

More Games of No Chance
MSRI Publications
Volume 42, 2002

Searching for Spaceships

DAVID EPPSTEIN

Abstract. We describe software that searches for spaceships in Conway’s

Game of Life and related two-dimensional cellular automata. Our program

searches through a state space related to the de Bruijn graph of the automa-

ton, using a method that combines features of breadth first and iterative

deepening search, and includes fast bit-parallel graph reachability and path

enumeration algorithms for finding the successors of each state. Successful

results include a new 2c/7 spaceship in Life, found by searching a space

with 2126 states.

1. Introduction

John Conway’s Game of Life has fascinated and inspired many enthusiasts,

due to the emergence of complex behavior from a very simple system. One of the

many interesting phenomena in Life is the existence of gliders and spaceships:

small patterns that move across space. When describing gliders, spaceships, and

other early discoveries in Life, Martin Gardner wrote (in 1970) that spaceships

“are extremely hard to find” [10]. Very small spaceships can be found by human

experimentation, but finding larger ones requires more sophisticated methods.

Can computer software aid in this search? The answer is yes – we describe here

a program, gfind, that can quickly find large low-period spaceships in Life and

many related cellular automata.

Among the interesting new patterns found by gfind are the “weekender” 2c/7

spaceship in Conway’s Life (Figure 1, right), the “dragon” c/6 Life spaceship

found by Paul Tooke (Figure 1, left), and a c/7 spaceship in the Diamoeba

rule (Figure 2, top). The middle section of the Diamoeba spaceship simulates

a simple one-dimensional parity automaton and can be extended to arbitrary

lengths. David Bell discovered that two back-to-back copies of these spaceships

form a pattern that fills space with live cells (Figure 2, bottom). The existence

of infinite-growth patterns in Diamoeba had previously been posed as an open

problem (with a $50 bounty) by Dean Hickerson in August 1993, and was later

433

434 DAVID EPPSTEIN

Figure 1. The “dragon” (left) and “weekender” (right) spaceships in Conway’s

Life (B3/S23). The dragon moves right one step every six generations (speed

c/6) while the weekender moves right two steps every seven generations (speed

2c/7).

Figure 2. A c/7 spaceship in the “Diamoeba” rule (B35678/S5678), top, and a

spacefilling pattern formed by two back-to-back spaceships.

included in a list of related open problems by Gravner and Griffeath [11]. Our

program has also found new spaceships in well known rules such as HighLife and

Day&Night as well as in thousands of unnamed rules.

As well as providing a useful tool for discovering cellular automaton behavior,

our work may be of interest for its use of state space search techniques. Recently,

Buckingham and Callahan [8] wrote “So far, computers have primarily been used

to speed up the design process and fill gaps left by a manual search. Much

potential remains for increasing the level of automation, suggesting that Life

may merit more attention from the computer search community.” Spaceship

searching provides a search problem with characteristics intriguingly different

from standard test cases such as the 15-puzzle or computer chess, including a

large state space that fluctuates in width instead of growing exponentially at

each level, a tendency for many branches of the search to lead to dead ends,

and the lack of any kind of admissable estimate for the distance to a goal state.

Therefore, the search community may benefit from more attention to Life.

The software described here, a database of spaceships in Life-like automata,

and several programs for related computations can be found online at http://

www.ics.uci.edu/̃ eppstein/ca/.

SEARCHING FOR SPACESHIPS 435

Figure 3. Large c/60 spaceship in rule B36/S035678, found by brute force

search.

2. A Brief History of Spaceship Searching

According to Berlekamp et al. [5], the c/4 diagonal glider in Life was first

discovered by simulating the evolution of the R-pentomino, one of only 21 con-

nected patterns of at most five live cells. This number is small enough that the

selection of patterns was likely performed by hand. Gliders can also be seen

in the evolution of random initial conditions in Life as well as other automata

such as B3/S13 [14], but this technique often fails to work in other automata

due to the lack of large enough regions of dead cells for the spaceships to fly

through. Soon after the discovery of the glider, Life’s three small c/2 orthogonal

spaceships were also discovered.

Probably the first automatic search method developed to look for interesting

patterns in Life and other cellular automata, and the method most commonly

programmed, is a brute force search that tests patterns of bounded size, patterns

with a bounded number of live cells, or patterns formed out of a small number

of known building blocks. These tests might be exhaustive (trying all possible

patterns) or they might perform a sequence of trials on randomly chosen small

patterns. Such methods have found many interesting oscillators and other pat-

terns in Life, and Bob Wainwright collected a large list of small spaceships found

in this way for many other cellular automaton rules [19]. Currently, it is possible

to try all patterns that fit within rectangles of up to 7 × 8 cells (assuming sym-

metric initial conditions), and this sort of exhaustive search can sometimes find

spaceships as large as 12 × 15 (Figure 3). However, brute force methods have

not been able to find spaceships in Life with speeds other than c/2 and c/4.

The first use of more sophisticated search techniques came in 1989, when Dean

Hickerson wrote a backtracking search program which he called LS. For each

generation of each cell inside a fixed rectangle, LS stored one of three states:

unknown, live, or dead. LS then attempted to set the state of each unknown

cell by examining neighboring cells in the next and previous generations. If no

unknown cell’s state could be determined, the program performed a depth first

branching step in which it tried both possible states for one of the cells. Using

this program, Hickerson discovered many patterns including Life’s c/3, c/4, and

2c/5 orthogonal spaceships. Hartmut Holzwart used a similar program to find

many variant c/2 and c/3 spaceships in Life, and related patterns including

the “spacefiller” in which four c/2 spaceships stretch the corners of a growing

436 DAVID EPPSTEIN

Figure 4. The eight neighbors in the Moore neighborhood of a cell.

diamond shaped still life. David Bell reimplemented this method in portable

C, and added a fourth “don’t care” state; his program, lifesrc, is available at

http://www.canb.auug.org.au/̃ dbell/programs/lifesrc-3.7.tar.gz.

In 1996, Tim Coe discovered another Life spaceship, moving orthogonally at

speed c/5, using a program he called knight in the hope that it could also find

“knightships” such as those in Figure 5. Knight used breadth first search (with

a fixed amount of depth-first lookahead per node to reduce the space needs of

BFS) on a representation of the problem based on de Bruijn graphs (described in

Section 4). The search took 38 cpu-weeks of time on a combination of Pentium

Pro 133 and Hypersparc processors. The new search program we describe here

can be viewed as using a similar state space with improved search algorithms

and fast implementation techniques. Another recent program by Keith Amling

also uses a state space very similar to Coe’s, with a depth first search algorithm.

Other techniques for finding cellular automaton patterns include complemen-

tation of nondeterministic finite automata, by Jean Hardouin-Duparc [12, 13];

strong connectivity analysis of de Bruijn graphs, by Harold McIntosh [16,17]; ran-

domized hill-climbing methods for minimizing the number of cells with incorrect

evolution, by Paul Callahan (http://www.radicaleye.com/lifepage/stilledit.html);

a backtracking search for still life backgrounds such that an initial perturbation

remains bounded in size as it evolves, by Dean Hickerson; Gröbner basis meth-

ods, by John Aspinall; and a formulation of the search problem as an integer

program, attempted by Richard Schroeppel and later applied with more success

by Robert Bosch [7]. However to our knowledge none of these techniques has

been used to find new spaceships.

3. Notation and Classification of Patterns

We consider here only outer totalistic rules, like Life, in which any cell is either

“live” or “dead” and in which the state of any cell depends only on its previous

state and on the total number of live neighbors among the eight adjacent cells of

the Moore neighborhood (Figure 4). For some results on spaceships in cellular

automata with larger neighborhoods, see Evans’ thesis [9]. Outer totalistic rules

are described with a string of the form Bx1x2 . . ./Sy1y2 . . . where the xi are digits

listing the number of neighbors required for a cell to be born (change from dead

SEARCHING FOR SPACESHIPS 437

Figure 5. Slope 2 and slope 3/2 spaceships. Left to right: (a) B356/S02456,

2c/11, slope 2. (b) B3/S01367, c/13, slope 2. (c) B36/S01347, 2c/23, slope 2.

(d) B34578/S358, 2c/25, slope 2. (e) B345/S126, 3c/23, slope 3/2.

Figure 6. Long narrow c/6 spaceship in Day&Night (B3678/S34678).

Figure 7. 9c/28 spaceship formed from 10 R-pentomino puffers in B37/S23.

to live) while the yi list the number of neighbors required for a cell to survive

(stay in the live state after already being live). For instance, Conway’s Life is

described in this notation as B3/S23.

438 DAVID EPPSTEIN

A spaceship is a pattern which repeats itself after some number p of genera-

tions, in a different position from where it started. We call p the period of the

spaceship. If the pattern moves x units horizontally and y units vertically every

p steps, we say that it has slope y/x and speed max(|x|, |y|)c/p, where c denotes

the maximum speed at which information can propagate in the automaton (the

so-called speed of light). Most known spaceships move orthogonally or diagonally,

and many have an axis of symmetry parallel to the direction of motion. Others,

such as the glider and small c/2 spaceships in Life, have glide-reflect symmetry:

a mirror image of the original pattern appears in generations p/2, 3p/2, etc.;

spaceships with this type of symmetry must also move orthogonally or diago-

nally. However, a few asymmetric spaceships move along lines of slope 2 or even

3/2 (Figure 5). According to Berlekamp et al. [5], there exist spaceships in Life

that move with any given rational slope, but the argument for the existence of

such spaceships is not very explicit and would lead to extremely large patterns.

Related types of patterns include oscillators (patterns that repeat in the

same position), still lifes (oscillators with period 1), puffers (patterns which

repeat some distance away after a fixed period, leaving behind a trail of dis-

crete patterns such as oscillators, still lifes, and spaceships), rakes (spaceship

puffers), guns (oscillators which send out a moving trail of discrete patterns

such as spaceships or rakes), wickstretchers (patterns which leave behind one

or more connected stable or oscillating regions), replicators (patterns which pro-

duce multiple copies of themselves), breeders (patterns which fill a quadratically-

growing area of space with discrete patterns, for instance replicator puffers or

rake guns), and spacefillers (patterns which fill a quadratically-growing area

with one or more connected patterns). See Paul Callahan’s Life Pattern Cat-

alog (http://www.radicaleye.com/lifepage/patterns/contents.html) for examples

of many of these types of patterns in Life, or http://www.ics.uci.edu/̃ eppstein/

ca/replicators/ for a number of replicator-based patterns in other rules.

We can distinguish among several classes of spaceships, according to the meth-

ods that work best for finding them.

• Spaceships with small size but possibly high period can be found by brute

force search. The patterns depicted in Figures 3 and 5 fall into this class, as

do Life’s glider and c/2 spaceships.

• Spaceships in which the period and one dimension are small, while the other

dimension may be large, can be found by search algorithms similar to the

ones described in this paper. The new Life spaceships in Figure 1 fall into

this class. For a more extreme example of a low period ship which is long

but narrow, see Figure 6. “Small” is a relative term—our search program has

found c/2 spaceships with minimum dimension as high as 42 (Figure 10) as

well as narrower spaceships with period as high as nine.

• Sometimes small non-spaceship objects, such as puffers, wickstretchers, or

replicators, can be combined by human engineering into a spaceship. For in-

SEARCHING FOR SPACESHIPS 439

k/p

Figure 8. The three phases of the c/3 “turtle” Life spaceship, shifted by 1/3

cell per phase.

stance, in the near-Life rule B37/S23, the R-pentomino pattern acts as an

(unstable) puffer. Figure 7 depicts a 9c/28 spaceship in which a row of six

pentominoes stabilize each other while leaving behind a trail of still lifes,

which are cleaned up by a second row of four pentominoes. Occasionally,

spaceships found by our search software will appear to have this sort of struc-

ture (Figure 10). The argument for the existence of Life spaceships with any

rational slope would also lead to patterns of this type. Several such space-

ships have been constructed by Dean Hickerson, notably the c/12 diagonal

“Cordership” in Conway’s Life, discovered by him in 1991. Hickerson’s web

page http://www.math.ucdavis.edu/̃ dean/RLE/slowships.html has more ex-

amples of structured ships.

• The remaining spaceships have large size, large period, and little internal

structure. We believe such spaceships should exist, but none are known and

we know of no effective method for finding them.

4. State Space

Due to the way our search is structured, we need to arrange the rows from all

phases of the pattern we are searching for into a single sequence. We now show

how to do this in a way that falls out naturally from the motion of the spaceship.

Suppose we are searching for a spaceship that moves k units down every p

generations. For simplicity of exposition, we will assume that gcd(k, p) = 1.

We can then think of the spaceship we are searching for as living in a cellular

automaton modified by shifting the grid upward k/p units per generation. In

this modified automaton, the shifting of the grid exactly offsets the motion of

the spaceship, so the ship acts like an oscillator instead of like a moving pattern.

We illustrate this shifted grid with the turtle, a c/3 spaceship in Conway’s Life

(Figure 8).

Because of the shifted grid, and the assumption that gcd(k, p) = 1, each row

of each phase of the pattern exists at a distinct vertical position. We form a

440 DAVID EPPSTEIN

r [2]
r [1]
r [0]

r [i]
r [i–p+k]
r [i–p]
r [i–2p]

Figure 9. Merged sequence of rows from all three phases of the turtle, illustrating

equation (∗).

doubly-infinite sequence

. . . r[−2], r[−1], r[0], r[1], r[2] . . .

of rows, by taking each row from each phase in order by the rows’ vertical

positions (Figure 9). For any i, the three rows r[i − 2p], r[i − p], r[i] form a

contiguous height-three strip in a single phase of the pattern, and we can apply

the cellular automaton rule within this strip to calculate

r[i − p + k] = evolve(r[i − 2p], r[i − p], r[i]). (∗)

Conversely, any doubly-infinite sequence of rows, in which equation (∗) is satisfied

for all i, and in which there are only finitely many live cells, corresponds to a

spaceship or sequence of spaceships. Further, any finite sequence of rows can be

extended to such a doubly infinite sequence if the first and last 2p rows of the

finite sequence contain only dead cells.

Diagonal spaceships, such as Life’s glider, can be handled in this framework by

modifying equation (∗) to shift rows i, i−p, and i−2p with respect to each other

before performing the evolution rule. We can also handle glide-reflect spaceships

such as Life’s small c/2 spaceships, by modifying equation (∗) to reverse the

order of the cells in row i − p + k (when k is odd) or in the two rows i − p and

i − p + k (when p is odd). Note that, by the assumption that gcd(k, p) = 1,

at least one of k and p will be odd. In these cases, p should be considered as

the half-period of the spaceship, the generation at which a flipped copy of the

original pattern appears. Searches for which gcd(k, p) > 1 can be handled by

SEARCHING FOR SPACESHIPS 441

adjusting the indices in equation (∗) depending on the phase to which row r[i]

belongs.

Our state space, then, consists of finite sequences of rows, such that equa-

tion (∗) is satisfied whenever all four rows in the equation belong to the finite

sequence. The initial state for our search will be a sequence of 2p rows, all of

which contain only dead cells. If our search discovers another state in which the

last 2p rows also contain only dead cells, it outputs the pattern formed by every

pth row of the state as a spaceship.

As in many game playing programs, we use a transposition table to detect

equivalent states, avoid repeatedly searching the same states, and stop searching

in a finite amount of time even when the state space may be infinite. We would

like to define two states as being equivalent if, whenever one of them can be

completed to form a spaceship, the same completion works for the other state

as well. However, this notion of equivalence seems too difficult to compute (it

would require us to be able to detect states that can be completed to spaceships,

but if we could do that then much of our search could be avoided). So, we use

a simpler sufficient condition: two states are equivalent if their last 2p rows are

identical. If our transposition table detects two equivalent states, the longer of

the two is eliminated, since it can not possibly lead to the shortest spaceship for

that rule and period.

We can form a finite directed graph, the de Bruijn graph [16,17], by forming a

vertex for each equivalence class of states in our state space, and an edge between

two vertices whenever a state in one equivalence class can be extended to form

a state in the other class. The size of the de Bruijn graph provides a rough

guide to the complexity of a spaceship search problem. If we are searching for

patterns with width w, the number of vertices in this de Bruijn graph is 22pw. For

instance, in the search for the weekender spaceship, the effective width was nine

(due to an assumption of bilateral symmetry), so the de Bruijn graph contained

2126 vertices. Fortunately, most of the vertices in this graph were unreachable

from the start state.

Coe’s search program knight uses a similar state space formed by sequences

of pattern rows, but only uses the rows from a single phase of the spaceship. In

place of our equation (∗), he evolves subsequences of 2p+1 rows for p generations

and tests that the middle row of the result matches the corresponding row of the

subsequence. As with our state space, one can form a (different) de Bruijn graph

by forming equivalence classes according to the last 2p rows of a state. Coe’s

approach has some advantages; for instance, it can find patterns in which some

phases exceed the basic search width (as occurred in Coe’s c/5 spaceship). How-

ever, it does not seem to allow the fast neighbor-finding techniques we describe

in Section 7.

442 DAVID EPPSTEIN

5. Search Strategies

There are many standard algorithms for searching state spaces [20], however

each has some drawbacks in our application:

• Depth first search requires setting an arbitrary depth limit to avoid infinite

recursion. The patterns it finds may be much longer than necessary, and the

search may spend a long time exploring deep regions of the state space before

reaching a spaceship. Further, DFS does not make effective use of the large

amounts of memory available on modern computers.

• Breadth first search is very effective for small searches, but quickly runs out of

memory for larger searches, even when large amounts of memory are available.

• Depth first iterative deepening [15] has been proposed as a method of achiev-

ing the fast search times of breadth first search within limited space. However,

our state space often does not have the exponential growth required for iter-

ative deepening to be efficient; rather, as the search progresses from level to

level the number of states in the search frontier can fluctuate up and down,

and typically has a particularly large bulge in the earlier levels of the search.

The overall depth of the search (and hence the number of deepening itera-

tions) can often be as large as several hundred. For these reasons, iterative

deepening can be much slower than breadth first search. Further, the trans-

position table used to detect equivalent states does not work as well with

depth first as with breadth first search: to save space, we represent this table

as a collection of pointers to states, rather than explicitly listing the 2p rows

needed to determine equivalence, so when searching depth first we can only

detect repetitions within the current search path. Finally, depth first search

does not give us much information about the speed at which the search is pro-

gressing, which we can use to narrow the row width when the search becomes

too slow.

• Other techniques such as the A∗ algorithm, recursive best first search, and

space-bounded best first search, depend on information unavailable in our

problem, such as varying edge weights or admissable estimates of the distance

to a solution.

Therefore, we developed a new search algorithm that combines the best fea-

tures of breadth first and iterative deepening search, and that takes advantage

of the fact that, in our search problem, many branches of the search eventually

lead only to dead ends. Our method resembles the MREC algorithm of Sen and

Bagchi [18], in that we perform deepening searches from the breadth first search

frontier, however unlike MREC we use the deepening stages to prune the search

tree, allowing additional breadth first searching.

Our search algorithm begins by performing a standard breadth first search.

We represent each state as a single row together with a pointer to its predecessor,

so the search must maintain the entire breadth first search tree. By default, we

SEARCHING FOR SPACESHIPS 443

allocate storage for 222 nodes in the tree, which is adequate for small searches

yet well within the memory limitations of most computers.

On larger searches (longer than a minute or so), the breadth first search will

eventually run out of space. When this happens, we suspend the breadth first

search and perform a round of depth first search, starting at each node of the

current breadth first search queue. This depth first search has a depth limit

which is normally δ levels beyond the current search frontier, for a small value

δ that we set in our implementation to equal the period of the pattern we are

searching for. (Setting δ to a fixed small constant would likely work as well.)

However, if a previous round of depth first searching reached a level past the

current search frontier, we instead limit the new depth first search round to δ

levels beyond the previous round’s limit.

When we perform a depth first search from a BFS queue node, one of three

things can happen. First, we may discover a spaceship; in that case we terminate

the entire search. Second, we may reach the depth limit; in that case we termi-

nate the depth first search and move on to the next BFS queue node. Third, the

depth first search may finish normally, without finding any spaceships or deep

nodes. In this case, we know that the root of the search leads only to dead ends,

and we remove it from the breadth first search queue.

After we have performed this depth first search for all nodes of the queue,

we compact the remaining nodes and continue with the previously suspended

breadth first search. Generally, only a small fraction of the previous breadth

first search tree remains after the compaction, leaving plenty of space for the

next round of breadth first search.

There are two common modes of behavior for this searching algorithm, de-

pending on how many levels of breadth first searching occur between successive

depth first rounds. If more than δ levels occur between each depth first search

round, then each depth first search is limited to only δ levels beyond the breadth

first frontier, and the sets of nodes searched by successive depth first rounds are

completely disjoint from each other. In this case, each node is searched at most

twice (once by the breadth first and once by the depth first parts of our search),

so we only incur a constant factor slowdown over the more memory-intensive

pure breadth first search. In the second mode of behavior, successive depth first

search rounds begin from frontiers that are fewer than δ levels apart. If this

happens, the ith round of depth first search will be limited to depth i · δ, so

the search resembles a form of iterative deepening. Unlike iterative deepening,

however, the breadth first frontier always makes some progress, permanently re-

moving nodes from the actively searched part of the state space. Further, the

early termination of depth-first searches when they reach deep nodes allows our

algorithm to avoid searching large portions of the state space that pure iterative

deepening would have to examine.

On typical large searches, the amount of deepening can be comparable to

the level of the breadth-first search frontier. For instance, in the search for

444 DAVID EPPSTEIN

the weekender, the final depth first search round occurred when the frontier

had reached level 90, and this round searched from each frontier node to an

additional 97 levels. We allow the user to supply a maximum value for the

deepening amount; if this maximum is reached, the state space is pruned by

reducing the row width by one cell and the depth first search limit reverts back

to δ.

There is some possibility that a spaceship found in one of the depth first

searches may be longer than the optimum, but this has not been a problem in

practice. Even this small amount of suboptimality could be averted by moving

on to the next node instead of terminating the search when the depth first phase

of the algorithm discovers a spaceship.

6. Lookahead

Suppose that our search reaches state

S = r[0], r[1], . . . r[i − 1].

The natural set of neighboring states to consider would be all sequences of rows

r[0], r[1], . . . r[i − 1], r[i]

where the first i rows match state S and we try all choices of row r[i] that satisfy

equation (∗).

However, it is likely that some of these choices will result in inconsistent

states for which equation (∗) can not be satisfied the next time the new row r[i]

is involved in the equation. Since that next time will not occur until we choose

row r[i + p − k], any work performed in the intermediate levels of the search

between these two rows could be wasted. To avoid this problem, when making

choices for row r[i], we simultaneously search for pairs of rows r[i] and r[i+p−k]

satisfying both equation (∗) and its shifted form

r[i] = evolve(r[i − p − k], r[i − k], r[i + p − k]). (L)

Note that r[i−p−k] and [i−k] are both already present in state S and so do not

need to be searched for. We use as the set of successors to row S the sequences

of rows r[0], r[1], . . . r[i − 1], r[i] such that equation (∗) is true and equation (L)

has a solution.

One could extend this idea further, and (as well as searching for rows r[i] and

r[i + p − k]) search for two additional rows r[i + p− 2k] and r[i + 2p − 2k] such

that the double lookahead equations

r[i − k] = evolve(r[i − p − 2k], r[i − 2k], r[i + p − 2k]) and

r[i + p − k] = evolve(r[i − 2k], r[i + p − 2k], r[i + 2p − 2k])
(LL)

have a solution. However this double lookahead technique would greatly increase

the cost of searching for the successor states of S and provide only diminished

SEARCHING FOR SPACESHIPS 445

Figure 10. 42 × 53 c/2 spaceship in rule B27/S0.

returns. In our implementation, we use a much cheaper approximation to this

technique: for every three consecutive cells of the row r[i+p−k] being searched

for as part of our single lookahead technique, we test that there could exist five

consecutive cells in rows r[i+p−2k] and r[i+2p−2k] satisfying equations (LL)

for those three cells. The advantage of this test over the full search for rows

r[i + p − 2k] and r[i + 2p − 2k] is that it can be performed with simple table

lookup techniques, described in the next section.

For the special case p = 2, the double lookahead technique described above

does not work as well, because r[i + p − 2k] = r[i]. Instead, we perform a

reachability computation on a de Bruijn graph similar to the one used for our

state space, five cells wide with don’t-care boundary conditions, and test whether

triples of consecutive cells from the new rows r[i] and r[i + p− k] correspond to

a de Bruijn graph vertex that can reach a terminal state. This technique varies

considerably in effectiveness, depending on the rule: for Life, 18.5% of the 65536

possible patterns are pruned as being unable to reach a terminal state, and for

B27/S0 (Figure 10) the number is 68.3%, but for many rules it can be 0%.

446 DAVID EPPSTEIN

7. Fast Neighbor-Finding Algorithm

To complete our search algorithm, we need to describe how to find the suc-

cessors of each state. That is, given a state

S = r[0], r[1], . . . r[i − 1]

we wish to find all possible rows r[i] such that (1) r[i] satisfies equation (∗), (2)

there exists another row r[i + p − k] such that rows r[i] and r[i + p − k] satisfy

equation (L), and (3) every three consecutive cells of r[i + p − k] can be part of

a solution to equations (LL).

Note that (because of our approximation to equations (LL)) all these con-

straints involve only triples of adjacent cells in unknown rows. That is, equation

(∗) can be phrased as saying that every three consecutive cells of r[i], r[i − p],

and r[i − 2p] form a 3 × 3 square such that the result of the evolution rule in

the center of the square is correct; and equation (L) can be phrased similarly.

For this reason, we need a representation of the pairs of rows r[i], r[i + p− k] in

which we can access these triples of adjacent cells.

Such a representation is provided by the graph depicted in Figure 11. This

graph (which like our state space can be viewed as a kind of de Bruijn graph) is

formed by a sequence of columns of vertices. Each column contains 16 vertices,

representing the 16 ways of forming a 2 × 2 block of cells. We connect a vertex

in one column with a vertex in the next column whenever the two blocks overlap

to form a single 2 × 3 block of cells; that is, an edge exists whenever the right

half of the left 2 × 2 block matches the left half of the right 2 × 2 block.

If we have any two rows of cells, one placed above the other, we can form a

path in this graph in which the vertices correspond to 2 × 2 blocks drawn from

the pair of rows. Conversely, the fact that adjacent blocks are required to match

implies that any path in this graph corresponds to a pair of rows.

Since each triple of adjacent cells from the two rows corresponds to an edge in

this graph, the constraints of equations (∗), (L), and (LL) can be handled simply

by removing the edges from the graph that correspond to triples not satisfying

those constraints. In this constrained subgraph, any path corresponds to a pair

of rows satisfying all the constraints. Thus, our problem has been reduced to

finding the constrained subgraph, and searching for paths through it between

appropriately chosen start and end terminals. The choice of which vertices to

use as terminals depends on the symmetry type of the pattern we are searching

for.

This search can be understood as being separated into three stages, although

our actual implementation interleaves the first two of these.

In the first stage, we find the edges of the graph corresponding to blocks of

cells satisfying the given constraints. We represent the set of 64 possible edges

between each pair of columns in the graph (as shown in Figure 11) as a 64-bit

quantity, where a bit is nonzero if an edge exists and zero otherwise. The set

SEARCHING FOR SPACESHIPS 447

.

Figure 11. Graph formed by placing each of 16 2 × 2 blocks of cells in each

column, and connecting a block in one column to a block in the next column

whenever the two blocks overlap to form a 2 × 3 block. Paths in the graph

represent pairs of rows r[i], r[i + p − k]; by removing edges from the graph we

can constrain triples of adjacent cells from these rows.

of edges corresponding to blocks satisfying equation (∗) can be found by a table

lookup with an index that encodes the values of three consecutive cells of r[i−p]

and r[i − 2p] together with one cell of r[i − p + k]. Similarly, the set of edges

corresponding to blocks satisfying equation (L) can be found by a table lookup

with an index that encodes the values of three consecutive cells of r[i − k] and

r[i − p − k]. In our implementation, we combine these two constraints into a

single table lookup. Finally, the set of edges corresponding to blocks satisfying

equations (LL) can be found by a table lookup with an index that encodes the

values of five consecutive cells of r[i − 2k] and r[i − p − 2k] together with three

consecutive cells of r[i − k]. The sets coming from equations (∗), (L), and (LL)

are combined with a simple bitwise Boolean and operation. The various tables

used by this stage depend on the cellular automaton rule, and are precomputed

based on that rule before we do any searching.

448 DAVID EPPSTEIN

??? ? ?? ?? ? ? ? ? ? ?? ? ? ? ? ? ?

Figure 12. Simplified example (without lookahead) of graph representing equa-

tion (∗) for the rows from Fig. 9. Gray regions represent portions of the graph

not reachable from the two start vertices.

In the second stage, we compute a 16-bit quantity for each column of vertices,

representing the set of vertices in that column that can be reached from the

start terminal. This set can be computed from the set of reachable vertices in

the previous column by a small number of shift and mask operations involving

the sets of edges computed in the previous stage.

In the third stage, we wish to find the actual rows r[i] that correspond to the

paths in the constrained graph. We perform a backtracking search for these rows,

starting with the end terminal of the graph. At each step, we maintain a 16-bit

quantity, representing the set of vertices in the current column of the graph that

could reach the end terminal by a path matching the current partial row. To find

the possible extensions of a row, we find the predecessors of this set of vertices

in the graph by a small number of shift and mask operations (resembling those

of the previous stage) and separate these predecessors into two subsets, those for

which the appropriate cell of r[i] is alive or dead. We then continue recursively in

one or both of these subsets, depending on whichever of the two has a nonempty

intersection with the set of vertices in the same column that can reach the start

vertex.

Because of the reachability computation in the second stage, the third stage

never reaches a dead end in which a partial row can not be extended. Therefore,

this algorithm spends a total amount of time at most proportional to the width

of the rows (in the first two stages) plus the width times the number of successor

states (in the third stage). The time for the overall search algorithm is bounded

by the width times the number of states reached.

A simplified example of this graph representation of our problem is depicted

in Figure 12, which shows the graph formed by the rows from the Life turtle

pattern depicted in Figure 9. To reduce the complexity of the figure, we have

only incorporated equation (∗), and not the two lookahead equations. Therefore,

the vertices in each column represent the states of two adjacent cells in row r[i]

only, instead of also involving row r[i + p − k], and there are four vertices per

column instead of sixteen. Each edge represents the state of three adjacent cells

SEARCHING FOR SPACESHIPS 449

of r[i], and connects vertices corresponding to the left two and right two of these

cells; we have marked each edge with the corresponding cell states.

Due to the symmetry of the turtle, the effective search width is six, so we need

to enforce equation (∗) for six cells of row r[i−p+k]. Six of the seven columns of

edges in the graph correspond to these cells; the seventh represents a cell outside

the search width which must remain blank to prevent the pattern from growing

beyond its assigned bounds. Below each of these seven columns, we have shown

the cells from previous rows r[i − p], r[i − 2p], and r[i − p + k] which determine

the set of edges in the column and which are concatenated together to form the

table index used to look up this set of edges.

The starting vertices in this example are the top and bottom left ones in the

graph, which represent the possible states for the center two cells of r[i] that

preserve the pattern’s symmetry. The destination vertex is the upper right one;

it represents the state of two cells in row r[i] beyond the given search width, so

both must be blank. Each path from a start vertex to the destination vertex

represents a possible choice for the cells in row r[i] that would lead to the correct

evolution of row r[i − p + k] according to the rules of Conway’s life. There are

13 such paths in the graph shown. The reachability information computed in

the second stage of the algorithm is depicted by marking unreachable vertices

and edges in gray; in this example, as well as the asymmetric states in the first

column, there is one more unreachable vertex.

For this simplified example, a list of all 13 paths in this graph could be found

in the third stage by a recursive depth first search from the destination vertex

backwards, searching only the black edges and vertices. Thus even this simplified

representation reduces the number of row states that need to be considered from

64 to 13, and automatically selects only those states for which the evolution rule

leads to the correct outcome. The presence of lookahead complicates the third

stage in our actual program since multiple paths can correspond to the same

value of row r[i]; the recursive search procedure described above finds each such

value exactly once.

8. Conclusions

To summarize, we have described an algorithm that finds spaceships in outer

totalistic Moore neighborhood cellular automata, by a hybrid breadth first iter-

ative deepening search algorithm in a state space formed by partial sequences

of pattern rows. The algorithm represents the successors of each state by paths

in a regularly structured graph with roughly 16w vertices; this graph is con-

structed by performing table lookups to quickly find the sets of edges represent-

ing the constraints of the cellular automaton evolution rule and of our lookahead

formulations. We use this graph to find a state’s successors by performing a

16-way bit-parallel reachability algorithm in this graph, followed by a recursive

backtracking stage that uses the reachability information to avoid dead ends.

450 DAVID EPPSTEIN

Figure 13. Large period-114 c/3 blinker puffer in Life, found by David Bell,

Jason Summers, and Stephen Silver using a combination of automatic and hu-

man-guided searching.

Empirically, the algorithm works well, and is able to find large new patterns in

many cellular automaton rules.

This work raises a number of interesting research questions, beyond the obvi-

ous one of what further improvements are possible to our search program:

• The algorithm described here, and the two search algorithms previously used

by Hickerson and Coe, use three different state spaces. Do these spaces really

lead to different asymptotic search performance, or are they merely three

different ways of looking at the same thing? Can one make any theoretical

arguments for why one space might work better than another?

• Is it possible to explain the observed fluctuations in size of the levels of the

state space? A hint of an explanation for the fact that fluctuations exist comes

from the idea that we typically run as narrow as possible a search as we can

to find a given period spaceship. Increasing the width seems to increase the

branching factor, and perhaps we should expect to find spaceships as soon

as the state space develops infinite branches, at which point the branching

factor will likely be quite close to one. However this rough idea depends on

the unexplained assumption that the start of a spaceship is harder to find

than the tail, and it does not explain other features of the state space size

such as a large bulge near the early levels of the search.

• We have mentioned in Section 4 that one can use the size of the de Bruijn

graph as a rough guide to the complexity of the search. However, our searches

typically examine far fewer nodes than are present in the de Bruijn graph. Fur-

ther, there seem to be other factors that can influence the search complexity;

for instance, increasing k seems to decrease the running time, so that e.g.

a width-nine search for a c/7 ship in Life would likely take much more time

than the search for the weekender. Can we find a better formula for predicting

search run time?

• What if anything can one say about the computational complexity of space-

ship searching? Is the problem of determining whether a given outer totalistic

rule has a spaceship of a given speed or period even decidable?

SEARCHING FOR SPACESHIPS 451

• David Bell and others have had success finding large spaceships with “arms”

(Figure 13) by examining partial results from an automatic search, placing

“don’t care” cells at appropriate connection points, and then doing secondary

searches for arms that can complete the pattern from each connection point.

To what extent can this human-guided search procedure be automated?

• What other types of patterns can be found by our search techniques? For

instance, one possibility would be a search for predecessors of a given pattern.

The rows of each predecessor satisfy a consistency condition similar to equa-

tion (∗), and it would not be difficult to incorporate a lookahead technique

similar to the one we use for spaceship searching. However due to the fixed

depth of the search it seems that depth first search would be a more appropri-

ate strategy than the breadth first techniques we are using in our spaceship

searches.

• Carter Bays has had some success using brute force methods to find small

spaceships in various three-dimensional rules [1, 2, 4], and rules on the trian-

gular planar lattice [3]. How well can other search methods such as the ones

described here work for these types of automata?

• To what areas other than cellular automata can our search techniques be

applied? A possible candidate is in document improvement, where Bern,

Goldberg, and others [6] have been developing algorithms that look for a

single high-resolution image that best matches a given set of low-resolution

samples of the same character or image. Our graph based techniques could

be used to replace a local optimization technique that changes a single pixel

at a time, with a technique that finds an optimal assignment to an entire row

of pixels, or to any other linear sequence such as the set of pixels around the

boundary of an object.

Acknowledgements

Thanks go to Matthew Cook, Nick Gotts, Dean Hickerson, Harold McIntosh,

Gabriel Nivasch, and Bob Wainwright for helpful comments on drafts of this

paper; to Noam Elkies, Rich Korf, and Jason Summers for useful suggestions

regarding search algorithms; to Keith Amling, David Bell, and Tim Coe, for

making available the source codes of their spaceship searching programs; and to

Richard Schroeppel and the members of the Life mailing list for their support

and encouragement of cellular automaton research.

References

[1] C. Bays. Candidates for the game of Life in three dimensions. Complex Systems

1(3):373–400, June 1987.

[2] C. Bays. The discovery of a new glider for the game of three-dimensional Life.
Complex Systems 4(6):599–602, December 1990.

452 DAVID EPPSTEIN

[3] C. Bays. Cellular automata in the triangular tessellation. Complex Systems

8(2):127–150, April 1994.

[4] C. Bays. Further notes on the game of three-dimensional Life. Complex Systems

8(1):67–73, February 1994.

[5] E. R. Berlekamp, J. H. Conway, and R. K. Guy. What is Life? Winning Ways For

Your Mathematical Plays, vol. 2, chapter 25, pp. 817–850. Academic Press, 1982.

[6] M. Bern and D. Goldberg. Scanner-model-based document image improvement.
Proc. 7th IEEE Int. Conf. Image Processing, vol. 2, pp. 582-585, 2000.

[7] R. A. Bosch. Integer programming and Conway’s game of Life. SIAM Review

41(3):594–604, 1999, http://epubs.siam.org/sam-bin/dbq/article/33825.

[8] D. J. Buckingham and P. B. Callahan. Tight bounds on periodic cell configurations
in Life. Experimental Mathematics 7(3):221–241, 1998, http://www.expmath.com/
restricted/7/7.3/callahan.ps.gz.

[9] K. M. Evans. Larger Than Life: it’s so nonlinear. Ph.D. thesis, Univ. of Wisconsin,
Madison, 1996, http://www.csun.edu/˜kme52026/thesis.html.

[10] M. Gardner. The Game of Life, part I. Wheels, Life, and Other Mathematical

Amusements, chapter 20, pp. 214–225. W. H. Freeman, 1983.

[11] J. Gravner and D. Griffeath. Cellular automaton growth on
� 2: theorems,

examples, and problems. Advances in Applied Mathematics 21(2):241–304, August
1998, http://psoup.math.wisc.edu/extras/r1shapes/r1shapes.html.

[12] J. Hardouin-Duparc. À la recherche du paradis perdu. Publ. Math. Univ. Bordeaux

Année (4):51–89, 1972/73.

[13] J. Hardouin-Duparc. Paradis terrestre dans l’automate cellulaire de Conway. Rev.

Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-3):64–71,
1974.

[14] J.-C. Heudin. A new candidate rule for the game of two-dimensional Life. Complex

Systems 10(5):367–381, October 1996.

[15] R. E. Korf. Depth-first iterative-deepening: an optimal admissable tree search.
Artificial Intelligence 27:97–109, 1985.

[16] H. V. McIntosh. A zoo of Life forms, http://delta.cs.cinvestav.mx/˜mcintosh/
comun/zool/zoo.pdf. Manuscript, October 1988.

[17] H. V. McIntosh. Life’s still lifes, http://delta.cs.cinvestav.mx/˜mcintosh/comun/
still/still.pdf. Manuscript, September 1988.

[18] A. K. Sen and A. Bagchi. Fast recursive formulations of best-first search that allow
controlled use of memory. Proc. 11th Int. Joint Conf. Artificial Intelligence, vol. 1,
pp. 297–302, 1989.

[19] R. T. Wainwright. Some characteristics of the smallest reported Life and alienlife
spaceships. Manuscript, November 1994.

[20] W. Zhang. State-Space Search: Algorithms, Complexity, Extensions, and Applica-

tions. Springer Verlag, 1999.

SEARCHING FOR SPACESHIPS 453

David Eppstein

Deptartment of Information and Computer Science

University of California

Irvine, CA 92697-3425

United States

eppstein@ics.uci.edu

