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The Game of Hex: The Hierarchical Approach

Abstract. Hex is a beautiful and mind-challenging game with simple rules

and a strategic complexity comparable to that of Chess and Go. Hex posi-

tions do not tend to decompose into sums of independent positions. Nev-

ertheless, we demonstrate how to reduce evaluation of Hex positions to an

analysis of a hierarchy of simpler positions. We explain how this approach

is implemented in Hexy, the strongest Hex-playing computer program, and

Gold Medalist of the 5th Computer Olympiad in London, August 2000.

1. Introduction

The rules of Hex are extremely simple. Nevertheless, Hex requires both deep

strategic understanding and sharp tactical skills. The massive game-tree search

techniques developed over the last 30–40 years mostly for Chess (Adelson-Velsky,

Arlazarov, and Donskoy 1988; Marsland 1986), and successfully used for Check-

ers (Schaeffer et al. 1996), and a number of other games, become less useful

for games with large branching factors like Hex and Go. For a classic 11 × 11

Hex board the average number of legal moves is about 100 (compare with 40 for

Chess and 8 for Checkers).

Combinatorial (additive) Game Theory provides very powerful tools for analy-

sis of sums of large numbers of relatively simple games (Conway 1976; Berlekamp,

Conway, and Guy 1982; Nowakowski 1996), and can be also very useful in sit-

uations, when complex positions can be decomposed into sums of simpler ones.

This method is particularly useful for an analysis of Go endgames (Berlekamp

and Wolfe 1994; Müller 1999).

Hex positions do not tend to decompose into these types of sums. Neverthe-

less, many Hex positions can be considered as combinations of simpler subgames.

We concentrate on the hierarchy of these subgames and define a set of deduction

rules, which allow to calculate values of complex subgames recursively, starting

from the simplest ones. Integrating the information about subgames of this hier-

archy, we build a far-sighted evaluation function, foreseeing the potential of Hex

positions many moves ahead.

In Section 2 we introduce the game of Hex and its history. In Section 3 we

discuss the concept of virtual connections. In Section 4 we introduce the AND
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Figure 1. The chain of black pieces connects black boundaries. Black has won

the game.

and OR deduction rules. In Section 5 we show how to recursively calculate the

hierarchy of virtual connections. In Section 6 we present an electrical resistor

circuits model, which allows us to combine information about the hierarchy of

virtual connections into a global evaluation function. In Section 7 we explain

how this approach is implemented in Hexy, the strongest Hex-playing computer

program, and the Gold Medallist of the 5th Computer Olympiad in London,

August 2000. A Windows version of the program is publicly available at http://

home.earthlink.net/̃ vanshel.

The major ideas of this work were presented on the MSRI Combinatorial

Game Theory Workshop in Berkeley, July 2000 and on the 17th National Confer-

ence on Artificial Intelligence in Austin, July-August 2000 (Anshelevich 2000a).

2. Hex and Its History

The game of Hex was introduced to the general public in Scientific American

by Martin Gardner (Gardner 1959). Hex is a two-player game played on a

rhombic board with hexagonal cells (see Figure 1). The classic board is 11× 11,

but it can be any size. The 10×10, 14×14 and even 19×19 board sizes are also

popular. The players, Black and White, take turns placing pieces of their color

on empty cells of the board. Black’s objective is to connect the two opposite

black sides of the board with a chain of black pieces. White’s objective is to

connect the two opposite white sides of the board with a chain of white pieces

(see Figure 1). The player moving first has a big advantage in Hex. In order to

equalize chances, players often employ a “swap” rule, where the second player

has the option of taking the first player’s opening move.

Despite the simplicity of the rules, the game’s strategic and tactical ideas are

rich and subtle. An introduction to Hex strategy and tactics can be found in the

book written by Cameron Browne (Browne 2000).
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Figure 2. Groups of black pieces, x and y, form two-bridges. In the position on

the right, those groups are connected to the black boundaries.

Hex was invented by a Danish poet and mathematician Piet Hein in 1942

at the Niels Bohr Institute for Theoretical Physics, and became popular under

the name of Polygon. It was rediscovered in 1948 by John Nash, when he was

a graduate student at Princeton (Gardner 1959). Parker Brothers marketed a

version of the game in 1952 under the name Hex.

The game of Hex can never end in a draw. This follows from the fact that if

all cells of the board are occupied then a winning chain for Black or White must

necessarily exist. While this two-dimensional topological fact may seem obvious,

it is not at all trivial. In fact, David Gale demonstrated that this result is

equivalent to the Brouwer fixed-point theorem for 2-dimensional squares (Gale

1979). It follows that there exists a winning strategy either for the first or

second player. Using a “strategy stealing” argument (Berlekamp, Conway, and

Guy 1982), John Nash showed that a winning strategy exists for the first player.

However, this is only a proof of existence, and the winning strategy is not known

for boards larger than 7 × 7.

S. Even and R. E. Tarjan (Even and Tarjan 1976) showed that the problem

of determining which player has a winning strategy in a generalization of Hex,

called the Shannon switching game on vertices, is PSPACE complete. A couple

of years later S. Reisch (Reisch 1981) proved this for Hex itself.

A Hex-playing machine was built by Claude Shannon and E. F. Moore (Shan-

non 1953). Shannon associated a two-dimensional electrical charge distribution

with any given Hex position. His machine made decisions based on properties

of the corresponding potential field. We gratefully acknowledge that our work is

greatly inspired by the beauty of the Shannon’s original idea.

3. Virtual Connections and Semi-Connections

In this and the two following sections we characterize Hex positions from

Black’s point of view. White’s point of view can be considered in a similar way.

Consider the four polygonal boundary bands as additional cells (see Figure

1). We assume that black boundary cells are permanently occupied by black

pieces, and white boundary cells are permanently occupied by white pieces.

Consider the two positions in Figure 2. In both positions White cannot pre-

vent Black from connecting the two groups of connected black pieces, x and y,
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Figure 3. Diagrams of virtual connections (on the left) and virtual

semi-connections (on the right): black-black, black-empty, and empty-empty.

even if White moves first, because there are two empty cells a and b adjacent

to both x and y. If White occupies one of those empty cells, then Black can

move to the other. Note that the black connection between groups x and y is

secured as long as two cells a and b stay empty. Black can postpone moving to

either a or b and can use his precious moves for other purposes. In this type of

situation we say that the groups of black pieces x and y form a two-bridge. In a

battle, where Black tries to connect groups x and y, and White tries to prevent

it, the result of this battle is predictable two moves ahead. This provides an

important advantage to Black. In the position on the left this advantage is local.

In the position on the right this advantage is decisive, and White should resign

immediately.

The following definitions generalize the two-bridge concept. First we need to

clarify some terms. We say that a cell is black if and only if it is occupied by

a black piece, and we refer to a group of connected black cells as a single black

cell.

Definition. Let x and y be two different cells, and A be a set of empty cells

of a position. We assume that x /∈ A and y /∈ A. The triplet (x, A, y) defines a

subgame, where Black tries to connect cells x and y with a chain of black pieces,

White tries to prevent it, and both players can put their pieces only on cells in

A. We say that x and y are ends of the subgame, and A is its carrier.

Definitions. A subgame is a virtual connection if and only if Black has a win-

ning strategy even if White moves first.

A subgame is a virtual semi-connection if and only if Black has a winning

strategy if he moves first, and does not have one if he moves second.

We represent virtual connections and semi-connections with diagrams as in

Figure 3.

In practice, it is more convenient to use the following recursive definitions.

Definitions. A subgame is a virtual connection if and only if for every White’s

move there exists a Black’s move such that the resulting subgame is a virtual

connection.

A subgame is a virtual semi-connection if and only if it is not a virtual con-

nection, and there exists a Black’s move such that the resulting subgame is a

virtual connection.
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Figure 4. Black cells x and y form virtual connections. In each diagram the cell y

is formed by the black pieces connected to the bottom right black boundary. The

cells of their carriers are marked white. 1: A chain of two-bridges; depth = 12. 2:

A ladder; depth = 14. 3: An edge connection from the fourth row; depth = 10.

4: this virtual connection will be analyzed in the next section; depth = 6.

Assume that in a given position with a virtual connection, White moves first.

The number of moves, which must be made in order for Black to win this sub-

game, under the condition that Black does his best to minimize this number,

and White does his best to maximize it, characterizes the depth of the virtual

connection. In other words, the depth of virtual connection is a depth of a game-

tree search required to discover this virtual connection. Thus, virtual connections

with the depth d contain information about development of Hex position d moves

ahead.

We make several remarks:

• Pairs of neighboring cells form virtual connections with empty carriers. The

depths of these virtual connections are equal to zero.

• Two-bridges form virtual connections with a depth of two.

• The ends x and y can form virtual connections with several different carriers.

The virtual connection (x, A, y) is minimal if and only if there does not exist a

virtual connection (x, B, y) such that B ⊂ A and B 6= A. We will be primarily

interested in minimal virtual connections.

• A special role is played by a winning virtual connection formed by the addi-

tional boundary cells. If it exists, then there exists a global winning strategy

for Black, even if White moves first.

In Figures 4 and 5 you can see samples of virtual connections and virtual

semi-connections.

4. Deduction Rules

In this section we define two binary operations, conjunction (∧) and dis-

junction (∨), on the set of subgames belonging to the same position. These
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Figure 5. Black cells x and y form virtual semi-connections. The cells of their

carriers are marked white. Diagram 4 shows the initial position. According

to the Nash theorem mentioned in Section 2, the initial position is a virtual

semi-connection.

operations will allow us to build complex virtual connections starting from the

simplest ones.

Definition. Let two subgames G = (x, A, u) and H = (u, B, y) with common

end u and different ends x 6= y belong to the same position, and x /∈ B, y /∈ A.

If common end u is black, then conjunction of these subgames is the subgame

G ∧ H = (x, A ∪ B, y).

If common end u is empty, then conjunction of these subgames is the subgame

G ∧ H = (x, A ∪ u ∪ B, y).

Definition. Let two subgames G = (x, A, y) and H = (x, B, y) with common

ends x and y belong to the same position. Then disjunction of these subgames

is the subgame G ∨ H = (x, A ∪ B, y).

Theorem 1 (The AND deduction rule). Let two subgames G = (x, A, u) and

H = (u, B, y) with common end u and different ends x 6= y belong to the same

position, and x /∈ B, y /∈ A. If both subgames G and H are virtual connections

and A ∩ B = ?, then

(a) G ∩ H is a virtual connection if u is black, and

(b) G ∩ H is a virtual semi-connection if u is empty.

Proof. If cell u is empty, then Black can occupy this cell, and this reverts to

case (a). Since A ∩ B = ?, White cannot attack both virtual connections

simultaneously. Suppose that White occupies a cell a ∈ A. Since the subgame

G = (x, A, u) is a virtual connection, then there exists a cell b ∈ A where Black

can play to create a new virtual connection (x, A′, u). The new carrier A′ is

obtained from A by removing two cells a and b. (The new virtual connection

belongs to a position different than the original one). In short, if White occupies

a cell from A, then Black can restore the first virtual connection by moving to
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Figure 6. 1: The AND deduction rule. 2: The OR deduction rule.

an appropriate cell of A. The same is true for B, and thus the result follows by

induction. �

Diagram 1 in Figure 6 shows a graphical representation of this deduction rule.

Theorem 2 (The OR deduction rule). Let subgames Gk = (x, Ak , y) (k =

1, 2, . . . , n, for n > 1) with common ends x and y belong to the same position.

If all games Gk are virtual semi-connections and

n
⋂

k=1

Ak = ?,

then G =
∨

Gk is a virtual connection.

Proof. If White occupies a cell a ∈ Ai, there exists a different carrier Aj such

that a /∈ Aj . Therefore, Black can move to Aj and convert the virtual semi-

connection Gj to a virtual connection. �

Diagram 2 in Figure 6 graphically represents this deduction rule (for n = 3).

Theorem 3 (The OR decomposition). Let a subgame G = (x, A, y) be a minimal

virtual connection, with A 6= ?. There exist virtual semi-connections Gk =

(x, Ak , y) (k = 1, 2, . . . , n, for n > 1) such that

n
⋂

k=1

Ak = ?

and G =
∨

Gk.

Proof. Since G is a minimal virtual connection, then for every White’s move

a ∈ A, the game Ga = (x, A − a, y) is a virtual semi-connection. Besides,

G =
∨

Ga and
⋂

a

A − a = ?. �
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Figure 7. Diagram 1 represents the subgame on the board. Diagram 3 is

obtained from Diagram 1 by applying the AND deduction rule six times and then

the OR deduction rule three times. Diagram 4 results from the AND deduction

rule. The winning virtual connection in Diagram 6 follows from application of

the AND deduction rule 2 times and final application of the OR deduction rule.

The last theorem means that the OR deduction rule provides a universal

way of building virtual connections from virtual semi-connections. On the other

hand, there exist virtual semi-connections, which cannot be obtained from virtual

connections by applying the AND deduction rule. An example will be given in

the next section.

5. Hierarchy of Virtual Connections

Figure 7 demonstrates how the AND and OR deduction rules can be used for

proving virtual connections. Diagram 1 in Figure 7 represents the position on

the board. The sequence of transformations in diagrams 2 through 6 graphically

demonstrates the application of the AND and OR deduction rules, and proves

that Black has a winning position, even if White moves first.

The H-process. Consider the simplest virtual connections, namely pairs of

neighboring cells, as the first generation of virtual connections. Applying the

AND deduction rule to the appropriate groups of the first generation of virtual

connections we build the second generation of virtual connections and semi-

connections. Then we apply the AND and OR deduction rules to both the

first and the second generations of virtual connections and semi-connections to

build the third generation of virtual connections and semi-connections, etc. This

process stops when no new virtual connections are produced.

In general, this process can start from any initial set of virtual connections

and semi-connections.

This iterative process can build all of the virtual connections shown in Figures

2 and 4. A formal proof for the subgame on Diagram 2 in Figure 4 is provided

in Appendix as an example.

Is the set of the AND and OR deduction rules complete, i.e. can this process

build all virtual connections? The answer is negative. The diagram in Figure 8
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Figure 8. The two black cells form a virtual connection, which cannot be built

using the AND and OR deduction rules.

represents a counter-example of a virtual connection that cannot be built by the

H-process.

It is easy to check that this subgame is a virtual connection. Indeed, if White

plays at a, Black can reply with b, forcing White to occupy c. Then Black plays

d securing the win. This virtual connection is a disjunction of two equivalent

virtual semi-connections with disjoint carriers. A computer program was used

to verify that no combination of the AND and OR deduction rules can establish

neither these virtual semi-connections nor the overall virtual connection.

6. Electrical Resistor Circuits

The H-process introduced in the previous section is useful in two ways. First,

in some positions it can reach the ultimate objective by building a winning

virtual connection between either black or white boundaries. Second, even if it

is impossible due to incompleteness of the AND and OR deduction rules and the

limited computing resources, the information about connectivity of subgames is

useful for the evaluation of the entire position.

In this section we introduce a family of evaluation functions based on an

electrical resistor circuit representation of Hex positions. One can think of an

electrical circuit as a graph. Edges of the graph play a role of electrical links

(resistors). The resistance of each electrical link is equal to the length of the

corresponding edge of the graph. Yet, we consider that the “electrical circuit”

language better suits our needs.

With every Hex position we associate two electrical circuits. The first one

characterizes the position from Black’s point of view (Black’s circuit), and the

second one from White’s point of view (White’s circuit). To every cell c of the

board we assign a resistance r in the following way:

rB(c) =







1, if c is empty,

0, if c is occupied by a black piece,

+∞, if c is occupied by a white piece,
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for Black’s circuit, and

rW (c) =







1, if c is empty,

0, if c is occupied by a white piece,

+∞, if c is occupied by a black piece,

for White’s circuit. For each pair of neighboring cells, (c1, c2), we associate an

electrical link with resistance

rB (c1, c2) = rB (c1) + rB (c2), for Black’s circuit,

rW (c1, c2) = rW (c1) + rW (c2), for White’s circuit.

These circuits take into account only virtual connections between neighboring

cells, and describe the microstructure of Hex position.

We are now going to enhance these circuits by including information about

more complex known virtual connections. We focus on Black’s circuits only.

White’s circuits can be dealt with in a similar way.

A seemingly natural way of doing this is to add an additional electrical link

between cells x and y to Black’s circuit if x and y form a virtual connection.

Then all virtual connections would be treated as neighboring cells. However,

virtual connections between nearest neighbors are stronger than other virtual

connections, so our circuit should reflect this. Instead of connecting black cells x

and y with a shortcut, we add other links to Black’s circuit in the following way.

If an empty cell c is a neighbor of one of the ends of this virtual connection, say

x, then we also treat this cell c as a neighbor of the other end y. This means

that we connect cells c and y with an additional electrical link in the same way

as actual neighbors.

Let RB and RW be distances between black boundaries in Black’s circuit

and between white boundaries in White’s circuit, correspondingly. We define an

evaluation function:

E = log(RB/RW ).

One of the reasonable distance metrics is the length of the shortest path on the

graph, connecting boundaries. We can also measure distances in a different way.

Apply an electrical voltage to the opposite boundaries of the board and measure

the total resistance between them, RB for Black’s circuit, and RW for White’s

circuit (see Figure 9).

We prefer this way for measuring distances, because according to the Kirchhoff

electrical current laws, the total resistance takes into account not only the length

of the shortest path, but also all other paths connecting the boundaries, their

lengths, and their intersections.

Virtual connections with the depth d contain information about development

of Hex position d moves ahead. Thus, we can expect that by including electrical

links, which correspond to virtual connections with depth less or equal than d,

we obtain an evaluation function with foreseeing abilities up to d moves ahead.
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Figure 9. Black’s and White’s circuits.

7. Hexy Plays Hex

Hexy is a Hex-playing computer program, which utilizes the ideas presented

in this paper. It runs on a standard PC with Windows, and can be downloaded

from the website http://home.earthlink.net/̃ vanshel.

Hexy uses a selective alpha-beta search algorithm, with the evaluation func-

tions described in the previous section. For every node to be evaluated, Hexy

calculates the hierarchy of virtual connections for both Black’s and White’s cir-

cuits using the H-process described in Section 5. Then Hexy calculates distances

RB and RW between Black and White boundaries, correspondingly. For cal-

culation of the shortest path, a version of Dijkstra algorithm is applied. For

calculation of the total electrical resistance between boundaries, Hexy solves the

Kirchhoff system of linear equations using a method of iterations (see (Strang

1976), for example).

In practice, Hexy does not start the H-process from pairs of neighboring cells,

but looks for changes in the hierarchy of virtual connections, caused by an ad-

ditional piece, placed on the board. Besides, the program keeps track of only

minimal available virtual connections and semi-connections.

The program has two important thresholds, D and N . The parameter D is

the depth of the game-tree search. The second parameter, N , sets the limit to

the number of different minimal virtual connections with the same ends, built by

the program. This threshold indirectly controls the total number of calculated

minimal virtual connections. The larger N , the more minimal virtual connections

the H-process builds for every node of the game-tree. However, we do not put

any limits on the number of iterations of the algorithm, or the total number of

virtual connections, or their depths. The process stops when the next iteration

of the algorithm does not produce new virtual connections.

There is an obvious trade-off between parameters D and N , and finding an

optimum is an important task. Since our major objective has been a creation of

Hex-playing program, which can provide fun for Hex fans, we confine ourselves

by a condition, that Hexy should be able to complete a game on the 10 × 10

board for less then 8 minutes on a standard PC with 300 MHz processor and
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32 MB RAM. Thus, we try to find optimal (in terms of playing strength) values

of these thresholds, satisfying the above condition. Experiments show that the

dependence of Hexy’s strength on the parameter N, which controls the number

and the depth of virtual connections, is much more dramatic than its dependence

on the depth D of game-tree search. The best results determined experimentally,

are obtained with values of D = 3 and N = 20 (for a 10×10 board). This version

of Hexy (called Advanced level) performs a very shallow game-tree search (200–

500 nodes per move), but routinely detects virtual connections with depth 20 or

more. It means that this version of Hexy routinely foresees some lines of play 20

or more moves ahead.

Hexy demonstrates a clear superiority over all known Hex-playing computer

programs. This program won a Hex tournament of the 5th Computer Olympiad

in London on August 2000, with the perfect score (Anshelevich 2000b).

Hexy was also tested against human players on the popular game website

Playsite (http://www.playsite.com/games/board/hex). Hexy cannot compete

with the best human players. Nevertheless, after more than 100 games, the

program achieved a rating within the highest Playsite red rating range.

8. Conclusion

In this paper we have described a hierarchical approach to the game of Hex,

and explained how this approach is implemented in Hexy - a Hex-playing com-

puter program. Hexy does not perform massive game-tree search. Instead, this

program spends most computational resources on deep analysis of a relatively

small number of Hex positions.

We have concentrated on a hierarchy of positive subgames of Hex positions,

called virtual connections, and have defined the AND and OR deduction rules,

which allow to build complex virtual connections recursively, starting from the

simplest ones. Integrating the information about virtual connections of this

hierarchy, we have built a far-sighted evaluation function, foreseeing the potential

of Hex positions many moves ahead.

The process of building virtual connections, the H-process, has its own cost.

Nevertheless, the resulting foreseeing abilities of the evaluation function greatly

outweigh its computational cost. This approach is much more efficient than

brute-force search, and can be considered as both alternative and complimentary

to the alpha-beta game-tree search.
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Appendix

In this Appendix we show how to prove that the ladder in Figure 10 is a

virtual connection using the AND and OR deduction rules. We use abbreviation

VC for virtual connections, VSC for virtual semi-connections, brackets [ ] for

carriers, and parentheses () for subgame triplets.

Figure 10. Black cells x and y form a ladder. The cells of the carrier are

enumerated.

Examples:

[a, b] is a carrier consisting of two cells a and b.

[ ] is an empty carrier.

(x, [a, b, c, d], y) is a subgame with ends x and y and carrier [a, b, c, d].

(x, [ ], y) is a subgame with ends x and y and an empty carrier.

The following sequence of deductions proves that the subgame in Figure 10 is a

virtual connection.

(3, [ ], a) is VC, (a, [ ], 1) is VC. Apply AND: (3, [ ], 1) is VC.

(3, [ ], 1) is VC, (1, [ ], y) is VC. Apply AND: (3, [1], y) is VSC.

(3, [ ], 2) is VC, (2, [ ], y) is VC. Apply AND: (3, [2], y) is VSC.

(3, [1], y) is VSC, (3, [2], y) is VSC. Apply OR: (3, [1, 2], y) is VC.

(5, [ ], 3) is VC, (3, [1, 2], y) is VC. Apply AND: (5, [1, 2, 3], y) is VSC.

(5, [ ], 4) is VC, (4, [ ], y) is VC. Apply AND: (5, [4], y) is VSC.

(5, [1, 2, 3], y) is VSC, (5, [4], y) is VSC. Apply OR: (5, [1, 2, 3, 4], y) is VC.

(7, [ ], 5) is VC, (5, [1, 2, 3, 4, ], y) is VC. Apply AND: (7, [1, 2, 3, 4, 5], y) is VSC.

(7, [ ], 6) is VC, (6, [ ], y) is VC. Apply AND: (7, [6], y) is VSC.

(7, [1, 2, 3, 4, 5], y) is VSC, (7, [6], y) is VSC. Apply OR: (7, [1, 2, 3, 4, 5, 6], y) is

VC.

(9, [ ], 7) is VC, (7, [1, 2, 3, 4, 5, 6], y) is VC. Apply AND: (9, [1, 2, 3, 4, 5, 6, 7], y) is

VSC.

(9, [ ], 8) is VC, (8, [ ], y) is VC. Apply AND: (9, [8], y) is VSC.

(9, [1, 2, 3, 4, 5, 6, 7], y) is VSC, (9, [8], y) is VSC. Apply OR:

(9, [1, 2, 3, 4, 5, 6, 7, 8], y) is VC.
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(11, [ ], 9) is VC, (9, [1, 2, 3, 4, 5, 6, 7, 8], y) is VC. Apply AND:

(11, [1, 2, 3, 4, 5, 6, 7, 8, 9], y) is VSC.

(11, [ ], 10) is VC, (10, [ ], y) is VC. Apply AND: (11, [10], y) is VSC.

(11, [1, 2, 3, 4, 5, 6, 7, 8, 9], y) is VSC, (11, [10], y) is VSC. Apply OR:

(11, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], y) is VC.

(13, [ ], 11) is VC, (11, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], y) is VC. Apply AND:

(13, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], y) is VSC.

(13, [ ], 12) is VC, (12, [ ], y) is VC. Apply AND: (13, [12], y) is VSC.

(13, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], y) is VSC, (13, [12], y) is VSC. Apply OR:

(13, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y) is VC.

(x, [ ], 13) is VC, (13, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y) is VC. Apply AND:

(x, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], y) is VSC.

(x, [ ], 14) is VC, (14, [ ], y) is VC. Apply AND: (x, [14], y) is VSC.

(x, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13], y) is VSC, (x, [14], y) is VSC. Apply

OR: (x, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], y) is VC.
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