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We have retained the numbering from the list of unsolved problems given on

pp. 183–189 of AMS Proc. Sympos. Appl. Math. 43(1991), called PSAM 43

below, and on pp. 475–491 of this volume’s predecessor, Games of No Chance,

hereafter referred to as GONC. This list also contains more detail about some

of the games mentioned below. References in brackets, e.g., Ferguson [1974], are

listed in Fraenkel’s Bibliography later in this book; WW refers to

Elwyn Berlekamp, John Conway and Richard Guy, Winning Ways for your

Mathematical Plays, Academic Press, 1982. A.K.Peters, 2000.

and references in parentheses, e.g., Kraitchik (1941), are at the end of this article.

1. Subtraction games are known to be periodic. Investigate the relationship

between the subtraction set and the length and structure of the period. The same

question can be asked about partizan subtraction games, in which each player is

assigned an individual subtraction set. See Fraenkel and Kotzig [1987].

See also Subtraction Games in WW, 83–86, 487–498 and in the Impartial

Games article in GONC. A move in the game S(s1, s2, s3, . . .) is to take a number

of beans from a heap, provided that number is a member of the subtraction-

set, {s1, s2, s3, . . .}. Analysis of such a game and of many other heap games is

conveniently recorded by a nim-sequence,

n0n1n2n3 . . . ,

meaning that the nim-value of a heap of h beans is nh, h = 0, 1, 2, . . . , i.e., that

the value of a heap of h beans in this particular game is the nimber ∗nh. To

avoid having to print stars, we say that the nim-value of a position is n, meaning

that its value is the nimber ∗n.

For examples see Table 2 in §4 on p. 67 of the Impartial Games paper in

GONC.

In subtraction games the nim-values 0 and 1 are remarkably related by Fer-

guson’s Pairing Property [Ferguson [1974]; WW, 86, 422]: if s1 is the least
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member of the subtraction-set, then

G(n) = 1 just if G(n − s1) = 0.

Here and later “G(n) = v” means that the nim-value of a heap of n beans is v.

It would now seem feasible to give the complete analysis for games whose

subtraction sets have just three members, but the detail has so far eluded those

who have looked at the problem.

2. Are all finite octal games ultimately periodic? Resolve any number

of outstanding particular cases, e.g., ·6 (Officers), ·06, ·14, ·36, ·64, ·74, ·76,

·004, ·005, ·006, ·007 (One-dimensional tic–tac–toe, Treblecross), ·016, ·106,

·114, ·135, ·136, ·142, ·143, ·146, ·162, ·163, ·172, ·324, ·336, ·342, ·362,

·371, ·374, ·404, ·414, ·416, ·444, ·564, ·604, ·606, ·744, ·764, ·774, ·776

and Grundy’s Game (split a heap into two unequal heaps), which has been

analyzed, mainly by Dan Hoey, as far as heaps of 5 × 232 beans.

A similar unsolved game is John Conway’s Couples-Are-Forever where a

move is to split any heap except a heap of two. The first 50 million nim-values

haven’t displayed any periodicity. See Caines et al. [1999].

Explain the structure of the periods of games known to be periodic.

[If the binary expansion of the kth code digit in the game with code

d0·d1d2d3 . . .

is

dk = 2ak + 2bk + 2ck + · · · ,
where 0 ≤ ak < bk < ck < · · ·, then it is legal to remove k beans from a heap,

provided that the rest of the heap is left in exactly ak or bk or ck or . . . non-

empty heaps. See WW, 81–115. Some specimen games are exhibited in Table 3

of §5 of the Impartial Games paper in GONC.]

In GONC, p. 476, we listed ·644, but its period, 442, had been found by

Richard Austin in his thesis [1976].

Gangolli and Plambeck [1989] established the ultimate periodicity of four octal

games which were previously unknown: ·16 has period 149459 (a prime!), the

last exceptional value being G(105350) = 16. The game ·56 has period 144 and

last exceptional value G(326639) = 26. The games ·127 and ·376 each have

period 4 (with cycles of values 4, 7, 2, 1 and 17, 33, 16, 32 respectively) and last

exceptional values G(46577) = 11 and G(2268247) = 42.

Achim Flammenkamp has recently settled ·454: it has the remarkable period

and preperiod of 60620715 and 160949018, in spite of only G(124) = 17 for the

last sparse value and 41 for the largest nim-value, and even more recently has

determined that ·104 has period and preperiod 11770282 and 197769598 but no

sparse space. For information on the current status of each of these games, see

Flammenkamp’s web page at http://www.uni-bielefeld.de/̃ achim/octal.html.
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In Problem 38 in Discrete Math., 44(1983) 331–334 Fraenkel raises questions

concerning the computational complexity of octal games. In Problem 39, he and

Kotzig define partizan octal games in which distinct octals are assigned to

the two players. In Problem 40, Fraenkel introduces poset games, played on a

partially ordered set of heaps, each player in turn selecting a heap and removing

a positive number of beans from this heap and all heaps which are above it in

the poset ordering. Compare Problem 23 below.

3. Examine some hexadecimal games.

[Hexadecimal games are those with code digits dk in the interval from 0 to

F (= 15), so that there are options splitting a heap into three heaps. See WW,

116–117.]

Such games may be arithmetically periodic. That is, the nim-values belong

to a finite set of arithmetic progressions with the same common difference. The

number of progressions is the period and their common difference is called the

saltus. Sam Howse has calculated the first 1500 nim-values for each of the 1-,

2- and 3-digit games. Richard Austin’s theorem 6.8 in his 1976 thesis suffices to

confirm the (ultimate) arithmetic periodicity of several of these games.

For example ·XY, where X and Y are each A, B, E or F and ·E8, ·E9, ·EC

and ·ED are each equivalent to Nim.

·0A, ·0B, ·0E, ·0F, ·1A, ·1B, ·48, ·4A, ·4C, ·4E, ·82, ·8A, ·8E and ·CZ,

where Z is any even digit, are equivalent to Duplicate Nim, while ·0C, ·80, ·84,

·88, and ·8C are like Triplicate Nim.

Some games displayed ordinary periodicity; ·A2, ·A3, ·A6, ·A7, ·B2, ·B3,

·B7 have period 4, and ·81, ·85, ·A0, ·A1, ·A4, ·A5, ·B0, ·B1, ·B5, ·D0, ·F0,

·F1 are all essentially She-Loves-Me-She-Loves-Me-Not.

·9E, ·9F, ·BC, ·C9, ·CB, ·CD and ·CF have (apparent ultimate) period 3

and saltus 2; ·89, ·8D, ·A8, ·A9, ·AC, ·AD each have period 4 and saltus 2,

while ·8B, ·8F and ·9B have period 7 and saltus 4.

More interesting specimens are ·28 = ·29, which have period 53 and saltus 16,

the only exceptional value being G(0) = 0; ·9C, which has period 36, preperiod 28

and saltus 16; and ·F6 with period 43 and saltus 32, but its apparent preperiod

of 604 and failure to satisfy one of the conditions of the theorem prevent us from

verifying the ultimate periodicity.

The above accounts for nearly half of the two-digit genuinely hexadecimal (i.e.,

containing at least one 8) games. There remain almost a hundred for which a

pattern has yet to be established.

Kenyon’s Game, ·3F, had been the only example found whose saltus of 3

countered the conjecture of Guy and Smith that it should always be a power of

two. But Nowakowski has now shown that ·3F3 has period 10 and saltus 5; ·209,

·228 have period 9 with saltus 3; and ·608 has period 6 and saltus 3. Further
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examples whose saltus is not a power of two may be ·338, probably with period

17 and saltus 6 and several, probably isomorphic, with period 9 and saltus 3.

The game ·9 has not so far yielded its complete analysis, but, as far as an-

alyzed, i.e. to 12000, exhibits a remarkable fractal-like set of nim-values. See

Austin, Howse and Nowakowski (2002).

4. Extend the analysis of Domineering.

[Left and Right take turns to place dominoes on a checker-board. Left orients

her dominoes North-South and Right orients his East-West. Each domino exactly

covers two squares of the board and no two dominoes overlap. A player unable

to play loses.]

See Berlekamp [1988] and the second edition of WW, 138–142, where some

new values are given. For example David Wolfe and Dan Calistrate have found

the values (to within ‘-ish’, i.e., infinitesimally shifted) of 4 × 8, 5 × 6 and 6× 6

boards. Lachmann, Moore and Rapaport (this volume) discover who wins on

rectangular, toroidal and cylindrical boards of widths 2, 3, 5 and 7, but do not

find their values.

Berlekamp asks, as a hard problem, to characterize all hot Domineering po-

sitions to within “ish”. As a possibly easier problem he asks for a Domineering

position with a new temperature, i.e., one not occurring in Table 1 on GONC,

p. 477.

5. Analyze positions in the game of Go.

Compare Berlekamp [1988], his book with Wolfe [1994], and continuing discov-

eries, discussed in GONC and the present volume, which also contains Spight’s

analysis of an enriched environment Go game and Takizawa’s rogue Ko positions.

6. Go-Moku. Solved by Allis, Herik and Huntjens [1996].

7. Complete the analysis of impartial Eatcakes (WW, 269, 271, 276–277).

[Eatcakes is an example of a join or selective compound of games. Each

player plays in all the component games. It is played with a number of rectangles,

mi ×ni; a move is to remove a strip mi × 1 or 1×ni from each rectangle, either

splitting it into two rectangles, or reducing the length or breadth by one. Winner

removes the last strip.]

For fixed breadth the remoteness becomes constant when the length is suffi-

ciently large. But ‘sufficiently large’ seems to be an increasing function of the

breadth and doesn’t, in the hand calculations already made, settle into any clear

pattern. Perhaps computer calculations will reveal something.

8. Complete the analysis of Hotcakes (WW, 279–282).

[Also played with integer-sided rectangles, but as a union or selective com-

pound in which each player moves in some of the components. Left cuts as

many rectangles vertically along an integer line as she wishes, and then rotates
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one from each pair of resulting rectangles through a right angle. Right cuts as

many rectangles as he wishes, horizontally into pairs of integer-sided rectangles

and rotates one rectangle from each pair through a right angle. The tolls for

rectangles with one dimension small are understood, but much remains to be

discovered.]

9. Develop a misère theory for unions of partizan games.

[In a union of two or more games, you move in as many component games as

you wish. In misère play, the last player loses.]

10. Extend the analysis of Squares Off (WW, 299).

[Played with heaps of beans. A move is to take a perfect square (> 1) number

of beans from any number of heaps. Heaps of 0, 1, 2 or 3 cannot be further

reduced. A move leaving a heap of 0 is an overriding win for the player making

it. A move leaving 1 is an overriding win for Right, and one leaving 2 is an

overriding win for Left. A move leaving 3 doesn’t end the game unless all other

heaps are of size 3, in which case the last player wins.]

11. Extend the analysis of Top Entails (WW, 376–377).

[Played with stacks of coins. Either split a stack into two smaller ones, or

remove the top coin from a stack. In the latter case your opponent’s move must

use the same stack. Last player wins. Don’t leave a stack of 1 on the board,

since your opponent must take it and win, since it’s now your turn to move in

an empty stack!]

We are unable to report any advance on Julian West’s discovery of loony

positions at 2403 coins, 2505 coins, and 33,243 coins. The authors of Winning

Ways did not know of a loony stack of more than 3 coins. These results are

typical of the apparently quite unpredictable nature of combinatorial games,

even when they have quite simple rules.

12. Extend the analysis of All Square (WW, 385).

[This game involves complimenting moves after which the same player has

an extra bonus move. Note that this happens in Dots-and-Boxes when a box

is completed. All Square is played with heaps of beans. A move splits a heap

into two smaller ones. If both heap sizes are perfect squares, the player must

move again: if he can’t he loses!]

13. Extend the misère analysis of various octal games, e.g., Officers, Daw-

son’s Chess, . . . , and of Grundy’s Game (WW, 411–421).

William L. Sibert made a breakthrough by completing the analysis of misère

Kayles; see the post-script to Sibert and Conway [1992]. Plambeck [1992] has

used their method to analyze a few other games, but there’s a wide open field

here. Recently, Allemang (2001) has extended the content of his 1984 thesis to
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include the complete analysis of ·26, ·53, ·54, ·72, ·75 and 4·7. (See also http://

spdcc.com:8431/summary.html.)

We can ask the same question for Hexadecimal games (see Problem 3).

14. Moebius, when played on 18 coins has a remarkable pattern. Is there

any trace of pattern for larger numbers of coins? Can any estimate be made for

the rate of growth of the nim-values?

[See Coin-turning games in WW, 432–435; and Vera Pless’s lecture and the

Impartial Games lecture in PSAM 43. Moebius is played with a row of coins. A

move turns 1, 2, 3, 4 or 5 coins, of which the rightmost must go from heads to

tails (to make sure the game satisfies the Ending Condition). The winner is the

player who makes all coins tails.]

15. Mogul has an even more striking pattern when played on 24 coins, which

has some echoes when played on 40, 56 or 64 coins. Thereafter, is there complete

chaos?

[See references for Problem 14. A move turns 1, 2, . . . , 7 coins.]

16. Find an analysis of Antonim with four or more coins (WW, 459–462).

[Played with coins on a strip of squares. A move moves a coin from one square

to a smaller-numbered square. Only one coin to a square, except that square

zero can have any number of coins. It is known that (a, b, c) is a P-position in

Antonim just if (a + 1, b + 1, c + 1) is a P-position in Nim, but for more than 3

coins much remains to be discovered.]

17. Extend the analysis of Kotzig’s Nim (WW, 481–483). Is the game

eventually periodic in terms of the length of the circle for every finite move set?

Analyze the misère version of Kotzig’s Nim.

[Players alternately place coins on a circular strip, at most one coin on a

square. Each coin must be placed m squares clockwise from the previously

placed coin, provided m is in the given move set, and provided the square is

not already occupied. The complete analysis is known only for a few small move

sets.]

See Fraenkel, Jaffray, Kotzig and Sabidussi [1995].

18. Obtain asymptotic estimates for the proportions of N-, O- and P-positions

in Epstein’s Put-or-Take-a-Square game (WW, 484–486).

[Played with one heap of beans. At each turn there are just two options, to

take away or add the largest perfect square number of beans that there is in the

heap. 5 is a P-position, because 5± 4 are both squares; 2 and 3 are O-positions,

a win for neither player, since the best play is to go from one to the other, and

not to 1 or 4 which are N-positions.]

19. Simon Norton’s game of Tribulations is similar to Epstein’s game, but

squares are replaced by triangular numbers. Norton conjectures that there are
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no O-positions, and that the N-positions outnumber the P-positions in golden

ratio. True up to 5000 beans.

Investigate other put-or-take games. If the largest number of form 2k − 1 is

put or taken, we have yet another disguise for She-Loves-Me-She-Loves-Me-Not,

with the remoteness given by the binary representation of the number of beans.

For Fibulations and Tribulations, see WW 501–503. If the largest number used is

of form Tn+1, where Tn is a triangular number, the P-positions are the multiples

of 3.

20. Complete the analysis of D.U.D.E.N.E.Y

[Played with a single heap of beans. Either player may take any number

of beans from 1 to Y , except that the immediately previous move mustn’t be

repeated. When you can’t move you lose. Analysis easy for Y even, and known

(WW, 487–489) for 53/64 of the odd values of Y .]

Marc Wallace and Alan Jaffray made a little progress here, but is the situation

one in which there is always a small fraction of cases remaining, no matter how

far the analysis is pursued?

21. Schuhstrings is the same as D.U.D.E.N.E.Y, except that a deduction

of zero is also allowed, but cannot be immediately repeated (WW, 489–490).

22. Analyze Nim in which you are not allowed to repeat a move. There are

at least five possible forms (assume that b beans have been taken from heap H):

medium local : b beans may not be taken from heap H until some other move

is made in heap H .

short local : b beans may not be taken from heap H on the next move.

long local : b beans may never again be taken from heap H .

short global : b beans may not be taken from any heap on the next move.

long global : b beans may never again be taken from any heap.

23. Burning-the-Candle-at-Both-Ends. John Conway and Aviezri Fraen-

kel ask us to analyze Nim played with a row of heaps. A move may only be made

in the leftmost or in the rightmost heap. When a heap becomes empty, then its

neighbor becomes the end heap.

Albert and Nowakowski [2001] have solved the impartial and partizan versions.

But there is also Hub-and-Spoke Nim, proposed by Fraenkel. One heap is

the hub and the others are arranged in rows forming spokes radiating from the

hub.

There are several versions:

(a) beans may be taken only from a heap at the end of a spoke;

(b) beans may also be taken from the hub;
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(c) beans may be taken from the hub only when all the heaps in a spoke are

exhausted;

(d) beans may be taken from the hub only when just one spoke remains;

(e) in versions (b), (c) and (d), when the hub is exhausted, beans may be

taken from a heap at either end of any remaining spoke; i.e. the game becomes

the sum of a number of games of Burning-the-Candle-at-Both-Ends.

Albert notes that Hub-and-Spoke Nim can be generalized to playing on a

forest, i.e., a graph each of whose components is a tree. The most natural

variant is that beans may only be taken from a leaf (valence 1) or isolated vertex

(valence 0).

24. Continue the analysis of The Princess and the Roses (WW, 490–494).

[Played with heaps of beans. Take one bean, or two beans, one from each of

two different heaps. The rules seem trivially simple, but the analysis takes on

remarkable ramifications.]

25. Extend the analysis of the Conway-Paterson game of Sprouts in either

the normal or misère form. (WW, 564–568).

[A move joins two spots, or a spot to itself by a curve which doesn’t meet any

other spot or previously drawn curve. When a curve is drawn, a new spot must

be placed on it. The valence of any spot must not exceed three.]

Applegate, Jacobson and Sleator [1999] have pushed the normal analysis to

11 initial spots and the misère analysis to 9.

number of spots 1 2 3 4 5 6 7 8 9 10 11

normal play P P N N N P P P N N N
misère play N P P P N N P P P

where P and N denote previous-player and next-player winners. There is a

temptation to conjecture that the patterns continue.

26. Extend the analysis of Sylver Coinage (WW, 575–597).

[Players alternately name different positive integers, but may not name a

number which is the sum of previously named ones, with repetitions allowed.

Whoever names 1 loses. See Section 3 of Richard Nowakowski’s chapter in PSAM

43.]

27. Extend the analysis of Chomp (WW, 598–599).

[Players alternately name divisors of N , which may not be multiples of pre-

viously named numbers. Whoever names 1 loses. David Gale offers a prize of

US$100.00 for the first complete analysis of 3D-Chomp, i.e., where N has three

distinct prime divisors, raised to arbitrarily high powers.]
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Doron Zeilberger (www.ics.uci.edu/̃ eppstein/cgt) has analyzed Chomp for

N = 223n up to n = 114. For an excursion into infinite Chomp, see Huddleston

and Shurman [2001] in this volume.

28. Extend Úlehla’s or Berlekamp’s analysis of von Neumann’s game from

directed forests to directed acyclic graphs (WW, 570–572; Úlehla [1980]).

[von Neumann’s game, or Hackendot, is played on one or more rooted trees.

The roots induce a direction, towards the root, on each edge. A move is to delete

a node, together with all nodes on the path to the root, and all edges incident

with those nodes. Any remaining subtrees are rooted by the nodes that were

adjacent to deleted nodes.]

Since Chomp and the superset game (Gale and Neyman [1982]) can be de-

scribed in terms of directed acyclic graphs but not by directed forests, a partial

analysis of such an extension of von Neumann’s game could throw some light on

these two unsolved games. Fraenkel and Harary [1989] discuss a similar game,

but with the directions determined by shortest distances. They find winning

strategies for trees in normal play, circuits in normal and misère play; and for

complete graphs with rays of equal length in normal play.

29. Prove that Black doesn’t have a forced win in Chess.

Andrew Buchanan has recently emailed that he has examined some simpler

(sub-)problems in which the moves 1. e4, e5 are made followed by either a Bishop

move by each player, or a Queen move by each player. He claims that at most

six of each of these sets of positions can be wins for Black.

30. A King and Rook v. King problem. Played on a quarter-infinite board,

with initial position WKa1, WRb2 and BKc3. Can White win? If so, in how few

moves? It may be better to ask, “what is the smallest board (if any) that White

can win on if Black is given a win if he walks off the North or East edges of the

board?” Is the answer 9×11? In an earlier edition of this paper I attributed this

problem to Simon Norton, but it was proposed as a kriegsspiel problem, with

unspecified position of the WK, and with W to win with probability 1, by Lloyd

Shapley around 1960.

31. David Gale’s version of Lion and Man. L and M are confined to the

non-negative quadrant of the plane. They move alternately a distance of at most

one unit. For which initial positions can L catch M?

David Gale’s Lion-and-Man has been solved by Jǐŕı Sgall [2001].

Variation. Replace quadrant by wedge-shaped region.

32. Gale’s Vingt-et-un. Cards numbered 1 through 10 are laid on the

table. L chooses a card. Then R chooses cards until his total of chosen cards

exceeds the card chosen by L. Then L chooses until her cumulative total exceeds

that of R, etc. The first player to get 21 wins. Who is it?
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[As posed here it is not clear if the object is to get 21 exactly or 21-or-more.

Jeffery Magnoli, a student of Julian West, thought that the latter rule was the

more interesting and found a first-player win in 6-card Onze and in 8-card Dix-

sept.]

33. Subset Take-away. Given a finite set, players alternately choose proper

subsets subject to the rule that once a subset has been chosen, none of its subsets

may be chosen subsequently by either player. Last player wins.

[David Gale conjectures that it’s a second player win—this is true for sets of

less than six elements.]

34. Eggleton and Fraenkel ask for a theory of Cannibal Games or an analy-

sis of special families of positions. They are played on an arbitrary finite digraph.

Place any numbers of “cannibals” on any vertices. A move is to select a cannibal

and move it along a directed edge to a neighboring vertex. If this is occupied,

the incoming cannibal eats the whole population (Greedy Cannibals) or just

one cannibal (Polite Cannibals). A player unable to move loses. Draws are

possible. A partizan version can be played with cannibals of two colors, each

eating only the opposite color.

35. Welter’s Game on an arbitrary digraph. Place a number of monochro-

matic tokens on distinct vertices of a directed acyclic graph. A token may be

moved to any unoccupied immediate follower. Last player wins. Make a dictio-

nary of P-positions and formulate a winning strategy for other positions. See

Kahane and Fraenkel [1987] and Kahane and Ryba [2001].

36. Restricted Positrons and Electrons. Fraenkel places a number of

Positrons (Pink tokens) and Electrons (Ebony tokens) on distinct vertices of a

Welter strip. Any particle can be moved by either player leftward to any square

u provided that u is either unoccupied or occupied by a particle of the opposite

type. In the latter case, of course, both particles become annihilated (i.e., they

are removed from the strip), as physicists tell us positrons and electrons do.

Play ends when the excess particles of one type over the other are jammed in the

lowest positions of the strip. Last player wins. Formulate a winning strategy for

those positions where one exists. Note that if the particles are of one type only,

this is Welter’s Game. As a strategy is known for Misère Welter [WW, 480–481]

it may not be unreasonable to ask for a misère analysis as well. See Problem 47,

Discrete Math., 46 (1983) 215–216.

37. General Positrons and Electrons. As Problem 36 but played on an

arbitrary digraph. Last player wins.

38. Fulves’s Merger. Start with heaps of 1, 2, 3, 4, 5, 6 and 7 beans.

Two players alternately transfer any number of beans from one heap to another,

except that beans may not be transferred from a larger to a smaller heap. The

player who makes all the heaps even in size is the winner.
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The total number of beans remains constant, and is even (28 in this case,

though one is interested in even numbers in general: a similar game can be

played in which the total number is odd and the object is to make all the heaps

odd in size).

No progress has been reported for the general game.

39. Sowing or Mancala Games. Kraitchik (1941, p. 282) describes Ruma,

which he attributes to Mr. Punga. Bell and Cornelius (1988, pp. 22–38) list

Congklak, from Indonesia; Mankal’ah L’ib Al-Ghashim (the game of the un-

learned); Leab El-Akil (the game of the wise or intelligent); Wari; Kalah, from

Sumeria; Gabata, from Ethiopia; Kiarabu, from Africa; as well as some solitaire

games based on a similar idea. Botermans et al. (1989, pp. 174–179) describe

Mefuhva from Malawi and Kiuthi from Kenya. Many of these games go back for

thousands of years, but several should be susceptible to present day methods of

analysis. See Jeff Erickson’s article in GONC.

Conway starts with a line of heaps of beans. A typical move is to take (some

of) a heap of size N and do something with it that depends on the game and on

N . He regards the nicest move as what he calls the African move in which all

the beans in a heap are picked up and ‘sowed’ onto successive heaps, and subject

to the condition that the last bean must land on a nonempty heap. Beans are

sowed to the right if you are Left, to the left if you are Right, or either way if

you’re playing impartially.

In the partizan version, the position 1 (a single bean) has value 0, of course;

the position 1.1 = {0.2 | 2.0} has value {0 |0} = ∗; and so does

1.1.1 = {1.0.2, 2.1 | 1.2, 2.0.1},

since 2.1 = { | 3.0}, 3.0 = { | } = 0 and 1.0.2 = { | 2.1}, so that ‘3’ has value 0,

2.1 has value −1, 1.0.2 value −2, 1.1.1 value {−2,−1 | 1, 2} = 0, 1.1.1.1 value 0,

and 1.1.1.1.1 value ± 1

2
.

Recent papers on mancala-type games are Björner and Lovász [1992], Broline

and Loeb [1995] and Yeh Yeong-Nam [1995].

40. Chess. Noam Elkies has found endgames with values 0, 1, 1

2
, ∗, ∗k for

many k, ↑, ↑ ∗, ⇑ ∗, etc.; see his papers in GONC and this volume. See also

Problems 29, 30 and 45.

41. Sequential compounds of games have been studied by Stromquist and

Ullman. They mention a more general compound. Let (P, <) be a finite poset

and for each x ∈ P let Gx be a game. Consider a game G(P ) played as follows.

Moves are allowed in any single component Gx provided that no legal moves

remain in any component Gy with y > x. A player unable to move loses. The

sequential compound is the special case when (P, <) is a chain (or linear order).

The sum or disjunctive compound is the case where (P, <) is an antichain. They
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have no coherent theory of games G(P ) for arbitrary posets. They list some more

specific problems which may be more tractable. Compare Problem 23 above.

42. Beanstalk and Beans-Don’t-Talk are games invented by John Isbell

and by John Conway. See Guy [1986]. Beanstalk is played between Jack and the

Giant. The Giant chooses a positive integer, n0. Then J. and G. play alternately

n1, n2, n3, . . . according to the rule ni+1 = ni/2 if ni is even, = 3ni ± 1 if ni is

odd; i.e. if ni is even, there’s only one option, while if ni is odd there are just

two. The winner is the person moving to 1. If the Giant chooses an odd number

> 1, can Jack always win? Not by using the Greedy Strategy (always descend

when it’s safe to do so) as this can lead to cycles (draws).

In Beans-Don’t-Talk, the move is from n to (3n±1)/2∗ where 2∗ is the highest

power of two dividing the numerator; the winner is still the person moving to 1.

Are there any drawn positions? There are certainly drawn plays, e.g., 7 (5) 7

(5) . . . , but 5 is an N-position because there is the immediate winning option

(5×3+1)/24 = 1, and 7 is a P-position since the other option (7×3+1)/2 = 11 is

met by (11×3−1)/25 = 1. What we want to know is: are there any O-positions

(positions of infinite remoteness)?

[For remoteness see Chapter 9 of WW. There are several unanswered questions

about the remotenesses of positions in these two games. Remoteness may also

be the best tool we have for Problems 18 and 19 above.]

43. Inverting Hackenbush. John Conway turns Blue-Red Hackenbush,

played on finite strings of edges, into a hot game by amending the move to

‘remove an edge of your color and everything thus disconnected from the ground,

and then turn the remaining string upside-down and replant it’. The analysis

replaces the ‘number tree’ (WW, p. 25) by a similar tree, but with the smaller

binary fractions replaced by increasingly hot games. The game can be generalized

to play on trees: a move which prunes the tree at a vertex V includes replanting

the tree with V as its root.

44. Konane. See the paper by Ernst and Berlekamp in GONC. There

is much to be discovered about this fascinating and eminently playable game,

which exhibits the values 0, ∗, ∗2, ↑, 2−n, and many other infinitesimals and also

hot values of arbitrarily high temperature. Chan and Tsai, in this volume, give

some values for 1 × n boards.

45. Elwyn Berlekamp asks for the habitat of ∗2. [∗2 = {0, ∗|0, ∗}.] It does

not occur in Blockbusting, Hackenbush, Col or Go. It does occur in Konane and

6 × 6 Chess. What about Chilled Go, Domineering and 8 × 8 Chess? Elkies

(see this volume) has modified and generalized the game Dawson’s Chess to give

games, on suitably large boards, of value ∗k for many large k and conjectures

that such values exist for all k.
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46. There are various ways of playing two-dimensional Nim. One form

is discussed on p. 313 of WW. Another is proposed by Berman, Fraenkel and

Kahane in Problem 41, Discrete Math., 45 (1983) 137–138. Start with a rectan-

gular array of heaps of beans. At each move a row or column is selected and a

positive number of beans is taken from some of the heaps in that row or column;

see Fremlin [1973]. Ferguson’s [2001] variant has the move as choosing a number

and subtracting that number from all members of a row or column. He finds the

outcomes for 2×2 matrices in both the impartial and partizan versions. Another

variant is where beans may be taken only from contiguous heaps. Other variants

are played on triangular or hexagonal boards; a special case of this last is Piet

Hein’s Nimbi, solved by Fraenkel and Herda [1980].

47. Many results are known concerning tiling rectangles with polyominoes.

One can extend such problems to disconnected polyominoes. E.g., in GONC we

asked if a rectangle can be tiled by

or by

If so, what are the rectangles of least size that can be so tiled?

Juha Saukkola showed that the former will not tile a rectangle, but that the

latter can tile a 12× 15 rectangle. Since then Joe Devincentis, Erich Friedman,

Patrick Hamlyn, Mike Reid and others have examined numerous other cases.

See http://www.stetson.edu/̃ efriedma/mathmagic/0299.html.

There is an obvious generalization of Domineering (see Problem 4 above) to

a two-player game in which the players alternately place polyominoes of given

shape and orientation on a rectangular or other board.

48. Find all words which can be reduced to 1 peg in 1-dimensional Peg

Solitaire. E.g., 1, 011, 110, 1101, 110101, 1(10)k1. Here 1 represents a peg and

0 an empty space. A move is for a peg to jump over an adjacent peg into an

empty adjacent space, and remove the jumped-over peg. E.g., 1101 → 0011

→ 0100. Georg Gunther, Bert Hartnell and Richard Nowakowski found that

for an n×1 board with one empty space, n must be even and the space next but

one to the end. If the board is cyclic, the condition is simply n even. Christopher

Moore and David Eppstein, indicate, in this volume, that this problem has been

solved many times but does not seem to have been published. They coin the

term Duotaire for one-dimensional peg solitaire played as a two-player game.

They give some decomposition theorems and conjecture that arbitrarily high

nim-values occur. J. P. Grossman notes that the position

©© • ( • ©© • ©• )
20601 ©

i.e. a strip of 123610 squares, of which the first, second and last squares are

occupied, together with the (6n+5)-th, (6n+6)-th and (6n+8)-th, for 0 ≤ n ≤
20600, has nim-value 197.
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49. Elwyn Berlekamp asks if there is a game which has
1. simple, playable rules,

2. an intricate explicit solution, and

3. is provably NP or harder.

Is Phutball (WW, 688–691) such a game? See Demaine, Demaine and Epp-

stein and also Grossman and Nowakowski in this volume. Compare Problem 57

below.

50. John Selfridge asks: is Four-File a draw? Four-File is played on a chess-

board with the chess pieces in their usual starting positions, but only on the a-,

c-, e- and g-files. I.e. a rook, a bishop, a king, a knight and four pawns on each

side. The moves are normal chess moves except that play takes place only on

these four files. I.e., each move ends on one of the files a, c, e or g; pawns cannot

capture and there is no castling. The aim is to checkmate your opponent’s king.

51. Elwyn Berlekamp asks for a complete theory of closed 1 × n Dots-and-

Boxes. I.e., with starting position

t t t t t t t t t t t

t t t t t t t t t t t

A sample position is

t t t t t t t t t t t

t t t t t t t t t t t

See WW, Chapter 16 and Berlekamp’s book, The Dots-and-Boxes Game [2000].

Are there more nimber decomposition theorems? Compile a datebase of nim-

values.

Nowakowski and Ottaway conjecture that closed 1× n Dots-and-Triangles (a

row of n dots on top and n+1 on bottom with the top and sides already having

lines) is a first player win except for n = 2.

t t t t t t t t t t

t t t t t t t t t t t�
��

T
TT

52. How does one play sums of games with varied overheating operators?

Berlekamp notes that overheating operators provide a very concise way of ex-

pressing closed-form solutions to many games, and David Moews observes that

monotonicity and linearity depend on the parameters and the domain. Find a

simple, elegant way of relating the operator parameters to the game. See WW,

pp. 163–175, Berlekamp [1988], Berlekamp and Wolfe [1994] and Calistrate’s

paper in GONC.
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53. N-heap Wythoff Game. Aviezri Fraenkel asks some questions and

makes some conjectures. The set of all integers ≥ m is denoted by Z≥m and

⊕ denotes Nim addition. For any subset S ⊂ Z≥0, S 6= Z≥0, let mex S =

min(Z≥0 \ S) = least nonnegative integer not in S.

Define an N -heap Wythoff game as follows: Given N ≥ 2 heaps of finitely

many tokens, whose sizes are p1, . . . , pN . The moves are to take any positive

number of tokens from a single heap or to take (a1, . . . , aN) ∈ ZN
≥0 from all the

heaps — ai from the i-th heap — subject to the conditions: (i) ai > 0 for some

i, (ii) ai ≤ pi for all i, (iii) a1 ⊕ . . . ⊕ aN = 0. The player making the last move

wins and the opponent loses. Note that the classical Wythoff game is the case

N = 2.

For N = 3, denote by (An, Bn, Cn) the P -positions of the game, with An ≤
Bn ≤ Cn. We conjecture that

For every fixed Ak = k ∈ Z≥1 there exists an integer m = m(k) ∈ Z≥1

such that Bn = mex
(

{Bi, Ci : i < n} ∪ T
)

, Cn = Bn + n for all n ≥ m,

where T is a (small) set of integers which depends only on k.

For example, for k = 1 we have T = {2}; and it seems that m = 23. A related

conjecture is that

For every fixed Ak = k ∈ Z≥1 there exist integers a = a(k), j = j(k), m =

m(k) ∈ Z≥1 with j < a, such that Bn ∈ {bnφc − (a + j), bnφc − (a + j −
1), . . . , bnφc − (a − j + 1), bnφc − (a − j)}, Cn = Bn + n for all n ≥ m,

where φ = (1 +
√

5)/2 (the golden section).

This appears to hold for a = 4, j = 1, m = 64 (perhaps a somewhat smaller

value of m will do) when k = 1. Is perhaps j = 1 for all k ≥ 1?

See also Coxeter [1953], Fraenkel and Ozery [1998] and Fraenkel and Zusman

[2001].

54. Fox and Geese. Jonathan Welton notices that the conclusion of Chapter

20 of WW, namely that the value of Fox and Geese is 1 + 1/on, is incorrect. He

believes that he can show that the geese can win with the fox having 1 + 1/32

passes, and probably the actual value is still higher. What is the correct value?

[Fox and Geese is played on an ordinary checkerboard, the geese being four

white checkers, moving diagonally forward, starting on squares a1, c1, e1, g1;

while the fox is a black checker king moving in any diagonal direction, starting

on d8. There is no capturing: the geese try to encircle the fox; the fox endeavors

to break through.]

55. Amazons was invented by the Argentinian Walter Zamkauskas in 1988.

It is played on a 10 × 10 board. Each player has four amazons. The white

amazons are initially on a4, d1, g1, j4 and the black ones are on a7, d10, g10, j7.

White moves first. Each move consists of two mandatory parts. First, an amazon



472 RICHARD K. GUY AND RICHARD J. NOWAKOWSKI

moves just like a chess queen. After an amazon has moved she shoots a burning

arrow, which also moves like a chess queen. The square where the arrow lands

is burnt and is blocked for the rest of the game; neither an amazon nor an arrow

can move to or over that square, nor to or over a square occupied by another

amazon. There are no captures in Amazons. Nor are there draws: the aim is to

control territory: the winner is the last player to complete a move.

Analyses of smaller boards with fewer amazons have been made. For exam-

ple in Solving 5 × 5 Amazons (2001 preprint), Martin Müller shows that 5 × 5

Amazons (with amazons on a2, b1, d1, e2 and on a4, b5, d5, e4) is a first player

win. Berlekamp [2000,2001] investigates sums of 2× n Amazon games. See also

the papers of Müller and Tegos and of Snatzke in this volume.

56. Are there any draws in Beggar-my-Neighbor?

[Two players deal single cards in turn onto a common stack. If a court card (J,

Q, K, A) is dealt, the next player must cover it with respectively 1, 2, 3, 4 cards.

If one of these is a court card, the obligation to cover reverts to the previous

player. If they are not court cards, the previous player acquires the stack, which

he inverts and places beneath his own hand, and starts dealing again. A player

loses if she is unable to play.]

This problem reappears periodically. It was one of Conway’s ‘anti-Hilbert

problems’ about 40 years ago, but must have suggested itself to players of the

game over the several centuries of its existence.

Marc Paulhus [1999] exhibited some cycles with small decks, and used a com-

puter to show that there were no cycles when the game is played with a half-deck,

although the addition or subtraction of two non-court cards produced cycles.

Michael Kleber found an arrangement of two 26-card hands which required the

dealing of 5790 cards before a winner was declared.

57. Aviezri Fraenkel describes a game as succinct if its input size is logarith-

mic. Thus Nim is succinct, because its input size is the sum of the logarithms

of its heap sizes. It has a polynomial time winning strategy, yet the loser can

make length of play exponentially long. (A trivial example: two heaps of the

same size, where Player I keeps removing a single token from one heap, which

has to be matched by Player II taking a single token from the other heap.)

(a) Is there a nonsuccinct game with a polynomial winning strategy in which

play can be made to last exponentially long?

(b) Node Kayles, on a general graph, was proved to be Pspace-complete by

Schaefer [1978]. Its succinct form, the octal game ·137, is polynomial. Is there a

game which has a polynomial strategy on a general graph, but its succinct form

is at least NP-hard?

[Node Kayles is played on a graph. A move is to place a counter on an

unoccupied node that is not adjacent to any occupied node. Equivalently, to

delete a node and all its neighbors. The game ·137 is Dawson’s Chess, i.e. Node
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Kayles played on a path, and occurs in the analysis of several other games,

notably Dots-and-Boxes. See WW, 92, 251, 466, 470, 532, 552.]

58. The one-dimensional version of Clobber is played on a 1 × n strip of

squares where there are blue and red pieces alternating, one to a square. Right

moves the red pieces and Left the blue. A piece moves to an adjacent square but

only if the square is occupied by an opposing piece. This piece is then removed

from the board, i.e. it has been clobbered. Albert, Grossman and Nowakowski

conjecture that 1 × n Clobber is a first player win for n ≥ 13. They also show

that played on an arbitrary graph with one blue piece and the rest red, deciding

the value of the game is NP-complete.

[Clobber is a special case of partizan Polite Cannibals (see Problem 34) in

which moves may only be made to occupied nodes.]
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