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On the Tame Fundamental Groups of Curves over
Algebraically Closed Fields of Characteristic > 0

AKIO TAMAGAWA

Abstract. We prove that the isomorphism class of the tame fundamental
group of a smooth, connected curve over an algebraically closed �eld k of
characteristic p > 0 determines the genus g and the number n of punc-
tures of the curve, unless (g, n) = (0, 0), (0, 1). Moreover, assuming g = 0,
n > 1, and that k is the algebraic closure of the prime �eld Fp, we prove
that the isomorphism class of the tame fundamental group even completely
determines the isomorphism class of the curve as a scheme (though not nec-
essarily as a k-scheme). As a key tool to prove these results, we generalize
Raynaud's theory of theta divisors.

Introduction

Let k be an algebraically closed �eld of characteristic p > 0, and U a smooth,
connected curve over k. (A curve is a separated scheme of dimension 1.) We
denote by X the smooth compacti�cation of U and put S = X − U . We de�ne
non-negative integers g and n to be the genus of X and the cardinality of the
point set S, respectively.

In [T2], we proved that the isomorphism class of the (pro�nite) fundamental
group π1(U) of U determines the pair (g, n), and that, when g = 0 and k is the
algebraic closure Fp of the prime �eld Fp, the isomorphism class of π1(U) even
completely determines the isomorphism class of the curve as a scheme.

The aim of the present paper is to generalize these results to the case that
π1(U) is replaced by its quotient πt

1(U), the tame fundamental group of U (see
[SGA1], Exp. XIII and [GM]), as the author announced in [T2], Note 0.3. Thus
the main results of the present paper are the following.

Theorem (0.1). (See (4.1).) The isomorphism class of the pro�nite group
πt

1(U) determines the pair (g, n), unless (g, n) = (0, 0), (0, 1).
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Theorem (0.2). (See (5.9).) Assume g = 0, n > 1, and either k = Fp or n ≤ 4.
Then the isomorphism class of the pro�nite group πt

1(U) completely determines
the isomorphism class of the scheme U .

More precisely , for two such curves Ui/k (i = 1, 2), πt
1(U1) ' πt

1(U2) if and
only if U1 ' U2 as schemes.
Since it is rather easy to see that the quotient πt

1(U) of π1(U) can be recovered
group-theoretically from π1(U) ([T2], Corollary 1.5), the results of the present
paper are stronger than those of [T2].
Remark (0.3). (i) When g and n are small (more precisely, when 2g + n ≤ 4),
(0.1) has been settled by Bouw. See [B] for this and other related results.
(ii) In [T1], a result similar to (0.2) was proved for U a�ne, smooth, geometrically
connected curve (of arbitrary genus) over a �nite �eld F. In this case, the
(arithmetic) tame fundamental group πt

1(U) is an extension of the absolute Galois
group Gal(F/F) by the geometric tame fundamental group πt

1(U ⊗F F), and we
exploited the (outer) Galois action on the geometric tame fundamental group.
(0.2) above shows that (for g = 0) the geometric tame fundamental group,
without the Galois action, is enough to recover the moduli of the curve.
Remark (0.4). For a pro�nite group Π, let ΠA denote the set of isomorphism
classes of all �nite quotients of Π. It is known that the subset ΠA of the set of
isomorphism classes of all �nite groups completely determines the isomorphism
class of the pro�nite group Π, if Π is �nitely generated ([FJ], Proposition 15.4).

We shall write πt
A(U) instead of πt

1(U)A. Then, since πt
1(U) is �nitely gener-

ated, the information carried by πt
A(U) is equivalent to the information carried by

(the isomorphism class of) πt
1(U). Therefore, we can restate the above theorems

in terms of πt
A(U). Moreover, as for (0.1), we can say how πt

A(U) determines
the pair (g, n) explicitly, by looking carefully at the proofs in the present paper.
For this, see [T3].
In [T2], the result corresponding to (0.1) followed from a quick argument com-
bining the Hurwitz formula and the Deuring�Shafarevich formula, which involves
wild rami�cation. However, in our case, we cannot resort to wild rami�cation,
and we need another strategy.

In order to explain our strategy to prove (0.1), �rst we shall assume n = 0,
or, equivalently, U = X. (Under this assumption, it is elementary to prove (0.1),
though. See (4.3)(i).) Note that then we have πt

1(U) = π1(X). In this case, all
the ingredients of our strategy are given by Raynaud's theory of theta divisors
([R1]).
(i) The p-rank (or Hasse�Witt invariant) γX of X is de�ned to be the dimen-
sion of the Fp-vector space Hom(π1(X),Fp). More generally, for each surjective
homomorphism ρ : π1(X) ³ G, where G is a �nite cyclic group of order N

prime to p, Ker(ρ) may be identi�ed with π1(Y ), where Y → X is the �nite
étale G-covering corresponding to ρ. Then, G acts on Hom(π1(Y ),Fp), and
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Hom(π1(Y ),Fp) ⊗ k admits a canonical decomposition as a direct sum, corre-
sponding to the decomposition of the group algebra k[G] as the direct product
of N copies of k, each of which corresponds to a character G → k×. Now,
the dimension of each direct summand of Hom(π1(Y ),Fp) ⊗ k is the so-called
generalized Hasse�Witt invariant (see [Ka], [Na], and [B]).
(ii) On the other hand, it is well-known that the set of connected �nite étale
G-coverings of X is in one-to-one correspondence with the set of isomorphism
classes of line bundles on X of order N , or, equivalently, the set of points of order
N of the Jacobian variety J of X. More precisely, this one-to-one correspondence
is given by �xing an isomorphism G

∼→µN (k). For each line bundle L of order N ,
let f be the order of p mod N in (Z/NZ)×. Then, taking the composite of the pf -
th power map L → L⊗pf and the isomorphism L⊗pf

= L⊗L⊗(pf−1) ∼→L, we get
a map L → L, which induces a pf -linear map ϕ[L] : H1(X, L) → H1(X, L). Now,
the generalized Hasse�Witt invariant γ[L] with respect to L and G

∼→µN (k) ⊂ k×

coincides with the dimension of the k-vector space
⋂

r≥1 Im((ϕL)r).
(iii) Raynaud ([R1]) de�ned a certain divisor ΘB of J (more naturally, of the
Frobenius twist J1 of J) in a canonical way depending only on X, such that
[L] ∈ J belongs to ΘB if and only if the p-linear map H1(X,L) → H1(X, L⊗p)
induced by the p-th power map L → L⊗p is an isomorphism. In particular, if
[L] is a torsion element of order N prime to p as above, ϕ[L] is an isomorphism
(or, equivalently, γ[L] = dimk(H1(X,L))), if and only if [L⊗pi

] /∈ ΘB for all
i = 0, 1, . . . , f − 1.
(iv) More precisely, Raynaud de�ned a vector bundle B with rank p− 1, degree
(p − 1)(g − 1), and Euler�Poincaré characteristic 0 to be the cokernel of (the
linearization of) the p-th power map OX → OX . Then, he de�ned ΘB as the
theta divisor of B. (That is to say, [L] /∈ ΘB if and only if H0(X,B ⊗ L) =
H1(X,B⊗L) = 0.) It is easy to see that ΘB is a closed subscheme of codimension
≤ 1 of J , and the main di�culty consists in proving that ΘB does not coincide
with J . To prove this, Raynaud resorted to a ring-theoretic argument involving
the Koszul complex over the (regular) local ring at the origin of J .
(v) By using intersection theory, Raynaud proved #(ΘB ∩ J [N ]) = O(N2g−2).
From this, we obtain #{[L] ∈ J [N ] | ∃i, s.t. [L⊗i] ∈ ΘB} = O(N2g−1). So, as
a conclusion, we can roughly say that, for `most' prime-to-p-cyclic (�nite étale)
coverings of X, the generalized Hasse�Witt invariants are as large as possible. In
other words, γ[L] = g−1 holds for `most' L (unless g = 0). Since the generalized
Hasse�Witt invariants are encoded in π1(X) by de�nition, this gives a group-
theoretic characterization of the invariant g − 1.

For Raynaud's theory of theta divisors, see also [R2] (a generalization) and
[Mad] (an exposition).

In this paper, we generalize these arguments to the (possibly) rami�ed case
n > 0. Here, a cyclic (�nite étale) covering of U of degree N prime to p corre-
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sponds to a pair of a line bundle L and an e�ective divisor D (whose support is
contained in S) satisfying certain conditions. (In particular, L⊗N ' OX(−D) is
required.) Then, as in (ii) above, we can describe the corresponding generalized
Hasse�Witt invariant γ([L],D) in terms of a pf -linear map ϕ([L],D) : H1(X, L) →
H1(X,L). Note that, unlike in the case n = 0 (and L 6' OX), the dimension of
H1(X,L) depends on L, since deg(L) varies (among 0,−1, . . . ,−(n− 1)). Then,
under certain assumptions on D, we can de�ne a vector bundle Bf

D depending
on f and D, which yields a closed subscheme of J (more naturally, of the f -th
Frobenius twist Jf of J). Now, the main result (2.5) says that this closed sub-
scheme is a divisor if deg(D) = pf−1. As a corollary, we have that, if N = pf−1,
for `most' pairs ([L], D) with deg(L) = −1, the generalized Hasse�Witt invariant
γ([L],D) is as large as possible, i.e., coincides with dimk(H1(X, L)) = g (if n > 1).
On the other hand, by a combinatorial argument, we prove that, if n > 1 and
N = pf − 1, for `most' pairs ([L], D), there exists an i = 0, 1, . . . , f − 1 such that
deg(Lpi) = −1. (Here, Lj is a certain modi�cation of L⊗j , so that the cyclic
(rami�ed) covering of X corresponding to ([L], D) is the spectrum of

⊕N−1
j=0 Lj .)

Combining these, we can conclude that for `most' prime-to-p-cyclic coverings
of U (with degree in the form pf − 1), the generalized Hasse�Witt invariants
coincide with g. This gives a group-theoretic characterization of g. Since it is
easy to see that the Euler�Poincaré characteristic 2 − 2g − n can be recovered
group-theoretically from πt

1(U), this completes the proof of (0.1).

Just as in [T2], we can then prove that (for U hyperbolic) the set of inertia
subgroups of πt

1(U) can be recovered group-theoretically from πt
1(U), by using

(0.1) (see (5.2)). Now, what is missing to prove (0.2) along the lines of [T2] is
only to recover the `additive structures' of the inertia subgroups (see Section 5,
(B)). In [T2], this was done by studying wild rami�cation again. In our case,
another usage of our generalization of Raynaud's theory settles the problem.
This completes the proof of (0.2).

We shall explain brie�y the content of each section of the present paper, and
show in which section each part of the above arguments is contained. The order
of the sections does not necessarily follow the order of the above arguments,
because it is natural to present the main theorems (which assure the existence of
the theta divisor associated with Bf

D) as early as possible, and then to present
the main results concerning π1(X) as corollaries of the main theorems.

In Section 1, we give a generalization of Raynaud's ring-theoretic argument
in (iv) above. The main result is (1.12). In fact, Raynaud's original argument
is su�cient for the proofs of the main results of the present paper. However, we
include this generalization since it is done by just replacing the Koszul complex
in Raynaud's proof with the so-called Eagon�Northcott complex, and since it is
likely that this generalization will be applied to other related problems concerning
coverings and fundamental groups.
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In Section 2, after quickly reviewing Raynaud's theory concerning the theta
divisor ΘB , we de�ne the vector bundle Bf

D, and prove (by using (1.12)) the
main result (2.5) which assures the existence of the theta divisor associated
with Bf

D under certain assumptions. (2.5), together with a slight generalization
(2.6), plays a crucial role in the group-theoretic characterization of the genus.
Moreover, with another variant (2.13), we investigate the case n ≤ 3 in more
detail (2.21). This plays a central role in the group-theoretic characterization of
the additive structures of inertia groups.

In Section 3, we give a review of generalized Hasse�Witt invariants, a descrip-
tion (3.5) of prime-to-p-cyclic coverings of X that are unrami�ed on U in terms
of line bundles and divisors on X, and a reinterpretation of generalized Hasse�
Witt invariants via this description. Then, after presenting some inputs from
intersection theory (3.10), we prove the main numerical results (3.12) and (3.16)
concerning the generalized Hasse�Witt invariants of prime-to-p-cyclic coverings
of U , by using the results of Section 2. Note that so far the e�ective divisor D

is �xed. Now, combining these results with a combinatorial result (3.18) (which
enables D to vary), we �nally establish the summarizing result (3.20) to the ef-
fect that most generalized Hasse�Witt invariants coincides with g′, where g′ def= g

(resp. g′ def= g − 1) for n > 1 (resp. n ≤ 1).
In Section 4, we apply the results of Section 3 and give a group-theoretic char-

acterization of g′ in an e�ective way (4.10) and in an ine�ective but impressive
way (4.11). The latter can be stated as follows. Here, for each pro�nite group Π
and a natural number m, we denote by Π(m) the kernel of Π ³ Πab ⊗ Z/mZ.

Theorem (0.5). (See (4.8), (4.11), and (4.12).) We have

lim
f→∞

γav
pf−1 = g′,

unless (g, n) = (0, 0), (0, 1), where

γav
N =

dimFp(πt
1(U)(N)ab ⊗ Fp)

#(πt
1(U)ab ⊗ Z/NZ)

.

Moreover, after settling a few more minor technical problems (for example, the
problem that the results above do not give a characterization of g but only give
a characterization of g′), we obtain the group-theoretic characterization (4.1) of
the pair (g, n).

Finally, in Section 5, we give group-theoretic characterizations of the inertia
subgroups (5.2) and the `additive structures' of inertia subgroups (5.3), and
present anabelian-geometric results (5.8) and (5.9) for g = 0.

In the Appendix, we give a proof of a partial generalization (4.17) of the limit
formula (4.11). Here, the theory of uniform distribution (especially, Stegbuch-
ner's higher-dimensional version of LeVeque's inequality) plays a key role.
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1. A Generalization of the Ring-Theoretic Part of Raynaud's
Theory

In this section, we shall give a generalization of the ring-theoretic part of
Raynaud's theory ([R1], 4.2). The statement of our main result is more general
than [R1], Lemme 4.2.3, but the proof is rather similar to Raynaud's proof, if
we replace the Koszul complex by the so-called Eagon�Northcott complex.

Now, let Y be a connected, noetherian scheme and f : X → Y a proper
morphism whose �bers are of dimension ≤ 1. Let F be a coherent OX -module
�at over Y . For each y ∈ Y and i = 0, 1, de�ne hi(y) = hi(F , y) to be the
dimension of the k(y)-vector space Hi(Xy,F ⊗ k(y)), where Xy denotes the
scheme-theoretic �ber X⊗k(y) of f at y and F⊗k(y) denotes the OXy - module
obtained as the pull-back of F to Xy. By the local constancy of the Euler�
Poincaré characteristic ([Mu], § 5, Corollary on p.50),

χF
def= h0(y)− h1(y)

is independent of y.
Definition. (i) For each i ∈ Z≥0, we denote by Zi = Zi(F) the closed sub-

scheme of Y de�ned by the i-th Fitting ideal Fitti(R1f∗(F)) of OY .
(ii) We put W (F) def= Z(−χF )+(F), where x+ def= max(x, 0).
Remark (1.1). For the de�nition and the properties of Fitting ideals, we refer
to [E], Chapter 20, where only Fitting ideals of modules over rings are treated.
However, since the formation of Fitting ideals commutes with localization ([E],
Corollary 20.5), we can de�ne and treat Fitting ideals of coherent sheaves on
schemes without any extra e�orts. (See [SGA7I], Exp. VI, § 5.)
Lemma (1.2). For each y ∈ Y , we have

y /∈ Zi(F) ⇐⇒ h1(y) ≤ i.

In particular ,
y /∈ W (F) ⇐⇒ min(h0(y), h1(y)) = 0.
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Proof. The �rst assertion follows from [E], Proposition 20.6 and [Mu], § 5,
Corollary 3 on p. 53. The second assertion follows from the �rst, together with
the identity

(1.3) h1(y)− (−χF )+ = min(h0(y), h1(y)). ¤

In the special case that h0(y) = 1, we have:

Lemma (1.4). Let y be a point of Y , and assume that h0(y) = 1 and that
h1(y) ≥ 1. Then, in a certain open neighborhood of y, W (F) is the maximal
closed subscheme W on which R1f∗(F)|W is locally free of rank h1(y).

Proof. By the assumption, we have (−χF )+ = h1(y) − 1, hence W (F) =
Zh1(y)−1(F). Put U = Y − Zh1(y)(F), which is an open neighborhood of y by
(1.2). Then, by [E], Proposition 20.8, W (F)∩U is the maximal closed subscheme
WU of U on which R1f∗(F)|WU

is locally free of rank h1(y), as desired. ¤

Next, we shall describe W (F) by using the theory of perfect complexes.

Definition. For a homomorphism φ : A → B in an abelian category, we denote
by (A

φ→ B) or simply by (A → B) the complex

· · · → 0 → 0 → A
φ→ B → 0 → 0 → · · · ,

where A (resp. B) is placed in degree 0 (resp. 1).

Lemma (1.5). Let y be a point of Y . Then, in some open neighborhood of y, the
object Rf∗(F) (in the derived category of OY -modules) can be represented by a
complex in the form (Oh0(y)

Y

φ→ Oh1(y)
Y ) with φ⊗ k(y) = 0.

Moreover , for each homomorphism F → F ′ between coherent OX-modules
F and F ′ �at over Y , the corresponding morphism Rf∗(F) → Rf∗(F ′) can be
represented by a homomorphism of complexes in the form

(Oh0(F,y)
Y

φ→ Oh1(F,y)
Y ) → (Oh0(F ′,y)

Y

φ′→ Oh1(F ′,y)
Y ),

that is:
...

...
↓ ↓

Oh0(F,y)
Y → Oh0(F ′,y)

Y

φ ↓ φ′ ↓
Oh1(F,y)

Y → Oh1(F ′,y)
Y

↓ ↓
...

... .

Proof. Zariski locally on Y , Rf∗(F) can be represented by a perfect complex
in the form ((OY )n0 → (OY )n1). (See [Mu], § 5, the second Theorem on p.46.
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We can take a complex in this form since hi(y) = 0 for y ∈ Y and i > 1. See
also [SGA6], Exp. I�III.) In particular, we have the exact sequence

0 → R0f∗(F) → (OY )n0 → (OY )n1 → R1f∗(F) → 0. (1.6)

On the other hand, consider a minimal free resolution of the OY,y-module
R1f∗(F)y:

· · · → (OY,y)m0 → (OY,y)m1 → R1f∗(F)y → 0.

By [E], Theorem 20.2, we can see that the exact sequence

(OY,y)n0 → (OY,y)n1 → R1f∗(F)y → 0

obtained by localizing (1.6) is isomorphic to the direct sum of (part of) the
minimal resolution

(OY,y)m0 → (OY,y)m1 → R1f∗(F)y → 0 (1.7)

and the complex ((OY,y)a+b proj.→ (OY,y)a) for some a, b ≥ 0. Now, taking the
direct sum of (1.7) and the complex ((OY,y)b → 0), we obtain a new complex
((OY,y)m′

0 → (OY,y)m1), where m′
0 = m0 + b, which is homotopically equiva-

lent to ((OY,y)n0 → (OY,y)n1), by de�nition. Since we are dealing with only
�nite number of modules and homomorphisms, we can extend this homotopy
equivalence to one between ((OY )n0 → (OY )n1) and ((OY )m′

0 → (OY )m1), if we
replace Y by a suitable open neighborhood of y.

By the de�nition of the minimality, the homomorphism (OY,y)m1 → R1f∗(F)y

becomes an isomorphism after being tensored with k(y). Then, by [Mu], § 5,
Corollary 3 on p.53, we obtain m1 = h1(y). Thus Rf∗(F) is represented by the
complex ((OY )m′

0 → (OY )h1(y)). Finally, by tensoring this complex with k(y)
again, we obtain m′

0 = h0(y) and φ⊗ k(y) = 0, as desired.
The second assertion follows from the �rst assertion and a standard fact in

the theory of derived categories (see, e.g., [E], Exercise A3.54). ¤

Corollary (1.8). In some neighborhood of y, W (F) is de�ned by the ideal
generated by the maximal minors of an h0(y) × h1(y) matrix representing φ in
(1.5).

Proof. This follows from the de�nition of Fitting ideal, together with identity
(1.3). ¤

Theorem (Macaulay [Mac]). (See [E], Exercise 10.9.) Let R be a noether-
ian ring , and let F and G be free R-modules of �nite rank . Let φ be an R-
homomorphism F → G, and choose a matrix A with coe�cients in R that repre-
sents φ. Let I be the ideal of R generated by the maximal minors of A. Then, for
each minimal prime ideal p containing I, we have ht(p) ≤ |rk(F )− rk(G)|+1. ¤
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Definition. In Macaulay's theorem, if, moreover, the equality ht(p) = |rk(F )−
rk(G)| + 1 holds for every minimal prime ideal p containing I, we say that φ is
determinantal. (See, e.g., [E], 18.5.) Equivalently, φ is determinantal if and only
if either I = R or ht(I) = |rk(F )− rk(G)|+ 1.

Corollary (1.9). The codimension of each irreducible component of W (F)
does not exceed |χF |+ 1.

Proof. This follows from (1.8) and Macaulay's theorem above. ¤

Definition. We say F is determinantal, if the codimension of every irreducible
component of W (F) coincides with |χF |+ 1. (Equivalently, F is determinantal
if and only if either W (F) = ∅ or codim(W (F)) = |χF |+ 1.)

Before presenting the main result of this section, we shall establish the following
key lemma, which is purely in commutative ring theory. In the special case that
R is regular, rk(F ) = rk(F ′) = dim(R) and rk(G) = rk(G′) = 1, this can be seen
in [R1], Lemme 4.2.3.

Lemma (1.10). Let R be a Cohen�Macaulay local ring . Let

F
f→ F ′

φ ↓ φ′ ↓
G

g→ G′
(1.11)

be a commutative diagram of R-modules, where F, G, F ′, G′ are free R-modules
of �nite rank . Assume that :

(a) rk(F )− rk(G) ≥ 0 and φ is determinantal ;
(b) g is surjective;
(c) either rk(F )− rk(G) = 0 or φ′ is not surjective; and
(d) rk(F )− rk(G) ≥ rk(F ′)− rk(G′).

Then:

(i) rk(F )− rk(G) = rk(F ′)− rk(G′).
(ii) φ′ is determinantal .
(iii) The �ber product F1

def= G×G′ F
′ is a free R-module of rank rk(F ), and the

determinant of the natural homomorphism F → F1 is not zero.

Proof. By replacing R with its completion, we may assume that R is complete.
In particular, we may assume that R admits a canonical module ω (see [BH],
Corollary 3.3.8).

From now on, we write χ and χ′ instead of rk(F )− rk(G) and rk(F ′)− rk(G′),
respectively. Moreover, we denote by I and I ′ the ideals of R generated by the
maximal minors of φ and φ′, respectively.

First, we treat the easier case that φ′ is surjective. Then we must have χ′ ≥ 0.
On the other hand, by (c) and (d), we have χ′ ≤ χ = 0. Thus χ′ = χ = 0, which
implies (i). Since φ′ is surjective with χ′ = 0, φ′ must be an isomorphism. In
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particular, we have I ′ = R, hence (ii) holds. Next, the natural map F1 → G is an
isomorphism, so we have rk(F1) = rk(G) = rk(F ). Moreover, the natural map
F → F1 can be identi�ed with φ. Now, since φ is determinantal, the determinant
of φ is non-zero. This complete the proof in the case that φ′ is surjective.

Next, assume that φ′ is not surjective. Put M
def= Coker(φ) and M ′ def=

Coker(φ′). Since χ ≥ 0 by the �rst half of (a), we have I = Fitt0(M) by
de�nition, and I annihilates M by [E], Proposition 20.7a. By (b), the natural
map M → M ′ is also surjective, hence I annihilates M ′. In particular, I 6= R as
M ′ 6= 0, so, by (a), we have ht(I) = χ + 1 ≥ 1. Now, since M ′ is annihilated by
I with ht(I) ≥ 1, we obtain χ′ ≥ 0. (To see this, for example, tensor the (right)
exact sequence F ′ → G′ → M ′ → 0 with the residue �eld at any minimal prime
ideal of R.) Thus we have I ′ = Fitt0(M ′).

Note that g is surjective by (b) and G′ is free. Accordingly, g is split surjective,
or, equivalently, if we put K

def= Ker(g), g is a composite of an isomorphism
G
∼→K ×G′ that restricts to the identity on K and the projection K ×G′ → G′.

From this, we can easily see that the �ber product F1 = G×G′ F
′ is free and �ts

naturally into the following commutative diagram whose columns are all exact:

F
f1→ F1 ³ F ′

φ ↓ φ1 ↓ φ′ ↓
G = G ³ G′

↓ ↓ ↓
M ³ M ′ = M ′

↓ ↓ ↓
0 0 0.

Moreover, we have rk(F1) − rk(G) = χ′ ≥ 0. Thus, calculating Fitt0(M ′) by
using φ1, we see Fitt0(M) ⊂ Fitt0(M ′), or, equivalently, I ⊂ I ′. Moreover, since
I ′ annihilates M ′ 6= 0 by [E], Proposition 20.7a, we have I ′ 6= R. Thus, we have

χ + 1 = ht(I) ≤ ht(I ′) ≤ χ′ + 1,

where the last inequality follows from Macaulay's theorem. Combining this with
(d), we obtain ht(I ′) = χ′+1 and χ′ = χ. The former implies (ii), and the latter
implies both (i) and the �rst half of (iii). Note that φ1 is also determinantal.

To see the second half of (iii), we shall compare the Eagon�Northcott com-
plexes associated with φ and φ1. (For Eagon�Northcott complexes, see [E], A2.6.)
So, consider the following commutative diagram whose �rst (resp. second) row
is the Eagon�Northcott complex canonically associated with φ (resp. φ1):

0 → Dχ ⊗
∧r

F → · · · → D0 ⊗
∧s

F =
∧s

F
Vs φ→ ∧s → ∧s⊗R/I → 0

↓ ↓ ‖ ↓
0 → Dχ ⊗

∧r
F1 → · · · → D0 ⊗

∧s
F1 =

∧s
F1

Vs φ1→ ∧s → ∧s⊗R/I ′ → 0,
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where r = rk(F ) = rk(F1), s = rk(G), Di = (SiG)∗, and
∧s =

∧s
G (' R).

Since φ and φ1 are determinantal, the two rows are exact and both
∧s⊗R/I and∧s⊗R/I ′ are Cohen�Macaulay R-modules, by [E], Corollary A2.13.

Now, suppose that the determinant map
∧r

F → ∧r
F1 is zero. Then, the

�rst vertical arrow Dχ ⊗
∧r

F → Dχ ⊗
∧r

F1 is also zero. So, calculating
Extχ+1

R (−, ω) by using the Eagon�Northcott complexes, we see that the map
Extχ+1

R (
∧s⊗R/I ′, ω) → Extχ+1

R (
∧s⊗R/I, ω) associated with the natural surjec-

tion
∧s⊗R/I → ∧s⊗R/I ′ must be also zero. However, since ht(I ′) = ht(I) =

χ + 1, the duality theory (see [BH], Theorem 3.3.10, (a)⇒(c)) tells us that this
implies that the original surjection

∧s⊗R/I → ∧s⊗R/I ′ is zero. This is absurd,
since

∧s ' R and I ′ 6= R. This completes the proof. ¤

The following is the main result of this section.

Theorem (1.12). Let Y be a Cohen�Macaulay , noetherian, integral scheme.
Let f : X → Y be a proper morphism whose �bers are of dimension ≤ 1. Let Fi

(i = 1, 2, 3) be coherent OX-modules �at over Y , and 0 → F1 → F2 → F3 → 0
an exact sequence of OX-modules. Assume that :

(a) F2 is determinantal (in the sense of the De�nition following (1.9));
(b) one of the following three conditions holds: χF2 < 0,W (F1) 6= ∅; χF2 = 0;

χF2 > 0,W (F3) 6= ∅; and
(c) χF1 · χF3 ≥ 0.

Then:

(i) χF1 · χF3 = 0.
(ii) F1 and F3 are determinantal .

Proof. First, we shall treat the case that χF2 ≥ 0. By (1.5), in some neigh-
borhood of each y ∈ Y , the objects Rf∗(F2), Rf∗(F3), and the morphism
Rf∗(F2) → Rf∗(F3) can be represented by complexes (Oh0(F2,y)

Y → Oh1(F2,y)
Y ),

(Oh0(F3,y)
Y → Oh1(F3,y)

Y ), and a commutative diagram

Oh0(F2,y)
Y → Oh0(F3,y)

Y

↓ ↓
Oh1(F2,y)

Y → Oh1(F3,y)
Y ,

(1.13)

respectively. Put R = OY,y and k = k(y). Localizing (1.13) at y, we obtain
a commutative diagram (1.11) of free R-modules of �nite rank, where rk(F ) =
h0(F2, y), rk(G) = h1(F2, y), rk(F ′) = h0(F3, y), and rk(G′) = h1(F3, y). In
particular, we have rk(F ) − rk(G) = χF2 ≥ 0 and rk(F ′) − rk(G′) = χF3 . We
shall check conditions (a)�(d) of (1.10) by using our assumptions (a)�(c). (For
conditions (c) and (d) of (1.10), we need an extra assumption on y. See below.)

Condition (a) of (1.10) follows directly from our assumption that χF2 ≥ 0 and
our assumption (a). Next, since the �ber Xy is of dimension ≤ 1, we see that
the map g ⊗ k : G ⊗ k = H1(Xy,F2 ⊗ k(y)) → H1(Xy,F3 ⊗ k(y)) = G′ ⊗ k
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is surjective, hence g is surjective by Nakayama's lemma. Thus condition (b) of
(1.10) holds.

If χF2 = 0, condition (c) of (1.10) clearly holds. Moreover, in this case, our
assumption (c) says −(χF3)

2 ≥ 0, or, equivalently, χF3 = 0. Thus condition (d)
of (1.10) holds.

If χF2 > 0, we shall put an extra assumption that y ∈ W (F3). Then, by (1.2),
we have h1(F3, y) > 0. Since φ′⊗k = 0, this implies that φ′⊗k is not surjective,
hence φ′ is not surjective. Thus condition (c) of (1.10) holds. Moreover, suppose
that condition (d) of (1.10) does not hold. Then, we have χF3 > χF2 ≥ 0, and
χF1 = χF2 − χF3 < 0. Thus χF1 · χF3 < 0, which contradicts our assumption
(c).

Now, we may apply (1.10). Conclusion (i) of (1.10) implies χF1 = 0, hence (i)
of (1.12) (and χF3 ≥ 0). Conclusion (ii) of (1.10) implies that each irreducible
component of W (F3) passing through y has codimension |χF3 | + 1 = χF3 + 1.
So, (considering all points y ∈ W (F3)) we obtain that F3 is determinantal.
Moreover, conclusion (iii) of (1.10) implies that the map F → G ×G′ F ′ is
injective, since R is an integral domain by the assumption that Y is integral.
Accordingly, the map

R0f∗(F2)y = Ker(φ) → Ker(φ′) = R0f∗(F3)y

is injective, or, equivalently, R0f∗(F1)y = 0. Thus, in particular, we obtain
h0(F1, η) = 0, where η is the generic point of the integral scheme Y . (Here,
we have used our assumption (b) for the �rst time to choose a point y.) Thus,
η /∈ W (F1). Since Y is integral and |χF1 | + 1 = 1, this implies that F1 is
determinantal.

Next, we shall treat the case that χF2 < 0. In this case, by (1.5), we can take
(Zariski locally) a commutative diagram

Oh0(F1,y)
Y → Oh0(F2,y)

Y

↓ ↓
Oh1(F1,y)

Y → Oh1(F2,y)
Y

(1.14)

representing the morphism Rf∗(F1) → Rf∗(F2). Then, localizing (1.14) at
y ∈ Y and taking the dual (= HomR(−, R), where R = OY,y) of the diagram,
we obtain a commutative diagram of free R-modules such as

G′ ← G

φ′ ↑ φ ↑
F ′ ← F ,

where rk(G′) = h0(F1, y), rk(F ′) = h1(F1, y), rk(G) = h0(F2, y), and rk(F ) =
h1(F2, y). If we regard this diagram as (1.11), the proof in the case χF2 < 0 can
be done just in parallel with that of χF2 > 0. This completes the proof. ¤
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2. Generalizations of Raynaud's Theorem
Let k be an algebraically closed �eld and X a proper, smooth, connected curve

of genus g over k.
For a vector bundle E on X (regarded as a locally free OX -module of �nite

rank), let rk(E), deg(E) and hi(E) (i = 0, 1) denote the rank of E, the degree of
E (which is de�ned to be the degree of the line bundle det(E) def=

rk(E)∧ E), and the
dimension (as a k-vector space) of the i-th cohomology group Hi(X,E). The
Riemann�Roch theorem implies the following formula for the Euler�Poincaré
characteristic χ(E) def= h0(E)− h1(E) of E:

χ(E) = deg(E)− (g − 1) rk(E). (2.1)
In [R1], Raynaud investigated the following property of a vector bundle E

on X.

Definition (Condition (?)). We say that E satis�es (?) if there exists a line
bundle L of degree 0 on X such that min(h0(E ⊗ L), h1(E ⊗ L)) = 0.

First, we shall see the relation between condition (?) and the contents of Section
1. So, Let J be the Jacobian variety of X, and let L be a universal line bundle
on X × J . Let prX and prJ denote the projections X × J → X and X × J → J ,
respectively. Regarding prJ : X × J → J and (prX)∗(E)⊗ L as f : X → Y and
F in Section 1, respectively, we can apply de�nitions and results to our situation.

Definition. We denote by ΘE the closed subscheme W ((prX)∗(E)⊗ L) of J .

We have the following �rst properties of ΘE .

Proposition (2.2). Let the notations be as above.

(i) The de�nition of ΘE is independent of the choice of L.
(ii) Let L be a line bundle of degree 0 on X, and let [L] denote the point of J

corresponding to L. Then, [L] /∈ ΘE if and only if

min(h0(E ⊗ L), h1(E ⊗ L)) = 0.

(iii) We have the following implications:
ΘE = ∅ or codim(ΘE) = |χ(E)|+ 1 ⇐⇒ (prX)∗(E)⊗ L is determinantalwÄ

ΘE 6= J ⇐⇒ E satis�es (?).
Moreover , if χ(E) = 0, the above four conditions are all equivalent .

Proof. (i) It is known that the di�erence of two choices of L comes from a
line bundle on J . So, Zariski locally on J , the di�erence is resolved. Since the
de�nition of Fitting ideal is of local nature (see (1.1)), this shows the desired
well-de�nedness of ΘE .
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(ii) The �ber (prJ)−1([L]) is naturally identi�ed with X, and the restriction of
(prX)∗(E) ⊗ L to this �ber is nothing but E ⊗ L. Now, (ii) is just the second
half of (1.2).
(iii) The �rst ⇐⇒ is just the de�nition, if we note that χ(prX)∗(E)⊗L de�ned
in Section 1 coincides with χ(E). The second ⇒ is trivial, and the third ⇐⇒
follows from (ii). Finally, if χ(E) = 0, Macaulay's theorem (see Section 1) says
that either ΘE = ∅ or codim(ΘE) ≤ 1. So, in this case, the converse of the
second ⇒ also holds. ¤

From now on, we assume that k is of characteristic p > 0. For an Fp-scheme
S, we shall denote by FS the absolute Frobenius endomorphism S → S. We
de�ne X1 to be the pull-back of X by FSpec(k), and denote by FX/k the relative
Frobenius morphism X → X1 over k.

We put B = ((FX/k)∗(OX))/OX1 , which is a vector bundle on X1 with
rk(B) = p− 1 and χ(B) = 0. In [R1], Raynaud proved, among other things, the
following:

Theorem. ([R1], Théorème 4.1.1.) The vector bundle B on X1 satis�es (?). ¤

As an application of this theorem, Raynaud proved, roughly speaking, that the
p-ranks of the Jacobian varieties of `most' (prime-to-p-)cyclic étale coverings of
X are as large as can be expected. In order to generalize such a result to rami�ed
coverings, we need to modify the vector bundle B, so that it involves a divisor
whose support is in the rami�cation locus. So, the aim of this section is to
generalize Raynaud's theorem along these lines, and, in the next section, the
application to cyclic rami�ed coverings will be given.

Let q = pf be a power of p (f ≥ 1). We de�ne Xf to be the pull-back of X

by (FSpec(k))f , and de�ne F f
X/k : X → Xf to be the composite of the f relative

Frobenius morphisms: F f
X/k

def= FXf−1/k ◦ · · · ◦ FX1/k ◦ FX/k.
Let D =

∑
P∈XnP P be an e�ective divisor on X (i.e., nP ≥ 0 for all P ). We

shall write ordP (D) instead of nP , which is a non-negative integer. Then, by
de�nition, deg(D) =

∑
P∈X ordP (D).

Definition. We put

Bf
D = ((F f

X/k)∗(OX(D)))/OXf
.

Lemma (2.3). (i) Bf
D is a vector bundle on Xf if and only if the torsion-freeness

condition
ordP (D) < q for each P ∈ X (TF)

holds.
(ii) Assume that (TF) holds. Then we have

rk(Bf
D) = q − 1, deg(Bf

D) = deg(D) + (g − 1)(q − 1), χ(Bf
D) = deg(D).
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More generally , for a line bundle L on Xf , we have

rk(Bf
D ⊗ L) = q − 1, deg(Bf

D ⊗ L) = deg(D) + (g − 1 + deg(L))(q − 1),

and
χ(Bf

D ⊗ L) = deg(D) + deg(L)(q − 1). (2.4)

Proof. (i) Since Bf
D is a coherent sheaf on the (smooth) curve Xf , it is a vector

bundle if and only if the stalk (Bf
D)Pf

is a torsion-free OXf ,Pf
-module for each

Pf ∈ Xf . By de�nition, we have (Bf
D)Pf

= (mX,P )− ordP (D)/OXf ,Pf
, where P is

the unique point of X above Pf and mX,P denotes the maximal ideal of the local
ring OX,P . So, (Bf

D)Pf
is torsion-free if and only if (mX,P )− ordP (D) ∩ k(Xf ) =

OXf ,Pf
, which turns out to be equivalent to ordP (D) < q. This completes the

proof.
(ii) We have

rk(Bf
D) = rk((F f

X/k)∗(OX(D)))− rk(OXf
) = q − 1

and

χ(Bf
D) = χ((F f

X/k)∗(OX(D)))−χ(OXf
) = (deg(D) + 1− g)− (1− g) = deg(D).

From these, deg(Bf
D) can be calculated by using (2.1).

Moreover, for a line bundle L on Xf , we have

rk(Bf
D ⊗ L) = rk(Bf

D) = q − 1

and

deg(Bf
D ⊗ L) = deg(Bf

D) + rk(Bf
D) deg(L) = deg(D) + (g − 1 + deg(L))(q − 1).

From these, χ(Bf
D ⊗ L) can be calculated by using (2.1). ¤

Now, the following is one of the main results of this section.

Theorem (2.5). Assume deg(D) = q−1, and let L−1 be a line bundle of degree
−1 on Xf . Then Bf

D ⊗ L−1 is a vector bundle on Xf with χ = 0, and satis�es
(?).

Before proving (2.5), we shall give a slight generalization (which will be used
later), assuming (2.5):

Corollary (2.6). Let s be a non-negative integer . We assume that deg(D) =
s(q − 1) and that

#{P ∈ X | ordP (D) = q − 1} ≥ s− 1.

Let L−s be a line bundle of degree −s on Xf . Then Bf
D⊗L−s is a vector bundle

on Xf with χ = 0, and satis�es (?).
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Proof. Let D0 be an e�ective divisor on X, and Q a point of X which is not
contained in the support of D0. We put D1 = D0 + (q − 1)Q, and consider the
following commutative diagram with two rows exact:

0 → OXf
(−Qf ) → (F f

X/k)∗(OX(D1))⊗OXf
(−Qf ) → Bf

D1
⊗OXf

(−Qf ) → 0
‖

⋂
(F f

X/k)∗(OX(D0 −Q))
...
∨⋂

0 → OXf
→ (F f

X/k)∗(OX(D0)) → Bf
D0

→ 0,

where Qf denotes F f
X/k(Q) (∈ Xf ). From this, we can see

Bf
D1
⊗OXf

(−Qf )∼→Bf
D0

.

Using this isomorphism repeatedly, our assumption

#{P ∈ X | ordP (D) = q − 1} ≥ s− 1

enables us to reduce the problem to the case s ≤ 1. The case s = 1 is just (2.5).
The case s = 0 can be reduced to the case s = 1 again by using this isomorphism.
(Choose any Q ∈ X.) ¤

Note that (2.6) includes Raynaud's original theorem as the case that f = 1 and
s = 0.

Proof of (2.5). Since deg(D) = q − 1 < q, (TF) clearly holds, hence Bf
D

is a vector bundle by (2.3)(i). Moreover, we have χ(Bf
D ⊗ L−1) = deg(D) +

deg(L−1)(q − 1) = 0 by (2.4).
We would like to prove that Bf

D ⊗ L−1 satis�es (?) by using (1.12). To do
this, let Jf be the Jacobian variety of Xf , and let Lf be a universal line bundle
on Xf × Jf . Let prXf

and prJf
denote the projections Xf × Jf → Xf and

Xf × Jf → Jf , respectively.
The main di�culty is that, unlike Raynaud's original case, we cannot apply

(1.12) directly to the exact sequence on Xf×Jf obtained by taking (prXf
)∗(−)⊗

Lf of the exact sequence

0 → L−1 → (F f
X/k)∗(OX(D))⊗ L−1 → Bf

D ⊗ L−1 → 0

on Xf , because W ((prXf
)∗(L−1) ⊗ Lf ) = ∅ and condition (b) of (1.12) is not

satis�ed (unless g = 0). (Note that h0(L−1 ⊗ L) = 0 for all line bundle L of
degree 0 on Xf .) This leads us to the following procedure.

Since the validity of (2.5) is independent of the choice of the line bundle L−1

of degree −1, we may and shall assume L−1 = OXf
(−Qf ), where we �x any
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Q ∈ X and put Qf = F f
X/k(Q). By de�nition, we have the exact sequence

0 → OXf
(−Qf ) → (F f

X/k)∗(OX(D))⊗OXf
(−Qf ) → Bf

D ⊗OXf
(−Qf ) → 0.

‖
(F f

X/k)∗(OX(D − qQ))

Let Ef
D,Q be the sum of OXf

and (F f
X/k)∗(OX(D− qQ)) in (F f

X/k)∗(OX(D)).
This coincides with the amalgamated sum with respect to OXf

(−Qf ), since
OXf

∩ (F f
X/k)∗(OX(D − qQ)) = OXf

(−Qf ). Thus the vector bundle Ef
D,Q �ts

into the following commutative diagram with two rows exact:

0 → OXf
(−Qf ) → (F f

X/k)∗(OX(D − qQ)) → Bf
D ⊗OXf

(−Qf ) → 0⋂ ⋂ ‖
0 → OXf

→ Ef
D,Q → Bf

D ⊗OXf
(−Qf ) → 0.

(2.7)

If ΘBf
D⊗OXf

(−Qf ) = ∅, the assertion of (2.5) clearly holds. So, from now on,
we assume ΘBf

D⊗OXf
(−Qf ) 6= ∅. Then, in order to prove that ΘBf

D⊗OXf
(−Qf ) 6=

Jf , we shall apply (1.12) to the exact sequence on Xf × Jf obtained by taking
(prXf

)∗(−)⊗ Lf of the second row of (2.7).
First, we shall check condition (b) of (1.12). Note that

χ(prXf
)∗(Ef

D,Q)⊗Lf
= χ(Ef

D,Q) = χ(OXf
) + χ(Bf

D ⊗OXf
(−Qf )) = 1− g.

If g = 0, condition (b) is equivalent to ΘBf
D⊗OXf

(−Qf ) 6= ∅, which we have just
assumed. If g = 1, condition (b) automatically holds. If g > 1, condition (b) is
equivalent to ΘOXf

6= ∅, which follows from ΘOXf
3 0. (Note that h0(OXf

) = 1
and h1(OXf

) = g.)
Moreover, since

χ(prXf
)∗(Bf

D⊗OXf
(−Qf ))⊗Lf

= χ(Bf
D ⊗OXf

(−Qf )) = 0,

condition (c) of (1.12) holds.
Finally, we shall check that condition (a) holds, or, equivalently, that either

ΘEf
D,Q

= ∅ or codim(ΘEf
D,Q

) = |1−g|+1. Namely, we have to prove that ΘEf
D,Q

is �nite over k (resp. empty) if g > 0 (resp. g = 0). This is the most di�cult
part of our proof. (In Raynaud's original case, this part was immediate. See
(2.11)(ii).)

Lemma (2.8). We have

h0
max

def= max{h0(Ef
D,Q ⊗ L) | [L] ∈ Jf} = 1

and
h1

max
def= max{h1(Ef

D,Q ⊗ L) | [L] ∈ Jf} = g.
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Proof. Since χ(Ef
D,Q ⊗ L) = 1− g, it is su�cient to prove the �rst equality.

By (2.7), we get an exact sequence

0 → (F f
X/k)∗(OX(D − qQ)) → Ef

D,Q → k(Qf ) → 0.

So, we have

h0(Ef
D,Q ⊗ L) ≤ h0((F f

X/k)∗(OX(D − qQ))⊗ L) + 1

= h0(OX(D − qQ)⊗ (F f
X/k)∗(L)) + 1 = 1,

the last equality following from the fact that deg(OX(D− qQ)⊗ (F f
X/k)∗(L)) =

−1 < 0. Therefore, we have h0
max ≤ 1. On the other hand, since Ef

D,Q contains
OXf

, we have
1 ≤ h0(Ef

D,Q) ≤ h0
max.

This completes the proof. ¤

We shall return to the proof of (2.5). Put W
def= ΘEf

D,Q
(⊂ Jf ) for simplicity. If

g = 0, we have W = ∅ by (1.2) and (2.8), as desired. So, we shall assume g > 0
and prove that W is �nite over k. Note that, again by (1.2) and (2.8), we have

W = {[L] ∈ Jf | h0(Ef
D,Q ⊗ L) = 1}

= {[L] ∈ Jf | h1(Ef
D,Q ⊗ L) = g},

set-theoretically.
We de�ne the divisor D′ on X to be the `prime-to-Q part' of D, namely,

D′ def=
∑

P∈X,P 6=Q

ordP (D)P,

and let d′ denote the degree of D′. Then, by using the de�nition of Ef
D,Q, we

see that the following exact sequence exists:

0 → (F f
X/k)∗(OX(D − qQ)) → Ef

D,Q ⊕ (F f
X/k)∗(OX(D′ −Q))

→ (F f
X/k)∗(OX(D′)) → 0.

For each [L] ∈ W , we tensor this sequence with L and take the global sections.
Then we will obtain
H0(Xf , Ef

D,Q ⊗ L) ⊕ H0(Xf , (F f
X/k)∗(OX(D′ −Q))⊗ L)

|o ‖
k H0(X,OX(D′ −Q)⊗ (F f

X/k)∗(L))

↪→ H0(Xf , (F f
X/k)∗(OX(D′))⊗ L)

‖
H0(X,OX(D′)⊗ (F f

X/k)∗(L)).
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That is to say, each [L] ∈ W de�nes a point of

| OX(D′)⊗ (F f
X/k)∗(L) | − | OX(D′ −Q)⊗ (F f

X/k)∗(L) | .

Here, for a line bundle M on X, | M | denotes the (schematized) projective space
(H0(X, M)− {0})/k×.

In other words, consider the following diagram:

W ⊂ Jf
V f

→ J
+(D′−Q)

∼→ J (d′−1)
+Q
∼→ J (d′)

↑ ↑
X(d′−1) +Q

↪→ X(d′)
⋃

X(d′) −X(d′−1)

(2.9)

where V f denotes the composite of the f Verschiebungs, i.e., V f : [L] 7→
[(F f

X/k)∗(L)], J (r) denotes the degree r part of the Picard variety of X (hence,
in particular, J (0) = J), and X(r) denotes the r-th symmetric power of X. (We
put X(0) = Spec(k) and X(−1) = ∅.) In this setting, the above observation tells
us that there exists a natural set-theoretic map W → X(d′)−X(d′−1) over J (d′).

Now, assume that this map W → X(d′) − X(d′−1) can be regarded as a
morphism (as J (d′)-schemes). Then, since W → J (d′) is a �nite morphism, so is
W → X(d′) −X(d′−1). Now, since X(d′) −X(d′−1) = (X − {Q})(d′) is a�ne, so
is W . On the other hand, W is proper over k as a closed subscheme of Jf . Thus
W must be �nite over k.

So, it su�ces to prove that the above set-theoretic map W → X(d′)−X(d′−1)

is a morphism. To do this, we name the morphisms involved as follows, for the
sake of simplicity:

X
ξ← X ×W

↘η

↓ π ¤ ↓ πW ª W,

↗η′

Xf
ξ′← Xf ×W

(2.10)

where π = F f
X/k, πW is the base change of π, and ξ, ξ′, η and η′ are projections.

We shall apply the functor (from the category of OXf
-modules to that of

OX×W -modules)
η∗η′∗(ξ

′∗(−)⊗ (Lf )W )

to the natural map Ef
D,Q ↪→ π∗(OX(D′)). By the �at base change theorem and

the projection formula, we have

ξ′∗(π∗(OX(D′)))⊗ (Lf )W = (πW )∗(ξ∗(OX(D′)))⊗ (Lf )W

= (πW )∗(ξ∗(OX(D′))⊗ (πW )∗(Lf )W ).



66 AKIO TAMAGAWA

Thus we obtain

η∗η′∗(ξ
′∗(Ef

D,Q)⊗ (Lf )W ) → η∗η∗(ξ∗(OX(D′))⊗ (πW )∗(Lf )W ),

and taking the composite with the natural map η∗η∗(−) → (−), we obtain

η∗η′∗(ξ
′∗(Ef

D,Q)⊗ (Lf )W ) → ξ∗(OX(D′))⊗ (πW )∗(Lf )W .

By (1.2) and (2.8), we have Zg(ξ′∗(E
f
D,Q) ⊗ Lf ) = ∅. So, by (1.4) and its

proof, R1η′∗(ξ
′∗(Ef

D,Q) ⊗ (Lf )W ) is a locally free OW -module of rank g. (Note
that we have R1η′∗(ξ

′∗(Ef
D,Q)⊗ (Lf )W ) = R1η′∗(ξ

′∗(Ef
D,Q)⊗ (Lf ))|W .) By this

and (1.5), we see that Rη′∗(ξ′∗(E
f
D,Q)⊗(Lf )W ) can be represented Zariski locally

by the complex (OW
0→ Og

W ). In particular, η′∗(ξ
′∗(Ef

D,Q)⊗ (Lf )W ) is a locally
free OW -module of rank 1, and, for each z ∈ W , η′∗(ξ′∗(E

f
D,Q) ⊗ (Lf )W ) ⊗

k(z)∼→H0((Xf )k(z), E
f
D,Q ⊗ Lz), where Lz is the line bundle on (Xf )k(z) cor-

responding to z ∈ W ⊂ Jf . (We denote the base change from k to k(z)
by means of a subscript k(z).) Hence the pull-back of the OX×W -module
η∗η′∗(ξ

′∗(Ef
D,Q)⊗ (Lf )W ) to Xk(z) can be identi�ed with

H0((Xf )k(z), E
f
D,Q ⊗ Lz)⊗k(z) OXk(z) .

On the other hand, the pull-back of ξ∗(OX(D′)) ⊗ (πW )∗(Lf )W to Xk(z) is
OX(D′)⊗ (πk(z))∗(Lz), and we can check that the resulting map

H0((Xf )k(z), E
f
D,Q ⊗ Lz)⊗k(z) OXk(z) → OX(D′)⊗ (πk(z))∗(Lz)

is the composite of




H0((Xf )k(z), E
f
D,Q⊗Lz) → H0((Xf )k(z), π∗(OX(D′))⊗Lz)

‖
H0(Xk(z),OX(D′)⊗ (πk(z))∗(Lz))



⊗k(z) OXk(z)

and the natural map

H0(Xk(z),OX(D′)⊗ (πk(z))∗(Lz))⊗k(z) OXk(z) → OX(D′)⊗ (πk(z))∗(Lz).

Here, as in the previous argument, the map

H0((Xf )k(z), E
f
D,Q ⊗ Lz) → H0(Xk(z),OX(D′)⊗ (πk(z))∗(Lz))

is injective. Since H0((Xf )k(z), E
f
D,Q ⊗ Lz) is a one-dimensional k(z)-vector

space, we conclude that

(η∗η′∗(ξ
′∗(Ef

D,Q)⊗ (Lf )W ))⊗ k(z) → (ξ∗(OX(D′))⊗ (πW )∗(Lf )W )⊗ k(z)

is injective. Now, by [EGA4], Proposition (11.3.7), the map

η∗η′∗(ξ
′∗(Ef

D,Q)⊗ (Lf )W ) → ξ∗(OX(D′))⊗ (πW )∗(Lf )W

is injective and its cokernel is �at over W . Hence it equips ξ∗(OX(D′)) ⊗
(πW )∗(Lf )W with a structure of relative e�ective Cartier divisor on X ×W/W .
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Thus we are given the morphism W → X(d′) over J
(d′)
f , whose underlying map

coincides with the set-theoretic map W → X(d′) − X(d′−1) in the previous ar-
gument. (See [Mi], § 3, especially Proposition 3.13 there.) This completes the
proof of the �niteness of W .

Now, we can apply (1.12) and conclude that (prXf
)∗(Bf

D ⊗OXf
(−Qf ))⊗Lf

is determinantal, or, equivalently, that ΘBf
D⊗OXf

(−Qf )

(
= W ((prXf

)∗(Bf
D ⊗

OXf
(−Qf ))⊗ Lf )

) 6= Jf . This �nally completes the proof of (2.5). ¤

Remark (2.11). (i) When D = (q − 1)Q, Ef
D,Q coincides with (F f

X/k)∗(OX).
In general, Ef

D,Q is not isomorphic to the direct image of a line bundle on X. In
fact, suppose that Ef

D,Q is isomorphic to (F f
X/k)∗(M) for some line bundle M

on X. Then we have

χ(M) = χ((F f
X/k)∗(M)) = χ(OXf

) + χ(Bf
D ⊗OXf

(−Qf )) = 1− g,

hence deg(M) = 0. On the other hand, since OXf
⊂ (F f

X/k)∗(M), M admits a
non-trivial global section. Thus M ' OX . By the de�nition of Ef

D,Q, we can see
that

det((F f
X/k)∗(M)) ' det((F f

X/k)∗(OX(D − qQ)))⊗OXf
(Qf ),

and since M ' OX , we have

det((F f
X/k)∗(OX(D − qQ)))⊗ det((F f

X/k)∗(OX))−1 ⊗OXf
(Qf ) ' OXf

.

Here the left-hand side is known to be isomorphic to

OXf
(Df − qQf )⊗OXf

(Qf ) ' OXf
(Df − (q − 1)Qf ),

where Df
def=

∑
P∈X ordP (D)Pf . Thus it follows that the divisor Df − (q−1)Qf

on Xf should be principal, which does not hold in general.
(ii) When D = (q− 1)Q, the subscheme W of Jf is nothing but Ker(V f ), hence
its degree over k is pf . In general, the author does not know much about the
�nite k-scheme W . For example, he does not know its degree over k.

In later sections, we use a slight generalization (2.13) of (2.6). First, we shall
prove the following:

Lemma (2.12). Let s be a non-negative integer .

(i) Let f be a natural number and D an e�ective divisor of degree s(pf − 1) on
X satisfying (TF) with respect to q = pf . Let f1 be a natural number . Then
the vector bundle Bf

D ⊗L−s on Xf satis�es condition (?) of page 59 for some
(or , equivalently , all) line bundle L−s of degree −s on Xf , if and only if the
vector bundle Bf

Df1
⊗ L1,−s on Xf1+f satis�es condition (?) for some (or ,

equivalently , all) line bundle L1,−s of degree −s on Xf1+f .
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(ii) For each i = 0, 1, we let fi be a natural number , Di an e�ective divisor of
degree s(pfi−1) satisfying (TF) with respect to q = pfi . Then D

def= pf1D0+D1

becomes an e�ective divisor of degree s(pf − 1) satisfying (TF) with respect to
q = pf , where f

def= f0 + f1. Moreover , Bf
D ⊗ L−s satis�es condition (?) for

some (or all) line bundle L−s of degree −s on Xf , if and only if , for each
i = 0, 1, Bfi

Di
⊗Li,−s satis�es condition (?) for some (or all) line bundle Li,−s

of degree −s on Xfi
.

Proof. (i) Under the natural (pf1 -linear) isomorphism Xf1

∼→X of schemes,
Bf

Df1
corresponds to Bf

D and the line bundles of degree −s correspond to the
line bundles of degree −s.
(ii) First the numerical conditions can be checked as follows:

deg(D) = pf1 deg(D0) + deg(D1) = pf1s(pf0 − 1) + s(pf1 − 1) = s(pf − 1),

ordP (D) = pf1 ordP (D0) + ordP (D1) ≤ pf1(pf0 − 1) + (pf1 − 1) = pf − 1.

For simplicity, we shall denote by π, π1 and π0,f1 the relative Frobenius mor-
phisms F f

X/k : X → Xf , F f1
X/k : X → Xf1 and F f0

Xf1/k : Xf1 → Xf , respectively,
so that π = π0,f1 ◦ π1. We have natural homomorphisms

OXf
→ (π0,f1)∗(OXf1

((D0)f1)) → π∗(OX(D))

of OXf
-modules, and obtain the following exact sequence:

0 → Bf0
(D0)f1

→ Bf
D → (π0,f1)∗(B

f1
D1
⊗OXf1

((D0)f1)) → 0.

From this, the �rst assertion follows. Moreover, tensoring this exact sequence
with L−s, we obtain

0 → Bf0
(D0)f1

⊗ L−s → Bf
D ⊗ L−s

→ (π0,f1)∗(B
f1
D1
⊗OXf1

((D0)f1)⊗ (π0,f1)
∗(L−s)) → 0.

Now, since

deg(OXf1
((D0)f1)⊗ (π0,f1)

∗(L−s)) = s(pf0 − 1) + pf0(−s) = −s,

the second assertion follows from the associated long exact sequence (and (i)). ¤

Corollary (2.13). Let s be a non-negative integer , D an e�ective divisor of
degree s(pf − 1) on X. Assume the following condition:

Condition (2.14). There exist natural numbers fi and e�ective divisors Di

of degree s(pfi − 1) (i = 0, 1, . . . , k), such that f =
∑k

i=0fi, D =
∑k

i=0p
f>iDi,

where f>i
def=

∑k
j=i+1fj (f>k = 0), and that , for each i = 0, 1, . . . k,

#{P ∈ X | ordP (Di) = pfi − 1} ≥ s− 1.

Then, for a line bundle L−s of degree −s on Xf , Bf
D ⊗ L−s is a vector bundle

on Xf with χ = 0, and satis�es (?).
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Proof. Use (2.6) for each Di and apply (2.12) repeatedly. ¤

What can we expect for a more general e�ective divisor D? For the time being,
we are interested in vector bundles with χ = 0. So, considering (2.4), we shall
assume that deg(D) = s(q−1) for some natural number s, and consider Bf

D⊗L−s

for a line bundle L−s of degree −s on Xf . Moreover, we have to assume the
torsion-freeness condition (TF): ordP (D) < q for each P ∈ X, which does not
hold automatically this time. Under these assumptions, can we expect that
Bf

D ⊗ L−s satis�es (?)?
In general, the answer is no. In fact, as Raynaud remarked in [R1], § 0,

condition (?) for a vector bundle E with χ(E) = 0 implies that E is semi-stable,
in the sense that deg(F )/rk(F ) ≤ deg(E)/rk(E) for all vector subbundles F of
E. So, if Bf

D ⊗ L−s satis�es (?), then Bf
D ⊗ L−s is semi-stable, hence so is Bf

D.

Definition. Let D be an e�ective divisor on X.

(i) For each natural number n, we put

[D/n] def=
∑

P∈X

[ordP (D)/n]P,

which is an e�ective divisor on X.
(ii) For each natural number i, we put

Di
def=

∑

P∈X

ordP (D)Pi,

where Pi denotes F i
X/k(P ) ∈ Xi. This is an e�ective divisor on Xi.

(iii) For n = 0, 1, . . . , pf − 1, let n =
f−1∑

j=0

njp
j be the p-adic expansion with

nj = 0, . . . , p − 1. Identifying {0, 1, . . . , f − 1} with Z/fZ naturally, we put

n(i) def=
f−1∑

j=0

ni+jp
j . Now, assume that D satis�es (TF) with respect to q = pf .

Then, we put
D(i) def=

∑

P∈X

ordP (D)(i)P,

which is an e�ective divisor on X.

Lemma (2.15). Assume that deg(D) = s(q− 1) for some natural number s and
that D satis�es (TF) with respect to q = pf . Then, if Bf

D is semi-stable, we have

deg(D(i)) ≥ deg(D) for each i = 0, 1, . . . , f − 1. (NSS)

(`NSS' means `necessary condition for semi-stability'.)

Proof. The vector bundle Bf
D on Xf admits the vector subbundles

Bf−i
[D/pi]i

def= ((F f−i
Xi/k)∗(OXi([D/pi]i)))/OXf
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for i = 0, 1, . . . , f − 1. (Note that (Xi)f−i = Xf .) We have

deg(Bf−i
[D/pi]i

)

rk(Bf−i
[D/pi]i

)
=

deg([D/pi]i) + (g − 1)(pf−i − 1)
pf−i − 1

=
deg([D/pi])

pf−i − 1
+ g − 1,

so we must have
deg([D/pi])

pf−i − 1
≤ deg(D)

pf − 1
for each i = 0, 1, . . . , f − 1, (2.16)

since Bf
D is assumed to be semi-stable. Now, it is elementary to check that (2.16)

is equivalent to (NSS). ¤

Remark (2.17). We have deg(D(i)) ≡ pf−i deg(D) ≡ 0 (mod pf − 1). So, if
deg(D) = pf − 1, (NSS) automatically holds. (Of course, by (2.5) and [R1], § 0,
we know that Bf

D is then semi-stable.)

Now, we are tempted to ask the following:

Question (2.18). Let s be a natural number . Let D be an e�ective divisor of
degree s(q− 1) on X satisfying (TF) and (NSS), and let L−s be a line bundle of
degree −s on Xf . Then, Bf

D ⊗ L−s is a vector bundle on Xf with χ = 0. Does
it satisfy (?)?

However, in general this fails, as the following example shows.

Example (2.19). We assume p 6= 2 and let X = P1. We put f = 1 and let
D =

p− 1
2

{(0) + (1) + (λ) + (∞)}, where λ ∈ k − {0, 1}, so that s = 2. Then
B1

D ⊗ L−2 satis�es (?)(if and) only if the elliptic curve y2 = x(x − 1)(x − λ) is
ordinary. (We omit the proof, which uses some contents of the next section.)

Considering Bouw's work ([B]), we might hope that the following is a�rmative.

Question (2.20). Is (2.18) true for U generic (in the moduli space)?

Finally, the following proposition shows to what extent our results can be applied,
in the case where #(Supp(D)) is small. This analysis is a key to recover `additive
structures' of inertia subgroups of tame fundamental groups in Section 5 (B).
Here, for each natural number N , we denote by IN the set {0, 1, . . . , N−1}.
Proposition (2.21). Let s be a non-negative integer and D an e�ective divisor
of degree s(pf − 1) satisfying (TF) with respect to q = pf . We assume that D

can be written as D = n1P1 + n2P2 + n3P3, where P1, P2, P3 are three distinct
points of X. Then:

(i) nh ∈ Ipf holds for each h = 1, 2, 3, and 0 ≤ s ≤ 3 holds.
(ii) If s 6= 2, D satis�es (2.14).
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(iii) Assume s = 2. Then, (NSS) is equivalent to

n1,j + n2,j + n3,j = 2(p− 1) for each j = 0, 1, . . . , f − 1,

where nh =
∑f−1

j=0 nh,jp
j is the p-adic expansion with nh,j ∈ Ip (h = 1, 2, 3).

(iv) Assume s = 2 and (NSS).
(iv�a) If n1 ∈ pIf

def= {pb | b ∈ If}, then either n2 = pf − 1 or n3 = pf − 1
holds, and D satis�es (2.14).

(iv�b) If n1 ∈ Ip−1p
If

def= {apb | a ∈ Ip−1, b ∈ If}, then D satis�es (2.14) if
and only if either n2 = pf − 1 or n3 = pf − 1.

(iv�c) For each

n1 /∈ pIf ∪ Ip−1p
If =

{
Ip−1p

If , if p 6= 2,
Ipp

If , if p = 2,

there exist n2, n3 ∈ Ipf−1 such that D = n1P1+n2P2+n3P3 satis�es (2.14).

Proof. (i) The �rst assertion just says that D is e�ective and satis�es (TF).
The second assertion follows from the �rst, since s(q−1) = deg(D) = n1+n2+n3.
(ii) If s ≤ 1, (2.14) requires nothing. If s = 3, then we must have n1 = n2 =
n3 = q − 1, which implies (2.14). (Take k = 0, f = f0, and D = D0.)
(iii) (NSS) is equivalent to saying that

n
(j)
1 + n

(j)
2 + n

(j)
3 ≥ n1 + n2 + n3 = 2(pf − 1)

holds for j = 0, 1, . . . , f−1. Here, by de�nition, the left-hand side is congruent to
the right-hand side modulo pf − 1, hence it is a multiple of pf − 1. On the other
hand, it is less than or equal to 3(pf − 1). Moreover, if it is equal to 3(pf − 1),
each of n

(j)
1 , n

(j)
2 , n

(j)
3 must be pf − 1, which implies that each of n1, n2, n3 is

pf − 1. This contradicts the assumption n1 + n2 + n3 = 2(pf − 1). Thus (NSS)
turns out to be equivalent to saying that

n
(j)
1 + n

(j)
2 + n

(j)
3 (= n1 + n2 + n3) = 2(pf − 1)

holds for j = 0, 1, . . . , f − 1. Now, put ν
def= n1 + n2 + n3 = 2(pf − 1) and

νj
def= n1,j + n2,j + n3,j . Since we have

n
(j+1)
h =

n
(j)
h − nh,j

p
+ nh,jp

f−1 =
1
p
n

(j)
h +

pf − 1
p

nh,j ,

we see that

ν =
1
p
ν +

pf − 1
p

νj , i.e., νj = 2(p− 1)

is a necessary condition for (NSS). It is clear that this condition is also su�cient
for (NSS).
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(iv�a) If n1 = pb (b ∈ If ), we must have

n2,j + n3,j =
{

2(p− 1), if j 6= b,
2(p− 1)− 1, if j = b,

by (iii), or, equivalently,

(n2,j , n3,j) =
{

(p− 1, p− 1), if j 6= b,
(p− 1, p− 2) or (p− 2, p− 1), if j = b.

From this (iv�a) follows.
(iv�b) If n1 = apb (a ∈ Ip−1, b ∈ If ), we have n1,j = 0 (resp. a) for j 6= b

(resp. j = b). Accordingly, by (iii), we must have n2,j = n3,j = p − 1 for j 6= b

and n2,b +n3,b = 2(p−1)−a. First, if either n2 or n3 coincides with pf −1, then
it is clear that D satis�es (2.14) for k = 0. Conversely, suppose that there exist
k, fi and Di as in (2.14). Since deg(Di) = 2(pfi − 1) and ordP (Di) = pfi − 1
for some P = P1, P2, P3, we have ordP (Di) ≤ pfi − 1 for all P = P1, P2, P3.
From this, (considering the p-adic expansion of nh = ordPh

(D)) we conclude
that ordPh

(Di) should coincide with
∑fi−1

j=0 nh,f>i+jp
j for each h = 1, 2, 3. Thus,

for some h = 1, 2, 3 (depending on i), we must have nh,f>i+j = p − 1 for j =
0, . . . , fi − 1. Now, taking the unique i such that f>i ≤ b < f>i−1, we see
that nh,b = p− 1 holds for some h. Since n1,b = a < p− 1, we must have either
n2,b = p−1 or n3,b = p−1, which implies n2 = pf−1 or n3 = pf−1, respectively.
This completes the proof of (iv�b).
(iv�c) Assume n1 /∈ pIf ∪ Ip−1p

If . In particular, n1 6= 0, hence there exists
b = 0, 1, . . . , f − 1 with n1,b > 0. Now, we put

(n2,j , n3,j)
def=





(p− 1, p− 1− n1,j), if j 6= b,
(p− 1− n1,b, p− 1), if j = b and n1,b < p− 1,
(p− 2, 1), if j = b and n1,b = p− 1.

(Note that (NSS) holds by (iii).) Since p − 1 ∈ {n1,j , n2,j , n3,j} for each j =
0, 1, . . . , f − 1, we see that D satis�es (2.14). Finally, since n2,b < p − 1 by
de�nition, we have n2 < pf − 1. On the other hand, suppose n3 = pf − 1. Then
we must have p − 1 − n1,j = p − 1 for j 6= b, and 1 = p − 1 if n1,b = p − 1.
Namely, we have n1 = n1,bp

b and either p = 2 or n1,b < p− 1. This contradicts
the assumption n1 /∈ pIf ∪ Ip−1p

If . This completes the proof of (iv�c). ¤

3. The p-Ranks of p′-Cyclic Rami�ed Coverings

As in Section 2, let k be an algebraically closed �eld of characteristic p > 0
and X a proper, smooth, connected curve of genus g over k. Let S be a �nite
(possibly empty) set of closed points of X and denote by n the cardinality of S.
We put U = X − S. In this section, we investigate the p-ranks of the Jacobian
varieties of p′-cyclic coverings of X, étale over U and possibly rami�ed over S.
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Cyclic coverings and generalized Hasse�Witt invariants. Let N be a
natural number prime to p. We consider the elements of the étale cohomology
group H1

ét(U,µN ), where µN = µN (k) is the group of N -th roots of unity. In
terms of fundamental groups,

H1
ét(U, µN ) = Hom(π1(U), µN ) = Hom(πt

1(U), µN ),

and, in terms of torsors, H1
ét(U, µN ) can be identi�ed with the set of isomorphism

classes of (étale) µN -torsors of U . We shall consider the p-ranks for such µN -
torsors, or µN -coverings.

Let V be a µN -torsor of U and [V ] the corresponding element of H1
ét(U,µN ).

Let Y be the normalization of X in V , to which the µN -action on V extends
uniquely. We de�ne the p-rank (or the Hasse�Witt invariant) γ[V ] to be the
dimension of the Fp-vector space H1

ét(Y,Fp).
To obtain �ner invariants, we consider the following canonical decomposition

of the group algebra k[µN ]:

k[µN ] ∼→
∏

i∈Z/NZ
k,

∪
µN p∪
p∪
ζ 7→ (ζi)i∈Z/NZ.

(3.1)

Corresponding to this decomposition, each k[µN ]-module M admits a canon-
ical decomposition M =

⊕
i∈Z/NZMi, where ζ ∈ µN acts on Mi as the ζi-

multiplication. We shall denote by γi(M) the dimension of the k-vector space Mi.
Moreover, for an Fp[µN ]-module M , we shall write γi(M) instead of γi(M⊗Fp k).
In the latter case, γpai(M) = γi(M) holds for each integer a. (Observe that the
p-th power map of k maps (M ⊗ k)i isomorphically onto (M ⊗ k)pi.)

Now, since µN naturally acts on the Fp-vector space H1
ét(Y,Fp), we can de�ne

as follows:

Definition. γ[V ],i
def= γi(H1

ét(Y,Fp)).

These invariants essentially coincide with the so-called generalized Hasse�Witt
invariants (see [Ka], [Na], and [B]). Of course, we have

γ[V ] =
∑

i∈Z/NZ
γ[V ],i.

We shall present another description of these invariants, which is also well-
known. Let ψ denote the structure morphism Y → X. Corresponding to the
decomposition (3.1), we obtain a decomposition of the sheaf ψ∗(OY ) on X:

ψ∗(OY ) =
⊕

i∈Z/NZ
Li. (3.2)
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Let f be the order of p mod N in the multiplicative group (Z/NZ)×. The p-th
power map of OY sends Li into Lpi, hence the pf -th power map of OY sends Li

into itself, which induces a pf -linear map

ϕ[V ],i : H1(X, Li) → H1(X,Li)

on the Zariski cohomology group H1(X,Li). We denote by γ′[V ],i the dimension
of the k-vector space

⋂
r≥1 Im((ϕ[V ],i)r). Then, Artin�Schreier theory, together

with the well-known properties of pf -linear maps, implies γ′[V ],i = γ[V ],i

Cyclic coverings and line bundles. Next, in order to apply the results of
Section 2, we shall give a description of µN -torsors of U in terms of line bundles
and divisors on X, which is essentially widely known (possibly in slightly di�erent
forms).

We denote by Pic(X) the Picard group of X and by Z[S] the group of divisors
whose supports are contained in S, which can be identi�ed with the free Z-module
with basis S. We denote by Z/NZ[S] the free Z/NZ-module with basis S, hence
Z/NZ[S] = Z[S]/NZ[S]. Let (Z/NZ)∼ denote the set {0, 1, . . . , N − 1}, and
(Z/NZ)∼[S] the subset of Z[S] consisting of the elements whose `coe�cients' are
contained in (Z/NZ)∼.

Consider the following (short) complex of abelian groups:

Z[S] αN→ Pic(X)⊕ Z[S]
βN→ Pic(X), (3.3)

where αN (D) = ([OX(−D)], ND) and βN (([L], D)) = [L⊗N ⊗OX(D)].

Definition. We de�ne the abelian group PN = PN (X,S) to be the homology
group Ker(βN )/ Im(αN ) of the complex (3.3).

We can easily see that the following exact sequence exists:

0 → Pic(X)[N ] aN→ PN
bN→ Z/NZ[S] cN→ Z/NZ, (3.4)

where [N ] means the N -torsion subgroup, and

aN ([L]) = ([L], 0) mod Im(αN ),

bN (([L], D) mod Im(αN )) = D mod N,

cN (D mod N) = deg(D) mod N.

From this, PN turns out to be isomorphic to (Z/NZ)⊕2g+n−1+b(2) , where

b(2) def=
{

1, if n = 0,
0, if n > 0,

is the second Betti number of U .
We shall de�ne two maps

iN : PN → H1
ét(U, µN ), jN : H1

ét(U,µN ) → PN .
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To do this, we need some more notations. First, we denote by Z/NZ[S]0 the ker-
nel of cN in (3.4) and by (Z/NZ)∼[S]0 the subset of (Z/NZ)∼[S] corresponding
to Z/NZ[S]0 under the natural bijection (Z/NZ)∼[S]∼→Z/NZ[S]. We de�ne P̃N

to be the inverse image of (Z/NZ)∼[S]0 under the projection Ker(βN ) → Z[S]
(see (3.3)). Then we can easily see that the modulo-Im(αN ) map P̃N → PN is a
bijection. We denote by b̃N the projection P̃N → (Z/NZ)∼[S]0.

Now, �rst, take ([L], D) in P̃N . We have L⊗N⊗OX(D) ' OX , or, equivalently,
L⊗N ' OX(−D). These isomorphisms are unique up to multiplication by an
element of k×. We �x such an isomorphism L⊗N ∼→OX(−D), which induces an
isomorphism (L|U )⊗N ∼→OX(−D)|U = OU . Then, by using this isomorphism,
we can equip the locally free OU -module

⊕
i∈(Z/NZ)∼(L|U )⊗i with a structure of

étale OU -algebra, as usual. This OU -algebra admits a µN -action: ζ ∈ µN acts
on (L|U )⊗i as the ζi-multiplication. The �nite U -scheme corresponding to this
OU -algebra, together with this µN -action, de�nes an étale µN -torsor of U . It is
easy to check (by using the surjectivity of the N -th power map k× → k×) that
the isomorphism class of the µN -torsor we have just constructed is independent
of the choice of the isomorphism L⊗N ∼→OX(−D). This gives the de�nition of
a map ı̃N : P̃N → H1

ét(U,µN ). Composing this with the canonical bijection
PN

∼←P̃N , we obtain iN : PN → H1
ét(U,µN ).

Next, take a µN -torsor V/U , and let ψ : Y → X be the normalization of
V → U , as above. Then, as we have seen, the locally free OX -module ψ∗(OY )
can be canonically decomposed as a direct sum

⊕
i∈Z/NZLi. Using the fact that

V is a µN -torsor of U , we can see that each Li is a line bundle on X and that
L0 = OX . Since µN acts on ψ∗(OY ) as an OX -algebra, the multiplication of
Li and Li′ is contained in Li+i′ . In particular, we are given an OX -linear map
L⊗N

1 → L0 = OX . Since V is a µN -torsor of U , the restriction (L1|U )⊗N →
OU is an isomorphism. Therefore the map L⊗N

1 → OX is injective, and it
factors as L⊗N

1
∼→OX(−D) ⊂ OX for some (uniquely determined) e�ective divisor

D ∈ Z[S]. We claim that the e�ective divisor D belongs to (Z/NZ)∼[S]. This
comes from the fact that Y is the normalization of X. In fact, the N -th power
of a (local) section of L1([D/N ]) belongs to OX(N [D/N ] − D) ⊂ OX , hence
should belong to ψ∗(OY ). (See Section 2 for the de�nition of the divisor [D/N ].)
Considering the µN -action, we have L1([D/N ]) ⊂ L1, which implies [D/N ] = 0,
or, equivalently, D ∈ (Z/NZ)∼[S]. Now, since ([L1], D) falls in the kernel of βN

by de�nition, ([L1], D) is an element of P̃N . This gives the de�nition of a map
̃N : H1

ét(U,µN ) → P̃N . Composing this with the canonical bijection P̃N
∼→PN ,

we obtain jN : H1
ét(U,µN ) → PN .

Proposition (3.5). The canonical maps iN , jN are group isomorphisms, which
are inverse to each other .

Proof. By the de�nition of multiplication of two torsors, we see that iN is a
group homomorphism. (See, for example, [Mi1], III, Remark 4.8(b).)
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In the above construction concerning jN , the canonical map L⊗i
1 → Li (i ∈

(Z/NZ)∼) becomes an isomorphism after restricting to U : (L1|U )⊗i ∼→Li|U , since
V is a µN -torsor of U . Using this fact, we can check that iN ◦ jN = id.

Finally, for ([L], D) ∈ P̃N , let V be the corresponding µN -torsor of U , and
ψ : Y → X its normalization. Then, since the N -th power of each (local) section
of L belongs to OX(−D) ⊂ OX , ψ∗(OY ) should contain L, by the de�nition
of normalization. Moreover, observing the µN -action, we can conclude that L

should be contained in L1 ⊂ ψ∗(OY ). Now, the N -th power map induces a
commutative diagram

L⊗N ∼→ OX(−D)
∩ ∩

L⊗N
1 → OX .

Since D ∈ (Z/NZ)∼[S], this implies that L = L1, hence that ̃N ◦ ı̃N = id, or,
equivalently jN ◦ iN = id. From this jN is also a group isomorphism. (To prove
jN ◦ iN = id, we may also resort to the fact #(PN ) = #(H1

ét(U, µN )), which
equals N2g+n−1+b(2) . ¤

Generalized Hasse�Witt invariants via line bundles. Now, we can de-
scribe the �generalized Hasse�Witt invariants� in terms of PN , as follows. For
an element ([L], D) of P̃N , �x an isomorphism L⊗N ∼→OX(−D) (unique up to
k×-multiplication). Taking the composite of the pf -th power map L → L⊗pf

and

L⊗pf

= L⊗ L⊗(pf−1) ∼→L⊗OX

(
−pf − 1

N
D

)
↪→ L,

we get a map L → L, which induces a pf -linear map

ϕ([L],D) : H1(X, L) → H1(X, L).

We denote by γ([L],D) the dimension of the k-vector space
⋂

r≥1 Im((ϕ([L],D))r).
Then, by the various de�nitions, we see

γ([L],D) = γ[V ],1, (3.6)

where [V ] = ı̃N (([L], D)).

Remark (3.7). By the Riemann�Roch theorem, we have

dimk(H1(X, L)) = g − 1− deg(L) + dimk(H0(X, L))

= g − 1 +
1
N

deg(D) + dimk(H0(X,L))

≤ g − 1 +
[
n(N − 1)

N

]
+ dimk(H0(X, L))

= g + n− 1 +
[
− n

N

]
+ dimk(H0(X, L)).
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From this, we obtain the following rough estimate:

γ([L],D) ≤
{

g, if ([L], D) = ([OX ], 0),
g + n− 2 + b(2), otherwise.

More generally, we can describe γ[V ],i in terms of line bundles and divisors. First,
we shall determine the Z-action on P̃N induced by the natural Z-action on the
abelian group PN . In PN , i times ([L], D) is ([L⊗i], iD) (mod Im(αN )) for each
i ∈ Z. Since the element of (Z/NZ)∼[S] that is equivalent to iD modulo N is
iD −N [iD/N ], we can see that the i-action on P̃N is given by

([L], D) 7→ (L⊗i([iD/N ]), iD −N [iD/N ]).

We shall denote L⊗i([iD/N ]) and iD−N [iD/N ] by L(i) and D(i), respectively.
Now, let V be the µN -torsor of U corresponding to ([L], D). Then we have

the following generalization of (3.6):

Claim (3.8). γ([L(i)],D(i)) = γ[V ],i.

In fact, consider the decomposition (3.2). By the de�nition of iN , Y is the
normalization of X in the �nite X-scheme corresponding to the OX -algebra⊕

i∈(Z/NZ)∼L⊗i, hence we have the canonical injection L⊗i ↪→ Li, for each
i ∈ (Z/NZ)∼. We have more: L(i) = L⊗i([iD/N ]) ↪→ Li, since the N -th
power of a (local) section of L⊗i([iD/N ]) is contained in OX(N [iD/N ]− iD) =
OX(−D(i)) ⊂ OX . (Note that Y is normal.) In fact, we have L(i) = Li. Other-
wise, Li would be strictly bigger than L(i), hence we could �nd a (local) section
of Li whose N -th power would not belong to OX . This is absurd. Thus, we can
identify ϕ([L(i)],D(i)) with ϕ[V ],i, which implies our claim.

Digression: Torsion points on divisors of abelian varieties. As in [R1],
we need some inputs from intersection theory to deduce our main (numerical)
results concerning p-ranks of cyclic coverings from the results of Section 2.

Lemma (3.9). Let A be an abelian variety of dimension d > 0 over an alge-
braically closed �eld k, and D an e�ective divisor on A. For each natural number
N not divisible by char(k), we put

cfin(D, N) = min{(D . C) |C: irreducible, reduced curve in A,
such that C 3 0 and D ∩N−1

A (C) is �nite.}
and

cirr(D, N) = min{(D . C) |C: irreducible, reduced curve in A,
such that C 3 0 and N−1

A (C) is irreducible.}
Then:

(i) For each irreducible, smooth curve C in A such that π1(C) surjects onto
π1(A), we have cirr(D, N) ≤ (D . C).
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(ii) For each very ample divisor H on A, we have cfin(D, N) ≤ (D . Hd−1),
where Hr denotes the r-th self-intersection product H . . . . . H︸ ︷︷ ︸

r times

.

(iii) We have #(Supp(D) ∩A[N ]) ≤ cfin(D, N)N2d−2.
(iv) If cfin(D,N) < N2, then we have cfin(D, N) ≤ cirr(D, N).

Proof. (See [R1], Lemme 4.3.5 and the proof of [R1], Théorème 4.3.1.)
(i) The condition π1(C) ³ π1(A) and the number (D . C) do not change if C

is translated by an element of A. So, we may assume that C passes through 0.
Now, since π1(C) ³ π1(A), N−1

A (C) must be irreducible. Thus the inequality
holds.
(ii) Since H is very ample, a general member C1 of Hd−1 that passes through 0
has �nite intersection with NA(D), hence D ∩N−1

A (C1) is also �nite. Let C be
an irreducible component of C1 that passes through 0. Then, regarding C as a
reduced scheme, we obtain

cfin(D, N) ≤ (D . C) ≤ (D . C1) = (D . Hd−1).

(iii) Take an irreducible, reduced curve C in A with (D . C) = cfin(D, N) such
that C 3 0 and that N−1

A (C) ∩D is �nite. Then we have

#(Supp(D) ∩A[N ]) ≤ (D . N−1
A (C)) = N2d−2(D . C) = cfin(D,N)N2d−2.

Here, The inequality follows from the fact that C 3 0 and that N−1
A (C) ∩D is

�nite, and the �rst equality follows from intersection theory as in the proof of
[R1], Lemme 4.3.5.
(iv) Take an irreducible, reduced curve C in A with (D . C) = cirr(D, N)
such that C 3 0 and that N−1

A (C) is irreducible. By (iii) and the assumption
cfin(D,N) < N2, we have #(Supp(D) ∩ A[N ]) < N2d, hence A[N ] 6⊂ D, and, a
fortiori, N−1

A (C) 6⊂ D. Since N−1
A (C) is irreducible by assumption, this implies

that D ∩N−1
A (C) is �nite. Thus we have cfin(D, N) ≤ (D . C) = cirr(D, N). ¤

Corollary (3.10). Let X be a proper , smooth, connected curve of genus g

over k and J the Jacobian variety of X. Let E be a vector bundle on X with
χ(E) = 0, and assume that E satis�es (?) of page 59. Then, ΘE is a divisor on
J , and :

(i) If g > 0, we have cirr(ΘE , N) ≤ g rk(E).
(ii) If g > 0, we have cfin(ΘE , N) ≤ 3g−1g! rk(E).
(iii) We have #(Supp(ΘE) ∩ J [N ]) ≤ 3g−1g! rk(E)N2g−2.
(iv) If 3g−1g! rk(E) < N2, we have #(Supp(ΘE) ∩ J [N ]) ≤ g rk(E)N2g−2.

Proof. First, we note that, by [R1], Proposition 1.8.1 (2), ΘE is algebraically
equivalent to rk(E)Θ, where Θ is the classical theta divisor (the image of X(g−1)

in J).
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(i) This is obtained by applying (3.9)(i) to C = X, which is embedded into A = J

by means of an Albanese morphism. In fact, then π1(X) ³ π1(J) is well-known,
and we have

(ΘE . X) = rk(E)(Θ . X) = rk(E)g.

(ii) We �rst note that 3Θ is very ample by [Mu], Section 17, Theorem, since Θ
is ample. Now, (ii) is obtained by applying (3.9)(ii) to H = 3Θ. In fact, then we
have

(ΘE . (3Θ)g−1) = rk(E)3g−1(Θg) = rk(E)3g−1g!.

(iii) We may assume g > 0, since ΘE = ∅ for g = 0. Then, (iii) follows from (ii)
and (3.9)(iii).
(iv) We may assume g > 0, as in (iii). Then, (iv) follows from (i), (ii) and
(3.9)(iii)(iv). ¤

Remark (3.11). In [R1], Lemme 4.3.5, it was necessary to assume that D ∩
l−1
A (C) is �nite. (Counterexample: C: a one-dimensional abelian subvariety of A,
D: the inverse image in A of a divisor of A/C that contains the whole (A/C)[l].)
Accordingly, in Théorème 4.3.1, loc. cit., the condition l + 1 ≥ (p − 1)g had
to be modi�ed. (For example, l + 1 ≥ (p − 1)3g−1g! is su�cient.) Similarly,
in [T1], Lemma (1.9), the condition lm > l2g−l2g−1

l2g−1 (p − 1)g had to be modi�ed
as lm > l2g−l2g−1

l2g−1 (p − 1)3g−1g!, and, in its proof, we should have assumed that
D ∩ (lmA )−1(C) is �nite.

Main numerical consequences. Until the end of this section, with the ex-
ception of (3.17), we restrict ourselves to the case that N = q − 1, where q is a
(positive) power of p. (Note that, in this case, we have pf = q.) Then, we get
some numerical consequences of the results of Section 2, as follows.

We note that, for each element D of (Z/NZ)∼[S]0, deg(D) = s(D)N for some
integer s(D) with 0 ≤ s(D) ≤ n− 1 + b(2), and that the cardinality of b̃−1

N (D) is
N2g.

Theorem (3.12). Put

C(g) def=
{

0, if g = 0,
3g−1g!, if g > 0. (3.13)

Then, for each D ∈ (Z/NZ)∼[S]0 with s(D) ≤ 1, the following statements hold .

(i) We have

#{[L] ∈ Pic(X) | ([L], D) ∈ P̃N and ϕ([L],D) is bijective} ≥ N2g − C(g)N2g−1.

(ii) We have

#{[L] ∈ Pic(X) | ([L], D) ∈ P̃N and γ([L],D) ≥ g − 1 + s(D)}
≥ N2g − C(g)N2g−1
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and

#{[L] ∈ Pic(X) | ([L], D) ∈ P̃N and γ([L],D) = g − 1 + s(D)}

≥
{

N2g − C(g)N2g−1 − 1, if s(D) = 0,
N2g − C(g)N2g−1, if s(D) = 1.

Proof. For simplicity, we shall write s instead of s(D). Since the degree of
L ∈ b̃−1

N (D) is −s, we see that

γ([L],D) ≤ dimk(H1(X,L)) =
{

g, if s = 0 and L ' OX ,
g − 1 + s, otherwise, (3.14)

as in (3.7). In particular, the statements clearly hold for g = 0. From now on,
we shall assume g > 0.
(i) First, recall the following commutative diagram (see Section 2):

X = X

F f
X/k ↓ ª ↓ F f

X

Xf
∼→ X

↓ ¤ ↓

Spec(k)
(FSpec(k))

f

∼→ Spec(k).

We shall denote by ι the q-linear isomorphism Xf
∼→X in this diagram. Note that

the pullback by F f
X of a line bundle L on X is canonically isomorphic to L⊗q.

In fact, we can easily check that the OX -linear map (F f
X)∗(L) → L⊗q induced

by the q-th power map L → L⊗q is an isomorphism.
Take any [L′−s] ∈ b̃−1

N (D). Then we have

(L′−s)
⊗N ' OX(−D) (hence deg(L′−s) = −s)

and
b̃−1
N (D) = {[L′ ⊗ L′−s] | [L′] ∈ Pic(X)[N ]}. (3.15)

We put L−s
def= ι∗(L′−s). Then we have deg(L−s) = −s and

(F f
X/k)∗(L−s) = (L′−s)

⊗q ' OX(−D)⊗ L′−s.

Now, by (2.6), the vector bundle E
def= Bf

D ⊗ L−s on Xf satis�es condition
(?) of page 59. So, applying (3.10), we get

#{[L] ∈ Pic(Xf )[N ] | h0(E ⊗ L) = h1(E ⊗ L) = 0} ≥ N2g − C(g)N2g−1.

By the de�nition of Bf
D, the condition

h0(E ⊗ L) = h1(E ⊗ L) = 0
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implies
H1(Xf , L−s ⊗ L) ∼→ H1(Xf , (F f

X/k)∗(OX(D))⊗ L−s ⊗ L)
‖

H1(X,OX(D)⊗ (F f
X/k)∗(L−s ⊗ L)).

In terms of L′ = ι∗(L) (hence L = ι∗(L′)), this is equivalent to:

H1(X, L′−s ⊗ L′) ∼→ H1(X,OX(D)⊗ (L′−s ⊗ L′)⊗q).

Considering (3.15), these imply the inequality in (i).
(ii) Immediate from (i) and (3.14). (The term −1 in the case s = 0 comes from
the trivial line bundle.) ¤

We have the following slight generalization of (3.12). See Section 2 for the
de�nition of the divisor D(i).

Corollary (3.16). Let N = pf − 1 and D ∈ (Z/NZ)∼[S]0. Assume that there
exists i ∈ {0, 1, . . . , f − 1} such that s(D(i)) = 1. Then we have

#{[L] ∈ Pic(X) | ([L], D) ∈ P̃N and γ([L],D) = g} ≥ N2g − C(g)N2g−1.

Proof. Notations being as in (3.8), we can deduce

γ([L(pi)],D(pi)) = γ[V ],pi = γ[V ],1 = γ([L],D),

where the �rst and the third equalities follows from (3.8) and the second from
the remark just before the de�nition of γ[V ],i.

Since N = pf − 1, we have the coincidence D(i) = D(pi). Thus, we obtain
(3.16) by applying (3.12) to D(i) = D(pi). (Note that the pi-action on P̃N is
bijective.) ¤

Remark (3.17). In this remark, we do not assume N = pf − 1.
(i) For general N , the same argument as in the proof of (3.12) shows that (3.12)
holds if we replace N2g−C(g)N2g−1 by N2g−C(g)(pf−1)N2g−2. (Apply (2.6) to
pf−1

N D.) Similarly, (3.16) holds if we replace D(i) by D(pi), and N2g−C(g)N2g−1

by N2g − C(g)(pf − 1)N2g−2.
However, the resulting inequalities say nothing, unless N2 > C(g)(pf − 1).

For g > 0, the last condition forces N to be a rather big divisor of pf − 1
(N >

√
pf − 1).

(ii) Following [R1], we can improve the inequalities for s(D) = 0 in (3.12) (for N

general). This can be achieved by considering the p-linear maps L1 → Lp, Lp →
Lp2 , . . . , Lpf−1 → Lpf = L1 step by step, instead of considering the whole pf -
linear map L1 → L1 at a time. Then, the right-hand sides of both the inequality
of (3.12)(i) and the �rst inequality of (3.12)(ii) become N2g−C(g)(p−1)fN2g−2.

This time, the results say something nontrivial, if N2 > C(g)(p − 1)f . The
last condition is satis�ed for N > C(g)(p−1). In particular, they say something
nontrivial for almost all N .
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(iii) What is the counterpart of (ii) above in the case s(D) = 1 (or s(D(pi)) = 1)?
To state it, put

{a1, . . . , am} = {a = 0, 1, . . . , f − 1 | s(D(pa)) = 1},
where we assume (0 ≤)a1 < a2 < · · · < am(≤ f − 1). We de�ne the natural
numbers fi by

fi
def=

{
ai+1 − ai if 1 ≤ i < m,
a1 + f − am if i = m,

so that
∑m

i=1fi = f . Now, by considering the pfi-linear maps Lpai → Lpai+1

step by step as in (ii), we obtain the improvement (for N general)

≥ N2g − C(g)

( m∑

i=1

(pfi − 1)

)
N2g−2

in the statements of (3.12)(i)(ii) and (3.16). (For (3.12), we assume a1 = 0.)
The improved inequalities say something nontrivial, if N2 is greater than

C(g)
(∑m

i=1(p
fi − 1)

)
. However, the right-hand side of the last condition depends

not only on p, g and f but also on the coe�cients of D ∈ Z[S].

Assuming N = pf − 1 again, we shall give a rough estimate of the number of D

to which (3.12) or (3.16) can be applied. (See Appendix for a related result for
general N .) Note that

#((Z/NZ)∼[S]0) = Nn−1+b(2) =
{

1 if n ≤ 1,
Nn−1 if n > 1.

Proposition (3.18). (i) If n ≤ 1, the value s for the unique element of
(Z/NZ)∼[S]0 is 0.

(ii) If n > 1, there exist M > 0 and 0 ≤ α < 1 depending only on p and n, such
that

#
{
D ∈ (Z/NZ)∼[S]0 | s(D(i)) = 1 for some i = 0, 1, . . . f − 1

}

≥ Nn−1(1− αf )− 1

for all f ≥ M .
More precisely , let k be any positive integer ≥ logp(n−1) and ε any positive

real number < 1. Then we can take

M =
k

ε
, α =

(
1− 1

pk(n−1)

(
pk

n− 1

))(1−ε)/k

.

Proof. (i) Clear. ((Z/NZ)∼[S]0 consists of the trivial divisor.)
(ii) We choose any Q ∈ S and put S′ = S−{Q}, whose cardinality is n′ def= n−1.
The projection (Z/NZ)∼[S]0 → (Z/NZ)∼[S′], D 7→ D′ is bijective. We have

s(D) =
1
N

deg(D) =
⌈

1
N

deg(D′)
⌉

,
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where dxe denotes the smallest integer ≥ x. Therefore, we have

s(D) ≤ 1 ⇐⇒ deg(D′) ≤ N.

When n′ = 1, deg(D′) ≤ N for all D′. Then the statements clearly hold
(α = 0). (Note that the term −1 comes from the trivial divisor.) So, from now
on, we shall assume n′ > 1.

Let k be a positive integer ≥ logp(n′) and ε any positive real number < 1.
We assume f ≥ M

def= k
ε . Let D′ be any element of (Z/NZ)∼[S′], and, for each

P ∈ S′, consider the p-adic expansion

ordP (D′) =
f−1∑

j=0

nP,jp
j ,

with nP,j ∈ {0, 1, . . . , p− 1}.
If we have

∑

P∈S′

k−1∑

j=0

nP,f−k+jp
j ≤ pk − n′,

then we obtain

deg(D′) =
∑

P∈S′




f−k−1∑

j=0

nP,jp
j


 +

f−1∑

j=f−k

nP,jp
j

≤ n′(pf−k − 1) + pf−k(pk − n′)

= pf − n′ ≤ pf − 1 = N.

In the same way, if we have

∑

P∈S′

k−1∑

j=0

nP,f−hk+jp
j ≤ pk − n′

for some h = 1, 2, . . . ,
[

f
k

]
, then we obtain

deg((D′)(−(h−1)k)) ≤ N.

In other words, if we suppose that deg((D′)(i)) > N for all i = 0, 1, . . . , f − 1,
we must have

∑

P∈S′

k−1∑

j=0

nP,f−hk+jp
j > pk − n′ (3.19)

for all h = 1, . . . ,
[

f
k

]
. Now, since

#{E ∈ (Z/pkZ)∼[S′] | deg(E) ≤ pk − n′} =
(

(pk − n′) + n′

n′

)
=

(
pk

n′

)
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(�repeated combination�), we obtain

#{D ∈ (Z/NZ)∼[S]0 | s(D(i)) > 1 for all i = 0, 1, . . . , f − 1}

≤
(

pkn′ −
(

pk

n′

))[ f
k ]

p(f−k[ f
k ])n′ − (pfn′ − (pf − 1)n′).

Here, the term (pfn′ − (pf − 1)n′) is the cardinality of the set

(Z/pfZ)∼[S′]− (Z/NZ)∼[S′].

(Note that each element of (Z/pfZ)∼[S′]− (Z/NZ)∼[S′] automatically satis�es
(3.19), since we have assumed n′ > 1.) By applying the identity

B

B′A
′ − {A′ − (B′ −B)} =

(B′ −A′)(B′ −B)
B′

to B = (pf − 1)n′ , B′ = pfn′ and A′ =
(
pkn′ − (

pk

n′
))[ f

k ]
p(f−k[ f

k ])n′ , we obtain

#{D ∈ (Z/NZ)∼[S]0 | s(D(i)) > 1 for all i = 0, 1, . . . f − 1}

≤ (pf − 1)n′

pfn′

(
pkn′ −

(
pk

n′

))[ f
k ]

p(f−k[ f
k ])n′

= Nn′
(

1− 1
pkn′

(
pk

n′

))[ f
k ]

≤ Nn′
(

1− 1
pkn′

(
pk

n′

))(1−ε)f/k

,

where the last inequality follows from our assumption f ≥ k/ε:
[
f

k

]
≥ f

k
− 1 ≥ (1− ε)f

k
.

Now, the statements of (ii) follow immediately. ¤

Finally, we shall summarize (3.12), (3.16) and (3.18) in terms of µN -torsors, via
(3.5) and (3.6). Recall that we are assuming N = pf − 1.

Theorem (3.20). Let C(g) be as in (3.13).

(i) If n ≤ 1, we have

#{[V ] ∈ H1
ét(U, µN ) | γ[V ],1 = g − 1} ≥ N2g − C(g)N2g−1 − 1

(ii) If n > 1, we have

#{[V ] ∈ H1
ét(U,µN ) | γ[V ],1 = g} ≥ (N2g − C(g)N2g−1){Nn−1(1− αf )− 1}

for f ≥ M , where M and α are as in (3.18)(ii). ¤

Roughly speaking, (3.20) says that the generalized Hasse�Witt invariants for
`most' (pf − 1)-cyclic coverings are g (resp. g − 1) if n > 1 (resp. n ≤ 1).
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4. A Group-Theoretic Characterization of Genera

In this section, we shall prove that the genus of a curve over an algebraically
closed �eld of characteristic > 0 can be recovered group-theoretically from the
tame fundamental group of the curve. More precisely, we shall prove the follow-
ing:

Theorem (4.1). For each i = 1, 2, let pi be a prime number , ki an algebraically
closed �eld of characteristic pi, Xi a proper , smooth, connected curve of genus
gi over ki, Si a �nite (possibly empty) set of closed points of Xi with cardinality
ni, and Ui = Xi − Si. If πt

1(U1) ' πt
1(U2) (as topological groups), then we have:

(i) p1 = p2, unless gi = 0, ni ≤ 1 for i = 1, 2;
(ii) g1 = g2; and
(iii) n1 = n2, unless {(g1, n1), (g2, n2)} = {(0, 0), (0, 1)}.
Remark (4.2). To specify the notion of being recovered group-theoretically, we
need to introduce two curves (see [T2], § 1, De�nition). However, the following
proof involves only one curve, and what we shall do is to extract its various
invariants from its tame fundamental group by purely group-theoretic procedure.

Now, let p, k,X, g, S, n, U be as in Section 2 and Section 3. Recall that the i-th
Betti number b(i) of U , de�ned as the Zl-rank of the l-adic étale cohomology
group Hi

ét(U,Zl) (l: a prime number 6= p), is given in terms of (g, n) as:

b(0) = 1, b(1) = 2g + n− 1 + b(2), b(2) =
{

1 if n = 0,
0 if n > 0.

First, we shall settle some minor things.

Lemma (4.3). (i) The invariant b(1) can be recovered group-theoretically from
πt

1(U).
(ii) We have

b(1) = 0 ⇐⇒ (g, n) = (0, 0), (0, 1)

b(1) = 1 ⇐⇒ (g, n) = (0, 2)

}
⇒ g = 0.

(iii) Except for the case b(1) = 0, the invariant p can be recovered from πt
1(U)

group-theoretically .

Proof. (ii) is trivial. As is well-known, πt
1(U)ab is isomorphic to

∏

l 6=p

Zb(1)

l × Zγ
p ,

where γ is the p-rank of (the Jacobian variety of) X (see [T1], Corollary (1.2)).
From this, (i) follows.

Since
(0 ≤)γ ≤ g ≤ 2g ≤ 2g + n− 1 + b(2) = b(1),
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γ = b(1) holds (if and) only if g = n−1+b(2) = 0 holds, or, equivalently, b(1) = 0.
In other words, except for the case b(1) = 0, γ < b(1) holds, so we can extract the
invariant p from the above description of πt

1(U)ab (see [T2], Proposition (1.2)).
Thus, (iii) follows. ¤

By this lemma, we obtain (4.1)(i). Moreover, by (i) and (ii) of this lemma, we
may assume that b(1) > 1 when we prove (4.1)(ii). In particular, we may use the
invariant p freely.

The essence of (4.1)(ii) is in (3.20), which says, roughly speaking, that the gen-
eralized Hasse�Witt invariants for `most' (pf−1)-cyclic coverings are g (resp. g−
1) if n > 1 (resp. n ≤ 1).

However, a few problems remain. The �rst problem is that, strictly speaking,
µN = µN (k) is not a group-theoretic object. Namely, even if we are given
an isomorphism πt

1(U1) ' πt
1(U2), we are not given any natural isomorphism

µN (k1) ' µN (k2), a priori, hence we do not have any natural isomorphism

H1
ét(U1,µN ) ' H1

ét(U2, µN ).

Moreover, in order to de�ne γ[V ],1 for each [V ] ∈ H1
ét(X, µN ), we have used

not only the group µN but also the natural embedding µN ↪→ k and the �eld
structure of k, which are also not group-theoretic objects.

In fact, by means of (3.8), any �xed isomorphism µN (k1) ' µN (k2) will
turn out to work for our purpose. However, to avoid confusion and to make
things clear, in this section, we will use the set of open normal subgroups H of
πt

1(U) such that πt
1(U)/H is a cyclic group of order dividing N , instead of using

H1
ét(U,µN ), and rewrite (3.20) in purely group-theoretic terms.
The second problem is that, if n ≤ 1, the generalized Hasse�Witt invariant

for a general (pf − 1)-covering is g− 1, and, if n > 1, it is g, and that we do not
know, a priori, in which case we are.

We overcome this second problem by considering not only the base curve U

but also suitable (tame) coverings of U .

Now, we shall start with the �rst problem.
Assume that a cyclic group G of order prime to p and an Fp[G]-module M are

given. As in Section 3, as soon as we are given a character χ : G → k× for some
�eld k of characteristic p, we can de�ne γχ(M) def= dimk((M ⊗ k)(χ)), where

(M ⊗ k)(χ) def= {x ∈ M ⊗ k | σ · x = χ(σ)x for all σ ∈ G}.

However, the case is that only G and M are given. In this situation, only certain
sums of γχ(M) can be well-de�ned, as follows.

Definition. We de�ne the primitive part of M by

Mprim def= M/(
∑

σ 6=1

M 〈σ〉),
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where M 〈σ〉 def= {x ∈ M | σ · x = x} for each σ ∈ G. We put

γprim(M) def= dimFp(Mprim).

Remark (4.4). (i) Let k be a �eld of characteristic p containing all #(G)-th
roots of unity. Then we can check:

γprim(M) =
∑

χ:G↪→k×
γχ(M).

(ii) Assume that M is �nite-dimensional as an Fp-vector space. We can naturally
regard the dual vector space M∗ def= HomFp(M,Fp) as a G-module by (σ ·φ)(x) =
φ(σ−1 · x), where σ ∈ G, φ ∈ M∗, and x ∈ M . Then we can check:

γprim(M∗) = γprim(M).

(One way to check this: γχ(M∗) = γχ−1(M).)

We return to the tame fundamental group πt
1(U). Let H be an open normal sub-

group of πt
1(U) such that πt

1(U)/H is cyclic of order prime to p. The conjugation
induces an action of πt

1(U)/H on the Fp-vector space Hab/p, whose dimension
we denote by γH .

Definition. γprim
H

def= γprim(Hab/p).

For each natural number N prime to p, we de�ne HN to be the set of open
normal subgroups H of πt

1(U) such that πt
1(U)/H is cyclic of order dividing N .

Definition. γav
N

def=
1

N b(1)

∑
H∈HN

γprim
H .

In this de�nition, �av� means �average�. In fact, we have a reinterpretation of
γav

N :

Lemma (4.5). We have

γav
N = Average

[V ]∈H1
ét(U,µN )

γ[V ],1

def=
1

#(H1
ét(U, µN ))

∑

[V ]∈H1
ét(U,µN )

γ[V ],1.

Proof. By (4.4)(ii),

γprim
H = γprim(Hab/p) = γprim((Hab/p)∗)

= γprim(Hom(πt
1(UH),Fp)) = γprim(H1

ét(XH ,Fp)),

where UH is the tame covering of U corresponding to H ⊂ πt
1(U) and XH is the

normalization of X in UH , and then by (4.4)(i),

γprim
H =

∑

χ:πt
1(U)/H↪→k×

γχ(H1
ét(XH ,Fp)).
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On the other hand, we have the following bijection:

{(H,χ) | H ∈ HN , χ : πt
1(U)/H ↪→ k×}∼→Hom(πt

1(U),µN ), (4.6)

where (H, χ) goes to (πt
1(U) ³ πt

1(U)/H
χ
↪→ µN ). Now, let [V ] be the element

of H1
ét(U,µN ) = Hom(πt

1(U), µN ) corresponding to (H, χ). Then we claim

γ[V ],1 = γχ(H1
ét(XH ,Fp)). (4.7)

In fact, let Y be the normalization of X in V . Then, since UH is the Im(χ)-

torsor of U corresponding to (πt
1(U) ³ πt

1(U)/H
χ
∼→ Im(χ)), we see that Y

coincides with µN ×Im(χ) XH , the quotient of µN × XH by the Im(χ)-action
(ζ, x)ζ0 = (ζ−1

0 ζ, xζ0). From this, we can deduce that H1
ét(Y,Fp) is the induced

Fp[µN ]-module of the Fp[Im(χ)]-module H1
ét(XH ,Fp). Now our claim (4.7) fol-

lows immediately.
Now, bijection (4.6), identity (4.7) and the fact H1

ét(U,µN ) ' (Z/NZ)b(1)

complete the proof. ¤

Remark (4.8). Here is another simple reinterpretation of γav
N . For a pro�nite

group Π and a natural number m, we shall denote by Π(m) the kernel of Π ³
Πab/(Πab)m, or, equivalently, Π(m) is the topological closure of the subgroup
[Π, Π]Πm of Π. Moreover, we shall denote by U(m) the tame covering of U cor-
responding to the subgroup πt

1(U)(m) of πt
1(U), so that πt

1(U(m)) = πt
1(U)(m),

and X(m) the normalization of X in U(m). (Note that this last notation is
somewhat confusing: X(m) does not coincide with the (étale) covering of X

corresponding to π1(X)(m) in general.) Then we have

γav
N =

dimFp(πt
1(U)(N)/(πt

1(U)(N))(p))
(πt

1(U) : πt
1(U)(N))

.

In fact, the denominator of the right-hand side is N b(1) , while the numerator is
dimFp(H1

ét(X(N),Fp)). Since πt
1(U)/πt

1(U)(N) = πt
1(U)ab/N is abelian of order

prime to p, we see that the following canonical decomposition exists:

H1
ét(X(N),Fp) =

⊕

H∈HN

(H1
ét(X(N),Fp)H/πt

1(U)(N))(π
t
1(U)/H)-prim,

where (πt
1(U)/H)-prim means the primitive part as a (πt

1(U)/H)-module. Since
H1

ét(X(N),Fp)H/πt
1(U)(N) = H1

ét(XH ,Fp) (see the proof of (4.5) for the de�nition
of XH), we obtain the desired equality

dimFp(H1
ét(X(N),Fp)) =

∑

H∈HN

γprim
H

(see the beginning of the proof of (4.5)).

The following is a variant of (3.20). Recall that we are assuming b(1) > 1.

Theorem (4.9). Assume N = pf − 1. Let C(g) be as in (3.13).
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(i) If n ≤ 1, we have

g − 1− C(b(1)/2)(b(1)/2− 1)
N

≤ γav
N ≤ g − 1 +

1
N b(1)

.

(ii) If n > 1, let k be any positive integer ≥ logp(b(1)), ε any positive real number
< 1, and put

M =
k

ε
, α =

(
1− 1

pkb(1)

(
pk

b(1)

))(1−ε)/k

.

Then, we have

g −
{(

C

([
b(1)

2

]) [
b(1)

2

]
+ 1

)
1
N

+
[
b(1)

2

]
αf

}
≤ γav

N ≤ g + (b(1) − 1)αf

for all f ≥ M .

Proof. (i) We �rst note that b(1) = 2g holds in this case. By (3.7)(and (3.6)),
we have

γ[V ],1 ≤
{

g, if [V ] = 0,
g − 1, otherwise,

for each [V ] ∈ H1
ét(U,µN ). From this,

∑

[V ]∈H1
ét(U,µN )

γ[V ],1 ≤ (N b(1) − 1)(g − 1) + g = N b(1)(g − 1) + 1,

hence
γav

N ≤ g − 1 +
1

N b(1)
.

On the other hand, by (3.12)(ii) and (3.18)(i), we have
∑

[V ]∈H1
ét(U,µN )

γ[V ],1 ≥ (g − 1)(N b(1) − C(g)N b(1)−1),

hence
γav

N ≥ g − 1− C(g)(g − 1)
N

.

Since g = b(1)/2, this completes the proof.
(ii) Dividing the sum

∑
[V ]∈H1

ét(U,µN )γ[V ],1 into the three parts: (0) D = 0; (1)
s(D(i)) = 1 for some i = 0, 1, . . . , f − 1; (2) otherwise, we obtain

∑

[V ]∈H1
ét(U,µN )

γ[V ],1

≤ ((g − 1)N2g + 1) + gN2g(Nn−1(1− αf )− 1) + (g + n− 2)N2gNn−1αf

= gN b(1) − (N2g − 1) + (n− 2)N b(1)αf

≤ gN b(1) + (b(1) − 1)N b(1)αf
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for f ≥ M , by (3.7) and (3.18)(ii). (Here, note that

k ≥ logp(b
(1)) ≥ logp(n− 1)

and

α =
(

1− 1
pkb(1)

(
pk

b(1)

))(1−ε)/k

≤
(

1− 1
pk(n−1)

(
pk

n− 1

))(1−ε)/k

,

since n− 1 ≤ b(1).) Therefore

γav
N ≤ g + (b(1) − 1)αf .

Similarly, considering the cases (0) and (1), we have
∑

[V ]∈H1
ét(U,µN )

γ[V ],1

≥ (g − 1)(N2g − C(g)N2g−1) + g(N2g − C(g)N2g−1)(Nn−1(1− αf )− 1)

= gN b(1) − C(g)gN b(1)−1 − gN b(1)αf + C(g)gN b(1)−1αf −N2g + C(g)N2g−1

≥ gN b(1) − C(g)gN b(1)−1 − gN b(1)αf −N2g

≥ gN b(1) − (C(g)g + 1)N b(1)−1 − gN b(1)αf

≥ gN b(1) −
(

C

([
b(1)

2

])[
b(1)

2

]
+ 1

)
N b(1)−1 −

[
b(1)

2

]
N b(1)αf

for f ≥ M , by (3.16), etc. (For the last inequality, note that g ≤ [
b(1)/2

]
and

that C(g) is monotone increasing.) Therefore, we have

γav
N ≥ g −

{(
C

([
b(1)

2

])[
b(1)

2

]
+ 1

)
1
N

+
[
b(1)

2

]
αf

}

for all f ≥ M . ¤

Definition. We de�ne

g′ def=
{

g − 1, if n ≤ 1,
g, if n > 1.

The following (together with (4.3)) gives a group-theoretic characterization of
the invariant g′.

Corollary (4.10). (We are assuming b(1) > 1.) Let M and α be as in (4.9),
and C(g) as in (3.13). Then

g′−
{(

C

([
b(1)

2

])[
b(1)

2

]
+1

)
1
N

+
[
b(1)

2

]
αf

}
≤ γav

N

≤ g′+max
(

1
N b(1)

, (b(1)−1)αf

)

for all f ≥ M .
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In particular , if f is su�ciently large (e.g ., if

f ≥ max
(

M,
log(3b(1))
log(α−1)

, logp

(
C

([
b(1)

2

])
b(1) + 5

))

holds), then g′ can be characterized as the unique integer in the interval
[
γav

N −max
(

1
N b(1)

, (b(1) − 1)αf

)
,

γav
N +

{(
C

([
b(1)

2

])[
b(1)

2

]
+ 1

)
1
N

+
[
b(1)

2

]
αf

}]
.

Proof. By (4.9), g′ falls in the interval for f ≥ M .

Assume f ≥ max
(

M,
log(3b(1))
log(α−1)

, logp

(
C

([
b(1)

2

])
b(1) + 5

))
. Then the

length λ of the interval satis�es:

λ = max

(
1

N b(1)
+

{(
C

([
b(1)

2

])[
b(1)

2

]
+ 1

)
1
N

+
[
b(1)

2

]
αf

}
,

(b(1) − 1)αf +
{(

C

([
b(1)

2

])[
b(1)

2

]
+ 1

)
1
N

+
[
b(1)

2

]
αf

})

<
1

N b(1)
+ (b(1) − 1)αf +

{(
C

([
b(1)

2

])[
b(1)

2

]
+ 1

)
1
N

+
[
b(1)

2

]
αf

}

<

(
C

([
b(1)

2

])[
b(1)

2

]
+ 2

)
1
N

+
3b(1)

2
αf

≤ 1
2 + 1

2 = 1.

This implies the desired uniqueness. ¤

At the cost of sacri�cing e�ectivity, we also obtain the following more impressive
characterization of g′.

Corollary (4.11). lim
f→∞

γav
pf−1 = g′. ¤

Remark (4.12). It is easy to see that (4.11) is also valid for b(1) = 1. In order
to include the case that b(1) = 0, the formula should be modi�ed as

lim
f→∞

γav
pf−1 = (g′)+,

where x+ def= max(x, 0).

Now, we shall treat the second problem: the group-theoretic characterization
above is not for g but for g′.

First, we introduce the following temporary invariant, which can be recovered
group-theoretically from πt

1(U) (assuming b(1) > 0):

ntemp def= b(1) − 2g′ + 1.
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Next, let m be a natural number prime to p, and U(m) the tame covering of U as
in (4.8). We de�ne n(m) (resp. ntemp(m)) to be the invariant n (resp. ntemp) for
the curve U(m). Note that ntemp(m) can also be recovered group-theoretically
from πt

1(U).

Lemma (4.13). Assume b(1) > 0.

(i) We have

ntemp =
{

3, if n ≤ 1,
n, if n > 1.

(ii) If m > 1, we have

ntemp(m) =





3, if n = 0,
mb(1) , if n = 1,
mb(1)−1n, if n > 1.

Proof. (i) Immediate from the de�nitions.
(ii) By (i), we have

ntemp(m) =
{

3, if n(m) ≤ 1,
n(m), if n(m) > 1.

On the other hand, we have

n(m) =
{

mb(1)n, if n ≤ 1,
mb(1)−1n, if n > 1.

These give the desired equality. ¤

Finally, we can prove the following:

Theorem (4.14). Assume b(1) > 0. Fix any natural number m 6= 1, 3 prime to
p. Then

n =





ntemp, if ntemp 6= 3,
0, if ntemp = 3 and ntemp(m) = 3,
1, if ntemp = 3 and ntemp(m) = mb(1) ,
3, if ntemp = 3 and ntemp(m) = 3mb(1)−1.

In particular , the invariant n can be recovered group-theoretically from πt
1(U)

(except for the case b(1) = 0).

Proof. The �rst statement follows from (4.13). Since ntemp, ntemp(m) and b(1)

can be recovered group-theoretically from πt
1(U), the second statement follows.

(More precisely, we have to consider two cases separately. If b(1) = 1, then we
have n = ntemp = 2. Otherwise, i.e. if b(1) > 1, then the numbers 3, mb(1) and
3mb(1)−1 are distinct from one another.) ¤
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End of proof of (4.1). As we have already seen, (4.3) implies (4.1)(i) and
that we may assume b(1) > 0 when we prove (4.1)(ii)(iii). Now, (4.14) implies
(4.1)(iii). Since b(2) is determined by n, (4.14) and (4.3), together with the
equality

b(1) = 2g + n− 1 + b(2),

implies (4.1)(ii). This completes the proof of (4.1). ¤

Remark (4.15). We might hope for the more general limit formula

lim
N→∞

p-N
γav

N = g′. (4.16)

For the present, we can only prove `one half' of (4.16):

lim sup
N→∞

p-N

γav
N ≤ g′, (4.17)

by using a higher-dimensional version of LeVeque's inequality, due to Stegbuchner
([S]), in the theory of uniform distribution modulo 1. See Appendix for this. It
may be interesting to ask if (3.17)(iii) gives an approach to the other half of
(4.16).

Remark (4.18). As in [T2], Remark (1.11), not only πt
1(U) but also a suitable

quotient is enough to determine g (and n). For example, πt
1(U)/D(D(D(πt

1(U))))
is enough, where, for a pro�nite group G, D(G) denotes the (topological) com-
mutator subgroup of G, or, equivalently, the kernel of G ³ Gab.

Finally, as a direct consequence of (4.1), we have:

Corollary (4.19). The quotient π1(X) of πt
1(U) can be recovered group-

theoretically from πt
1(U).

Proof. As in [T2], Corollary 1.10, this follows from (4.1)(ii) and the Hurwitz
formula. ¤

5. Applications

(A) A group-theoretic characterization of inertia groups. Since we have
established (4.1), we can prove, as in [T2], that the set of inertia subgroups of
πt

1(U) can be recovered group-theoretically from πt
1(U) for U hyperbolic. (We

say that the curve U is hyperbolic, if the Euler�Poincaré characteristic b(0) −
b(1) + b(2) = 2− 2g − n of U is negative.)

Let K be the function �eld k(U) = k(X), and de�ne K̃t to be the maximal
Galois extension of K in a �xed separable closure Ksep, unrami�ed over U and at
most tamely rami�ed over S. We may and shall identify πt

1(U) with Gal(K̃t/K).
We de�ne X̃t to be the normalization of X in K̃t and S̃t to be the inverse image
of S in X̃t. For each P̃ ∈ S̃t, we denote by IP̃ the inertia subgroup of πt

1(U)
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associated to P̃ , i.e. the stabilizer of P̃ . We have IP̃ 6= {1} if and only if (n > 0
and) (g, n) 6= (0, 1) (see [T1], Lemma (2.2)).

Lemma (5.1). Assume that U is hyperbolic.

(i) Let P̃ and Q̃ be two points of S̃t distinct from each other . Then the intersec-
tion of IP̃ and IQ̃ is trivial in πt

1(U). In particular , for any σ ∈ πt
1(U)− IP̃ ,

the intersection of IP̃ and σIP̃ σ−1 is trivial .
(ii) The map S̃t → Sub(πt

1(U)), P̃ 7→ IP̃ is injective, where, for a pro�nite
group G, Sub(G) denotes the set of closed subgroups of G. Moreover , for each
P̃ ∈ S̃t, the normalizer of IP̃ in πt

1(U) is IP̃ itself .

Proof. (i) [T2], Lemma (2.1). (ii) [T2], Corollary (2.2). ¤

Let It be the set of inertia subgroups in πt
1(U), namely the image of the map

S̃t → Sub(πt
1(U)), P̃ 7→ IP̃ .

Theorem (5.2). If U is hyperbolic, then the set It can be recovered group-
theoretically from πt

1(U). More precisely , let the notations and the assumptions
be as in (4.1), and assume further that 2 − 2gi − ni < 0 for some i = 1, 2.
Then, if an isomorphism πt

1(U1) ' πt
1(U2) (as topological groups) is given, the

induced bijection Sub(πt
1(U1)) ' Sub(πt

1(U2)) induces a bijection It
1 ' It

2, where
It

i denotes the set It for the curve Ui, for each i = 1, 2.

Proof. See [T2], Proposition (2.4) and Remark (2.6). (Use (4.1)(iii).) ¤

(B) A group-theoretic characterization of `additive structures' of in-
ertia groups. Let P̃ ∈ S̃t. As is well-known, IP̃ can be canonically identi�ed
with the Tate module

Ẑ′(1) def= lim←−
p-m

µm(k)

of the multiplicative group k×, where µm(k) is the group of m-th roots of unity
in k. So, IP̃ ⊗Z (Q/Z)′, where (Q/Z)′ denotes the prime-to-p part of Q/Z, can
be canonically identi�ed with

(Q/Z)′(1) def=
⋃

µm(k) = F×,

where F denotes the algebraic closure of the prime �eld Fp in k. Thus, FP̃
def=

(IP̃ ⊗Z (Q/Z)′)
∐{∗} (where {∗} means a one-point set) can be identi�ed with

F , hence carries a structure of �eld, whose multiplicative group is IP̃ ⊗Z (Q/Z)′

and whose zero element is ∗.
Now, we have the following proposition. Unlike in (A) above, the proof here

is quite di�erent from [T2], Proposition 2.8, even after we have established (4.1)
and (5.2). (See [T2], Remark 2.10(ii).)

Proposition (5.3). Assume that U is hyperbolic. Then the �eld structure of
FP̃ = IP̃ ⊗Z (Q/Z)′

∐{∗} can be recovered group-theoretically from πt
1(U).
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Proof. We may assume n > 0.
First, we shall reduce the problem to the case n ≥ 3. If g = 0, this follows

automatically from the hyperbolicity condition. For g > 0, take any natural
number m prime to p such that m2gn ≥ 3. Then, replacing πt

1(U) by the kernel
of πt

1(U) → π1(X)ab/m (whose index in πt
1(U) is m2g), we have n ≥ 3. (Note

that IP̃ is contained in the kernel.) Next, by (5.1)(i), the set It divided by the
conjugacy action of πt

1(U) consists of n orbits. Choosing any 3 orbits among
these n orbits such that one of them is the conjugacy class of the given IP̃ ,
and dividing πt

1(U) by the subgroup (topologically) generated by all members
I of It whose conjugacy class is among the other n − 3 orbits, we may reduce
the problem to the case n = 3. (Observe that these reduction steps are purely
group-theoretic, by (4.1), (4.19) and (5.2).)

From now on, we assume n = 3 and we shall use (2.21). For each natural
number f , let Fpf ,P̃ denote the unique sub�eld of FP̃ with cardinality pf . Since
Fpf ,P̃

× = IP̃ /(pf −1), the sub�eld Fpf ,P̃ can be recovered group-theoretically as
a (multiplicative) submonoid. Fix any �eld Fpf with cardinality pf (unrelatedly
to Fpf ,P̃ ). Then the set Hom(Fpf ,P̃

×,Fpf
×) = Hom(groups)(Fpf ,P̃

×,Fpf
×) is

group-theoretic; recovering the �eld structure of Fpf ,P̃ is equivalent to recovering
Hom(Fpf ,P̃ ,Fpf ) = Hom(fields)(Fpf ,P̃ ,Fpf ) as a subset of Hom(Fpf ,P̃

×,Fpf
×).

Moreover, it is su�cient to recover this subset for f in a co�nal subset of Z>0

with respect to division.
To do this, we shall consider the two maps

Resf : Hom(πt
1(U)ab/(pf − 1),Fpf

×) → Hom(Fpf ,P̃
×,Fpf

×)

and
Γf : Hom(πt

1(U)ab/(pf − 1),Fpf
×) → Z≥0.

The �rst map Resf is the restriction with respect to the canonical inclusion
Fpf ,P̃

× = IP̃ /(pf−1) ↪→ πt
1(U)ab/(pf−1). The second map Γf is de�ned to send

χ ∈ Hom(πt
1(U)ab/(pf−1),Fpf

×) to γχ(H1
ét(XH ,Fp)), where H

def= Ker(χ). (For
the de�nitions of γχ and XH , see Section 4, especially (4.5) and its preceding
paragraphs. Strictly speaking, in Section 4, we use the notation γχ only for
a character χ of a cyclic group. However, the same de�nition goes well for
characters of general �nite groups, or we can replace πt

1(U)ab/(pf −1) by Im(χ).
See the proof of (4.5).)

Now we can state the following claim, which completes the proof of (5.3).

Claim (5.4). Let m0 be the product of all prime numbers ≤ p−2. (For p = 2, 3,
m0 = 1.) Let f0 be the order of p mod m0 in the multiplicative group (Z/m0Z)×.
For each f > logp(C(g) + 1) divisible by f0, we have

Hom(Fpf ,P̃ ,Fpf ) = Surj(Fpf ,P̃
×,Fpf

×)− Resf (Γ−1
f ({g + 1}))

( ⊂ Hom(Fpf ,P̃
×,Fpf

×)
)
.
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To prove this claim, we �x any embedding Fpf → k as �elds. Then we have

Hom(πt
1(U)ab/(pf − 1),Fpf

×) = H1
ét(U, µN ),

where N
def= pf − 1. By (3.5), this can be identi�ed with PN (or P̃N ), in the

notation of Section 3. On the other hand, FP̃ can be canonically identi�ed with
the algebraic closure of Fp in k. This identi�cation, together with the �xed
embedding Fpf → k, speci�es one identi�cation Fpf ,P̃ = Fpf . By using this, we
obtain

Hom(Fpf ,P̃
×,Fpf

×) = Z/NZ.

By using various de�nitions, we see that the map PN → Z/NZ coming from
Resf is nothing but the composite of bN : PN → Z/NZ[S] (see (3.4)) and
Z/NZ[S] → Z/NZ, D mod N 7→ ordP (D). Thus we can reformulate (5.4) as
follows: For each n ∈ (Z/NZ)∼,

n ∈ {pb | b = 0, 1, . . . , f − 1} ⇐⇒
(n, N) = 1 and @([L], D) ∈ P̃N s.t. ordP (D) = n and γ([L],D) = g + 1. (5.5)

First, by (3.7), we see that γ([L],D) ≤ g+1 always holds and that γ([L],D) = g+1
holds if and only only if γ([L],D) = dimk(H1(X, L)) (or, equivalently, ϕ([L],D) is
bijective) and deg(D) = 2N . Moreover, if ϕ([L],D) is bijective, then Bf

D should
satisfy condition (?) of page 59, and, in particular, it should be a semi-stable
vector bundle.

By this observation, the `⇒' part of (5.5) follows from (2.21)(iv�a). More
speci�cally, let us denote by P1 = P, P2, P3 the three points of S. Then (2.21)(iv�
a) implies that either ordP2(D) = N or ordP3(D) = N holds, which is impossible
as D ∈ (Z/NZ)∼[S].

To prove the `⇐' part of (5.5), let n be a natural number ∈ (Z/NZ)∼ such
that (n,N) = 1, and suppose that n /∈ {pb | b = 0, 1, . . . , f − 1}. Then we
have to prove that there exists ([L], D) ∈ P̃N such that ordP (D) = n and
γ([L],D) = g + 1. Since f is assumed to be divisible by f0, N is divisible by all
prime numbers ≤ p − 2. Therefore, by the assumption (n, N) = 1, we must
have n /∈ Ip−1p

If = {apb | a = 0, 1, . . . , p − 2, b = 0, 1, . . . , f − 1}. Now, by
(2.21)(iv�c), there exists D ∈ (Z/NZ)∼[S] with degree 2N which satis�es (2.14)
and to which (2.13) can be applied. Then, as in the proof of (3.12), we obtain

#{[L] ∈ Pic(X) | ([L], D) ∈ P̃N and γ([L],D) = g + 1} ≥ N2g − C(g)N2g−1 > 0,

where the last inequality comes from the assumption f > logp(C(g) + 1). This
completes the proof. ¤

Remark (5.6). A similar technique as in the proof of (5.4) gives an alternative
proof of (4.1). More precisely, �x an algebraic closure Fp of the prime �eld Fp,
and put

γmax def= max{γχ(H1
ét(XKer(χ),Fp)) | χ ∈ Hom(πt

1(U),F×p ), χ 6= 1}.
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(For the sake of convenience, we shall de�ne max∅ = −1.) Then:

Claim (5.7). We have
γmax = g + n− 2 + b(2).

If we assume (5.7),

g = b(1) − γmax − 1, n′ def= n + b(2) = 2γmax − b(1) + 3

can be recovered group-theoretically. Moreover, to recover n (assuming b(1) > 0),
we have only to note that

n =
{

n′, if n′(m) > 1,
0, if n′(m) ≤ 1,

where m is an arbitrary natural number > 1 prime to p and n′(m) is the invariant
n′ for the curve U(m). (See the paragraph preceding (4.13).)

For the proof of (5.7), �rst, the inequality γmax ≤ g + n − 2 + b(2) follows
from (3.7) (together with (3.6) and (4.7)). For the opposite inequality, let f be
a natural number > max(n− 1, logp(C(g) + 1)) and put N = pf − 1. Write the
set S of cardinality n as {P−1, P0, P1, . . . , Pn−2} and de�ne D ∈ (Z/NZ)∼[S] by

D
def=

n−2∑

i=−1

niPi, ni =
{ ∑n−2

j=0 pj , if i = −1,
N − pi, if i = 0, 1, . . . , n− 2.

(D = 0 for n ≤ 1.) Then, we see that D satis�es (2.14) (with s = n− 1 + b(2)).
Now, as in the proof of (3.12), we deduce that

#{[L] ∈ Pic(X) | ([L], D) ∈ P̃N and γ([L],D) = g + n− 2 + b(2)}
≥ N2g − C(g)N2g−1 > 0,

where the last inequality comes from the assumption f > logp(C(g) + 1). This
completes the proof.

(C) The genus 0 case. By means of the above results, we can prove that the
isomorphism class of the scheme U can be recovered group-theoretically from
the tame fundamental group πt

1(U) in the case where g = 0 and k = Fp. More
precisely, we have:

Theorem (5.8). Let k be an algebraically closed �eld of characteristic > 0 and
F the algebraic closure of Fp in k. Let U be a smooth, connected curve over k.
For each given smooth, connected curve U0 over F whose smooth compacti�cation
is of genus 0 and whose number of punctures is greater than 1, we can detect
whether U is isomorphic to U0⊗F k as a scheme or not , group-theoretically from
πt

1(U).

Corollary (5.9). For each i = 1, 2, let ki be an algebraically closed �eld of
characteristic > 0 and Ui a smooth, connected curve over ki. Let (gi, ni) denote
(g, n) for Ui. Assume k1 ' k2. For some i = 1, 2, assume that gi = 0, ni > 1,
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and either (a) Ui is de�ned over Fi, the algebraic closure of Fp in ki or (b)
ni ≤ 4. Then πt

1(U1) and πt
1(U2) are isomorphic as topological groups if and

only if U1 and U2 are isomorphic as schemes.
Proof of (5.8) and (5.9). With (4.1), (5.2), (5.3), etc., the same proofs as
those of [T2], Theorem 3.5 and Corollary 3.6 work for πt

1(U). ¤

Appendix: Proof of (4.17)
First, we recall some notations in the text. Let k be an algebraically closed

�eld of characteristic p > 0, and let U be a smooth, connected curve over k. We
denote by X the smooth compacti�cation of U and put S = X − U . We de�ne
non-negative integers g and n to be the genus of X and the cardinality of the
point set S, respectively. We put

g′ def=
{

g − 1, if n ≤ 1,
g, if n > 1.

Moreover, see Section 4 for the de�nition of the i-th Betti number b(i) of U .
In Section 4, we introduced the invariant γav

N of U for each natural number N

prime to p, as a certain average of generalized Hasse�Witt invariants of N -cyclic
étale coverings of U . Now, the following is the main result of this Appendix.
Theorem (A.1). Assume b(1) > 0 (or , equivalently , (g, n) 6= (0, 0), (0, 1)).
Then (4.17) holds, that is, we have

lim sup
N→∞

p-N

γav
N ≤ g′.

We devote the rest of this Appendix to proving (A.1).
Let N be a natural number prime to p. Recall that for each divisor D in

(Z/NZ)∼[S]0, s(D) def= deg(D)/N is an integer with 0 ≤ s(D) ≤ n − 1 + b(2).
Moreover, for each integer a, we denote by D(a) the element of (Z/NZ)∼[S]0

that is equivalent to aD modulo N . Let f be the order of p mod N in the
multiplicative group (Z/NZ)×. We put

MN
def= #{D ∈ (Z/NZ)∼[S]0 | s(D(pj)) ≤ 1 for some j = 0, 1, . . . f − 1}

and EN
def= #((Z/NZ)∼[S]0)−MN = Nn−1+b(2) −MN . (M and E mean �main

term� and �error term�.)
Now, we have the following:

Lemma (A.2). (i) If n ≤ 1, we have

γav
N ≤ g − 1 +

1
N b(1)

.

(ii) If n > 1, we have
γav

N ≤ g + (b(1) − 1)
EN

Nn−1
.
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Proof. (i) Just the same as the �rst half of the proof of (4.9)(i).
(ii) Let [V ] be an element of H1

ét(U,µN ), and ([L], D) the element of P̃N corre-
sponding to [V ]. (See Section 3, especially (3.5) and paragraphs preceding it.)
Then, as in the proof of (3.16), the remark just before the de�nition of γ[V ],i (at
the beginning of Section 3) and (3.8) imply

γ[V ],1 = γ[V ],pj = γ([L(pj)],D(pj))

for each i. So, if s(D(pj)) ≤ 1 for some j = 0, 1, . . . , f − 1, we have γ[V ],1 ≤ g,
as in (3.7). From this, we obtain

∑

[V ]∈H1
ét(U,µN )

γ[V ],1 ≤ gN2gMN + (g + n− 2)N2gEN = gN b(1) + (n− 2)N2gEN

by (3.4) and (3.7). Thus we have

γav
N ≤ g + (n− 2)

EN

Nn−1
≤ g + (b(1) − 1)

EN

Nn−1
,

as desired. ¤

(A.2)(i) settles the proof of (A.1) for n ≤ 1, while (A.2)(ii) reduces the proof of
(A.1) for n > 1 to

EN = o(Nn−1), that is, lim
N→∞

p-N

EN

Nn−1
= 0. (A.3)

Note that (A.3) depends only on the �nite set S, so it no longer involves the
geometry of U .

To prove (A.3), we need some knowledge of the theory of uniform distribution
modulo 1, which we shall recall here. (For more details, see [KN].)

Definition. (i) I
def= [0, 1) = {x ∈ R | 0 ≤ x < 1}. For each x ∈ R, we denote

by {x} the fractional part x− [x] ∈ I of x.
(ii) Let s be a positive integer. Let a = (a1, . . . , as) and b = (b1, . . . , bs) be

elements of Rs. We say that a < b (resp. a ≤ b) if ai < bi (resp. ai ≤ bi) for
each i = 1, . . . , s. We put

[a,b) def= {x ∈ Rs | a ≤ x < b}.
If a ≤ b, the Lebesgue measure λ([a,b)) of [a,b) is given by (b1−a1) . . . (bs−
as). Note that Is = [0,1), where 0 = (0, . . . , 0),1 = (1, . . . , 1).

For each x = (x1, . . . , xs) ∈ Rs, we put

{x} def= ({x1}, . . . , {xs}),
‖x‖ def= max

i=1,...,s
|xi|,

r(x) def=
∏

i=1,...,s
xi 6=0

|xi| (r(0) = 1).
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For each x = (x1, . . . , xs),y = (y1, . . . , ys) ∈ Rs, we put

〈x,y〉 def= x1y1 + . . . + xsys.

(iii) Let x1, . . . ,xM be a sequence of length M of elements of Rs. For each
subset E of Is, put

A(E;M ;x1, . . . ,xM ) def= #{j = 1, . . . ,M | {xj} ∈ E}.

Moreover, we de�ne the discrepancy DM of the sequence x1, . . . ,xM by

DM = DM (x1, . . . ,xM ) def= sup
J

∣∣∣∣
A(J ;M ;x1, . . . ,xM )

M
− λ(J)

∣∣∣∣ ,

where J runs over the subsets of Is in the form [a,b) with a,b ∈ Rs, 0 ≤ a <

b ≤ 1. (Observe that 0 ≤ DM ≤ 1.)

Now, we can state the following higher-dimensional version of LeVeque's inequal-
ity, due to Stegbuchner.

Theorem (Stegbuchner [S]). Let x1, . . . ,xM be a sequence of length M of
elements of Rs. Then

DM (x1, . . . ,xM ) ≤
(

Cs

∑

h∈Zs−{0}

1
r(h)2

∣∣∣∣
1
M

M∑

j=1

e2πi〈h,xj〉
∣∣∣∣
2
)1/(s+2)

,

where Cs is a positive constant depending only on s. More precisely , we may
take Cs = s2(s+2)2s9s2+3s+1. ¤

For various improvements of the constant Cs, see, e.g., [GT], Theorem 3 and
[DT], Theorem 1.28.

As in the proof of (3.18)(ii), we choose any Q ∈ S and put S′ = S −
{Q}, whose cardinality is n′ def= n − 1(> 0). The projection (Z/NZ)∼[S]0 →
(Z/NZ)∼[S′], D 7→ D′ is bijective. For each a ∈ Z, we have D(a)′ = D′(a).
Moreover, we see that

s(D) =
1
N

deg(D) =
⌈

1
N

deg(D′)
⌉

,

where dxe denotes the smallest integer not less than x. Therefore, we have

s(D) ≤ 1 ⇐⇒ deg(D′) ≤ N.

Taking S′ as a basis, we may identify (Z/NZ)∼[S′] = ((Z/NZ)∼)n′ ⊂ Zn′ .
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Then, for each D ∈ (Z/NZ)∼[S]0, we can apply Stegbuchner's theorem to
s = n′, M = f , and xj = D(pj−1)′/N and obtain

Df (D) def= Df

(
D(p0)′

N
, . . . ,

D(pf−1)′

N

)

≤
(

Cn′
∑

h∈Zn′−{0}

1
r(h)2

∣∣∣∣
1
f

f−1∑

j=0

e2πi〈h,
D(pj)′

N 〉
∣∣∣∣
2
)1/(n′+2)

≤
(

Cn′
∑

h∈Zn′−{0}

1
r(h)2

∣∣∣∣
1
f

f−1∑

j=0

e2πi
pj〈h,D′〉

N

∣∣∣∣
2
)1/(n′+2)

.

So

∑

D∈(Z/NZ)∼[S]0

Df (D)n′+2 ≤ Cn′
∑

D′∈((Z/NZ)∼)n′

∑

h∈Zn′−{0}

1
r(h)2

∣∣∣∣∣∣
1
f

f−1∑

j=0

e2πi
pj〈h,D′〉

N

∣∣∣∣∣∣

2

= Cn′
∑

h∈Zn′−{0}

1
r(h)2

∑

D′∈((Z/NZ)∼)n′

∣∣∣∣∣∣
1
f

f−1∑

j=0

e2πi
pj〈h,D′〉

N

∣∣∣∣∣∣

2

.

Here, we have
∣∣∣∣∣∣
1
f

f−1∑

j=0

e2πi
pj〈h,D′〉

N

∣∣∣∣∣∣

2

=

(
1
f

f−1∑

j=0

e2πi
pj〈h,D′〉

N

)(
1
f

f−1∑

j=0

e2πi
pj〈h,D′〉

N

)

=
1
f2

f−1∑

j,j′=0

e2πi
(pj−pj′ )〈h,D′〉

N .

Now, since

χh,j,j′ : D′ mod N 7→ e2πi
(pj−pj′ )〈h,D′〉

N

is a character of the abelian group (Z/NZ)n′ , we have
∑

D′∈((Z/NZ)∼)n′
χh,j,j′(D′) =

{
0, if χh,j,j′ 6= 1,
Nn′ , if χh,j,j′ = 1.

Moreover, we have

χh,j,j′ = 1 ⇐⇒ (pj − pj′)h ≡ 0 (mod N) ⇐⇒ fh | (j − j′).

Here, fh is the order of p mod Nh in the multiplicative group (Z/NhZ)×, where
Nh is the order of h mod N ∈ (Z/NZ)n′ . Thus, in summary, we get

∑

D∈(Z/NZ)∼[S]0

Df (D)n′+2
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≤ Cn′
∑

h∈Zn′−{0}

1
r(h)2

1
f2

f−1∑

j,j′=0

∑

D′∈((Z/NZ)∼)n′
χh,j,j′(D′)

= Cn′
∑

h∈Zn′−{0}

1
r(h)2

1
f2

#({(j, j′) | j, j′ = 0, . . . , f − 1, fh | (j − j′)})Nn′

= Cn′
∑

h∈Zn′−{0}

1
r(h)2

1
f2

f2

fh
Nn′

= Cn′N
n′

∑

h∈Zn′−{0}

1
r(h)2fh

.

Taking a positive integer K (which we �x later), we divide the last in�nite
sum into the sum of the in�nite sum with ‖h‖ > K and the �nite sum with
‖h‖ ≤ K. For the former, we have

∑

‖h‖>K

1
r(h)2fh

≤
∑

‖h‖>K

1
r(h)2

≤
n′∑

i=1

∑

h s.t. |hi|>K

1
r(h)2

=
n′∑

i=1


 ∑

|hi|>K

1
|hi|2


 ∏

j 6=i


 ∑

hj∈Z

1
max(|hj |, 1)2




≤
n′∑

i=1

(
2

∫ ∞

K

dx

x2

)
(1 + 2ζ(2))n′−1

= 2n′(1 + 2ζ(2))n′−1 1
K

.

For the latter, we need an estimate of fh. Since N | Nhh, we have Nh‖h‖ ≥ N ,
unless h = 0. So, if ‖h‖ ≤ K and h 6= 0, we have Nh ≥ N/K. On the other
hand, since Nh | pfh − 1 < pfh , we have fh ≥ log(Nh)/ log(p). These two
inequalities imply

fh ≥ log(N/K)
log(p)

.

Therefore, we have (assuming N/K > 1)

∑

0<‖h‖≤K

1
r(h)2fh

≤ log(p)
log(N/K)

∑

0<‖h‖≤K

1
r(h)2

≤ log(p)
log(N/K)

{(1 + 2ζ(2))n′ − 1}.
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Now, �x any real number δ with 0 < δ < 1 and put K = [N δ]. Then we have
1
K
≤ 1

N δ − 1
and 1

log(N/K)
≤ 1

log(N/Nδ)
=

1
(1− δ) log(N)

.

Thus we conclude that
∑

h∈Zn′−{0}

1
r(h)2fh

≤ 2n′(1 + 2ζ(2))n′−1 1
N δ − 1

+
log(p){(1 + 2ζ(2))n′ − 1}

(1− δ) log(N)
.

From this, we �nally obtain
∑

D∈(Z/NZ)∼[S]0

Df (D)n′+2 ≤
(

c1(n′)
1

N δ − 1
+ c2(n′, p, δ)

1
log(N)

)
Nn′ ,

where c1(n′) (resp. c2(n′, p, δ)) is a positive constant depending only on n′

(resp. n′, p, and δ).
On the other hand, let D be an element of (Z/NZ)∼[S]0 such that s(D(pj)) >

1 for all j = 0, 1, . . . f − 1. Then, in particular, D(pj)′

N /∈ [0, 1/n′)n′ for all such j.
So, by the de�nition of discrepancy, we have

Df (D) ≥ λ([0, 1/n′)n′) = 1/(n′)n′ .

From this, we obtain
∑

D∈(Z/NZ)∼[S]0

Df (D)n′+2 ≥ c3(n′)EN ,

where c3(n′) = 1/(n′)n′(n′+2) is a positive constant depending only on n′.
Now, we can conclude that

0 ≤ EN

Nn′ ≤ d1(n′)
1

N δ − 1
+ d2(n′, p, δ)

1
log(N)

,

where d1(n′) = c1(n′)/c3(n′) and d2(n′, p, δ) = c2(n′, p, δ)/c3(n′) are positive
constants independent of N . Since δ > 0, this implies (A.3).

This completes the proof of (A.1).
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