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Two-player Games on Cellular Automata

AVIEZRI S. FRAENKEL

Abstract. Cellular automata games have traditionally been 0-player or
solitaire games. We define a two-player cellular automata game played on
a finite cyclic digraph G = (V, E). Each vertex assumes a weight w ∈
{0, 1}. A move consists of selecting a vertex u with w(u) = 1 and firing

it, i.e., complementing its weight and that of a selected neighborhood of
u. The player first making all weights 0 wins, and the opponent loses. If
there is no last move, the outcome is a draw. The main part of the paper
consists of constructing a strategy. The 3-fold motivation for exploring
these games stems from complexity considerations in combinatorial game
theory, extending the hitherto ≤ 1-player cellular automata games to two-
player games, and the theory of linear error correcting codes.

1. Introduction

Cellular Automata Games have traditionally been 0-player games such as

Conway’s Life, or solitaire games played on a grid or digraph G = (V, E). (This

includes undirected graphs, since every undirected edge {u, v} can be interpreted

as the pair of directed edges (u, v) and (v, u).) Each cell or vertex of the graph

can assume a finite number of possible states. The set of all states is the alphabet.

We restrict attention to the binary alphabet {0, 1}. A position is an assignment

of states to all the vertices. There is a local transition rule from one position to

another: pick a vertex u and fire it, i.e., complement it together with its neigh-

borhood F (u) = {v ∈ V : (u, v) ∈ E}. The aim is to move from a given position

(such as all 1s) to a target position (such as all 0s). In many of these games

any order of the moves produces the same result, so the outcome depends on

the set of moves, not on the sequence of moves. Two commercial manifestations

are Lights Out manufactured by Tiger Electronics, and Merlin Magic Square by

Parker Brothers (but Arthur–Merlin games are something else again). Quite a

bit is known about such solitaire games. Background and theory can be found
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e.g., in [7], [20], [25], [26], [27], [29], [31], [32], [33], [34], [35], [36]. Incidentally,

related but different solitaires are chip firing games , see e.g., [3], [24], [2].

What seems to be new is to extend such solitaire games to two-player games,

where the player first achieving 0s on all the vertices wins and the opponent

loses. If there is no last move, the outcome is a draw. In this context it seems

best to restrict the players to firing only a vertex in state 1.

Specifically, we play a two-player cellular automata game on a finite cyclic

digraph G with an initial distribution of weights w ∈ {0, 1} on the vertices.

For the purposes of the present paper it is convenient to agree that a digraph

is cyclic if it may contain cycles, but no loops. We put w(u) = 1 if u is in

state 1, otherwise w(u) = 0. The two players alternate in selecting a vertex u

with w(u) = 1 and firing it, i.e., “complementing” it together with a selected

neighborhood N(u) of vertices. By complementing we mean that w(u) switches

to 0, and w(v) reverses its parity for every vertex v ∈ N(u). The player making

the last move wins (after which all vertices have weight 0), and the opponent

loses. If there is no last move, i.e., there is always a vertex with weight 1, the

outcome is a draw. A precise definition of the games is given in § 3.

Our aim is to provide a strategy for two-player cellular automata games. The

game graph of cellular automata games is exponentially large. For the special

case where N(u) is restricted to a single vertex, we can provide a polynomial

strategy. For small digraphs, even some cases of large digraphs, as we shall see,

the “γ-function” (defined below) can be found by inspection for any fixed size

of N(u), leading to an optimal strategy.

2. Preliminaries

For achieving our aim, we need to compute the generalized Sprague–Grundy

function γ polynomially on the game graph G induced by G. The γ function

has been defined in [30]. See also [4], Ch. 11. The following simplified definition

appears in [18] Definition 1, see also [11] Sect. 3.

Given a cyclic digraph G = (V, E). The set F (u) of followers of u ∈ V is

defined by F (u) = {v ∈ V : (u, v) ∈ E}. If F (u) = ?, then u is a leaf. The

Generalized Sprague–Grundy function γ is a mapping γ: V → Z0 ∪ {∞}, where

the symbol ∞ indicates a value larger than any natural number. If γ(u) = ∞,

we also say that γ(u) is infinite. We wish to define γ also on certain subsets of

vertices. Specifically: γ
(
F (u)

)
=

{
γ(v) <∞: v ∈ F (u)

}
. If γ(u) =∞ and if we

denote the set γ
(
F (u)

)
by K for brevity, then we also write γ(u) =∞(K). Next

we define equality of γ(u) and γ(v): if γ(u) = k and γ(v) = ` then γ(u) = γ(v)

if one of the following holds: (a) k = ` < ∞; (b) k = ∞(K), ` = ∞(L) and

K = L. We also use the notations

Vi = {u ∈ V : γ(u) = i} (i ∈ Z0), V f =
{
u ∈ V : γ(u) <∞

}
, V ∞ = V \ V f ,
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γ′(u) = mex γ
(
F (u)

)
,

where for any subset S ⊂ Z≥0, S 6= Z≥0, we define mexS := min(Z≥0\S) = least

nonnegative integer not in S.

We need some device to tell the winner where to move to. This device is a

counter function, as used in the following definition. For realizing an optimal

strategy, we will normally select a follower of least counter function value with

specified γ-value. If only local information is available, or the subgraph is em-

bedded in a larger one, we may not know to which seemingly optimal follower to

move. The counter function is the guide in these cases. We remark that it also

enables one to prove assertions by induction.

Definition 1. Given a cyclic digraph G = (V, E). A function γ: V → Z0 ∪ {∞}

is a γ-function with counter function c: V f → J , where J is any infinite well-

ordered set, if the following three conditions hold:

A. If γ(u) <∞, then γ(u) = γ ′(u).

B. If there exists v ∈ F (u) with γ(v) > γ(u), then there exists w ∈ F (v)

satisfying γ(w) = γ(u) and c(w) < c(u).

C. If γ(u) =∞, then there is v ∈ F (u) with γ(v) =∞(K) such that γ ′(u) /∈ K.

Remarks.

• In B we have necessarily u ∈ V f ; and we may have γ(v) =∞ as in C.

• To make condition C more accessible, we state it also in the following equiv-

alent form:

C’. If for every v ∈ F (u) with γ(v) =∞ there is w ∈ F (v) with γ(w) = γ ′(u),

then γ(u) <∞.

• If condition C’ is satisfied, then γ(u) <∞, and so by A, γ(w) = γ ′(u) = γ(u).

• To keep the notation simple, we write ∞(0), ∞(1), ∞(0, 1) etc., for ∞({0}),

∞({1}), ∞({0, 1}), etc.

• γ exists uniquely on every finite cyclic digraph.

We next formulate an algorithm for computing γ. Initially a special symbol

ν is attached to the label `(u) of every vertex u, where `(u) = ν means that u

has no label. We also introduce the notation Vν = {u ∈ V : `(u) = ν}.

Algorithm GSG for computing the Generalized Sprague–Grundy function for a

given finite cyclic digraph G = (V, E).

1. (Initialize labels and counter.) Put i← 0, m← 0, `(u)← ν for all u ∈ V .

2. (Label and counter.) As long as there exists u ∈ Vν such that no follower

of u is labeled i and every follower of u which is either unlabeled or labeled ∞

has a follower labeled i, put `(u)← i, c(u)← m, m← m + 1.

3. (∞-label.) For every u ∈ Vν which has no follower labeled i, put `(u)←∞.

4. (Increase label.) If Vν 6= ?, put i← i + 1 and return to 2; otherwise end.
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We then have γ(u) = `(u). A realization of Algorithm GSG performs a

depth-first (endorder) traversal of the digraph for each finite `-value. Letting

γmax = max{γ(u): u ∈ V f}, we evidently have γmax < |V |. Hence the number of

steps of the algorithm is bounded by O
(
(|V |+ |E|)|V |

)
. For a connected digraph

the complexity of the entire algorithm is thus O(|V ||E|).

Informally, the sum of a finite collection of games is a game in which a move

consists of selecting one of the component games and making a move in it.

Formally, let {Γ1, . . . , Γm} be a finite disjoint collection of games with game-

graphs
{
G1 = (V1, E1), . . . , Gm = (Vm, Em)

}
, which may have cycles or may be

infinite. Then the sum-game Γ = Γ1 + . . . + Γm is the 2-player game in which a

position has the form (u1, . . . , um) with ui ∈ Vi for all i, and a move consists of

selecting some Γi and making a legal move ui → vi in it ((ui, vi) ∈ Ei).

The sum-graph G = G1 + . . . + Gm is the digraph G = (V,E) defined as

follows:

V =
{
(u1, . . . , um): ui ∈ Vi i ∈ {1, . . . , m}

}
.

If u = (u1, . . . , um), v = (v1, . . . , vm) ∈ V, then (u,v) ∈ E if there is some

j ∈ {1, . . . , m} such that vj ∈ F (uj), that is, (uj , vj) ∈ Ej , and ui = vi for all

i 6= j.

The generalized Nim sum ⊕ of a finite number of nonnegative integers is their

sum over GF(2), also called exclusive or (XOR). Further, for any nonnegative

integer a and subsets K, L ⊆ Z0 we have a⊕∞(K) = ∞(K)⊕ a = ∞(K ⊕ a),

and ∞(K)⊕∞(L) =∞(?).

Notation. The generalized Nim sum is denoted by
∑′. Thus,

∑′h

i=1ui is the

generalized Nim sum of u1, . . . , uh.

The important observation is that if u = (u1, . . . , um) ∈ V is any position in

a game graph, then γ(u) =
∑′m

i=1γ(ui) (see [18], Theorem 5). It enables one to

compute polynomially the strategy on the exponentially large sum graph for a

special case of our games.

Informally, a P -position is any position u from which the Previous player can

force a win, that is, the opponent of the player moving from u. An N -position

is any position v from which the Next player can force a win, that is, the player

who moves from v. The next player can win by moving to a P -position. A

D-position is any position from which neither player can win, but both have a

nonlosing next move, namely, moving to some D-position. Denote the set of all

P -positions by P, all N -positions by N and all D-positions by D. The connection

between γ on the sum of one or a finite number of disjoint games and P , N , D

is given by:

P = {u ∈ V: γ(u) = 0}, D = {u ∈ V: γ(u) =∞(L), 0 /∈ L}, (1)

N = {u ∈ V: 0 < γ(u) <∞} ∪ {u ∈ V: γ(u) =∞(L), 0 ∈ L}, (2)
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and

for every u ∈ P and every v ∈ F (u) there is w ∈ F (v) ∩ P with c(w) < c(u).

3. Idiosyncrasies of the Exponentially Large Game-Graph

Given a finite digraph G = (V, E), also called groundgraph, order V in some

way, say

V = {z0, . . . , zn−1}.

This ordering, with |V | = n, is assumed throughout.

In its general form, the family of two-player cellular automata games played on

G depends on integer parameters (q(0), . . . , q(n−1)) such that 1 ≤ q(k) ≤ |F (zk)|

for 0 ≤ k ≤ n− 1. A move from zk consists of firing some neighborhood of zk of

size q(k). This family will now be modeled by means of a game graph.

Let G = (V,E) denote the following game graph of the two-player cellular

automata game played on G = (V, E). The digraph G is also called the cellular

automata graph or game graph of G. Any vertex in G can be described in the

form u = (u0, . . . , un−1) over the field GF(2), where uk = 1 if w(zk) = 1, uk = 0

if w(zk) = 0. In particular, Φ = (0, . . . , 0) is a leaf of V, and |V| = 2n.

Note that V is an abelian group under the addition ⊕ of GF(2), which is Nim-

addition, with identity Φ. Every nonzero element has order 2. Moreover, V is a

vector space over GF(2) satisfying 1u = u for all u ∈ V. For i ∈ {0, . . . , n− 1},

define unit vectors zi = (z0
i , . . . , zn−1

i ) with zj
i = 1 if i = j; zj

i = 0 otherwise.

They span the vector space. In particular, for any u = (u0, . . . , un−1) ∈ V we

can write, u =
∑n−1

i=0 uizi =
∑′n−1

i=0 uizi.

For defining E, let u ∈ V and let 0 ≤ k ≤ n− 1. For 0 ≤ q = q(k) ≤ |F (zk)|,

let F q(zk) ⊆ F (zk) be any subset of F (zk) satisfying

|F q(zk)| = q. (3)

Define

(u,v) ∈ E if uk = 1, q > 0, and v = u⊕ zk ⊕
∑′

z`∈F q(zk)
z`, (4)

for every F q(zk) satisfying (3).

Informally, an edge (u,v) reflects the firing of uk in u (with uk = 1), i.e., the

complementing of the weights of zk and F q(zk). Such an edge exists for every

F q(zk) satisfying (3). Note that if zk ∈ G is a leaf, then there is no move from

zk , since then q = 0.

If (4) holds, we also write v = F q
k (u). The set of all followers of u is

F (u) =
⋃

uk=1

⋃

F q(zk)⊆F (zk)

F q
k (u).
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Figure 1. Playing on a parametrized digraph. c© 2000

Example 1. Play on the digraph G(p) which depends on a parameter p ∈ Z+.

It has vertex set {x1, . . . , xp, y1, . . . , yp}, and edges:

F (xi) = yi for i = 1, . . . , p,

F (yk) = {yi: 1 ≤ i < k} ∪ {xj : 1 ≤ j ≤ p and j 6= k} for k = 1, . . . , p.

Figure 1 depicts G(4). Suppose we fire the selected vertex u and complement

precisely any two of its options. Let’s play on G(7) with w(x7) = w(y1) = . . . =

w(y7) = 1, where all the other vertices have weight 0. What’s the nature of this

position?

The reader can verify that though the groundgraph G(p) has no leaf, the game-

graph G(p) has no γ-value ∞. Using step 2 of Algorithm GSG, inspection of

G(p) implies that any collection of xi is in V0. Moreover, γ(yi) = the ith odious

number, where the odious numbers are those positive integers whose binary

representations have an odd number of 1-bits. Incidentally, odious numbers

arise in the analysis of other games, such as Grundy’s game, Kayles, Mock

Turtles, Turnips. See [1]. They arose earlier in a certain two-way splitting

of the nonnegative integers [23] (but without this odious terminology!). Thus

γ(x7y1 . . . y7) = 0 ⊕ 1 ⊕ 2 ⊕ 4 ⊕ 8 ⊕ 15 ⊕ 16 ⊕ 32 = 48. So either firing y7 and

complementing y1, y2, or firing y6 and complementing y1, y3 reduces γ to 0 and

so is a winning move.

Definition 2. For s ∈ Z+, an s-game on a digraph G = (V, E) is a two-player

cellular automata game on G satisfying q ≤ s for all k ∈ {0, . . . , n − 1} (q as

in (3)). An s-regular game is an s-game such that for all k we have q = s if

|F (zk)| ≥ s, otherwise q = |F (zk)|. (Thus the game played in Example 1 is a

2-regular game on G(7). Of course if s ≥ maxu∈V |F (u)|, then firing u in an

s-regular game entails complementing all of F (u), for all u ∈ V , in addition to

complementing u, unless u is a leaf.)
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Remark. The strategy of a cellular automata game on a finite acyclic digraph is

the same as that of a sum-game on F q(zk), i.e., a game without complementation

of the 1s of F q(zk). This follows from the fact that a⊕a = 0 for any nonnegative

integer a. Only the length of play may be longer for the classical case. Thus

1-regular play is equivalent to play without interaction, as far as the strategy

is concerned. With increasing s, s-regular games seem to get more difficult.

For example, 2-regular play on a Nim-pile gives g(0) = g(2) = 0, g(1) = 1,

g(i + 1) = i-th odious number (i ≥ 2).

Our aim is to compute γ on G. This function provides a strategy for sums of

games some or all of whose components are two-player cellular automata games.

Lemma 1. Let u1, . . . ,uh ∈ V, u =
∑′h

i=1 ui. Then,

(i) F (u) ⊆
⋃h

j=1

(
F (uj)⊕

∑′
i6=j ui

)
⊆ F (u) ∪ F−1(u).

(ii) Let vj = F q
k (uj), v = vj ⊕

∑′
i6=j ui. Then u ∈ F (v) if and only if either

(a) uk = 0, or

(b) for some s 6= k, us = 0 and

zk ⊕
∑′

z`∈F q(zk)
z` = zs ⊕

∑′

zt∈F q(zs)
zt. (5)

Before proving the lemma, we single out the special case h = 2 of (i).

Corollary 1. Let u1,u2 ∈ V. Then

F (u1 ⊕ u2) ⊆
(
u1 ⊕ F (u2)

)
∪

(
F (u1)⊕ u2

)
(6)

⊆ F (u1 ⊕ u2) ∪ F−1(u1 ⊕ u2). (7)

Notes.

(i) Intuitively, (6) is explained by the similarity between sum-graphs and cellular

automata games mentioned in the above remark. The intuition for the appear-

ance of F−1 in (7) stems from the observation that v = u⊕zk⊕
∑′

z`∈F q(zk) z`

of (4) is consistent with both v ∈ F (u) and u ∈ F (v). In fact, if v is in the

set on the right hand side of (6), then say, v ∈ F (u1) ⊕ u2, so for some

k ∈ {0, . . . , n− 1} with uk
1 = 1 we have,

v = u⊕ zk ⊕
∑′

z`∈F q(zk)
z`,

and there are two cases: (I) uk = 1, then v ∈ F (u), or (II) uk = 0. But then

vk = 1, so u ∈ F (v).

(ii) Equality (5) is consistent with both zk ∈ F q(zs) and zs ∈ F q(zk).

Example 2. Consider a 2-play on G(2) (defined in Example 1). Let u1 = x1y2

(meaning that w(x1) = w(y2) = 1 and all other weights are 0), u2 = y1y2. Then

u1 ⊕ u2 = x1y1, F (x1y1) = {Φ, x1x2}, F−1(x1y1) = {y2}, F (u1) = {y1y2, y1},

F (u2) = {x2y2, x1}, u1 ⊕ F (u2) = {x1x2, y2}, F (u1) ⊕ u2 = {Φ, y2}. We see

that Corollary 1 is satisfied.
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Proof of Lemma 1. Let v ∈ F (u). Then v = F q
k (u), uk = 1 for some 0 ≤ k < n,

F q(zk) ⊆ F (zk). Hence uk
j = 1 for some 1 ≤ j ≤ h, and so

v = u⊕ zk ⊕
∑′

z`∈F q(zk)
z` = uj ⊕ zk ⊕

∑′

z`∈F q(zk)
z` ⊕

∑′

i 6=j
ui

=
(
F q

k (uj)⊕
∑′

i6=j
ui

)
∈

(
F (uj)⊕

∑′

i6=j
ui

)
,

proving the left hand side of (i).

Now let v ∈
⋃h

j=1

(
F (uj) ⊕

∑′
i6=j ui

)
. Then v = F q

k (uj) ⊕
∑′

i 6=j ui for some

1 ≤ j ≤ h, 0 ≤ k < n, F q(zk) ⊆ F (zk). Substituting F q
k (uj) = uj ⊕ zk ⊕∑′

z`∈F q(zk) z`, we get,

v = u⊕ zk ⊕
∑′

z`∈F q(zk)
z` (uk

j = 1). (8)

If uk = 1, then v ∈ F (u). If uk = 0, then (8) implies vk = 1 and

u = v ⊕ zk ⊕
∑′

z`∈F q(zk)
z`, (9)

so u ∈ F (v), proving the right hand side of (i).

For (ii) we have vj = F q
k (uj) for some j, v = vj ⊕

∑′
i6=j ui. Then both (8)

and (9) are valid. Suppose first that (a) holds. Then vk = 1 by (8), and so

u = F q
k (v) by (9). If (b) holds, then (5) and (9) imply

u = v ⊕ zk ⊕
∑′

z`∈F q(zk)
z` = v ⊕ zs ⊕

∑′

zt∈F q(zs)
zt. (10)

Therefore us = 0 implies vs = 1. Hence u = F q
s (v).

Conversely, suppose that u ∈ F (v), say u = F q
s (v). If s = k, then vk = 1 so

(a) holds by (9). If s 6= k, then u = F q
s (v) and (9) imply (10), so (5) holds and

also us = 0, i.e., (b) holds. �

4. The Additivity of γ

The first key observation for getting a handle at two-player cellular automata

games is that γ on G is, essentially, additive.

Theorem 1. Let G = (V,E) be the cellular automata graph of the finite cyclic

digraph G = (V, E). Then γ(u1 ⊕ u2) = γ(u1)⊕ γ(u2) if u1 ∈ Vf or u2 ∈ Vf .

Proof. We use the notation (v1,v2) ∈ F(u1,u2) if either v1 = u1, v2 ∈ F (u2),

or v1 ∈ F (u1), v2 = u2, i.e.,

(v1,v2) ∈ F(u1,u2) if (v1,v2) ∈
(
u1, F (u2)

)
∪

(
F (u1),u2

)
.

Note that F is not a follower in G, but rather in the sum-graph G + G. It is

natural to consider F, because σ = γ(u1) ⊕ γ(u2) is the γ-function of the sum

G + G (see [11], Sect. 3).
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(a). We assume (u1,u2) ∈ Vf ×Vf . Let

T =
{
(u1,u2) ∈ Vf ×Vf : γ(u1 ⊕ u2) 6= γ(u1)⊕ γ(u2)

}
,

t = min
(u1,u2)∈T

(
γ(u1 ⊕ u2), γ(u1)⊕ γ(u2)

)
.

Further, we define

U =
{
(u1,u2) ∈ T : γ(u1)⊕ γ(u2) = t

}
.

We first show that T 6= ? implies U 6= ?.

If there is (u1,u2) ∈ T such that γ(u1⊕u2) = t, then t < γ(u1)⊕γ(u2) <∞.

Since σ is a γ-function, A of Definition 1, implies that there exists (v1,v2) ∈

F(u1,u2) such that γ(v1)⊕ γ(v2) = t. Now

v1 ⊕ v2 ∈
(
u1 ⊕ F (u2)

)
∪

(
F (u1)⊕ u2

)
⊆ F (u1 ⊕ u2) ∪ F−1(u1 ⊕ u2)

by (7). Since γ(u1⊕u2) = t, it thus follows that γ(v1⊕v2) > t, so (v1,v2) ∈ T .

We have just shown that T 6= ? implies U 6= ?. Next we show that T = ?.

Pick (u1,u2) ∈ U with c(u1)+c(u2) minimum, where c is a monotonic counter

function on Vf . Then c(u1) + c(u2) is a counter function for the γ-function σ

on G + G (see [18] Theorem 5). Note that

γ(u1)⊕ γ(u2) = t, γ(u1 ⊕ u2) > t. (11)

(i) Suppose that there exists v ∈ F (u1 ⊕ u2) such that γ(v) = t. By (6)

there exists (v1,v2) ∈ F(u1,u2) such that v = v1 ⊕ v2, so γ(v1 ⊕ v2) = t.

Now the definition of F, the minimality of t and the equality of (11) imply

γ(v1)⊕ γ(v2) > t. Since σ is a γ-function, B of Definition 1 implies existence of

(w1,w2) ∈ F(v1,v2) such that γ(w1)⊕γ(w2) = t, c(w1)+c(w2) < c(u1)+c(u2).

By (7),

w1 ⊕w2 ∈
(
v1 ⊕ F (v2)

)
∪

(
F (v1)⊕ v2

)
⊆ F (v1 ⊕ v2) ∪ F−1(v1 ⊕ v2).

Since γ(v1⊕v2) = t, we thus have γ(w1⊕w2) > t, so (w1,w2) ∈ U , contradicting

the minimality of c(u1) + c(u2).

(ii) Suppose that v ∈ F (u1 ⊕ u2) implies γ(v) 6= t. Then A of Definition 1

implies γ(u1 ⊕ u2) =∞. By A applied to σ and the equality in (11), for every

j ∈ {0, . . . , t− 1} there exists (v1,v2) ∈ F(u1,u2) such that γ(v1)⊕ γ(v2) = j.

By the minimality of t, also γ(v1⊕v2) = j. As above, by (7), v1⊕v2 ∈ F (u1⊕

u2) ∪ F−1(u1 ⊕ u2). If u1 ⊕ u2 ∈ F (v1 ⊕ v2), then there exists w ∈ F (u1 ⊕ u2)

with γ(w) = j. Hence in any case, γ ′(u1 ⊕ u2) = t. (This holds also if t = 0.)

By C there exists v ∈ F (u1 ⊕ u2) such that γ(v) =∞(L), t /∈ L. By (6), there

exists (v1,v2) ∈ F(u1,u2) such that v = v1 ⊕ v2. Thus,

γ(v1 ⊕ v2) =∞(L), t /∈ L, (12)
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and γ(v1)⊕ γ(v2) > t by the equality in (11). As in (i) we deduce existence of

(w1,w2) ∈ F(v1,v2) such that γ(w1)⊕γ(w2) = t, c(w1)+c(w2) < c(u1)+c(u2).

By (7) either w1 ⊕w2 ∈ F (v1 ⊕ v2) or v1 ⊕ v2 ∈ F (w1 ⊕w2). In the former

case, γ(w1 ⊕ w2) > t by (12). In the latter case, if γ(w1 ⊕ w2) = t, then B

implies existence of y ∈ F (v1⊕v2) such that γ(y) = t, contradicting (12). Thus

in either case (w1,w2) ∈ U , contradicting the minimality of c(u1)+ c(u2). Thus

U = T = ?.

(b). We now assume, without loss of generality, γ(u1) < ∞, γ(u2) = ∞. If

γ(u1 ⊕ u2) <∞, then by (a),

γ(u2) = γ
(
u1 ⊕ (u1 ⊕ u2)

)
= γ(u1)⊕ γ(u1 ⊕ u2) <∞,

a contradiction. Hence γ(u1 ⊕ u2) = ∞(M) for some set M . If the theorem’s

assertion is false, then there exist u1,u2 with γ(u1) < ∞, γ(u2) = ∞(L) and

c(u1) minimum such that γ(u1 ⊕ u2) 6= γ(u1)⊕ γ(u2), i.e., M 6= γ(u1)⊕ L.

Let d ∈ γ(u1) ⊕ L. Then d = γ(u1) ⊕ d1, where d1 ∈ L. Let v2 ∈ F (u2)

satisfy γ(v2) = d1. Then γ(u1⊕v2) = γ(u1)⊕ d1 = d by (a). By (7), u1⊕v2 ∈

u1 ⊕ F (u2) ⊆ F (u1 ⊕ u2) ∪ F−1(u1 ⊕ u2). Hence B implies d ∈M .

Now let d ∈ M and v ∈ F (u1 ⊕ u2) satisfy γ(v) = d. By (6), v ∈
(
u1 ⊕

F (u2)
)
∪

(
F (u1)⊕ u2

)
. We consider two cases.

(i) v = u1 ⊕ v2 with v2 ∈ F (u2). Then by (a), γ(v2) = γ(u1) ⊕ γ(v) =

γ(u1)⊕ d ∈ L. Hence d ∈ γ(u1)⊕ L.

(ii) v = v1 ⊕ u2 with v1 ∈ F (u1). As at the beginning of (b) we conclude

γ(v1) = ∞. By B there exists w1 ∈ F (v1) such that γ(w1) = γ(u1), c(w1) <

c(u1). Let w = w1 ⊕ u2. The minimality of c(u1) implies

γ(w) = γ(w1 ⊕ u2) = γ(w1)⊕ γ(u2) = γ(u1)⊕ γ(u2) =∞
(
γ(u1)⊕ L

)
.

By (7), w ∈ F (v1) ⊕ u2 ⊆ F (v) ∪ F−1(v). If v ∈ F (w), then γ(v) = d ∈

γ(u1)⊕L. If w ∈ F (v), the same holds by B. Thus in all cases M = γ(u1)⊕L,

a contradiction. �

5. The Structure of γ

Denote by GF(2)t := (GF(2))
t

the vector space of all t-dimensional binary

vectors over GF(2) under ⊕. It is often convenient to identify GF(2)t with the

set of integers in the interval [0, 2t − 1]. We now give very precise information

about the structure of Vf .

Theorem 2. Let G = (V,E) be the cellular automata graph of the finite cyclic

digraph G = (V, E). Then Vf and V0 are linear subspaces of V. Moreover,

γ is a homomorphism from Vf onto GF(2)t for some t ∈ Z0 with kernel V0

and quotient space Vf/V0 = {Vi: 0 ≤ i < 2t}, dim(Vf ) = m + t, where

m = dim(V0).
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z1 z2

z3
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Figure 2. Illustrating Theorem 2. c© 2000

Example 3. Consider a 2-regular game played on the digraph depicted in Fig. 2.

We adopt a decimal encoding of the vertices of G: zi = 2i for all i ∈ Z0. Thus

5 means that there are tokens on vertices z0 and z2 only. Using inspection

and step 2 of Algorithm GSG, we see that γ(1) = 0 (the position in G with

w(z0) = 1, w(zi) = 0 for i > 0). Also γ(4) = γ(10) = 0. Hence by linearity,

V0 = {Φ, 1, 4, 10, 5, 11, 14, 15}. We further note that γ(2) = 1. Hence we get

the coset V1 = 2 ⊕ V0 = {2, 3, 6, 7, 8, 9, 12, 13}. Also m = 3, t = 1, and Vf

is spanned by the basis vectors βq = {1, 4, 10, 2}, dim(Vf ) = n = 4. This

illustrates the nice structure of the general case: the number of vertices of V

assuming γ-value i is the same for all i from 0 to some maximum value which is

necessarily a power of 2 less 1.

Proof. Let u,v ∈ Vf . Then u⊕ v ∈ Vf by Theorem 1, and also Φ ∈ Vf . Thus

Vf is a subspace of V.

Let t be the smallest nonnegative integer such that γ(u) ≤ 2t − 1 for all

u ∈ Vf . Hence, if t ≥ 1, there is some v ∈ Vf such that γ(v) ≥ 2t−1.

Then the “1’s complement” 2t − 1 − γ(v) < γ(v). By A of Definition 1, there

exists w ∈ F (v) such that γ(w) = 2t − 1 − γ(v). By Theorem 1, γ(v ⊕w) =

γ(v) ⊕ γ(w) = 2t − 1. Thus by A, every integer in [0, 2t − 1] is assumed as

a γ-value by some u ∈ V. This last property holds trivially also for t = 0.

Hence γ is onto. It is a homomorphism Vf → GF(2)t by Theorem 1 and since

γ(1u) = γ(u) = 1γ(u), γ(0u) = γ(Φ) = 0 = 0γ(u).

By linear algebra we have the isomorphism GF(2)t ∼= Vf /V0, where V0 is

the kernel, so t = dim(Vf /V0). Hence V0 is a subspace of Vf , and so also of

V. Let m = dim(V0). Then dim(Vf ) = m + t. The elements of Vf/V0 are the

cosets Vi = w⊕V0 for any w ∈ Vi and every integer i ∈ [0, 2t − 1]. �

Clearly V∞ is not a linear subspace: u⊕u = Φ for every u ∈ V∞, but Φ ∈ Vf .

For revealing also the structure of V∞ we thus have to embark on a different

course. We extend the homomorphism γ:Vf → GF(2)t to a homomorphism ρ

on the entire space V. Since any u ∈ V can be written as a linear combination

of the unit vectors, i.e., u = Σ′n−1
i=0 εizi (εi ∈ {0, 1}, 0 ≤ i < n), but some or
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all of the γ-values of the zi may be ∞, the extended homomorphism ρ will then

permit to compute ρ(u) = Σ′n−1
i=0 εiρ(zi), such that u ∈ Vf if ρ(u) = γ(u); and

we will arrange things so that ρ(u) > γ(v) for all v ∈ Vf if u ∈ V∞. Since the

homomorphism γ maps an (m+ t)-dimensional space onto a t-dimensional space

and we wish to preserve the kernel V0 in ρ, we will make ρ map the n-dimensional

space V onto an (n −m)-dimensional space W, preserving the reduction by m

dimensions. (The extended part will then actually be an isomorphism.)

Lemma 2. Let V be the n-dimensional vector space over GF(2) of the cellu-

lar automata game on G = (V, E) with dim(V0) = m. There exists a homo-

morphism ρ mapping V onto GF(2)n−m with kernel V0 such that u ∈ Vf if

ρ(u) = γ(u), and u ∈ V∞ if ρ(u) > γ(v) for all v ∈ Vf .

Proof. From linear algebra, there exists an (n−m− t)-dimensional subspace W

of V, such that V is the direct sum of Vf and W. Thus, every u ∈ V can be

written uniquely in the form

u = w⊕ v, w ∈W, v ∈ Vf . (13)

Let I : W→ GF(2)n−m−t be any isomorphism, and define

ρ(u) =
(
I(w), γ(v)

)
,

(
I(w) ∈ GF(2)n−m−t, γ(v) ∈ GF(2)t

)
,

which is well-defined in view of the uniqueness of the representation (13). Then

ρ:V → GF(2)n−m is a homomorphism, since if u′ = w′⊕v′, w′ ∈W, v′ ∈ Vf ,

then

u⊕ u′ = (w ⊕w′)⊕ (v ⊕ v′), w ⊕w′ ∈W, v ⊕ v′ ∈ Vf ,

so

ρ(u⊕ u′) =
(
I(w ⊕w′), γ(v ⊕ v′)

)
=

(
I(w) ⊕ I(w′), γ(v) ⊕ γ(v′)

)

=
(
I(w), γ(v)

)
⊕

(
I(w′), γ(v′)

)
= ρ(u)⊕ ρ(u′),

and

ρ(1u) = ρ(u) = 1ρ(u), ρ(0u) = ρ(Φ) =
(
I(Φ), γ(Φ)

)
= 0 = 0ρ(u).

Finally, u ∈ Vf if u = Φ ⊕ u with Φ ∈W, u ∈ Vf , and then ρ(u) = (Φ, γ(u))

with numerical value γ(u). For u ∈ V∞, I(w) 6= Φ, so the numerical value of

the binary vector (I(w), γ(v)) is larger than that of γ(v) for all v ∈ Vf . �

Example 4. We play a 3-regular game on G(7) (recall that G(p) was intro-

duced in Example 1, and G(4) is displayed in Fig. 1). Inspection shows that all

collections of an even number of xi are in V0; and Vf consists precisely of all

collections of an even number of vertices with weight 1. Furthermore, γ(xjyj) =

smallest nonnegative integer not the Nim sum of at most three γ(xiyi) for i < j.

Also γ(xjyj) = γ(xiyj) for all i. Thus {γ(x1yi)}
7
i=1 = {1, 2, 4, 8, 15, 16, 32}.

Further, W = L(x1) = {Φ, x1} is the complement of Vf , and n − m − t =
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1 = dim(W) with basis β∞ = {x1}, where L denotes the linear span. Also

m = dimV0 = 7 since V0 contains the 26 subsets of an even number of xi as

well as y1y2y3y4y5. Thus t = 6, which is consistent with γ(x7y7) = 32, since

the value 64 is not attained. Moreover, we can put ρ(xi) = 64 for all i, and

{ρ(yi)}
7
i=1 = {65, 66, 68, 72, 79, 80, 96}. Since t = 6 and the ρ-values on the sin-

gletons all have a nonzero bit in a position > 2t−1, the γ-value of any collection

with an odd (even) number of vertices from G has value∞ (<∞). For example,

ρ(x7y1 . . . y7) = γ(x7y1 . . . y7) = 1⊕2⊕4⊕8⊕15⊕16⊕32 = 48. So firing y7 and

complementing y6 and any two of the xi (i < 7) is a winning move. Incidentally,

the sequence {1, 2, 4, 8, 15, 16, 32, 51, . . .} has been used in [1] for a special case

of the game “Turning Turtles”.

This a posteriori verification is not very satisfactory, but at this stage the

example nevertheless illustrates nicely Theorem 2 and Lemma 2. In § 6, where

we construct ρ by embedding its computation in an algorithm for computing

V0, Vf and W, we will see how to compute a priori results such as these. The

problem right now is that despite the precise information about the structure of

Vf , V0 and V∞, the computation of say, V0, is exponential, as we may have

to scan the 2n vectors of V for membership in V0. Actually only a polynomial

fragment of the 2n vectors has to be examined, as we will see in the next section.

6. Sparse Vectors Suffice

A vector u ∈ GF(2)n has weight i, if it has precisely i 1-bits, i.e.,
∑n

k=1 uk = i.

We write w(u) = i if u has weight i. This terminology is standard in coding

theory. There should be no confusion between the weights w(ui), w(u) and the

vector w ∈ V.

The second key observation conducive to producing a strategy for cellular

automata games is that for s-regular games, to which we now confine ourselves,

V0, Vf and ρ can be computed by restricting attention to the linear span of

vectors of weight at most 2(s + 1).

We begin with some notation.

Zi =

i⋃

h=1

{
u ∈ V: w(u) = h

}
(vectors of weight ≤ i)

Zf
i = Zi ∩Vf

S = Z1 ∩
{
u ∈ V: F (u) = ?

}
∪ {Φ} (leaves of weight ≤ 1)

L =
{
u ∈ V: F (u) = ?

}
(set of all leaves)

Q = (Z2(s+1) ∩V0) ∪ S

g(n, s) = (s + 1)

(
n− 1

s

)
− s
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φ(s) = max(3s + 2, 2s + 4) =

{
6 if s = 1,

3s + 2 if s > 1.

Theorem 3. Let G = (V,E) be the cellular automata graph of the finite digraph

G = (V, E). Then

(i) L = L(S) (linear span of S over GF (2))

(ii) V0 = L(Q)

(iii) Vf = L(Q ∪ Zf
s+1)

(iv)
{
γ(u):u ∈ Vf

}
=

{
γ(u):u ∈

(
Zf

s+1 ∪ {Φ}
)}

(v) t ≤ blog2(1 + g(n, s))c (n ≥ s + 1), where 2t − 1 is the maximum value of

γ on Vf .

Comment. Since every vector in S, Q or Q∪Zf
s+1 has weight at most 2(s + 1),

it follows that L,V0,V
f can all be computed from a set of vectors of weight at

most 2(s + 1).

Proof. (i) Follows from the definition of a leaf.

(ii) Clearly L(Q) ⊆ V0. If the result is false, let u with c(u) minimal satisfy

u ∈ V0, u /∈ L(Q). In particular, u /∈ L(S), and so by (i), u is not a leaf.

Hence there is v ∈ F (u). By A of Definition 1, γ(v) > 0, and by B, there

exists w ∈ F (v) ∩ V0 with c(w) < c(u). By the minimality of c(u), we have

w ∈ L(Q). Now v = u ⊕ zk ⊕
∑′

z`∈F q(zk) z` and w = v ⊕ zr ⊕
∑′

zh∈F q(zr) zh

say, so letting y = w⊕ u we have y = zk ⊕
∑′

z`∈F q(zk) z` ⊕ zr ⊕
∑′

zh∈F q(zr) zh,

thus w(y) ∈ {0, . . . , 2(s + 1)}. Hence y ∈ Q ⊆ L(Q). Then u = w ⊕ y ∈ L(Q),

since L(Q) is a subspace, which is a contradiction.

(iii) Clearly L(Q ∪ Zf
s+1) ⊆ Vf . Let u ∈ Vf . If u ∈ V0, then by (ii),

u ∈ L(Q) ⊆ L(Q ∪ Zf
s+1). Otherwise, let v ∈ F (u) ∩ V0, w = u ⊕ v =

zk ⊕
∑′

z`∈F s(zk) z`. Since w 6= Φ, we have w ∈ Zf
s+1. By (ii), v ∈ L(Q). Hence

u = v ⊕w ∈ L(Q ∪ Zf
s+1).

(iv) Denote the left hand set by S` and the right hand set by Sr. Clearly

Sr ⊆ S`. Let j ∈ S`. If j = 0, then j = γ(Φ) ∈ Sr. Otherwise, pick u ∈ Vj .

There exists v ∈ F (u)∩V0. Let w = u⊕v. Then γ(w) = j, and w ∈ Zf
s+1 ∈ Sr.

(v) Let u ∈ Vf have maximum γ-value. By (iv) we may assume that u =

zk⊕
∑′

z`∈F s(zk) z` ∈ Zf
s+1. Any of the s+1 tokens can fire into at most s followers

in n− 1 locations. At least s of the followers are identical. Thus the outdegree

of u is at most g(n, s). Then 2t − 1 ≤ g(n, s), which implies the result. �

For the special case of 1-regular games (s = q = 1), we can do a little better.

This was done in [17]. For the sake of completeness, we reproduce it here, in a

more transparent form. Define

Yi =
{
u ∈ V: w(u) = i

}
(vectors of weight i)

Y f
i = Yi ∩Vf
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S = Y1 ∩
{
u ∈ V: F (u) = ?

}
∪ {Φ} (leaves of weight ≤ 1)

L =
{
u ∈ V: F (u) = ?

}
(set of all leaves)

Qi = Yi ∩V0

Q = Q2 ∪Q4 ∪ S.

Theorem 4. Let G = (V,E) be the cellular automata graph of the finite digraph

G = (V, E). Then

(i) L = L(S) (linear span of S over GF (2))

(ii) V0 = L(Q)

(iii) Vf = L(Q ∪ Y f
2 )

(iv)
{
γ(u):u ∈ Vf

}
=

{
γ(u):u ∈

(
Y f

2 ∪ {Φ}
)}

(v) t ≤ dlog2 ne (n ≥ 2), where 2t − 1 is the maximum value of γ on Vf .

Proof. The proof is very similar to that of Theorem 3 and is therefore omitted.

�

7. An O(n6) Algorithm for γ for the Case q = 1

We shall now consolidate the results of the previous sections into a polynomial

algorithm for computing γ for the cellular automata graph G = (V,E) of a

digraph G = (V, E) in polynomial time for the special case q = 1. We begin with

some further notation.

β0 = {B0, . . . , Bm−1} is a basis for V0, where Bi ∈ Q (0 ≤ i < m).

βf = {Bm, . . . , Bm+t−1} ∪ β0 is a basis for Vf , Bm+i ∈ Y f
q+1 (0 ≤ i < t).

β∞ = {Bm+t, . . . , Bn−1} is a basis for the complement W of Vf in V, so

β = βf ∪ β∞ is a basis for V.

G[2] = (V[2],E[2]) is the subgraph of G induced by Y2 ∪ S.

G[4] = (V[4],E[4]) is the subgraph of G induced by Y4 ∪ Y2 ∪ S.

Algorithm CEL (cellular) for computing γ on G = (V,E) for q = 1 (without

constructing the exponentially large G!).

Input : Digraph G = (V, E) with |V | = n.

Output : An n × n matrix B = (βf , β∞), and m, t, B−1. The n columns of

the bottom n−m rows of B−1 constitute the homomorphism (see Lemma 2, § 5)

ρ(zi) = (εm
i , . . . , εn−1

i ) ∈ GF(2)n−m (0 ≤ i < n).

Notes.

1. For any vector v = (δ0, . . . , δn−1) ∈ V, we have v =
∑n−1

i=0 δizi, so ρ(v) =
∑′n−1

i=0 δiρ(zi) can thus be computed polynomially. Using Lemma 2 we then

have either γ(v) = ρ(v), or γ(v) = ∞. This polynomial computation is the

main thrust of Algorithm CEL. It permits computing γ on all of V.
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2. The equation Bx = v has the solution x = B−1v = (ε0, . . . , εn−1) ∈ GF(2)n,

so v can be represented as a linear combination of the basis consisting of the

columns of B:

v = ε0B0 ⊕ ε1B1 ⊕ · · · ⊕ εn−1Bn−1.

This fact is used in the next section for forcing a win for q = 1 in polynomial

time.

3. Notice that both z0, . . . , zn−1 and B0, . . . , Bn−1 are bases of V. The former

is more convenient for the ρ-computation, and the latter for forcing a win.

Procedure: (i) Construct G[2] and G[4] (G[2] has O(n2) vertices and O(n3)

edges; G[4] has O(n4) vertices and O(n5) edges).

(ii) Apply the first iteration (i = 0) of Algorithm GSG (§ 2) to G[4]. Store

the resulting set Q = {q1, . . . ,qp} of vectors in V0 together with their counter

values c (O(n5) steps). (We may omit from Q the vector Φ and any other

vectors which obviously depend linearly on the rest.)

(iii) Apply Algorithm GSG to G[2]. The largest γ-value will be 2t−1 for some

t ∈ Z0. Store vectors v1, . . . ,vt with γ(vi) = 2i−1, w(vi) = 2 (1 ≤ i ≤ t) and t,

together with their monotonic counter values c, such that

min
{
c(v) : v ∈ V[2]

}
> max

{
c(u) : u ∈ V[4]

}

(
O(n5)steps

)
.

(iv) Construct the matrix A = (q1, . . . ,qp,v1, . . . ,vt, z0, . . . , zn−1), where the

zi are the unit vectors (O(n5) steps, since p = O(n4), so A has order n×O(n4)).

(v) Transform A into a row-echelon matrix E, using elementary row operations

(O(n6) steps; the z0, . . . , zn−1 of A then become B−1 — see e.g., [22], Ch. 7, § 47).

(vi) Let 1 ≤ i1 < · · · < in ≤ p + t + n be the indices of the unit vectors of E.

Then m is the largest subscript s such that is ≤ p. Let B = (B0, . . . , Bn−1) be

the matrix consisting of the columns Ai1 , . . . , Ain
of A. Store

β0 = {B0, . . . , Bm−1},

βf = {Bm, . . . , Bm+t−1} ∪ β0,

β = {Bm+t, . . . , Bn−1} ∪ βf ,

and the matrix B−1 = (Ep+t, . . . , Ep+t+n−1) (the last n columns of E)
(
O(n4)

)
.

Compute B−1zi = (ε0
i , . . . , ε

n−1
i ); store ρ(zi) = (εm

i , . . . , εn−1
i ) (0 ≤ i < n); the

numerical values of the columns consisting of the last n−m rows of B−1; (O(n3)

steps.) End.

Example 5. Play a 1-regular game on the digraph depicted in Fig. 3. We apply

Algorithm CEL to it. The output of step (ii) is Q = (0, 5, 10, 15), and step (iii)

yields v1 = {3} (t = 1). The following constitutes steps (iv) and (v), where ∼

denotes equivalence under elementary row operations; we omitted the 0-vector
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Figure 3. Play a 1-regular game. c© 2000

from A.

A =




1 0 1 1 1 0 0 0 0

0 1 1 1 0 1 0 0 0

1 0 1 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



∼




1 0 1 1 1 0 0 0 0

0 1 1 1 0 1 0 0 0

0 0 0 1 1 0 1 0 0

0 0 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 1




∼




1 0 1 0 0 0 1 0 0

0 1 1 0 1 1 1 0 0

0 0 0 1 1 0 1 0 0

0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 1



∼




1 0 1 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0

0 0 0 1 0 1 0 1 0

0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 1




= E.

The last n = 5 columns of E constitute B−1 e.g., by [22], Ch. 7, § 47. The unit

vectors are in columns 1, 2, 4, 5, 9. Since p = 3, we then have m = 2. Columns

1, 2, 4, 5, 9 of A constitute B. Thus,

B =




1 0 1 1 0

0 1 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1




, B−1 =




0 0 1 0 0

0 0 0 1 0

0 1 0 1 0

1 1 1 1 0

0 0 0 0 1




,

and
(
ρ(z0), ρ(z1), ρ(z2), ρ(z3), ρ(z4)

)
= (2, 3, 2, 3, 4), which are the bottom n −

m = 3 rows of B−1. Already in Example 4 we saw that these values determine

the ρ-values of all positions of the game. Since the 5th and 9th columns of A

contain 1 and 16 respectively, we have W = {0, 1, 16, 17}.

Furthermore, for say v = z3 = 8, the equation Bx = v has the solution

x = B−1v = 14, hence v is the following linear combination of the B-column

vectors: v = 10 ⊕ 3 ⊕ 1 = 8, and ρ(v) = ρ(10) ⊕ ρ(3) ⊕ ρ(1) = 0 ⊕ 1 ⊕ 2 = 3.

Since ρ(v) > 2t − 1 = 1, γ(v) = ∞. Similarly, for v = z2 ⊕ z3 = 12, the

equation Bx = v has the solution x = 7, hence v = 5 ⊕ 10 ⊕ 3 = 12, and
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ρ(v) = ρ(5)⊕ρ(10)⊕ρ(3) = 0⊕0⊕1 = 1, so γ(v) = 1. But a simpler computation

of ρ(v) in these two examples is to express v in terms of the unit vectors zi and

then apply the homomorphism ρ on them, as was done in Example 5.2: ρ(8) = 3,

so γ(v) =∞; ρ(12) = ρ(4⊕ 8) = ρ(4)⊕ ρ(8) = 2⊕ 3 = 1, so γ(12) = 1.

Example 6. Suppose we put w(z4) = w(z1) = 1 for the digraph of Fig. 3,

w(z1) = 1 for the digraph of Fig. 2, and all other weights 0 on both digraphs.

Play the sum of the 1-regular game on the digraph of Fig. 3 and the 2-regular

game on the digraph of Fig. 2. We see that the γ-value of the former is ∞(0, 1)

and of the latter 1, and 1⊕∞(0, 1) =∞ (1⊕ (0, 1)) =∞(1, 0). By (2) this is an

N -position. The unique winning move is to to fire z4 and complement w(z0).

For proving validity of Algorithm CEL, we need an auxiliary result. We first

define a special type of subgraph which is closed under the operation of taking

followers, i.e., it contains the followers of all of its vertices.

Definition 3. Let G = (V, E) be any digraph. A subset U ⊆ V is a restriction

of V , if F (U) ⊆ U , where F (U) = {v ∈ V : (u, v) ∈ E, u ∈ U}.

Lemma 3. (Restriction Principle). Let G = (V, E) be a digraph, U a restriction

of V , G1 the subgraph of G induced by U . Then the γ-function computed on G1

alone (without considering G) is identical with the γ-function on G, restricted

to U .

Proof. Let γ1 be the γ-function of G restricted to G1. Since u ∈ U implies

F
G
(u) ⊆ U , Definition 1 implies that γ1 is a Generalized Sprague–Grundy func-

tion on G1. Since also γ computed on G1 is, we have γ1 = γ by the uniqueness

of γ. �

Validity Proof of Algorithm CEL. The vertex set V[2] of G[2] is clearly a

restriction of V (q = 1); and V[4] of G[4] is also a restriction of V. By Lemma 3,

all the γ-values computed in steps (ii) and (iii) are γ-values of G. By Theorem 4,

these computed values generate γ on all of G.

Note that the n unit vectors of A guarantee that A has rank n. The matrix

E constructed in step (v) has the claimed properties by linear algebra properties

over GF(2). In particular, the product of the elementary row operation matrices

operated on the unit matrix I = (z0, . . . , zn−1) — which is the tail end of A —

is B−1 as claimed. Since V0 = L(Q), the value of m is as stated in step (vi).

Since the vectors v1, . . . ,vt are linearly independent, dim Vf = m + t.

Finally, we show that for any u ∈ V, if B−1u = ε = (ε0, . . . , εn−1) ∈ GF(2)n,

then ρ(u) = (εm, . . . , εn−1) ∈ GF(2)n−m is a homomorphism from V onto

GF(2)n−m with kernel V0 such that u ∈ Vf if and only if ρ(u) ≤ 2t − 1,

whence ρ(u) = γ(u). Let v ∈ V and B−1v = δ = (δ0, . . . , δn−1) ∈ GF(2)n.

ρ(u)⊕ ρ(v) = (εm, . . . , εn−1)⊕ (δm, . . . , δn−1) = (εm ⊕ δm, . . . , εn−1 ⊕ δn−1).
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Now

ε⊕ δ = (ε0, . . . , εn−1)⊕ (δ0, . . . , δn−1) = B−1u⊕B−1v = B−1(u⊕ v)

= (ε0 ⊕ δ0, . . . , εn−1 ⊕ δn−1).

Hence ρ(u ⊕ v) = (εm ⊕ δm, . . . , εn−1 ⊕ δn−1) = ρ(u) ⊕ ρ(v), so ρ is a homo-

morphism V→ GF(2)n−m. It is onto, since for any ε = (ε0, . . . , εn−1) ∈ V, the

equation Bε = u ∈ V has the solution ε = B−1u, and ρ(u) = (εm, . . . , εn−1).

By linear algebra, B−1u = (ε0, . . . , εn−1) implies u = ε0B0 ⊕ · · · ⊕ εn−1Bn−1.

Since β0 = (B0, . . . , Bm−1) is a basis of V0, we see that εm = · · · = εn−1 = 0

if and only if u ∈ V0. Hence the kernel is V0. The same argument shows that

u ∈ Vf if and only if εm+t = · · · = εn−1 = 0 if and only if ρ(u) = γ(u).

8. Forcing a Win in Cellular Automata Games for 1-Regular

Games

By using ρ, computed in the previous section in O(n6) steps, we can compute

the γ-function for every u ∈ V for any cellular automata game-graph G = (V,E)

played on a digraph G = (V, E) with |V | = n, which determines the P -, N -

and D-membership for every u ∈ V by (1) and (2). However, our method

only constructed an O(n4) fragment of the exponentially-large game-graph. In

particular, we don’t have a counter function for all u ∈ Vf , so the question

arises, given any N -position in G, how can we insure a win in a finite number

of moves.

If u ∈ D, then v ∈ F (u) ∩ D can be found polynomially by scanning F (u)

(|F (u)| < n2): compute ρ(v) for v ∈ F (u). If γ(v) =∞, then compute ρ(w) for

w ∈ F (v), to determine K such that γ(v) = ∞(K). Similarly, if u ∈ N, then

v ∈ F (u) ∩ P can be found polynomially. This, however, does not guarantee a

win because of possible cycling and never reaching a leaf. The strategy of moving

from u ∈ N to any F (u) ∩ P guarantees a nonlosing outcome, nevertheless.

In this section we show how to force a win from a position u ∈ N in polynomial

time, including the case when the cellular automata game is a component in a

sum of finitely many games. Let

Rj = Q

j⋃

i=1

(Y2 ∩V2i) (0 ≤ j < t), so R0 = Q.

Informally, this third key idea is this. Given any u ∈ Vf , we can write u =∑′h
i=1 ui with ui ∈ Rt−1 (1 ≤ i ≤ h), where the ui can be computed poly-

nomially using the matrix B produced by Algorithm CEL. We then say that

ũ = {u1, . . . ,uh} represents u. Moreover, we can define a counter function c̃ on

representations ũ and arrange that the winner moves to a sequence of positions

u0,u1, . . . with c̃(ũ0) > c̃(ũ1) > · · ·
(
ũi = (ui

1, . . . ,u
i
hi

)
)
, leading to a win. In

doing this we will be confronted, analogously to Lemma 1 (§ 3) and the proof
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of Theorem 1, by the possibility of encountering a predecessor of a representa-

tion instead of the descendant we are seeking. That is, c̃(ũi) > c̃(ũi+1) with

ũi+1 ∈ F̃ (ũi) implies ui+1 ∈ F (ui)) ∪ F−1(ui)), where F̃ is a follower function

for representations, defined below, and ui =
∑′hi

j=1 ui
j .

Definition 4. (i) Let R ⊆ V. A representation ũ of u ∈ V over R is a

subset ũ = {u1, . . . ,uh} ⊆ R of distinct elements ui. If R is either indicated

by the context or irrelevant, we may say simply that ũ is a representation of

u =
∑′h

j=1 uj , omitting over R. The empty representation is denoted by ?̃.

(ii) For ũ = {u1, . . . ,uh} ⊆ R, a follower function for representations is given

by

F̃ (ũ;uj ,vj) =
(
ũ	 {uj ,vj}

)
,

where uj ∈ ũ, vj ∈ F q
k (uj) for any 1 ≤ j ≤ h, and where 	 denotes the

symmetric difference: x̃1 	 x̃2 = (x̃1 ∪ x̃2) − (x̃1 ∩ x̃2)
(
x̃1, x̃2 ∈ R

)
. Thus,

F̃ (ũ;uj ,vj) =

{
{u1, . . . ,uj−1,uj+1, . . . ,uh,vj} if vj /∈ ũ

{u1, . . . ,ui−1,ui+1, . . . ,uj−1,uj+1, . . . ,uh} if vj = ui ∈ ũ.

(iii) We also define the set of all representation followers of ũ by

F̃ (ũ) =
h⋃

j=1

⋃

vj∈F (uj)

F̃ (ũ;uj ,vj).

Notation. Let ũ = {u1, . . . ,uh} ⊆ R, vj ∈ F k
k (uj). We put

µ(ũ) =

h∑

i=1

′

ui, µ
(
F̃ (ũ;uj ,vj)

)
= vj ⊕

∑

i6=j

′

ui ∈ µ
(
F̃ (ũ)

)
,

where

µ
(
F̃ (ũ)

)
=

h⋃

j=1

(
F (uj)⊕

∑

i6=j

′

ui

)
, µ

(
F̃ (ũ)

)
=

h⋃

j=1

(
F (uj)⊕

∑

i 6=j

′

ui

)
.

Notes. (i) We see that F̃ (ũ;uj ,vj) is a representation, namely the representa-

tion of µ(ũ)⊕ uj ⊕ vj = vj ⊕
∑′

i6=j ui

(ii) Let 0 ≤ k < 2t. Every u ∈ Vk has a representation over Rj where

j = dlog2(k + 1)e. Such a representation can be constructed polynomially by

computing B−1u (see the Note at the beginning of Algorithm CEL). The el-

ements of this representation have γ-values which are either 0 or nonnegative

powers of 2.

(iii) If ũ = ?̃, then µ(ũ) = Φ.

Lemma 1 implies directly:

(a) F
(
µ(ũ)

)
⊆ µ

(
F̃ (ũ)

)
.
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(b) µ
(
F̃ (ũ)

)
⊆ F

(
µ(ũ)

)
∪ F−1

(
µ(ũ)

)
.

(c) Let ṽ = F̃ (ũ;uj ,vj), where vj = F q
k (uj). Then µ(ũ) ∈ F

(
µ(ṽ)

)
if and only

if either: (a) uk = 0, or (b) for some s 6= k, us = 0 and zk ⊕
∑′

z`∈F q(zk) z` =

zs ⊕
∑′

zt∈F q(zs) zt. (Note that µ(ũ) = (u0, . . . , un−1), µ(ṽ) = vj ⊕
∑′

i6=j ui.)

Example 7. We refer back to Example 5 (Fig. 3), § 7, and let u = 15 ∈ V0.

The equation Bx = u has then the solution x = B−1u = (11000), so u has a

representation ũ = {5, 10} over Q (with u = 15). Now

F̃ (ũ) =

h⋃

j=1

⋃

vj∈F (uj)

F̃ (ũ;uj ,vj)

= F̃ (ũ; 5, 6)∪F̃ (ũ; 5, 9)∪F̃ (ũ; 5, 17)∪F̃ (ũ; 10, 3)∪F̃ (ũ; 10, 12)∪F̃ (ũ; 10, 18)

= {6, 10} ∪ {9, 10} ∪ {10, 17} ∪ {3, 5} ∪ {5, 12} ∪ {5, 18}.

Thus, µ
(
F̃ (ũ)

)
= {12, 3, 27, 6, 9, 23}. As can be seen directly from Fig. 3,

F
(
µ(ũ)

)
= F (15) = {3, 6, 9, 12, 23, 27} so F

(
µ(ũ)

)
= µ

(
F̃ (ũ)

)
in this case.

Recall that in steps (ii) and (iii) of Algorithm CEL, a counter function c

on G[4] and on G[2] was computed. Since the vertex sets V[4] of G[4] and

V[2] of G[2] have sizes O(n4) and O(n2) respectively, c has values bounded by

O(n4) and O(n2) for these two cases. For ũ = {u1, . . . ,uh} ⊆ Rt−1, define

c̃(ũ) =
∑h

i=1 c(ui). We have h ≤ n, since the ui are computed using the n× n

matrix B (Note 2, § 7). Thus, if ũ ⊆ β0, then the values of c̃ are bounded by

O(n5), and if ũ ⊆ βf \ β0 then the values of c̃ are bounded by O(n3).

Suppose now that we are given a sum of r games, one of which is a cellular

automata game played on a finite cyclic digraph G(V, E). It follows from (1) and

(2) that for winning the sum by means of a move in G, it suffices if this winning

move is of one of the following two types:

(i) Given u ∈ Vp and v ∈ F (u) with γ(v) > p, move to w ∈ F (v) ∩Vp with

c̃(w̃) < c̃(ũ).

(ii) Given u ∈ V` and p < `; or γ(u) = ∞(K) with p ∈ K. Move to v ∈

F (u) ∩Vp such that c̃(ṽ) < c̃(ũ), where we put c̃(ũ) =∞ if γ(u) =∞.

These moves in G lead to a win when the other r − 1 component games in

the sum have generalized Nim sum value p.

What’s the complexity of computing these moves? The more complicated of

these cases is (i). We deal with it in Theorem 5, and then summarize it, together

with case (ii), in an overall strategy described in the proof of Theorem 6.

Theorem 5. For any integer 0 ≤ p ≤ 2t − 1, letting j = dlog2(p + 1)e, a

function Ψ: (Rj ,V) → Rj can be computed in polynomial time, such that if

ũ = {u1, . . . ,uh} ⊆ Rj is a representation of µ(ũ) ∈ Vp and µ(ṽ) ∈ F
(
µ(ũ)

)

with γ
(
µ(ṽ)

)
> p, then Ψ

(
ũ, µ(ṽ)

)
= w̃ ⊆ Rj, where µ(w̃) ∈ F

(
µ(ṽ)

)
∩Vp and

c̃(w̃) < c̃(ũ).
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Vp VpVr

u

w0

.

.

. .
.
.

wj−1

v0

r>p wj

Figure 4. Illustrating Theorem 5.

Proof. Let v0 ∈ F
(
µ(ũ)

)
with γ(v0) > γ(u). By (a), v0 ∈ µ

(
F̃ (ũ)

)
, say

v0 = µ
(
F̃ (ũ;uj ,vj)

)
. Since w(uj) ≤ 4, the computation of j, k such that

vj = F q
k (uj) = v0 ⊕

∑′
i6=j ui takes O(n2) steps. For simplicity of notation,

assume that j = 1. Since γ(v0) > γ(u) and {u1, . . . ,uh} is a representation

over Rj , i.e., its elements have γ-values 0 or distinct powers of 2, it follows that

γ(v1) > γ(u1) and v1 6= ui (1 ≤ i ≤ h), so ṽ0 = {v1,u2, . . . ,uh} is a repre-

sentation of v0 = v1 ⊕
∑′h

i=2ui over V. Also v1 ∈ V[4], hence v1 has only

O(n) followers, so we can compute w1 ∈ F (v1) ∩V[4] with γ(w1) = γ(u1) and

c(w1) < c(u1) in O(n) steps. Hence c̃(w̃0) < c̃(ũ), where w̃0 = {w1,u2, . . . ,uh}

if w1 6= ui (2 ≤ i ≤ h), or w̃0 = {u2, . . . ,ui−1,ui+1, . . . ,uh} otherwise,

and in any case w̃0 ⊆ F̃ (ṽ0) ∩ Rj , so µ(w̃0) ∈ µ
(
F̃ (ṽ0)

)
. Hence by (b),

µ(w̃0) ∈ F
(
µ(ṽ0)

)
∪ F−1

(
µ(ṽ0)

)
.

If µ(w̃0) ∈ F
(
µ(ṽ0)

)
, we let Ψ(ũ, µ(ṽ0)

)
= w̃0, which satisfies the desired

requirements. If µ(ṽ0) ∈ F
(
µ(w̃0)

)
, we replace the ancestor µ(ũ) of µ(ṽ0) by its

ancestor µ(w̃0) with representation w̃0. A representation ṽ1 of µ(ṽ0) = µ(ṽ1) can

be obtained from w̃0 based on (a), as at the beginning of this proof. As before we

get w̃1 ⊆ F̃ (ṽ1) ∩Rj with c̃(w̃1) < c̃(w̃0) and µ(w̃1) ∈ F
(
µ(ṽ1)

)
∪ F−1

(
µ(ṽ1)

)
.

This process thus leads to the formation of two sequences ṽ0, ṽ1, . . .; w̃0, w̃1,

. . ., where µ(ṽ0) = µ(ṽi) (i = 1, 2, . . .), w̃i ⊆ Rj , µ(w̃i) ∈ F
(
µ(ṽi)

)
∪F−1

(
µ(ṽi)

)

(i = 1, 2, . . .). Since c̃(w̃0) > c̃(w̃1) > · · · , these sequences must be finite. In

fact, each sequence has at most O(n5) terms. Since this process keeps producing

a new sequence term if µ(w̃i) ∈ F−1
(
µ(ṽi)

)
, there exists j = O(n5) such that

µ(w̃j) ∈ F
(
µ(ṽj)

)
. We then define Ψ

(
ũ, µ(ṽ)

)
= w̃j , which satisfies the desired

requirements. The process is indicated schematically in Fig. 4.

Finally, it can be decided in O(n) steps whether µ(w̃i) ∈ F
(
µ(ṽi)

)
or µ(ṽi) ∈

F
(
µ(w̃i)

)
by using (c). �

Example 8. Continuing Example 6, suppose player I moves from u = 15 ∈

V0 with ũ = {5, 10} (u1 = 5, u2 = 10) to v0 = 6 ∈ µ
(
F̃ (ũ)

)
. Then ṽ0 =

F̃ (ũ; 10, 3) = {5, 3} = {u1,v2}
(
v2 = 3, γ(v2) > γ(u2)

)
, and µ(ṽ0) = v0.

Now w2 ∈ F (v2) with γ(w2) = γ(u2) and c(w2) < c(u2) is clearly satisfied by

w2 = Φ. Thus w̃0 = {u1}, µ(w̃0) = 5. Since 5 ∈ F−1(6), we replace the ancestor

u of v0 by µ(w̃0) = 5 with representation w̃0 = {u1}, pretending that play began
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from µ(w̃0) = 5, rather than from u = 15. Then ṽ1 = F̃ (w̃0; 5, 6) = {6}. Now

w̃1 = ?̃ ∈ F
(
µ(ṽ1)

)
with µ(w̃1) = ?. Thus Ψ

(
ũ0, µ(ṽ0)

)
= w̃1, and so player II

moves to µ(w̃1) ∈ V0.

Given a sum of r games, one of which is a two-player cellular automata game

played on a finite cyclic digraph G = (V, E). Given an N -position of the sum,

consider the subset M of moves in the cellular automata game which realize a

win. How large is M ? What’s the complexity of computing it?

Theorem 6. Given an N -position in a sum of r games containing a two-player

cellular automata game played on a finite cyclic digraph G = (V, E) with |V | =

n. The subset M of moves on G leading to a win has size O(n5), and its

computation needs O(n6) steps.

Proof. Apply Algorithm CEL to G
(
O(n6)

)
. Given an N -position of the sum,

we may assume that a winning move is of type (ii). So we have to move from a

vertex u in G, which corresponds to u ∈ V` or to γ(u) = ∞(K), p ∈ K in the

cellular automata game-graph, to v ∈ F (u) ∩Vp.

Assume first u ∈ V`. Compute B−1u to get a representation ũ = {u1, . . . ,

uh} ⊆ Rs with µ(ũ) =
∑′h

i=1ui, where s = dlog2(`+1)e
(
O(n2)

)
. For a move of

type (ii), let v ∈ F
(
µ(ũ)

)
∩Vp. By (a), v ∈ µ

(
F̃ (ũ)

)
, say v = µ

(
F̃ (ũ;u1,v1)

)
.

As we saw at the beginning of the proof of Theorem 5, the computation of

v1 = F 1
k (u1) takes O(n2) steps. It can always be arranged so that γ(v1) < γ(u1).

Also w(v1) ≤ 4. Thus ṽ1 = {v1} is a representation. Replacing u1 by v1 in

ũ and deleting v1 if v1 = ui for some i, we get a representation ṽ of v over

Rj , where j = dlog2(p + 1)e
(
O(n)

)
. Since p < ` and c is monotonic we have

c̃(ṽ) < c̃(ũ).

Secondly assume γ(u) = ∞(K). Scan the O(n2) followers of u, to locate

one, say v, which is in Vp. Compute B−1v to yield a representation ṽ =

{v1, . . . ,vh} ⊆ Rj with v = µ(ṽ) =
∑′h

i=1vi, where j = dlog2(p + 1)e
(
O(n4)

)
.

By definition, c̃(ṽ) < c̃(ũ).

In any subsequent move of type (ii) we compute the new representation from

the previous one as was done above for the case u ∈ V`, where ṽ was computed

from ũ in O(n) steps.

For a move of type (i), assume that player II moves from ui = µ(ũi) ∈ Vp with

ũi ⊆ Rj

(
j = dlog2(p + 1)e

)
to vi ∈ F (ui) with γ(vi) > γ(ui). Then player I

computes ũi+1 = Ψ(ũi,v
i)

(
O(n)

)
and moves to ui+1 = µ(ũi+1) ∈ F (vi) ∩Vp

such that c̃(ũi+1) < c̃(ũi). This can be done as we saw in Theorem 5.

Thus c̃ decreases strictly for both a move of type (i) and of type (ii). Since

c̃(ũ) = O(n5), player I can win in O(n5) moves made in the cellular automata

game, for whatever sequence of moves of type (i) and (ii) is taken. This is in ad-

dition to any other moves in the other sum components. Since each computation

of one move of type (ii) and of Ψ requires O(n) steps, the entire computation

time for player I in the cellular automata game is O(n6) steps. �
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9. Epilogue

A collection of two-player cellular automata games with only a minimum of

the underlying theory can be found in [12], [13].

An obvious remaining question is whether two-player cellular automata games

have a polynomial strategy also for every q > 1. We have, in fact, provided a

polynomial infrastructure for the general case, in the sense that everything up

to the end of § 6 is consistent with a polynomial strategy for all q ≥ 1. But

V[q+1] and V[2(q+1)] are not restrictions of V when q > 1, so we cannot apply

Lemma 3. Therefore we cannot prove polynomiality for q > 1 in the same way

we used for 1-regular games.

The special case of 1-regular games are the so-called annihilation games , an-

alyzed in [9], [15], [17]. The present paper is a generalization of [17], and § 7 and

§ 8 of the present paper are simplifications and clarifications of the correspond-

ing parts there. For annihilation games it is natural to consider a vertex with

weight 1 to be occupied by a token, and one with weight 0 to be unoccupied.

Two tokens are then mutually annihilated on impact, hence the name. Misère

play (in which the player making the last move loses, and the opponent wins)

of annihilation games was investigated in [8]. Our motivation for examining an-

nihilation games, suggested to us by John Conway, was to create games which

exhibit some interaction between tokens, yet still have a polynomial strategy.

Annihilation games are “barely” polynomial, in several senses. Their com-

plexity is O(|V |6), and just about any perturbation of them yields Pspace-hard

games (see [16], [14], [19]). Moreover, the polynomial computation of a winning

move may require a “strategy in the broad sense” (see [11], § 4).

Kalmár [21] and Smith [30] defined a strategy in the wide sense to be a strat-

egy which depends on the present position and on all its antecedents, from the

beginning of play. Having defined this notion, both authors concluded that it

seems logical that it suffices to consider a strategy in the narrow sense, which is

a strategy that depends only on the present position (the terminology Markoff

strategy suggests itself here). They then promptly restricted attention to strate-

gies in the narrow sense.

Let us define a strategy in the broad sense to be a strategy that depends on

the present position v and on all its predecessors u ∈ F−1(v), whether or not

such u is a position in the play of the game. This notion, if anything, seems to

be even less needed than a strategy in the wide sense.

Yet, in § 8, we did employ a strategy in the broad sense, for computing a

winning move in polynomial time. It was needed, since the counter function

associated with γ was computed only for a small subgraph of size O(n4) of the

game-graph of size O(2n), in order to preserve polynomiality. This suggests

the possibility that a polynomial strategy in the narrow sense may not exist;

but we have not proved anything like this. We only report that we didn’t find

a polynomial strategy in the narrow sense, and that perhaps the polynomial
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strategy in the broad sense used here suggested itself precisely because the game

is “barely” polynomial, so to speak.

Annihilation games can lead to linear error correcting codes [10], but their

Hamming distance is ≤ 4. The current work was motivated by the desire to

create games which naturally induce codes of Hamming distance > 4. Cellular

automata games may provide such codes, a topic to be taken up elsewhere. In

practice, the computation of V0, which is all that’s needed for the codes, can

often be done by inspection. The best codes may be derived from a digraph

which is a simplification of that of Figure 1, where V0 can also be computed

easily. The lexicodes method [6], [5], [28] for deriving codes related to games is

plainly exponential.

Another motivation was to further explore polynomial games with “token

interactions”. Last but not least was the desire to create two-player cellular

automata games, which traditionally have been solitaire and 0-player only.

In conclusion, we have have extended cellular automata games to two-player

games in a natural way and given a strategy for them. Four key ideas were

used for doing this: (I). Showing that γ is essentially additive: γ(u1 ⊕ u2) =

γ(u1) ⊕ γ(u2) if u1 ∈ Vf or u2 ∈ Vf . (II). Showing that V0, Vf and γ can

be computed by restricting attention to the linear span of “sparse” vectors of

polynomial size. (III). Providing an algorithm to compute the sparse vector

space. (IV). Computing a winning move. Whereas (I) and (II) and (IV) are

polynomial for all two-player cellular automata games, this has been shown for

(III) only for the special case q = 1 (annihilation games). So the main open

question is the complexity status of (III) for q > 1. Another question is what

happens when loops are permitted in the groundgraph. This question and the

polynomiality of (III) have been settled for the case of annihilation games in [17].

Finally, we point out that our strategy also solves a two-player cellular au-

tomata game with a modified move-rule: Instead of firing a neighborhood of

zk of size q(k) (see the beginning of § 3), we fire a neighborhood of zk of size

at most q(k). Indeed, we can reduce our original game to the modified one by

adjoining to every zk with q(k) > 0, q(k) − 1 edges to leaves and playing a

regular two-player cellular automata game on the modified game. See also [10],

Remark 4.2.
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Note added in proof The present work has indeed led to a much improved

algorithm for producing lexicodes. Previously known algorithms had complexity

exponential in n. The new algorithm has complexity O(nd−1), where n is the size
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