responds in F or −F at some point, leaving a position of the form

M+Wbcdeq , where c, d, and e are nonnegative, q ≥ 1, and c+d+e = 1. We should

respond by moving from G to −M−F . This leaves the position W(b−1)cde(q−1),

which is negative or zero by Claim 3. �

Claim 5. For m ∈ S, there is a winning strategy for Left playing second in

2m.G.

Proof of Claim 5. Since m is in S, we can express m as a sum of the positive

ai’s; pad this with zeroes to make a sum of exactly m terms, so that

0 = (b1−1)+(b2−1)+· · ·+(bm−1), b1, . . . , bm ∈ T .

We may arrange these terms so that all initial partial sums are nonpositive.

Then when Right opens, by moving from G to −M−F , our first response is on

another copy of G, to M+b1.F ; if he moves on G again, our second response is

from G to M +b2.F , and so on. If this goes on for 2m moves, we will win, by

moving to 0. Otherwise, Right responds on −F at some point, leaving a position

(a+1).F +2q.G−2, where 1 ≤ q < m and a = b1−1+· · ·+bm−q−1 < 0. (0–2)

We claim that we have a winning strategy from all positions (0–2). To prove

this, induce on q. We should always respond to

M +(a′+2).F +(2q−1).G−2, where a′ = b1−1+· · ·+bm−q−1+bm+1−q−1.

Right must move from this position. If he moves on F or −F , respond from

G to M ; then the position is of the form Vb(c+1)de(2q−2), where c, d, and e are

nonnegative and c+d+e = 1. This is positive or zero by Claim 1. If he moves

on G and q > 1, then his move is to a position (0–2) with q decreased by one,

which we can win by the induction hypothesis. Finally, if he moves on G and

q = 1, then a′ = 0, so the position is now F−2, from which we move immediately

to 0. �

The theorem now follows immediately from Claims 2, 4, and 5. �
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