On the Lattice Structure of Finite Games

DAN CALISTRATE, MARC PAULHUS, AND DAVID WOLFE

Abstract

We prove that games born by day n form a distributive lattice, but that the collection of all finite games does not form a lattice.

Introduction

A great deal is known about the partial order structure of large subsets of games. See, for instance, [BCG82] [Con76] for a complete characterization of games generated by numbers, and infinitesimals such as \uparrow and $* n$. Linear operators applied to these games of temperature zero can often leverage this characterization to apply to hot games, such as positions occurring in Go [BW94] and Domineering [Ber88] [Wol93]. Some general results are known about the group structure of games, including a complete characterization of the group generated by games born by day 3 [Moe91], but surprisingly little has been written about the overall structure of the partial-ordering of games. Here we prove that the games born by day n form a distributive lattice, but that the collection of all finite games do not form a lattice.

We assume the reader is already familiar with combinatorial game theory definitions as in [BCG82] or [Con76]. In particular, we assume knowledge of the definitions of a game [BCG82, p. 21], sums and negatives of games [BCG82, p. 33], and the standard partial ordering on games [BCG82, p. 34].

The Lattices

Define the games born by day n, which we'll denote by $\mathrm{G}[n]$, recursively:

$$
\begin{aligned}
& \mathrm{G}[0] \stackrel{\text { def }}{=}\{0\} \\
& \mathrm{G}[n] \stackrel{\text { def }}{=}\left\{\left\{G^{L} \mid G^{R}\right\}: G^{L}, G^{R} \subseteq \mathrm{G}[n-1]\right\}
\end{aligned}
$$

A lattice, (S, \geq), is a partial order with the additional property that any pair of elements, $x, y \in S$ has a least upper bound or join denoted by \vee, and a greatest
lower bound or meet denoted by \wedge. I.e., $x \geq x \vee y$ and $y \geq x \vee y$, and for any $z \in S$, if $z \geq x$ and $z \geq y$ then $z \geq x \vee y$. (Reverse all inequalities for $x \wedge y$.) In a distributive lattice, meet distributes over join (or, equivalently, join distributes over meet.) I.e, for all $x, y, z \in S, x \wedge(y \vee z)=(x \wedge y) \vee(y \wedge z)$.

We'll give a constructive proof that the games born by day n form a lattice by explicit construction of the join and meet operations. First, define

$$
\begin{aligned}
& \lceil G\rceil \stackrel{\text { def }}{=}\{H \in \mathrm{G}[n-1]: H \not 又 G\}, \text { and } \\
& \lfloor G\rfloor \stackrel{\text { def }}{=}\{H \in \mathrm{G}[n-1]: H \nsupseteq G\} .
\end{aligned}
$$

Then define the join and meet operations (over games born by day n) by

$$
\begin{aligned}
& G_{1} \vee G_{2} \stackrel{\text { def }}{=}\left\{G_{1}^{L}, G_{2}^{L} \mid\left\lceil G_{1}\right\rceil \cap\left\lceil G_{2}\right\rceil\right\}, \text { and } \\
& G_{1} \wedge G_{2} \stackrel{\text { def }}{=}\left\{\left\lfloor G_{1}\right\rfloor \cap\left\lfloor G_{2}\right\rfloor \mid G_{1}^{R}, G_{2}^{R}\right\}
\end{aligned}
$$

Observe that $G_{1} \vee G_{2}$ and $G_{1} \wedge G_{2}$ are in $\mathrm{G}[n]$ since their left and right options are chosen from $\mathrm{G}[n-1]$.

Theorem 1. The games born by day n form a lattice, with the join and meet operations given above.

Proof. To verify these operations define a lattice, it suffices to show that

$$
\begin{align*}
& G_{1} \vee G_{2} \geq G_{i}(\text { for } i=1,2), \text { and } \tag{0-1}\\
& \text { if } G \geq G_{1} \text { and } G \geq G_{2} \text { then } G \geq G_{1} \vee G_{2} \tag{0-2}
\end{align*}
$$

($G_{1} \wedge G_{2}$ can be verified symmetrically.)
To see $(0-1)$, we'll show the difference game $\left(G_{1} \vee G_{2}\right)-G_{i}$ (for $i=1$ and $i=2$) is greater or equal to 0 , i.e., that Left wins moving second on this difference game. Left can respond to a Right move to $\left(G_{1} \vee G_{2}\right)-G_{i}^{L}$ by moving to $G_{i}^{L}-G_{i}^{L}$. If, on the other hand, Right moves to $H-G_{i}$ where $H \in\left\lceil G_{1}\right\rceil \cap\left\lceil G_{2}\right\rceil$, then by definition of $\left\lceil G_{i}\right\rceil, H \not \leq G_{i}$, and hence Left wins moving first on $H-G_{i}$.

To see ($0-2$), suppose $G \geq G_{1}$ and $G \geq G_{2}$, and we'll show Left wins moving second on the difference game $G-\left(G_{1} \vee G_{2}\right)$. Observe that any right option G^{R} of G is greater or incomparable to G, and hence is greater or incomparable to both G_{1} and G_{2}. Therefore, $G^{R} \in\left\lceil G_{1}\right\rceil \cap\left\lceil G_{2}\right\rceil$. Thus, Left can respond to a Right move to $G^{R}-\left(G_{1} \vee G_{2}\right)$ by moving to $G^{R}-G^{R}$. If, on the other hand, Right moves on the second component to some $G-G_{i}^{L}$ (for $i=1$ or $i=2$), Left has a winning response since $G \geq G_{i}$.
Theorem 2. The lattice of games born by day n is distributive.
Proof. First, observe the following identities:

$$
\begin{align*}
& \left\lfloor G_{1} \vee G_{2}\right\rfloor=\left\lfloor G_{1}\right\rfloor \cup\left\lfloor G_{2}\right\rfloor, \text { and } \tag{0-3}\\
& \left\lceil G_{1} \wedge G_{2}\right\rceil=\left\lceil G_{1}\right\rceil \cup\left\lceil G_{2}\right\rceil . \tag{0-4}
\end{align*}
$$

(To see the first, $\left\lfloor G_{1} \vee G_{2}\right\rfloor=\left\{X: X \nsupseteq G_{1}\right.$ or $\left.X \nsupseteq G_{2}\right\}=\left\lfloor G_{1}\right\rfloor \cup\left\lfloor G_{2}\right\rfloor$.)

We wish to show $H \wedge\left(G_{1} \vee G_{2}\right)=\left(H \wedge G_{1}\right) \vee\left(H \wedge G_{2}\right)$. Expanding both sides, call them S_{1} and S_{2}, and rewriting S_{2} using ($0-3$) and (0-4),

$$
\left.\left.\begin{array}{rl}
S_{1}=H \wedge\left(G_{1} \vee G_{2}\right) & =\left\{\quad\lfloor H\rfloor \cap\left\lfloor G_{1} \vee G_{2}\right\rfloor\right.
\end{array} \right\rvert\, \begin{array}{c}
H^{R},\left\lceil G_{1}\right\rceil \cap\left\lceil G_{2}\right\rceil
\end{array}\right\}
$$

Clearly, $S_{1} \geq S_{2}$, since S_{2} has additional right options. To see that $S_{2} \geq S_{1}$, we'll confirm Left wins second on the difference game $S_{2}-S_{1}$. All right options match up except those moving S_{2} to $X \in\lceil H\rceil$. By definition of $\lceil H\rceil, X \not 又 H$. Also, $H \geq S_{1}$, since S_{1} is formed by the meet $H \wedge\left(G_{1} \vee G_{2}\right)$. Hence $X \not \leq S_{1}$, and Left can win moving first on $X-S_{1}$.

Theorem 3. The collection of finite games, $\mathrm{G}=\bigcup_{n \geq 0} \mathrm{G}[n]$, is not a lattice.
Proof. We'll prove the stronger statement that no two incomparable games, G_{1} and G_{2}, have a join in G. We'll do this by arguing that if $G>G_{1}$ and $G>G_{2}$, then $G>=H_{n}$ for some n, where

$$
H_{n} \stackrel{\text { def }}{=}\left\{G_{1}, G_{2} \| G_{1}, G_{2} \mid-n\right\}
$$

Since $H_{0}>H_{1}>H_{2}>\cdots$, the theorem follows.
Suppose $G>G_{1}$ and $G>G_{2}$, and denote G 's birthday by n. Note that all followers G^{\prime} of G satisfy $-n<G^{\prime}<n$. We'll confirm that Left wins moving second on the difference game $G-H_{n}$. Right cannot win by moving H_{n} to G_{i} (for $i=1$ or $i=2$), since $G>G_{i}$. When Right's initial move is on G, Left replies on the second component, $-H_{n}$, leaving $G^{R}-\left\{G_{1}, G_{2} \mid-n\right\}$. Either Right plays on the first component, and Left wins by moving on the second component leaving $G^{R R}+n>0$. Or Right moves the second component to some G_{i} and Left has a winning move since $G>G_{i}$.

Lattices up to Day 3

The specific structure of the distributive lattice of games born by day n remains elusive. We show the day 1 and day 2 lattices here; the day 2 lattice corrects errors found in [Guy96, p. 55] [Guy91, p. 15]. The lattice has 22 games divided among 9 levels. (Lattice edges need only be drawn between adjacent levels.)

By extending the software package, The Gamesman's Toolkit [Wol96] [Wol], we find the lattice born by day 3 has 1474 games and can be drawn on 45 levels, with the number of games on successive levels being $1,2,3,5,8,9,12,14$, $17,20,24,26,30,34,39,45,52,58,65,72,77,81,86,81, \ldots, 3,2,1$. As with the games born by day 2 , the partial ordering appears to be composed of many sub-lattices which are hypercubes. In addition, the day-3 lattice has 44 join-irreducible elements whose partial order completely determines the lattice.

Figure 1. Games born by days 1 and 2.

These 44 elements are of the form g and $\{g \mid-2\}$, where g is one of the 22 games born by day 2. (Refer to a book on lattice theory such as [Bir67] or [DP90] for appropriate definitions and theorems.)

It would be interesting to describe the exact structure of the day 3 lattice, and (if possible) subsequent lattices.

Acknowledgements

We wish to thank Richard Guy for his thoughtful observations and his playful encouragement.

References

[BCG82] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways. Academic Press, New York, 1982.
[Ber88] Elwyn R. Berlekamp. Blockbusting and domineering. Journal of Combinatorial Theory, 49(1):67-116, September 1988.
[Bir67] Garrett Birkhoff. Lattice Theory. American Mathematical Society, 3rd edition edition, 1967.
[BW94] Elwyn Berlekamp and David Wolfe. Mathematical Go: Chilling Gets the Last Point. A K Peters, Ltd., Wellesley, Massachusetts, 1994.
[Con76] John H. Conway. On Numbers and Games. Academic Press, London/New York, 1976.
[DP90] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge University Press, 1990.
[Guy91] Richard K. Guy. What is a Game? Combinatorial Games, Proceedings of Symposia in Applied Mathematics, 43, 1991.
[Guy96] Richard K. Guy. What is a Game? In Richard Nowakowski, editor, Games of No Chance: Combinatorial Games at MSRI, 1994, pages 43-60. Cambridge University Press, 1996.
[Moe91] David Moews. Sum of games born on days 2 and 3. Theoretical Computer Science, 91:119-128, 1991.
[Wol] David Wolfe. Gamesman's Toolkit (C computer program with source) available at http://www.gustavus.edu/~wolfe; click on "For research on games".
[Wol93] David Wolfe. Snakes in domineering games. Theoretical Computer Science, 119(2):323-329, October 1993.
[Wol96] David Wolfe. The gamesman's toolkit. In Richard Nowakowski, editor, Games of No Chance: Combinatorial Games at MSRI, 1994, pages 93-98. Cambridge University Press, 1996.

Dan Calistrate calistrate@shaw.ca

Marc Paulhus
paulhusm@math.ucalgary.ca

David Wolfe
Department of Mathematics and Computer Science
Gustavus Adolphus College
800 West College Avenue
Saint Peter, MN 56082
United States
wolfe@gustavus.edu

