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Abstract. We study a popular puzzle game known variously as Clicko-
mania and Same Game. Basically, a rectangular grid of blocks is initially
colored with some number of colors, and the player repeatedly removes a
chosen connected monochromatic group of at least two square blocks, and
any blocks above it fall down. We show that one-column puzzles can be
solved, i.e., the maximum possible number of blocks can be removed, in
linear time for two colors, and in polynomial time for an arbitrary number
of colors. On the other hand, deciding whether a puzzle is solvable (all
blocks can be removed) is NP-complete for two columns and five colors, or
five columns and three colors.

1. Introduction

Clickomania is a one-player game (puzzle) with the following rules. The board

is a rectangular grid. Initially the board is full of square blocks each colored

one of k colors. A group is a maximal connected monochromatic polyomino;

algorithmically, start with each block as its own group, then repeatedly combine

groups of the same color that are adjacent along an edge. At any step, the

player can select (click) any group of size at least two. This causes those blocks

to disappear, and any blocks stacked above them fall straight down as far as they

can (the settling process). Thus, in particular, there is never an internal hole.

There is an additional twist on the rules: if an entire column becomes empty

of blocks, then this column is “removed,” bringing the two sides closer to each

other (the column shifting process).

The basic goal of the game is to remove all of the blocks, or to remove as

many blocks as possible. Formally, the basic decision question is whether a

given puzzle is solvable: can all blocks of the puzzle be removed? More gen-

erally, the algorithmic problem is to find the maximum number of blocks that
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can be removed from a given puzzle. We call these problems the decision and

optimization versions of Clickomania.

There are several parameters that influence the complexity of Clickomania.

One obvious parameter is the number of colors. For example, the problem is

trivial if there is only one color, or every block is a different color. It is natural

to ask whether there is some visible difference, in terms of complexity, between

a constant number of colors and an arbitary number of colors, or between one

constant number of colors and another. We give a partial answer by proving

that even for just three colors, the problem is NP-complete. The complexity for

two colors remains open.

Other parameters to vary are the number of rows and the number of columns

in the rectangular grid. A natural question is whether enforcing one of these

dimensions to be constant changes the complexity of the problem. We show that

even for just two columns, the problem is NP-complete, whereas for one column

(or equivalently, one row), the problem is solvable in polynomial time. It remains

open precisely how the number of rows affects the complexity.

1.1. History. The origins of Clickomania seem unknown. We were introduced

to the game by Bernie Cosell [1], who suggested analyzing the strategy involved

in the game. In a followup email, Henry Baker suggested the idea of looking at

a small constant number of colors. In another followup email, Michael Kleber

pointed out that the game is also known under the title “Same Game.”

Clickomania! is implemented by Matthias Schuessler in a freeware program

for Windows, available from http://www.clickomania.ch/click/. On the same

web page, you can find versions for the Macintosh, Java, and the Palm Pilot.

There is even a “solver” for the Windows version, which appears to be based on

a constant-depth lookahead heuristic.

1.2. Outline. The rest of this paper is outlined as follows. Section 2 de-

scribes several polynomial-time algorithms for the one-column case. Section 3

proves that the decision version of Clickomania is NP-complete for 5 colors and

2 columns. Section 4 gives the much more difficult NP-completeness proof for 2

colors and 5 columns. We conclude in Section 5 with a discussion of two-player

variations and other open problems.

2. One Column in Polynomial Time

In this section we describe polynomial-time algorithms for the decision version

and optimization version of one-column Clickomania (or equivalently, one-row

Clickomania). In this context, a group with more than 2 blocks is equivalent

to a group with just 2 blocks, so in time linear in the number of blocks we can

reduce the problem to have size linear in the number of groups, n.

First, in Section 2.1, we show how to reduce the optimization version to

the decision version by adding a factor of O(n2). Second, in Section 2.2, we
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give a general algorithm for the decision question running in O(kn3) where k

is the number of colors, based on a context-free-grammer formulation. Finally,

in Section 2.3, we improve this result to O(n) time for k = 2 colors, using a

combinatorial characterization of solvable puzzles for this case.

2.1. Reducing Optimization to Decision. If a puzzle is solvable, the op-

timization version is equivalent to the decision version (assuming that the algo-

rithm for the decision version exhibits a valid solution, which our algorithms do).

If a puzzle is not solvable, then there are some groups that are never removed. If

we knew one of the groups that is not removed, we would split the problem into

two subproblems, which would be independent subpuzzles of the original puzzle.

Thus, we can apply a dynamic-programming approach. Each subprogram is

a consecutive subpuzzle of the puzzle. We start with the solvable cases, found

by the decision algorithm. We then build up a solution to a larger puzzle by

choosing an arbitrary group not to remove, adding up the scores of the two

resulting subproblems, and maximizing over all choices for the group not to

remove. If the decision version can be solved in d(n, k) time, then this solution

to the optimization version runs in O(n2d(n, k)+n3) time. It is easy to see that

d(n, k) = Ω(n), thus proving

Lemma 1. If the decision version of one-column Clickomania can be solved in

d(n, k) time, then the optimization version can be solved in O(n2d(n, k)) time.

2.2. A General One-Column Solver. In this section we show that one-

column Clickomania reduces to parsing context-free languages. Because strings

are normally written left-to-right and not top-down, we speak about one-row

Clickomania in this subsection, which is equivalent to one-column Clickomania.

We can write a one-row k-color Clickomania puzzle as a word over the alpha-

bet Σ = {c1, . . . , ck}. Such words and Clickomania puzzles are in one-to-one

correspondence, so we use them interchangably.

Now consider the context-free grammar

G : S → Λ | SS |

ciSci | ciSciSci ∀ i ∈ {1, 2, . . . , k}

We claim that a word can be parsed by this grammar precisely if it is solvable.

Theorem 2. The context-free language L(G) is exactly the language of solvable

one-row Clickomania puzzles.

Any solution to a Clickomania puzzle can be described by a sequence of moves

(clicks), m1, m2, . . . ms, such that after removing ms no blocks remain. We call a

solution internal if the leftmost and rightmost blocks are removed in the last two

moves (or the last move, if they have the same color). Note that in an internal

solution we can choose whether to remove the leftmost or the rightmost block in

the last move.
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Lemma 3. Every solvable one-row Clickomania puzzle has an internal solution.

Proof. Let m1, . . . , mb−1, mb, mb+1, . . . , ms be a solution to a one-row Clickoma-

nia puzzle, and suppose that the leftmost block is removed in move mb. Because

move mb removes the leftmost group, it cannot form new clickable groups. The

sequence m1, . . . , mb−1, mb+1, . . . , ms is then a solution to the same puzzle ex-

cept perhaps for the group containing the leftmost block. If the leftmost block is

removed in this subsequence, continue discarding moves from the sequence until

the remaining subsequence removes all but the group containing the leftmost

block. Now the puzzle can be solved by adding one more move, which removes

the last group containing the leftmost block. Applying the same argument to

the rightmost block proves the lemma. �

We prove Theorem 2 in two parts:

Lemma 4. If w ∈ L(G), then w is solvable.

Proof. Because w ∈ L(G), there is a derivation S ⇒∗ w. The proof is by

induction on the length n of this derivation. In the base case, n = 1, we have

w = Λ, which is clearly solvable. Assume all strings derived in at most n−1 steps

are solvable, for some n ≥ 2. Now consider the first step in a n-step derivation.

Because n ≥ 2, the first production cannot be S → Λ. So there are three cases.

• S ⇒ SS ⇒∗ w:

In this case w = xy, such that S ⇒∗ x and S ⇒∗ y both in at most n − 1

steps. By the induction hypothesis, x and y are solvable. By Lemma 3, there are

internal solutions for x and y, where the rightmost block of x and the leftmost

block of y are removed last, respectively. Doing these two moves at the very end,

we can now arbitrarily merge the two move sequences for x and y, removing all

blocks of w.

• S ⇒ ciSci ⇒
∗ w:

In this case w = cixci, such that S ⇒∗ x in at most n − 1 steps. By the

induction hypothesis, x is solvable. By Lemma 3, there is an internal solutions

for x; if either the leftmost or rightmost block of x has color i, it can be chosen to

be removed in the last move. Therefore, the solution for x followed by removing

the remaining cici (if it still exists) is a solution to w.

• S ⇒ ciSciSci ⇒
∗ w:

This case is analogous to the previous case. �

Lemma 5. If w ∈ Σ∗ is solvable, then w ∈ L(G).

Proof. Suppose w ∈ Σ∗ be solvable. We will prove that w ∈ L(G) by induction

on |w|. The base case, |w| = 0 follows since Λ ∈ L(G). Assume all solvable

strings of length at most n − 1 are in L(G), for some n ≥ 1. Consider the case

|w| = n.

Since w is solvable, there is a first move in a solution to w, let’s say removing

a group cm
i for m ≥ 2. Thus, w = xcm

i y. Now, neither the last symbol of x nor
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the first symbol of y can be ci. Let w′ = xy. Since |w′| ≤ |w| − 2 = n − 2, and

w′ is solvable, w′ is in L(G) by the induction hypothesis.

Observe that cm
i ∈ L(G) by one of the derivations:

S ⇒(m−3)/2 c
(m−3)/2
i Sc

(m−3)/2
i ⇒ c

(m−3)/2
i SciSc

(m−3)/2
i ⇒2 cm

i

if m is odd, or

S ⇒m/2 c
m/2
i Sc

m/2
i ⇒ cm

i

if m is even. Thus, if x = Λ, w can be derived as S ⇒ SS ⇒∗ cm
i S ⇒∗ cm

i y = w.

Analogously for y = Λ. It remains to consider the case x, y 6= Λ.

Consider the first step in a derivation for w′. There are three cases.

• S ⇒ SS ⇒∗ uS ⇒∗ uv = w′:

We can assume that u, v 6= Λ, otherwise we consider the derivation of w′ in

which this first step is skipped. By Lemma 4, u and v are both solvable. Consider

the substring cm
i of w that was removed in the first move. Either w = u1c

m
i u2v

(u2 possibly empty) or w = uv1c
m
i v2 (v1 possibly empty). Without loss of

generality, we assume the former case, i.e., u = u1u2. Then u′ = u1c
m
i u2 is

solvable because u is solvable and m was maximal. Since v 6= Λ, it follows that

|u′| < |w|, and by the induction hypothesis, u′ ∈ L(G). Hence S ⇒ SS ⇒∗

u′S ⇒∗ u′v = w is a derivation of w and w ∈ L(G).

• S ⇒ cjScj ⇒∗ cjucj = w′:

Since x, y 6= Λ, it must be the case that w = cju1c
m
i u2cj , where u = u1u2.

By Lemma 4, u is solvable, hence so is u′ = u1c
m
i u2 because m was maximal.

Moreover, |u′| = |w| − 2 and thus u′ ∈ L(G) by the induction hypothesis and

S ⇒ cjScj ⇒∗ cju
′cj = w ∈ L(G).

• S ⇒ cjScjScj ⇒∗ cjucjvcj = w′:

Since x, y 6= Λ, either w = cju1c
m
i u2cjvcj and u = u1u2, or w = cjucjv1c

m
i v2cj

and u = v1v2. Without loss of generality, assume w = cju1c
m
i u2cjvcj . Anal-

ogously to the previous case, u′ = u1c
m
i u2 ∈ L(G), hence S ⇒ cjScjScj ⇒∗

cju
′cjvcj = w ∈ L(G). �

Thus, deciding if a one-row Clickomania puzzle is solvable reduces to deciding

if the string w corresponding to the Clickomania puzzle is in L(G). Since deciding

w ∈ L(G) is in P , so is deciding if a one-row Clickomania is solvable. This

completes the proof of Theorem 2. In particular, we can obtain a polynomial-

time algorithm for one-row Clickomania by applying standard parsing algorithms

for context-free grammars.

Corollary 6. We can decide in O(kn3) time whether a one-row (or one-column)

k-color Clickomania puzzle is solvable.

Proof. The context-free grammar can be converted into a grammar in Chomsky

normal form of size O(k) and with O(1) nonterminals. The algorithm in [4,

Theorem 7.14, pp. 240–241] runs in time O(n3) times the number of nonterminals

plus the number of productions, which is O(k). �
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Applying Lemma 1, we obtain

Corollary 7. One-row (or one-column) k-color Clickomania can be solved in

O(kn5) time.

2.3. A Linear-Time Algorithm for Two Colors. In this section, we show

how to decide solvability of a one-column two-color Clickomania puzzle in linear

time. To do so, we give necessary and sufficient combinatorial conditions for

a puzzle to be solvable. As it turns out, these conditions are very different

depending on whether the number of groups in the puzzle is even or odd, with

the odd case being the easier one.

We assume throughout the section that the groups are named g1, . . . , gn. A

group with just one block is called a singleton, and a group with at least two

blocks in it is called a nonsingleton.

The characterization is based on the following simple notion. A checkerboard

is a maximal-length sequence of consecutive groups each of size one. For a

checkerboard C, |C| denotes the number of singletons it contains. The following

lemma formalizes the intuition that if a puzzle has a checkerboard longer than

around half the total number of groups, then the puzzle is unsolvable.

Lemma 8. Consider a solvable one-column two-color Clickomania puzzle with

n groups, and let C be the longest checkerboard in this puzzle.

(i) If C is at an end of the puzzle, then |C| ≤ n−1
2 .

(ii) If C is strictly interior to the puzzle, then |C| ≤ n−2
2 .

Proof. (i) Each group g of the checkerboard C must be removed. This is only

possible if g is merged with some other group of the same color not in C, so

there are at least |C| groups outside of C. These groups must be separated from

C by at least one extra group. Therefore, n ≥ 2|C| + 1 or |C| ≤ n−1
2 .

(ii) Analogously, if C is not at one end of the puzzle, then there are two extra

groups at either end of C. Therefore, n ≥ 2|C| + 2 or |C| ≤ n−2
2 . �

2.3.1. An Odd Number of Groups. The condition in Lemma 8 is also sufficient if

the number of groups is odd (but not if the number of groups is even). The idea

is to focus on the median group, which has index m = n+1
2 . This is motivated

by the following fact:

Lemma 9. If the median group has size at least two, then the puzzle is solvable.

Proof. Clicking on the median group removes that piece and merges its two

neighbors into the new median group (it has two neighbors because n is odd).

Therefore, the resulting puzzle again has a median group with size at least two,

and the process repeats. In the end, we solve the puzzle. �

Theorem 10. A one-column two-color Clickomania puzzle with an odd number

of groups, n, is solvable if and only if
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• the length of the longest checkerboard is at most (n − 3)/2; or

• the length of the longest checkerboard is exactly (n−1)/2, and the checkerboard

occurs at an end of the puzzle.

Proof. If the puzzle contains a checkerboard of length at least m = n+1
2 , then

it is unsolvable by Lemma 8. If the median has size at least two, then we are

also done by Lemma 9, so we may assume that the median is a singleton. Thus

there must be a nonsingleton somewhere to the left of the median that is not

the leftmost group, and there must be a nonsingleton to the right of the median

that is not the rightmost group. Also, there are two such nonsingletons with at

most n−2
2 other groups between them.

Clicking on any one of these nonsingletons destroys two groups (the clicked-on

group disappears, and its two neighbors merge). The new median moved one

group right [left] of the old one if we clicked on the nonsingleton left [right] of

the median. The two neighbors of the clicked nonsingleton merge into a new

nonsingleton, and this new nonsingleton is one closer to the other nonsingleton

than before. Therefore, we can continue applying this procedure until the median

becomes a nonsingleton and then apply Lemma 9. Note that if one of the two

nonsingletons ever reaches the end of the sequence then the other singleton must

be the median. �

Note that there is a linear-time algorithm implicit in the proof of the previous

lemma, so we obtain the following corollary.

Corollary 11. One-column two-color Clickomania with n groups can be decided

in time O(n) if n is odd. If the problem is solvable, a solution can also be found

in time O(n).

2.3.2. An Even Number of Groups. The characterization in the even case reduces

to the odd case, by showing that a solvable even puzzle can be split into two

solvable odd puzzles.

Theorem 12. A one-column two-color Clickomania puzzle, g1, . . . , gn, with n

even is solvable if and only if there is an odd index i such that g1, . . . , gi and

gi+1, . . . , gn are solvable puzzles.

Proof. Sufficiency is a straightforward application of Lemma 3. First solve the

instance g1, . . . , gi so that all groups but gi disappear and gi becomes a nonsin-

gleton. Then solve instance gi+1, . . . , gn so that all groups but gi+1 disappear

and gi+1 becomes a nonsingleton. These two solutions can be executed indepen-

dently because gi and gi+1 form a “barrier.” Then gi and gi+1 can be clicked to

solve the puzzle.

For necessity, assume that m1, . . . , ml is a sequence of clicks that solves the

instance. One of these clicks, say mj , removes the blocks of group g1. (Note

that this group might well have been merged with other groups before, but we
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are interested in the click that actually removes the blocks.) Let i be maximal

such that the blocks of group gi are also removed during click mj .

Clearly i is odd, since groups g1 and gi have the same color and we have only

two colors. It remains to show that the instances g1, . . . , gi and gi+1, . . . , gn are

solvable.

The clicks m1, . . . , mj−1 can be distinguished into two kinds: those that affect

blocks to the left of gi, and those that affect blocks to the right of gi. (Since gi

is not removed before mj , a click cannot be of both kinds.)

Consider those clicks that affect blocks to the left of gi, and apply the exact

same sequence of clicks to instance g1, . . . , gi. Since mj removes g1 and gi at

once, these clicks must have removed all blocks g2, . . . , gi−1. They also merged

g1 and gi, so that this group becomes a nonsingleton. One last click onto gi

hence gives a solution to instance g1, . . . , gi.

Consider those clicks before mj that affect blocks to the right of gi. None of

these clicks can merge gi with a block gk, k > i, since this would contradict the

definition of i. Hence it does not matter whether we execute these clicks before

or after mj , as they have no effect on gi or the blocks to the left of it.

If we took these clicks to the right of gi, and combine them with the clicks

after mj (note that at this time, block gi and everything to the left of it is gone),

we obtain a solution to the instance gi+1, . . . , gn. This proves the theorem. �

Using this theorem, it is possible to decide in linear time whether an even

instance of one-column two-color Clickomania is solvable, though the algorithm

is not as straightforward as in the odd case. The idea is to proceed in two scans

of the input. In the first scan, in forward order, we determine for each odd

index i whether g1, . . . , gi is solvable. We will explain below how to do this in

amortized constant time. In the second scan, in backward order, we determine

for each odd index i whether gi+1, . . . , gn is solvable. If any index appears in

both scans, then we have a solution, otherwise there is none.

So all that remains to show is how to determine whether g1, . . . , gi is solvable

in amortized constant time. (The procedure is similar for the reverse scan.)

Assume that we are considering group gi, i = 1, . . . , n. Throughout the scan we

maintain three indices, j, k and l. We use j and k to denote the current longest

checkerboard from gj to gk. Index l is the minimal index such that gl, . . . , gi is

a checkerboard. We initialize i = j = k = l = 0.

When considering group gi, we first update l. If gi is a singleton, then l is

unchanged. Otherwise, l = i+1. Next, we update j and k, by verifying whether

i− l > k− j, and if so, setting j = l and k = i. Clearly, this takes constant time.

For odd i, we now need to verify whether the instance g1, . . . , gi is solvable.

This holds if (k +1)− j ≤ (i− 3)/2, since then the longest checkerboard is short

enough. If (k + 1) − j ≥ (i + 1)/2, then the instance is not solvable. The only

case that requires a little bit of extra work is (k + 1) − j = (i − 1)/2, since we

then must verify whether the longest checkerboard is at the beginning or the
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end. This, however, is easy. If the longest checkerboard has length (i− 1)/2 and

is at the beginning or the end, then the median group of the instance g1, . . . , gi,

i.e., g(i−1)/2 must be a nonsingleton. If the longest checkerboard is not at the

beginning or the end, then the median group is a singleton. This can be tested

in constant time. Hence we can test in amortized constant time whether the

instance g1, . . . , gi is solvable.

Corollary 13. One-column two-color Clickomania with n groups can be decided

in time O(n) if n is even. If the problem is solvable, a solution can also be found

in time O(n).

3. Hardness for 5 Colors and 2 Columns

Theorem 14. Deciding whether a Clickomania puzzle can be solved is NP-

complete, even if we have only two columns and five colors.

It is relatively easy to reduce two-column six-color Clickomania from the

weakly NP-hard set-partition problem: given a set of integers, can it be par-

titioned into two subsets with equal sum? Unfortunately this does not prove

NP-hardness of Clickomania, because the reduction would represent the integers

in unary (as a collection of blocks). But the partition problem is only NP-hard

for integers that are superpolynomial in size, so this reduction would not have

polynomial size. (Set partition is solvable in pseudo-polynomial time, i.e., time

polynomial in the sum of the integers [3].)

Thus we reduce from the 3-partition problem, which is strongly NP-hard [2; 3].

3-Partition Problem. Given a multiset A = {a1, . . . , an} of n = 3m positive

integers bounded by a fixed polynomial in n, with the property that
∑n

i=1 ai =

tm, is there a partition of A into subsets S1, . . . , Sm such that
∑

a∈Si
a = t for

all i?

Such a partition is called a 3-partition. The problem is NP-hard in the case

that t/3 ≤ ai ≤ 2t/3 for all i. This implies that a 3-partition satisfies |Si| = 3

for all i, which explains the name.

The construction has two columns; refer to Figure 1. The left column encodes

the sets S1, . . . , Sm (or more precisely, the sets Uj = S1∪. . .∪Sj for j = 1, . . . , m−

1, which is equivalent). The right column encodes the elements a1, . . . , a3m, as

well as containing separators and blocks to match the sets.

Essentially, the idea is that in order to remove the singleton that encodes set

Uj , we must remove three blocks that encode elements in A, and these elements

exactly sum to t, hence form the set Sj .

The precise construction is as follows. The left column consists, from bottom

to top, of the following:

• 3m squares, alternately black and white
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Figure 1. Overall construction, not to scale.
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• m − 1 sections for the m − 1 sets U1, . . . , Um−1, numbered from bottom to

top. The section for Uj consists of 4mt − 1 black and white squares, follows

by one “red” square (indicated hashed in Figure 1). This red square is called

the jth set-indicator.

The black and white squares are colored alternatingly black and white, even

across a set-indicator. That is, if the last square below a set-indicator is white,

then the first one above it is black and vice versa.

• Another long stretch of alternating black and white squares. There are exactly

as many black and white squares above the last set-indicator as there were be-

low, and they are arranged in such a way that if we removed all set-indicators,

the whole left column could collapse to nothing.

The right column contains at the bottom the elements in A, and at the top

squares to remove the set-indicators. More precisely, the right column consists,

from bottom to top, of the following:

• 3m sections for each element in A. The section for ai consists of 1 “blue”

square (indicated with vertical lines in Figure 1) and 4mai “green” squares

(indicated with diagonals in Figure 1). Element a1 does not have a separator.

The blue squares are called separators, while the green squares are the one

that encode the actual elements.

• m − 1 sections for each set. These consist of three squares each, one red and

two blue. The red squares will also be called set-matchers, while the blue

squares will again be called separators.

The total height of the construction is bounded by 8m2t +6m, which is poly-

nomial in the input. And it is not difficult to see that solutions to the puzzle

correspond uniquely to solutions to the 3-partition problem.

4. Hardness for 3 Colors and 5 Columns

Theorem 15. Deciding whether a Clickomania puzzle can be solved is NP-

complete, even if we have only five columns and three colors.

The proof is by reduction from 3-SAT. We now give the construction.

Let F = C1 ∧· · ·∧Cm be a formula in conjunctive normal form with variables

x1, . . . , xn. We will construct a 5-column Clickomania puzzle using three colors,

white, gray, and black, where the two leftmost columns, the v-columns, represent

the variables, and the three rightmost columns, the c-columns, represent the

clauses (see Figure 2(a)). Most of the board is white, and gray blocks are only

used in the c-columns. In particular, a single gray block sits on top of the fourth

column, and another white block on top of the gray block. We will show that

this gray block can be removed together with another single gray block in the

rightmost column if and only if there is a satisfying assignment for F .

All clauses occupy a rectangle CB of height hCB . Each variable xi occupies

a rectangle Vi of height hv. The variable groups are slightly larger than CB,
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(b)(a) The board.

V1

V0

Vn

hv

3h0

CB

6h0

hv

CB

Vi

2h0

h0

6h0

hv

Si

S̄i

Vi−1

S̄i+1

Si+1

hv

(c) Vi and CB

C1

Cm

Cj

hCB

hCB

h0

hb

E1

E7

Eb

E6

E5

3h0

(d) Cj

h1

F`

Fn

F1

hs

hs

bj

(f) ` = i

hk

hs

hs

bj

(g) ` 6= i

hk

(f+g) xi-key in Vi

and x`-lock in Cj

(e) E5 after removing Si

hc

hCB

Figure 2. The Clickomania puzzle. The white area is not drawn to scale.
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namely hv = hCB + 3h0. The lowest group V0 represents a dummy variable x0

with no function other than elevating x1 to the height of CB. The total height

of the construction is therefore approximately (n + 1) · (hv + 3h0).

For all i, there are two sliding groups Si+1 and S̄i+1 of size 2h0 and h0,

respectively, underneath Vi; their function will be explained later. The variable

groups and the sliding groups are separated by single black rows which always

count for the height of the group below. The variable groups contain some more

black blocks in the second column to be explained later.

CB sits above a gray rectangle of height hv at the bottom of the c-columns,

a white row with a black block in the middle, a white row with a gray block to

the right, and a white rectangle of height 6h0 − 2. Figure 2(b) shows the board

after we have removed V0, . . . , Vi−2 from the board, i.e., assigned a value to the

first i − 1 variables.

CB and Vi are divided into m chunks of height hc, one for each clause (see

Figure 2(c)). Note that Vi is larger than CB, so it also has a completely white

rectangle on top of these m chunks. Each clause contains three locks, correspond-

ing to its literals, each variable having a different lock (we distinguish between

different locks by their position within the clause, otherwise the locks are in-

distinguishable). Each variable group Vi on the other hand contains matching

xi-keys which can be used to open a lock, thus satisfying the clause. After we

have unlocked all clauses containing xi we can slide Vi down by removing the

white area of Vi−1 which is now near the bottom of the v-columns. Thus we can

satisfy clauses using all variables, one after the other.

Variables can appear as positive or negative literals, and we must prevent

xi-keys from opening both positive and negative locks. Either all xi-keys must

be used to open only xi-locks (this corresponds to the assignment xi = 1), or

they are used to open only x̄i-locks (this corresponds to the assignment xi = 0).

To achieve this we use the sliding groups Si and S̄i. Initially, a clause containing

literal xi has its xi-lock 2h0 rows below the xi-key; if it contains the literal x̄i

then the xi-lock is h0 rows below the xi-key; and if it does not contain the

variable xi there is no xi-lock. So before we can use any xi-key we must slide

down Vi by either h0 (by removing S̄i) or by 2h0 (by removing Si). Removing

both Si and S̄i slides Vi down by 3h0 which again makes the keys useless, so

either xi = 0 in all clauses or xi = 1.

To prevent removal of the large gray rectangle at the bottom of the c-columns

prematurely, we divide each clause into seven chunks E1, . . . , E7 of height h0

each and a barrier group Eb (see Figure 2(d)). The locks for positive literals are

located in E5, and the locks for negative literals are in E6. The keys are located

in E7. As said before, we can slide them down by either h0 (i.e., x = 0), or by

2h0 (i.e., x = 1). The empty chunks E1, . . . , E5 are needed to prevent misuse of

keys by sliding them down more than 2h0.

We only describe E5, the construction of E6 is similar (see Figure 2(e)). To

keep the drawings simple we assume that the v-columns have been slid down
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by 2h0, i.e., the chunk E7 in the v-columns is now chunk E5. E5 is divided

into n rectangle F1, . . . , Fn of height h1, one for each variable. In Vi, only Fi

contains an xi-key which is a black rectangle of height hk in the second column

(see Figure 2(f)), surrounded on both sides by white space of height hs. In the

c-columns, rectangle F` contains an x`-lock if and only if the literal x` appears in

the clause. The lock is an alternating sequence of black and white blocks, where

the topmost black block is aligned with the topmost black block of the x`-key

(see Figure 2(f) and (g)). The number of black blocks in a lock varies between

clauses, we denote it by bj for clause Cj , and is independent of the variable xi.

Let Bj = b1 + · · · + bj .

The barrier of clause Cj is located in the chunk Eb of that clause (see Figure 3).

It is a single black block in column 4. There is another single black block in

column 3, the bomb, Bj rows above the barrier. The rest of Eb is white. As long

as the large white area exists, the only way to remove a barrier is to slide down

a bomb to the same height as the barrier.

Bj

hb

Figure 3. A barrier in Eb

With some effort one can show that this board can be solved if and only if

the given formula has a satisfying assignment.

5. Conclusion

One intriguing direction for further research is two-player Clickomania, a com-

binatorial game suggested to us by Richard Nowakowski. In the impartial version

of the game, the initial position is an arbitrary Clickomania puzzle, and the play-

ers take turns clicking on groups with at least two blocks; the last player to move

wins. In the partizan version of the game, the initial position is a two-color Click-

omania puzzle, and each player is assigned a color. Players take turns clicking
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on groups of their color with at least two blocks, and the last player to move

wins.

Several interesting questions arise from these games. For example, what is the

complexity of determining the game-theoretic value of an initial position? What

is the complexity of the simpler problem of determining the outcome (winner)

of a given game? These games are likely harder than the corresponding puzzles

(i.e., at least NP-hard), although they are more closely tied to how many moves

can be made in a given puzzle, instead of how many blocks can be removed as

we have analyzed here. The games are obviously in PSPACE, and it would seem

natural that they are PSPACE-complete.

Probably the more interesting direction to pursue is tractability of special

cases. For example, this paper has shown polynomial solvability of one-column

Clickomonia puzzles, both for the decision and optimization problems. Can

this be extended to one-column games? Can both the outcome and the game-

theoretic value of the game be computed in polynomial time? Even these prob-

lems seem to have an intricate structure, although we conjecture the answers are

yes.

In addition, several open problems remain about one-player Clickomania:

1. What is the complexity of Clickomania with two colors?

2. What is the complexity of Clickomania with two rows? O(1) rows?

3. What is the precise complexity of Clickomania with one column? Can any

context-free-grammar parsing problem be converted into an equivalent Click-

omania puzzle? Alternatively, can we construct an LR(k) grammar?

4. In some implementations, there is a scored version of the puzzle in which

removing a group of size n results in (n − 2)2 points, and the goal is to

maximize score. What is the complexity of this problem? (This ignores that

there is usually a large bonus for removing all blocks, which as we have shown

is NP-complete to decide.)
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