


The Old Classics





More Games of No Chance
MSRI Publications
Volume 42, 2002

Higher Nimbers in Pawn Endgames on Large

Chessboards

NOAM D. ELKIES

Do ∗2, ∗4 and higher Nimbers occur on the 8 × 8 or larger boards?

— ONAE [Elkies 1996, p. 148]

It’s full of stars!

— 2001: A Space Odyssey [Clarke 1968, p. 193]

Abstract. We answer a question posed in [Elkies 1996] by constructing a
class of pawn endgames on m×n boards that show the Nimbers ∗k for many
large k. We do this by modifying and generalizing T.R. Dawson’s “pawns
game” [Berlekamp et al. 1982]. Our construction works for m ≥ 9 and n

sufficiently large; on the basis of computational evidence we conjecture, but
cannot yet prove, that the construction yields ∗k for all integers k.

1. Introduction

In [Elkies 1996] we showed that certain chess endgames can be analyzed by the

techniques of combinatorial game theory (CGT). We exhibited such endgames

whose components show a variety of CGT values, including integers, fractions,

and some infinite and infinitesimal values. Conspicuously absent were the values

∗k of Nim-heaps of size k > 1. Towards the end of [Elkies 1996] we asked whether

any chess endgames, whether on the standard 8 × 8 chessboard or on larger

rectangular boards, have components equivalent to ∗2, ∗4 and higher Nimbers.

In the present paper we answer this question affirmatively by constructing a new

class of pawn endgames on large boards that include ∗k for many large k, and

conjecture — though we cannot yet prove— that all ∗k arise in this class.

Our construction begins with a variation of a pawns game called “Dawson’s

Chess” in [Berlekamp et al. 1982]. In § 3 we introduce this variation and show

that, perhaps surprisingly, all quiescent (non-entailing) components of the mod-

ified game are equivalent to Nim-heaps (Theorem 1). We then determine the
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value of each such component, and characterize non-loony moves (Theorem 2).

In § 4 we construct pawn endgames1 on large chessboards that incorporate those

components. These endgames do not yet attain our aim, because the values

determined in Theorem 2 are all 0 or ∗1. In § 5 we modify one of our compo-

nents to obtain ∗2. In § 6 we further study components modified in this way,

showing that they, too, are equivalent to Nim-heaps (Theorem 3). We conclude

with the numerical evidence suggesting that all Nim-heaps can be simulated by

components of pawn endgames on large rectangular chessboards.

Before embarking on this course, we show in § 2 a pair of endgames on the

standard 8× 8 board in the style of [Elkies 1996] that illustrate the main ideas,

specifically the role of “loony moves”. Readers who are much more conversant

with CGT than with chess endgames will likely prefer to skim or skip § 2 on

first reading, returning to it only after absorbing the theory in § 3. Conversely,

chessplayers not fluent in CGT will find in § 2 motivation for the CGT ideas

central to § 3 and later sections.

2. An Illustrative Pair of Endgames

We introduce the main ideas of our construction by analyzing the following

pair of composed endgames on the standard 8 × 8 chessboard:2
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Diag. 1A: whoever moves loses
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Diag. 1B: whoever moves wins

Diagram 1A consists of two components. On the Kingside, seven men are

locked in a mutual Zugzwang that we already used in [Elkies 1996]. Both sides

can legally move in the Kingside, but only at the cost of checkmate (Qh1(2)

Bxf2) or ruinous material inferiority. Thus the outcome of Diagram 1A hinges

on the Queenside component, with three adjacent pawns on each side. We have

1More precisely, King-and-pawn endgames; the first two words are usually suppressed be-
cause every legal chess position must have a White and a Black King.

2These are not pawn endgames, but all units other than pawns are involved in the Kingside
Zugzwang, and are thus passive throughout the analysis. We can construct plausible positions
where that Zugzwang, too, is replaced by one using only Kings and pawns, but only at the
cost of introducing an inordinate number of side-variations tangential to the CGT content of
the positions. For instance, replace files e–g in Diag. 1A by White Kg1, Ph2 and Black Kh3,
Pg2; in Diag. 1B, do the same and move the h5/h7 pawns to e3/e5.
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not seen such a component in [Elkies 1996], but it turns out to be a mutual

Zugzwang: whichever side moves first, the opponent can maneuver to make the

last pawn move on the Queenside, forcing a losing King move in the Kingside

component. Thus3 a5 can be answered by bxa5 bxa5 c5, likewise c5 by bxc5

bxc5 a5, and b5 by axb5 axb5 c5. In this last line, it is no better to answer

axb5 with cxb5, since then c5 wins: if played by Black, White will respond a5

and promote first, but Black c1Q will be checkmate; while if White plays c5 and

Black answers a5, White replies c6 and promotes with Black’s pawn still two

moves away from the first rank, winning easily.4 Note the key point that a5 or

c5 must not be answered by b5?, since then c5 (resp. a5) transfers the turn to

the second player and wins— but not cxb5? cxb5 (or axb5? axb5), regaining the

Zugzwang.

Diagram 1B is Diag. 1A with the h5 and h7 pawns added; these form an extra

component which we recognize from [Elkies 1996] as having the value ∗. Thus

we expect that Diag. 1B is a first-player win, and indeed either side can win by

playing h6, effectively reducing to Diag. 1A. The first player can also win starting

on the Queenside: a5 bxa5 bxa5 (∗+∗ = 0), and likewise if a5 is answered by b5

(c:b5 etc. wins, but not c5? h6). The first player must not, however, start b5?,

when the opponent trades twice on b5, in effect transforming ∗ + ∗ into 0 + ∗,

and then wins by playing h6.

Note the role of the move b5 in the analysis of both Diagrams 1A and 1B.

In the terminology of [Berlekamp et al. 1982], this is an “entailing move”: it

makes a threat (to win by capturing a pawn) that must be answered in the same

component. But, whether the rest of the position has value 0 (Diag. 1A) or *

(Diag. 1B), the move b5 loses, because the opponent can answer the threat in

two ways, one of which passes the turn back (advancing the threatened pawn to

a5 or c5), one of which in effect retains the turn (capturing on b5, then making

another move after the forced re-capture). Since the first option wins if the rest

of the position has value 0, and the second wins if the rest of the position has

value ∗ (or any other nonzero Nimber), b5 is a bad move in either case. In

[Berlekamp et al. 1982] such an unconditionally bad move is called “loony” (see

p. 378). Since b5 is bad, it follows in turn that, in either Diag. 1A or 1B, the

3Note that we do not specify whether White or Black begins the sequence. Fortunately
the algebraic chess notation for these moves, and for most of the pawn moves that occur in
this paper, is the same whether they are played by White or Black. When we exploit this
circumstance, we refrain from the usual practice giving move numbers, which would specify
who made which move: White begins 1 a5 bxa5 2 bxa5 c5, while Black begins 1. . . a5 2 bxa5
bxa5 3 c5.

4This part of the analysis explains why we chose this Kingside position from [Elkies 1996]:
the position of White’s King, but not Black’s, on its first rank makes it more vulnerable to
promoted pawns, exactly compensating for the White pawns being a step closer to promotion
than Black’s. In [Elkies 1996] this Kingside Zugzwang had the Kings on f1 and f3, not e1 and
e3; here we shifted the position one square to the left so as not to worry about a possible White
check by a newly promoted Queen on a8. Thus 1 b5 can be answered by 1. . . cxb5 as well as
1. . . axb5.
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entailing move a5 may be regarded as the non-entailing “move” consisting of the

sequence a5 bxa5 bxa5: the only other reply to a5 is b5, which is loony and so

can be ignored.

We next show that this analysis can be extended to similar pawn configu-

rations on more than three adjacent files. We begin our investigation with a

simplified game involving only the relevant pawns.

3. A Game of Pawns

3.1. Game Definition. Our game is played on a board of arbitrary length n

and height 3. At the start, White pawns occupy some of the squares on the

bottom row, and Black pawns occupy the corresponding squares on the top row.

For instance, Diag. 2 shows a possible starting position on a board with n = 12:

� ��� ��� ��� � ��� �
� � � � � �

� ��� ��� ��� � � � �

Diag. 2: A starting position

The pawns move and capture like chess pawns, except that there is no double-

move option (and thus no en passant rule). Thus if a file contains a White pawn

in the bottom row and a Black pawn in the top row, these pawns were there in

the initial position and have not moved; we call such a file an “initial file”.

White wins if a White pawn reaches the top row, and Black wins if a Black

pawn reaches the bottom row. Thus there is no need for a promotion rule because

whoever could promote a pawn immediately wins the game. But it is easy enough

to prevent this, and we shall assume that neither side allows an opposing pawn

to reach its winning row. The game will then end in finitely many moves with

all pawns blocked, at which point the winner is the player who made the last

move. We shall sometimes call this outcome a “win by Zugzwang”, as opposed

to an “immediate win” by reaching the opposite row.

For instance, from Diag. 2 White may begin 1 c2. Since this threatens to

win next move by capturing on b3 or d3, Black must capture the c2-pawn; if

Black captures with the b-pawn, we reach Diag. 3A. Now Black threatens to win

by advancing this pawn further, so White must capture it; but unlike Black’s

capture, White’s can only be made in one way: if 2 dxc2?, threatening to win

with 3 cxd3, Black does not re-capture but instead plays d2, producing Diag. 3B.

� � ��� ��� � ��� �
� � � � � � �

� � � � � � � � ��� �

Diag. 3A: After 1 c2 bxc2

� � � ��� � ��� �
� � � � � � �

� � � � ��� � � � �

Diag. 3B: If then 2 dxc2? d2, winning
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Black then wins, since touchdown at d1 can only be delayed by one move with

3 exd2 exd2 (but not 3. . . cxd2??, when 4 c3 wins instead for White!), and then

4. . . d1.

� � � ��� � ��� �
� � � � � � �

� � � � � � ��� �

Diag. 3C: After 2 bxc2 dxc2 3 dxc2

� � � ��� � ��� �
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Diag. 3D: Instead 2. . . d2
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Diag. 3E: Then 3 exd2 exd2
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Diag. 3F: or 3 e2

Thus White must play 2 bxc2 from Diag. 3A. This again threatens to win with

3 cxd3, so Black has only two options. One is to re-capture with 2. . . dxc2, forcing

White in turn to re-capture: 3 dxc2, reaching Diag. 3C. Alternatively, Black may

save the d3-pawn by advancing it to d2 (Diag. 3D). This forces White to move

the attacked pawn at e1. Again there are two options. White may capture with

3 exd2, forcing Black to reply 3. . . exd2 (Diag. 3E), not cxd2? when White wins

immediately with 4 c3. Alternatively White may advance with 3 e2 (Diag. 3F),

when Black again has two options against 4 exf3, etc. Eventually the skirmish

ends either with mutual pawn captures (as in Diag. 3C or 3E) or when the wave

of pawn advances reaches the end of the component (3. . . f2 4 g2), leaving one

side or the other to choose the next component to play in.

As noted in the Introduction, this game is reminiscent of the game called

“Dawson’s Chess” in [Berlekamp et al. 1982, pp. 88 ff.]; the only difference is

that in Dawson’s Chess a player who can capture a pawn must do so, while in

our game, as in ordinary chess, captures are optional.5 Because of the obliga-

tion to capture, Dawson’s Chess may appear to be an entailing game, but it is

quickly seen to be equivalent to a (non-entailing) impartial game, called “Daw-

son’s Kayles” in [Berlekamp et al. 1982]. Our game also has entailing moves,

and features a greater variety of possible components; but we shall see that it,

too, reduces to a non-entailing impartial game once we eliminate moves that lose

immediately and loony moves.

5Since Dawson was a chess problemist, we first guessed that the game analyzed here was
Dawson’s original proposal, before the modification in [Berlekamp et al. 1982]. But in fact
R.K. Guy reports in a 16.viii.1996 e-mail that Dawson did want obligatory captures but pro-
posed a misère rule (last player loses). Guy also writes: “I am aware of some very desultory
attempts to analyze the game in which captures are allowed, but little was achieved, to my
knowledge.” I thank Guy for this information, and John Beasley who more recently sent me
copies of pages from the 12/1934 and 2/1935 issues of The Problemist Fairy Supplement in
which Dawson proposed and analyzed his original game.
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3.2. Decomposition into Components. We begin by listing the possible

components. We may ignore any files in which no further move may be made.

These are the files that are either empty (such as the h-file throughout Diag. 3,

the b-file in Diag. 3C–3F, and the d- and e-files in 3C and 3E respectively) or

closed. We say a file is “closed” if it contains one pawn of each color, neither

of which can move or capture (the c-file in 3C–3F and the d-file in 3E–3F).

One might object that such a currently immobile pawn may be activated in the

future; for instance in Diagram 3D if White plays 3 exd2 then the dormant c-

file may awake: 3. . . cxd2. But we observed already that this Black move loses

immediately to 4 c3. Since we may and do assume that immediately losing moves

are never played, we may ignore the possibility of 3. . . cxd2?, and regard the c-file

in Diag. 3D and the d-file in Diag. 3F as permanently closed.

By discarding empty or closed files we partition the board into components

that do not interact except when an entailing move requires an answer in the

same component. Thus at each point there can be at most one entailing com-

ponent (again assuming no immediately losing moves). We next describe all

possible components and introduce a notation for each.

A non-entailing component consists of m consecutive initial files, for some

positive integer m. We denote such a component by [m]. For instance, Diag. 3A

is [7] + [4]; Diag. 3C is [1] + [3] + [4]; and Diag. 3E is [1] + [2] + [4]. An entailing

component contains a pawn that has just moved (either vertically or diagonally)

to the second rank, threatening an immediate win, and can be captured. We

denote this pawn’s file by “:”. There are four kinds of entailing component,

depending on whether this pawn can be captured in one or two ways and on how

many friendly pawns defend it by being in position to re-capture.

• If the pawn is attacked once and defended once, then the attacking and

defending pawns are on the same file (else the side to move can win immediately

as in Diag. 3B). Thus the “:” file is at the end of a component each of whose

remaining files is initial. We denote the component by [:m], where m is the

number of initial files in the component. For instance, Diag. 4A shows [:5]. For

the mirror-image of “[:m]”, we use either the same notation or “[m:]”. Either

side can move from [m+1] to [:m] by moving the left- or rightmost pawn. Faced

with [:m], one must move the attacked pawn, either by capturing the “:” pawn or

by advancing it. Advancing yields [:(m− 1)] (see Diag. 4B), unless m = 1 when

the advance yields 0 since all files in the component become blocked. Capturing

yields [:.]+[m − 1] (see Diag. 4C), where [:.] is the the component defined next.

• If the pawn is attacked once and not defended, then it has just captured,

and is subject to capture from an unopposed pawn. We denote the file with

one unopposed pawn by “.”. The capture is obligatory, and results in a closed

file. Therefore the adjacent “:” and “.” files do not interact with any other

components, even if they are not yet separated from them by empty or closed

files. We may thus regard these files as a separate component [:.], which entails a
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move to 0. For instance, files b, c in Diag. 4C constitute [:.], which is unaffected

by the [4] on files d through g.

� � ��� ���
� � � �

� ��� � � � �

Diag. 4A: [:5]

� � ��� ���
� � � � �

� � � ��� � �

Diag. 4B: [:4]

� � ��� ���
� � � �

� � � ��� ���

Diag. 4C: [:.]+[4]

• If the pawn is attacked twice and defended twice, then the component of

the “:” file consists of that file, m initial files to its left, and m′ initial files to

its right, for some positive integers m and m′. We denote such a component

by [m:m′]. For instance, Diag. 5A shows [2:4]. We already encountered this

component after the move c2 from Diag. 2. The component [m:m′] entails a

capture of the “:” pawn. This yields either [m − 1]+[.:m′] or [.:m] + [m′ − 1],

where [.:m], defined next, is our fourth and last kind of entailing component,

and [m − 1] (or [m′ − 1]) is read as 0 if m = 1 (resp. m′ = 1).

• If the pawn is attacked twice and defended once, then it is part of a com-

ponent obtained from [:.] by placing m initial files next to the “:” file, for some

positive integer m. Naturally we call such a component [.:m] (or [m:.]). As ex-

plained in the paragraph introducing [:.], an initial file next to the “.” file cannot

interact with it, and thus belongs to a different component. For instance, the

two possible captures from [2:4] yield [1]+[.:4] (Diag. 5B, also seen in Diag. 3A)

and [2:.]+[3] (Diag. 5C). Faced with [.:m], one has a single move that does not

lose immediately: capture with the “.” pawn, producing [:m], as seen earlier in

connection with Diag. 3C.

� ��� ��� ���
� � � � �

� � � � � � �

Diag. 5A: [2:4]

� � ��� ���
� � � � �

� � � ��� � �

Diag. 5B: [1]+[.:4]

� ��� � ���
� � � � �

� � � ��� ���

Diag. 5C: [2:.]+[3]

We summarize the available moves as follows. It will be convenient to extend

the notations [m], [:m], [.:m], [m:m′] by allowing m = 0 or m′ = 0, with the

understanding that

[0] = [:0] = [0:0] = 0, [. :0] = [: .], [m :0] = [0:m] = [:m].

We then have:

• From [m], either side may move to [m1 : m2] for each m1, m2 ≥ 0 such that

m1 + m2 = m − 1.

• If m > 0 then [:m] entails a move to either [: .] + [m − 1] or [: (m − 1)].

• [. :m] entails a move to [:m]. In particular (taking m = 0), [: .] entails a move

to [:0] = 0.
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• If m, m′ > 0 then [m : m′] entails a move to either [m − 1] + [. : m′] or

[m′ − 1] + [. :m].

For instance, Diag. 3D shows [1] + [:3] + [4], moving either to [1] + [: .] + [2] + [4]

and thence to [1] + [2] + [4] (Diag. 3E), or to [1] + [:2] + [4] (Diag. 3F).

Our list of possible moves confirms that [m], [:m], [:.], [.:m], [m:m′] are the

only possible components: the initial position is a sum of components [mi], and

each move from a known component that does not concede an immediate win

yields a sum of 0, 1, or 2 known components.

3.3. Analysis of Components. Since in each component both sides have the

same options, we are dealing with an impartial entailing game. We could thus

apply the theory of such games, explained in [Berlekamp et al. 1982], to analyze

each component. But it turns out that once we eliminate loony moves the game

is equivalent to an ordinary impartial game, and thus that each component [m]

is equivalent to a Nim-heap of size depending on m.

Consider the first few m. Clearly [1] is equivalent to ∗1, a Nim-heap of size 1.

At the end of § 2 we have already seen in effect that a move from [2] to [:1] is

loony: if the rest of the game has value 0, then the reply [:1]→0 wins; otherwise,

the reply [:1]→[:.] forces [:.]→0, again leaving a forced win in the sum of the

remaining components. (In particular, [2] is mutual Zugzwang, equivalent to 0.)

Thus also [3]→[1:1] is loony, because the forced continuation [1:1]→[.:1]→[:1]

again leaves the opponent in control. On the other hand, [3]→[:2] is now seen

to force [:2]→[:.]+[1], since the alternative [:2]→[:1] is known to lose. We thus

have the forced combination [3]→[:2]→[:.]+[1]→[1], which amounts to a “move”

[3]−→[1].6 Moreover, we have shown that this is the only reasonable continuation

from [3]. Since [1] ∼= ∗1, we conclude that [3] is equivalent to a Nim-heap of size

mex({1}) = 0, i.e. a mutual Zugzwang, as we already discovered in the analysis

of Diags. 1A,1B.

What of [4] and [5]? From [4], there are again two options, one of which

can be eliminated because it leads to the loony [:1], namely [4]→[2:1] (after

[2:1]→[1]+[.:1]→[1]+[:1]). This leaves [4]→[:3], which in turn allows two re-

sponses. One produces the sequence [4]→[:3]→[2]+[:.]→[2], resulting in a value

of 0. The other response is [4]→[:3]→[:2], which we already know forces the

further [:2]→[:.]+[1]→[1]∼= ∗1. In effect, the response to [4]→[:3] can interpret

the move either as [4] −→ [2] ∼= 0, or as [4] −→ [1] ∼= ∗1 with the side who played

[4] → [: 3] on move again. We claim that the latter option can be ignored. The

reason is that the first interpretation wins unless the remaining components of

the game add to 0; but then the second interpretation leaves the opponent to

move in a nonzero position, and thus also loses. We conclude that [4] is equivalent

6Here and later, we use an arrow “→” for a single move, and a long arrow “−→” for a
sequence of 3, 5, 7, . . . single entailing moves considered as one “move”.
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to an impartial game in which either side may move to 0, and is thus equiva-

lent to a Nim-heap of size mex({0}) = 1. As to [5], there are now three options,

only one excluded by [:1], namely [5]→[3:1]. The option [5]→[2:2] (move the cen-

ter pawn) forces the continuation [2:2]→[1]+[.:2]→[1]+[:2]→[1]+[:.]+[1]→[1]+[1],

and is thus tantamount to [5] −→ [1] + [1] ∼= 0. This leaves [5]→[:4], which we

show is loony for a new reason. One continuation is [:4]→[:.]+[3]→[3], interpret-

ing the move as [5] −→ [3] ∼= 0. The other is [:4]→[:3], which as we have just seen

is equivalent to [:4]−→[2]. Since [2] ∼= 0, this continuation interprets [5]→[:4] as a

move to 0 followed by an extra move. Thus a move to [:4] always allows a winning

reply, namely [:4]→[:3] if the remaining components add to 0, and [:4]→[:.]+[3]

if not. Hence the move to [:4] is loony as claimed, and [5] ∼= ∗(mex{0}) = ∗1.

The analysis of [1] through [5] shows almost all the possible behaviors in our

game; continuing by induction we prove:

Theorem 1. (i) For each integer m ≥ 0, the component [m] is equivalent to a

Nim-heap of some size ε(m).

(ii) A move to [: 1] is loony. For each integer m > 1, a move to [: m] is either

loony or equivalent to a move to [m − 1] ∼= ∗(ε(m − 1)). The move is loony if

and only if a move to [: (m − 1)] is not loony and ε(m − 1) = ε(m − 2).

(iii) For any positive integers m1, m2, a move to [m1 : m2] is either loony or

equivalent to a move to [m1 − 1] + [m2 − 1] = ∗(ε(m1 − 1)
∗

+ ε(m2 − 1)). The

move to [m1 :m2] is non-loony if and only both m1 and m2 satisfy the criterion

of (ii) for a move to [:m] to be non-loony.

(iv) We have ε(0) = 0, ε(1) = 1, and for m > 1 the values ε(m) are given

recursively by

ε(m) = mex
m1,m2

(

ε(m1 − 1)
∗

+ ε(m2 − 1)
)

.

Here the mex runs over pairs (m1, m2) of nonnegative integers such that m1 +

m2 = m − 1 and a move to [m1 : m2] is not loony, as per the criteria in parts

(ii) [for m1m2 = 0] and (iii) [for m1m2 > 0]. For this equation we declare that

ε(−1) = 0.

In parts (iii) and (iv), “
∗

+” denotes the Nim sum: (∗k) + (∗k′) = ∗(k
∗

+ k′).

Thus, once parts (i)–(iii) are known for all components with fewer than m initial

files, (iv) is just the Sprague-Grundy recursion for impartial games. Once (iv)

is known for all m ≤ m0, so is (i). The arguments for (ii) and (iii) are the same

ones we used for components with up to 5 initial files. For instance, for (iii) the

move [m1 + 1 + m2] → [m1 :m2] forces a choice among the continuations

[m1:m2]→[m1 − 1]+[.:m2]→[m1 − 1]+[:m2],

[m1:m2]→[m1:.]+[m2 − 1]→[m1:]+[m2 − 1].

If a move to [:m1] or [:m2] is loony then one or both of these continuations

wins. Otherwise by (ii) both continuations are tantamount to [m1 +1+m2] −→

[m1 − 1] + [m2 − 1].
�
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Carrying out the recursion for ε(m), we quickly detect and prove a periodicity:

Theorem 2. For all m ≥ 0 we have ε(m) = 0 if m is congruent to 0, 2, 3, 6,

or 9 mod 10, and ε(m) = 1 otherwise. A move to [: m] is loony if and only if

m = 5k ± 1 for some integer k.

Proof. Direct computation verifies the claim through m = 23, which suffices to

prove it for all m as in [Berlekamp et al. 1982, pp. 89–90], since 23 is twice the

period plus the maximum number of initial files lost by a “move” [m] −→ [m−2]

or [m1 + 1 + m2] −→ [m1 − 1] + [m2 − 1].
�

So, for instance, Diagram 2 is equivalent to ∗(ε(7)) + ∗(ε(4)) = ∗1 + ∗1 = 0

and is thus a mutual Zugzwang, a.k.a. P-position or previous-player win. The

next player thus might as well play a loony move such as 1 c2, in the hope of

giving the opponent Enough Rope [Berlekamp et al. 1982, p. 17]; the only correct

response is 1. . . bxc2 (Diag. 3A) 2 bxc2 d2! (Diag. 3D), maintaining the win after

either 3 exd2 exd2 (Diag. 3E) or 3 e2 (Diag 3F) fxe2! 4 fxe2.

4. Embedding into Generalized Chess

Consider Diag. 6A, a pawn endgame on a chessboard of 9 rows by 12 files:
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Diag. 6A: whoever moves wins (c5!)
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Diag. 6B: after 1 c5 . . . 4 e5

There are four components. In each of the top right and bottom right corners,

a King and three pawns are immobilized. Near the middle of the board (on the

g- and h-files), we have a mutual Zugzwang with three pawns on a side; a player

forced to move there will allow an opposing pawn to capture and soon advance

to Queen promotion, giving checkmate. In the leftmost five files we have a pawn

game with initial position [5], arranged symmetrically about the middle rank.

An “immediate win” in this game is a pawn that can promote to Queen in three

moves, ending the game by checkmate. We may thus assume that, as in our pawn

game of the previous section, both sides play to prevent an “immediate win”, and

the leftmost five files will eventually be empty or blocked. This is why we have

chosen a chessboard with an odd number of rows: with an even number, as on

the orthodox 8 × 8 board, one side’s pawns would be at least one move closer
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to promotion, and we would have to work harder to find positions in which, as

in Diags. 1A and 1B, an “immediate win” in the pawns game by either player

yields a chess win for the same player. Once play ends in the [5] component,

we see why the component in the g- and h-file is needed: the Zugzwangs arising

from the [m] components all end with blocked pawns, and if those were the only

components on the board then the chess game would end in stalemate, regardless

of which side “won” the pawns game. But, with the g- and h-files on the board,

the side who lost the pawns game must move in the central Zugzwang and lose

the chess game.

To see how this happens, suppose that White is to move in Diag. 6A. White

must start 1 c5, the only winning move by the analysis in the previous section.

Play may continue dxc5 2 dxc5 b5 (Black is lost, so tries to confuse matters with

a loony move) 3 axb5 (declining the rope 3 a5? e5) axb5 4 e5 (Diag. 6B). With

all other pawns blocked, Black must now play 4. . . g6 5 hxg6 g5. If now 6 h7? g4

ends in stalemate, so White first plays 7 gxh5 (or even 7 h4), and then promotes

the pawn on g6 and gives checkmate in three more moves.

This construction clearly generalizes to show that any instance of our pawn

game supported on a board of length n can be realized by a King-and-pawn

endgame on any chessboard of at least n+6 files whose height is an odd number

greater than 5.

5. Stopped Files

By embedding our pawn game into generalized chess, we have constructed

a new class of endgames that can be analyzed by combinatorial game theory.

But we have still not attained our aim of finding higher Nimbers, because by

Theorem 2 all the components of our endgames have value 0 or ∗1. To reach

∗2 and beyond, we modify our components by stopping some files. We illustrate

with Diag. 7A:
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Diag. 7A: whoever moves wins
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Diag. 7B: after 1 b5 cxb5 2 axb5

We have replaced the component [5] of Diag. 6A by two components. One is

familiar: on the j-file (third from the right) we see [1] ∼= ∗1. On the leftmost
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four files we have a new configuration. This component looks like [4], but with

four extra pawns on the a-file. These pawns are immobile, but have the effect of

stopping the file on both sides, so that a White pawn reaching a6 or a Black pawn

reaching a4 can no longer promote. Without these extra pawns, Diag. 7A would

evaluate to [4] + [1] ∼= ∗1 + ∗1 = 0 and would thus be a mutual Zugzwang. But

Diag. 7A is a first-player win, with the unique winning move b5!. Indeed, suppose

White plays b5 from Diag. 7A. If Black responds 1. . . axb5 then White’s reply

2 axb5 produces [:2]+[1] and wins. So Black instead plays 1. . . cxb5, expecting

the loony reply 2 cxb5. But thanks to the stopped a-file White can improve with

2 axb5!. See Diag. 7B. If now 2. . . a5, this pawn will get no further than a4, while

White forces a winning breakthrough with 3 c5, for instance 3. . . dxc5 4 dxc5

bxc5 5 b6 c4 6 b7 (Diag. 7C) and mates in two. Notice that the extra pawns

on the a-file do not stop the b-file: if Black now captures the pawn on b7 then

the pawn on a7 will march in its stead. We conclude that in Diag. 7B Black

has nothing better than 2. . . axb5 3 cxb5, which yields the same lost position

([1] + [1] ∼= 0) that would result from 1. . . axb5. After 1 b5 Black could also try

the tricky 1. . . c5, attempting to exploit the a-file stoppage by sacrificing the

a6-pawn. After the forced 2 dxc5 (d5? axb5 3 axb5 j5 wins) dxc5 (Diag. 7D),

White would indeed lose after 3 bxa6? j5, but the pretty 3 a5! wins. However

Black replies, a White pawn will next advance or capture to b6, and three moves

later White will promote first and checkmate Black.

� � � � � ���
� � � � � � � �
� � � � � � �
� � � � � �

� � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � � �
� � � � � ���

Diag. 7C: after 6 b7
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Diag. 7D: after 1. . . c5 2 dxc5 dxc5

Diag. 7A remains a first-player win even without the [1] component on the

j-file (Diag. 7E). The first move d5 wins as in our analysis of [4]: either cxd5 cxd5

or c5 bxc5 bxc5 a5 produces a decisive Zugzwang. In fact, d5 is the only winning

move in Diag. 7E. The move c5 is loony as before (bxc5 bxc5 d5/dxc5). With

the a-file stopped, a5 is loony as well. The opponent will answer b5 (Diag. 7F),

and if then cxb5 axb5!, followed by c5 and wins while the pawn left on a5 is
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useless as in Diag. 7B. This leaves (from Diag. 7F) c5, again producing the loony

[:1]. Thus a5 is itself loony as claimed.
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Diag. 7E: whoever moves wins
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Diag. 7F: after 1 a5 b5

Therefore the component in files a–d of Diag. 7A and Diag. 7E is equivalent

to an impartial game in which either side may move to either 0 (with d5) or ∗1

(with b5). Hence this component has the value ∗2! On longer boards of odd

height ≥ 9, we can stop some of the files in [m] for other m. We next show that

each of the resulting components is equivalent to a Nim-heap, some with values

∗4, ∗8 and beyond.

6. The Pawns game with Stopped Files

6.1. Game Definition and Components. We modify our pawn game by

choosing a subset of the n files and declaring that the files in that subset are

“stopped”. A pawn reaching its opposite row now scores an immediate win only

if it is on an unstopped file.7 We require that no two stopped files be adjacent.

This requirement arises naturally from our implementation of stopped files in

King-and-pawn endgames on large chessboards. As it happens, the requirement

is also necessary for our analysis of the modified pawns game. For instance, if

adjacent stopped files were allowed then a threat to capture a pawn might not

be an entailing move.

In the last section we already saw the effects of stopped files on the play of

the game. We next codify our observations. We begin by extending our notation

for quiescent components. In § 3, such a component was entirely described by

the number m of consecutive initial files that the component comprises. In the

modified game, we must also indicate which if any of these m files is stopped.

We denote a stopped initial file by 1, and an unstopped one by 0. A string of

m binary digits, with no 1’s adjacent, then denotes a quiescent component of m

initial files. To avoid confusion with our earlier notation, we use double instead

of single brackets. For instance, the component we called [m], with no stopped

7If the file is stopped, the pawn does not “promote”: it remains a pawn, and can make no
further moves. Recall that this was the fate of Black’s a5-pawn in Diag. 7C.
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files, now becomes [[000 · · ·0]] = [[0m]]; the component with value ∗2 on files

a–d of Diag. 7A is denoted [[1000]]. An initial file that may be either open or

closed will be denoted i (or i1, i2, etc.); an arbitrary “word” of 0’s and 1’s will

be denoted w (or w′, w1 , w2 , etc.).

A component comprising just one initial file, stopped or not, still has value

{0|0} = ∗1. In a component of at least two initial files, every move threatens to

capture and is entailing. This is true even if the file(s) of the threatened pawn(s)

is or are stopped, because an immediate win is then still threatened by advancing

in that stopped file, as we saw in Diag. 7D where White wins by 3 a5!. (Here we

need the condition that two adjacent files cannot both be stopped: if in Diag. 7D

the b-file were somehow stopped as well then 3 a5 would lose to either 3. . . bxa5

or 3. . . axb5.) This remains true even in the presence of other components. For

instance, if more components were added to Diagram 7B and Black played in

another component, White could win immediately by capturing once or twice in

that component until it became quiescent and then proceeding with c5.

Consider first a move by the pawn on the first or last file of the component

(without loss of generality: the first), attacking just one pawn. As in § 3, the

opponent must move the attacked pawn on the second file, either advancing it or

capturing the attacking pawn. In the latter case, the pawn must be re-captured,

and the sequence has the effect of removing the component’s first two files. In

the latter case, the component becomes quiescent if it had only two files (in

which case the first move in the component was loony, as before); otherwise the

advanced pawn in turn attacks a third-file pawn, which must capture or advance.

But now a new consideration enters: if the first file is stopped, then the capture

loses immediately since the opponent will re-capture from the first file and touch

down on the second, necessarily unstopped, file. (See Diag. 7F after 2 cxb5

axb5.) Note that the first file, though closed, can still affect play for one turn

after its closure if it is stopped. We thus need a notation for such files, as well

as stopped “:” files, which may become closed. We use an underline: a stopped

“:” file will be denoted “:”, and a stopped blocked file will simply be denoted “ ”.

Thus the moves discussed in this paragraph are as follows, with each w denoting

an arbitrary word of positive length:

• From [[0]] or [[1]], either side may move to 0.

• From [[0w]] or [[1w]], either side may move to [[:w]] or [[:w]] respectively.

• a move to [[:0]], [[:1]], or [[:0]] is loony.

• [[:0w]] entails a move to [[:.]]+[[w]] or [[:w]]; [[:0w]] entails a move to [[:.]]+[[w]]

or [[ :w]]; and [[:1w]] entails a move to [[:.]]+[[w]] or [[:w]]. Each of [[:.]] and

[[:.]] entails a move to 0.

• [[ :0]] or [[ :1]] entails a move to 0; and [[ :0w]] or [[ :1w]] entails a move to

[[:w]] or [[:w]] respectively.
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It remains to consider a pawn move in the interior of a quiescent component.

Such a move attacks two of the opponent’s pawns, and entails a capture. If

neither of the attacked pawns is on a stopped file, then either of them may

capture, forcing a re-capture from the same file, just as in the pawn game without

stopped files. If both pawns are on stopped files (see Diag. 8A), then a capture

from either of these files can be met by a capture from the other file (Diag. 8B),

forcing a further capture and re-capture to avoid immediate loss. The first player

may also choose to make the first re-capture from the same file (Diag. 8C), but

we can ignore this possibility because the opponent can still re-capture again to

produce the same position as before, but has the extra option of advancing the

attacked pawn.
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Diag. 8A (c, e files blocked)

� ��� � � ��� �
� � � �

� � � � � � �

Diag. 8B
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Diag. 8C

Finally, if just one of the two attacked pawns lies on an unstopped file, it

may as well capture, forcing a re-capture in the same file: capturing with the

other pawn lets the first player capture from the stopped file, forcing a further

capture and re-capture to avoid immediate loss, and thus denying the opponent

the option to capture with one attacked pawn and then advance the other. We

next summarize the moves discussed in this paragraph that we did not list before.

Here w, w1 , w2 again denote arbitrary words, which may be empty (length zero)

except for the first item:

• From [[w10w2 ]] or [[w11w2 ]] with w1 , w2 of positive length, either side may

move to [[w1 :w2 ]] or [[w1 :w2 ]] respectively.

• [[w1i1:i2w2 ]] entails a move to [[w1 ]]+[[.:i2w2 ]] or [[w1i1:.]]+[[w2 ]]; likewise,

[[w1010w2]] entails a move to [[w10]]+[[.:w2 ]] or [[w1 :.]]+[[0w2]].

• [[.:w]] entails a move to [[:w]]; likewise, [[.:w]] entails a move to [[:w]].

• A move to [[w11:1w2]] is equivalent to a move to [[w1 ]] + [[w2 ]].

• A move to [[w11:0w2]] is equivalent to a move to [[w1 ]] + [[:0w2 ]].

Only the last two cases are directly affected by stopped files.

6.2. Reduction to Nim. Even with stopped files it turns out that our pawn

game still reduces to an impartial game, and thus to Nim, once immediately

losing and loony moves are eliminated:

Theorem 3. (i) Each component [[w]] is equivalent to a Nim-heap of some

size ε(w).

(ii) A move to [[: i]], or [[:0i]] is loony. For each w of positive length, a move

to [[: iw]] is either loony or equivalent to a move to [[w]] ∼= ∗ε(w). The move to
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[[: 0w]] or [[: 1w]] is loony if and only if a move to [[:w]] or [[:w]] respectively is

not loony and is equivalent to a move to ∗ε(w). For each w of positive length, a

move to [[:0iw]] is either loony or equivalent to a move to [[iw]] ∼= ∗ε(iw). The

move to [[:00w]] or [[:01w]] is not loony if and only if a move to [[:w]] or [[:w]]

respectively is not loony and is equivalent to a move to ∗(0w) or ∗(1w).

(iii) For any words w1 , w2, a move to [[w10:0w2]] or [[w10:0w2]] is either loony

or equivalent to a move to [[w1 ]] + [[w2 ]] = ∗(ε(w1)
∗

+ ε(w2)). The move to

[[w10:0w2 ]] is non-loony if and only both w1 and w2 satisfy the criterion of (ii)

for a move to [[:0w]] to be non-loony. Likewise, the move to [[w10:0w2 ]] is non-

loony if and only both w1 and w2 satisfy the criterion of (ii) for a move to [[:0w]]

to be non-loony.

(iv) The function ε from strings of 0’s and 1’s with no consecutive 1’s to non-

negative integers is recursively determined by (ii) and (iii): ε(i) = 1, and for w

of length > 1 the value ε(w) is the mex of the values of the Nim equivalents of

all non-loony moves as described in (ii), (iii).

Proof. This is proved in exactly the same way as Theorem 1. Note that we

do not evaluate moves to [[ :w]]. Such a move is available only if the opponent

just moved to [[:0w]]. If that move was loony then we win, capturing unless the

other components sum to ε(w) in which case we advance, forcing the opponent

to advance in return and winning whether that forced advance was loony or not.

If the opponent’s move to [[:0w]] was not loony then capturing or advancing our

attacked pawn yields equivalent positions.
�

6.3. Numerical Results. Theorem 3 yields a practical algorithm for evaluat-

ing ε(w). If w has length m, the recursion in (iv) requires O(m2 log m) space,

to store ε(w′) as it is computed for each substring w′ of consecutive bits of w,

and O(m3) table lookups and nim-sums, to recall each ε(w′) as it is needed and

combine pairs. Unlike the situation for the simple game with no files stopped,

where we obtained a simple closed form for ε(m) (Theorem 2), here we do not

know such a closed form. We can, however implement the O(m3) algorithm to

compute ε(w) for many w. We conclude this paper with a report on the results

of several such computations and our reasons for believing that ε(w) can be

arbitrarily large.

We saw already that ε(1000) = 2; this is the unique w of minimal length such

that [w] has value ∗2, except that the reversal [[0001]] of [[1000]] has the same

value. Clearly [[0]] and [[1]] are the smallest instances of ∗1. We first find ∗4,

∗8 and ∗16 at lengths 9, 20, and 43, for w = 101001000, 10100100010100001000,

1010010001000000010100010000000101000100101, among others. The following

table lists for each k ≤ 16 the least m such that ε(w) = k for some word w of

length m:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m 1 4 6 9 11 14 16 20 22 25 27 30 32 37 39 43
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It seems that, for each k, instances of ∗k are quite plentiful as m grows. The

following table gives for each 35 ≤ m ≤ 42 the proportion of length-m words w

with ε(w) = 0, 1, 2, . . . , 9, rounded to two significant figures:8

m 0 1 2 3 4 5 6 7 8 9

35 24% 26% 19% 15% 5.4% 5.7% 2.7% 2.5% .51% .25%

36 22% 27% 18% 15% 5.5% 5.7% 2.6% 2.8% .54% .27%

37 26% 22% 14% 19% 5.8% 5.5% 2.8% 2.8% .55% .31%

38 25% 23% 16% 17% 5.7% 5.7% 3.1% 2.7% .56% .35%

39 22% 26% 19% 14% 5.6% 5.9% 3.0% 3.0% .59% .37%

40 24% 24% 16% 18% 5.9% 5.7% 3.0% 3.2% .61% .40%

41 26% 22% 15% 19% 5.9% 5.8% 3.3% 3.1% .61% .44%

42 22% 24% 18% 15% 5.8% 6.0% 3.3% 3.2% .63% .47%

Especially for ∗0 through ∗3, the proportions seem to be bounded away from

zero but varying quite erratically with m. The small proportions of ∗6 through ∗9

appear to rise slowly but not smoothly. We are led to guess that for each k

there are length-m components of value ∗k once m is large enough— perhaps

m � k suffices —and ask for a description and explanation of the proportion of

components of value ∗k among all components of length m. In particular, is it

true for each k that this proportion is bounded away from zero as m → ∞?

It is well known that the number of binary words of length m without two

consecutive 1’s is the (m + 2)-nd Fibonacci number. This number grows expo-

nentially with m, soon putting an end to exhaustive computation. We do not

expect to be able to extend such computations to find the first ∗32, which prob-

ably occurs around m = 90. Nevertheless we have reached ∗32 and much more

by computing ε(w) for periodic w of small period p. This has the computational

advantage that for each m′ < m we have at most p substrings of length m′ to

evaluate, rather than the usual m + 1 − m′.9

We have done this for various small p. Often the resulting Nim-values settle

into a repeating pattern, of period p or some multiple of p. This is what happened

in Theorem 2 for p = 1, with period 10p. Usually the multiplier is smaller

than 10, though blocking files 14r and 14r+5 produces a period of 504 = 36 ·14.

All repeating patterns with p ≤ 4 soon become periodic, but for larger p some

choices of pattern yield large and apparently chaotic Nim-values. For instance,

we have reached ∗4096 by blocking every sixth file in components of length up

to 2 · 105. For each α = 3, 4, . . . , 12 the shortest such component of value ∗(2α)

8To compute such a table takes only O(m) basic operations for each choice of w, rather
than O(m3), because ε(w′) has already been computed for each substring w′ —this as long as
one has enough space to store ε(w′) for all w′ of length at most m − 2.

9Once this is done for some period-p pattern, one can also efficiently evaluate components
with the same repeated pattern attached to any initial configuration of blocked and unblocked
files. We have not yet systematically implemented this generalization.
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has files 6r + 4 blocked, with length n given by the following table:

α 3 4 5 6 7 8 9 10 11 12

n 51 111 202 497 1414 3545 8255 21208 61985 187193

This again suggests that all ∗k arise: even if the Nim-values for p = 6 ul-

timately become periodic, we can probably re-introduce chaos by blocking or

unblocking a few files. Of course we have no idea how to prove that arbitrarily

large k appear this way.

Finally, for a few repeating patterns we observe behavior apparently interme-

diate between periodicity and total chaos. Blocking every fifth or tenth file yields

Nim-values that show some regularity without (yet?) settling into a period. In-

deed in both cases the largest values grow as far as we have extended the search

(through length 105), though more slowly and perhaps more smoothly than for

p = 6. Such families of components seem the most likely place to find and prove

an arithmetic periodicity or some more complicated pattern that finally proves

that all ∗k arise and thus fully embeds Nim into generalized King-and-pawn

endgames.
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