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ABSTRACT. Let Iy denote the length of a longest increasing subsequence
of a random permutation from Sy. If we write [y = 2v/N + Nl/GXN, then
XN converges in distribution to a random variable x with the Tracy-Widom
distribution of random matrix theory. We give an outline of the basic steps
in a proof of this result which does not use the asymptotics of Toeplitz
determinants, and which, in a sense, explain why the largest eigenvalue
distribution occurs.

1. Introduction

Consider the length Iy (o) of a longest increasing subsequence in a permutation
o € Sn; if 0 = 4q42...9n and ig, < --- < ig,, then 4x,,..., 0, is an increasing
subsequence of length r. If we give Sy the uniform probability distribution,
In(o) becomes a random variable and we want to investigate its distribution.
This problem was first addressed by Ulam [1961], who made Monte Carlo sim-
ulations and concluded that the expectation E[ly] seems to be of order v/N.
The first rigorous result was obtained by Hammersley [1972], who considered
the following variant of the problem. Consider a Poisson process in the square
[0,1]%[0, 1] with intensity o, so that the number M of points in the square is Pois-
son distributed with mean a. Let 1 < 2 < --- < zp and y; < y2 < -+ < Yy
be the z- and y-coordinates of the points (z;,ys(;)), 1 < j < M, in the square.
This associates a permutation o € Sys with each point configuration, and if we
condition M to be fixed, equal to N say, we get the uniform distribution on Sy.
We see that ljs(0) equals the number of points, L(«), in an up/right path from
(0,0) to (1,1) through the points, and containing as many points as possible.

The random variable L(«) is the Poissonization of I,

oo aN
PlL(a) <n]=e"* ) —Plin(0) <7 (L.1)
N=0
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Using subadditivity Hammersley showed that E[L(a)]/+/a — ¢ as & — oo with
a positive constant ¢. Numerical simulations [Baer and Brock 1968] indicated
that ¢ = 2, and this was proved by Vershik and Kerov [1977]. That ¢ = 2
has also been proved using Hammersley’s picture in [Aldous and Diaconis 1995;
Seppaldinen 1996]. Large deviation results have been obtained in [Deuschel and
Zeitouni 1999; Seppéldinen 1998; Johansson 1998]. For more background on
the problem see [Aldous and Diaconis 1999]. Hammersley’s Poisson model also
has an interesting interpretation as a certain 141-dimensional random growth
model called polynuclear growth; see [Prahofer and Spohn 2000]. The fluctua-
tions around the mean has been an open problem for a long time. Numerical
simulations by Odlyzko and Rains [1998], indicate that the standard deviation
for I is like a constant times N1/6 and this can also be seen heuristically from
the large deviation formulas. A precise result for the fluctuations was proved
by Baik, Deift and Johansson in [Baik et al. 1999]. To state the result we need
some definitions. Let u be the unique solution to the Painlevé I equation

u' = 2u® + zu,

which satisfies u(z) ~ Ai(z), as x — oo, where Ai(xz) is the Airy function. Such
a solution exits [Hastings and McLeod 1980; Deift and Zhou 1995]. Put

F(t) = exp(— / (z — t)u(z)? da). (1.2)
t
The result in [Baik et al. 1999] is:

THEOREM. The random variable (Ix —2v/N)/N'8 converges in distribution to
a random variable with distribution function (1.2),

lim Plly < 2VN +tNY®] = F(¢). (1.3)
N—o0
Also, we have convergence of all moments.

The proof of (1.3) in [Baik et al. 1999] is based on the following formula due to
Gessel [1990], which expresses the probability in (1.1) as a Toeplitz determinant,

P[L(a) < n] = e *Dj,(e?V<s9)
T n
= det(Qi / e2\/56050"<j’°)"d0> . (1.4)
™

-7 j k=1

The Toeplitz determinant can be expressed in terms of the leading coefficients
of the normalized orthogonal polynomials on the unit circle, T, with respect
to the weight e2V*<°¢  These orthogonal polynomials can be obtained as the
solution of a certain matrix Riemann-Hilbert problem on T, [Fokas et al. 1991],
and using the powerful steepest descent argument for Riemann—Hilbert problems
developed by Deift and Zhou [1993], it is possible to show that

lim P[L(a) < 2va+ ta'/%] = F(t) (1.5)
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for each € R. This is closely related to the so called double scaling limit in
unitary random matrix models [Periwal and Shevitz 1990]. From (1.5) the result
(1.3) can be deduced by a de-Poissonization argument [Johansson 1998].

The distribution function F'(t) also has a different expression. Let

A(z,y) = / Ai(z +¢t) Ai(y + t)dt,
0
be the Airy kernel. Then,
F(t) = det(I — A)r2[t,00)5 (1.6)

where the right hand side is the Fredholm determinant

oo _1m
et(l — A)gapmy = 3 /[ | detAn o (D
m:O . ’mm

The fact that (1.2) and (1.7) are equal was proved by Tracy and Widom [1994],
and F(t) is often referred to as the Tracy—Widom distribution. The interesting
thing about (1.6) is that the right hand side of (1.6) is the asymptotic distribution
for the appropriately scaled largest eigenvalue of a random matrix from the
Gaussian Unitary Ensemble (GUE) [Mehta 1991], as the size of the matrix goes
to infinity [Tracy and Widom 1994]. Thus Ix(o) behaves, for large N, as the
largest eigenvalue of a large random hermitian matrix!

In this paper we will outline a proof of (1.5) that does not use Gessel’s formula
(1.4) and which makes it clearer why the largest eigenvalue distribution appears.
The presentation is based on [Johansson 2000; 2001], to which we refer for more
details. Below we will not give all the technical details, in particular those
concerning the precise justification of different limits. A closely related proof
appears in [Borodin et al. 2000], see the remark at the end of section 3.

In the next section we will outline the main ingredients that go into the proof.
The actual argument for (1.5) will be given in the last section.

2. Main Ingredients

2a. The Robinson—Schensted—Knuth Correspondence. General refer-
ences for this subsection and the next are [Fulton 1997; Sagan 1991; Stanley
1999]. A partition of K is a sequence A = (A1,...,An), A1 > --- > Ay >0, of
integers, such that A; +---+ Ay = K, and can be illustrated by a Young diagram
with A; left justified boxes in row j. If we write numbers from {1,..., N} in the
boxes in such away that the numbers in each row are weakly increasing and the
numbers in each cloumn are strictly increasing, we get a semistandard Young
tableauz T of shape A, sh(T) = A, with entries in {1,..., N}. Let m;(T") denote
the number of ¢’s in 7.
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An integer N x N matrix A = (w;;), w;; € N, can be described by a generalized
permutation

21 ... 1K ..
a_<j1 jK)’ iryjr €{1,...,N},
where i, < i,41 and if 4, = 4,41, then j. < j.y1. The matrix A is mapped
bijectively to the o in which a pair (;) occurs wj; times.

The Robinson—Schensted—Knuth correspondence [Knuth 1970], or RSK cor-
respondence, maps o bijectively to a pair of semistandard tableaux (P, Q) of
the same shape A with entries in {1,...,N}. The numbers j1,...,jx go into
P and 41,...,ix go into @), so A is a partition of K = Zi,j w;j. Note that
mi(Q) = >_; wij and m;(P) = 3, w;;. This correspondence has the property
that A1, the length of the first row, equals the length /(o) of the longest weakly
increasing subsequence in ji,...,jk. In terms of the matrix A this has the fol-
lowing interpretation. Let m = {(m,,n,)}?Y, ! be an up/right path from (1,1)
to (N,N), i.e. (mpy1,nr41) — (My,nr) = (1,0) or (0,1), (m1,n1) = (1,1) and
(mngl,nngl) = (N, N) Set

Ly(A) = max > wi. (2.1)

It is not difficult to see that Ly (A) is equal to I(o) and hence Ly (A) = Ay.

2b. The Schur Polynomial. Let A = (\1,...,\y) be a partition of K
as above. Then the Schur polynomial s)(z1,...,2n) is a certain symmetric,
homogeneous polynomial of degree K. Let Ay(z) = ][;<;<;j<n(zi — ;) denote
the Vandermonde determinant. We have two different expressions for sy (z),

N
sx(z) = Z sz ™ _ An(D) det(m?’““v k)ﬁkzl, (2.2)
T:sh(T)=A i-1

where the sum is over all semistandard tableaux with shape )\ and entries in
{1,...,N}. The second formula is known as the Jacobi-Trudi identity.

2c. Orthogonal Polynomial Ensembles. Consider the probability measure
7—An () [T wiz))dp(zs) (2.3)

on RY, where w(z) is a nonnegative weight function and the measure y typically
is the Lebesge measure on R, some interval in R or the counting measure on N.
These type of measures occur as eigenvalue measures in invariant ensembles of
hermitian matrices. GUE for example has the eigenvalue measure (2.3) with
w(z) = e~ and 1 the Lebesgue measure on R. An important property of mea-
sures of the form (2.3) is that all marginal distributions (correlation functions)
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are given by certain determinants. The k-th marginal probability is

N —k)!
% det(KN(mi,xj))ﬁjzldu(xl) .odp(zy), (2.4)
where
N—-1
z,y) = Y pr(@)pe(y) (w(z)w(y))'/?,
n=0
and p(z), k=0,1,..., are the normalized orthogonal polynomials with respect

to the measure w(z)du(z),

[ pi@mtuta)dute) = b,

see [Mehta 1991] or [Tracy and Widom 1998]. For GUE the relevant orthogonal
polynomials are the Hermite polynomials. Using the fact that the marginal
probabilities are given by (2.4) we see that

Plmax;<j<n zj < 1]
N

/RNH — X(t,00)(25)) AN (2 H w(z;)du(z;)

—y BT / det(BN (2, @5)X(1,00) (23)) 1 dp(1) - - dp(m)

0
et(I — KNX(t,00)) L2(R,dp) - (2.5)

The last expression is the Fredholm determinant with kernel Kn(x, )X (t,00)(¥)
on L%(R,du). By using asymptotic formulas for Hermite polynomials, (2.5) can
be used to show that the appropriately scaled largest eigenvalue of a GUE-matrix
has a limiting distribution given by (1.6).

In our proof of (1.5) we will get (2.3) with du(z) counting measure on N and
w(z) = ¢*, for 0 < ¢ < 1 a fixed parameter. The orthogonal polynomials are
then the Meixner polynomials, and we turn to them next.

2d. Asymptotics for Meixner Polynomials and the Discrete Bessel
Kernel. The polynomials M2 (z) (which are multiples of the standard Meixner
polynomials mL9(z); see [Chihara 1978; Nikiforov et al. 1991]), satisfy

Z M k) q = bnm,
and have the integral representation [Chihara 1978]

Ma) = LVI—a / _(+w/a) ., (2.6)
qu

2 (1+ w)z+igntt
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where I', 4 is the circle re®, —m < 6 < 7, together with the line segments from

—r 4+ 40 to —rqg + 40 and from —rqg — ¢0 to —r — ¢0. The integral formula is a
consequence of the generating function for the Meixner polynomials. The kernel
we need in (2.4) is the Meizner kernel

K% (z,y) Z MY (x )q&+9)/2, (2.7)
If we make the change of variables w = 2,/g in (2.6) we see that

/N (z+N)/2

— lim m/ 1Jr\/_/(zN)) ot _(L+Va/2N)" dz
N—o0 Ty o/n2 l—i—z\/a/N) (1+z\/a/N)x+1 2

— o [ e v, (2.8)
2 T1o

where J,(t) is the standard Bessel function. Using (2.7) and (2.8) we see that

lim Ky o/N (x+N,y+N)
N—oo
)(E+N)/2 o ) (y+N)/2

MEN (y +N)<N

N2

N—o0

N
= lim MO‘/N (a:-}-N)(
=1

=Y Jerk(2V0) Jy1k(2Va) =: B*(,y). (2.9)
k=1

We call B*(z,y) the discrete Bessel kernel. The Bessel function J,(¢) has the
following asymptotics for n and t of the same order,

Hm a'/%J, /. ea1e(2v/a) = Ai(§). (2.10)

a—o0

Note the similarity with (1.5)! Combining the definition (2.9) of B*(z,y) and
(2.10) we see that we should have

lim oY/®B*(2v/a + £a'/®,2\/a + nat/®)

a— 00

= lim Za /6 J2\/_+§a1/6+k(2\/_) J2\/a+na1/6+k(2\/a)ail/6

a~>oo

= lim Ai(€ + ka8 Ai(n + ka~1/6)a /6
a— 00
k=1

= /Ooo Ai(€ +t) Ai(n + t)dt = A(&,n). (2.11)
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3. The Proof

Let w;;, 1 < 4,5 < N, be independent, geometrically distributed random

= (1-¢)¢", z € N, and let A = (w;;)};_;. We let Ly (A)
denote the maximal sum along an up/right path as in (2.1). Let PZ denote the
measure we get on the set of integer matrices. If g is small then most of the w;;’s

variables, Plw;; = ]

will be zero and a few will be equal to one. In particular, if we take ¢ = /N2,
then with probability going to 1 as N — oo, there will be at most one w;; equal
to 1 in each row and each column, and no w;; will be > 2. Put a particle in the
square [(¢—1)/N,i/N] x [(j—1)/N,j/N] if w;; = 1 and no particle if w;; = 0.
As N — oo this will converge to a Poisson process in [0, 1] x [0, 1] with intensity
a, so the number of particles in the unit square will be Poisson distributed with
mean a. Some thought shows that Ly(A) will converge to the maximal number
of points in an up/right path from (0,0) to (1,1) through the Poisson points,
that is to the random variable L(a) that we defined in the introduction. Thus
we have,

P[L(a) S n] = lim_ PN Ly (A) < nl. (3.1)

Next, we will see that we can use the RSK correspondence and the Schur poly-
nomial to derive an expression for the probability in the right hand side of (3.1).
If A is mapped to (P, Q) by the RSK correspondence, then

PA = (aij)] = (1 ™" g%

N

LA | () (T

=1
N

- (-0 v @ TTwva

Consequently, by the RSK correspondence and the first equality in (2.2),
PY[Ln(A) < n]

= Y P4

A:Ln(A)<n
) N N
> Y Y a0 @ [
A:A1<n P:ish(P)=X Q:sh(Q)=X i=1 j=1 (32)
:(1_q)N Z 5/\(\/6,---,\/5)5/\(\/@---,\/5)
A:Ai<n
=1-9™ 3 si(1,..., )%=
A:Ai<n

Since semistandard Young tableaux are strictly increasing in columns, A\ can
have at most N nonzero parts, A = (A1,...,An). We can now use the second
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equality in (2.2) to get
) - Ai—Aj+j—1
— N-1y _ Ai A T)
3)\(17---,1)—}13115/\(177“,---77' )= H T . (3.3)
1<i<j<N

If we introduce the new variables h; = A\; + N —j, hy > ho > ... > hy >0,
we see that (3.2) and (3.3) give

PUlLn() <nl=— S avwr[[dv. 649

Z
N he{0,...,n+N—-1}N j=1

where Zy = gV WN-D/2(1—¢q)~N’ H;V:_ll j!2. Note that (3.4) has exactly the form
of an orthogonal polynomial ensemble. The relevant orthogonal polynomials are
the Meixner polynomials (2.6). The computation (2.5) gives

P]({][LN(A) < TL] = det(I - K?\])ﬁ({n,n#»l,...})a (35)
where we have the kernel
K% (z,y) = K (x + N,z + N),

and K7 is the Meixner kernel (2.7).
We can now combine (3.1) and (3.5) and use (2.9) to see that

o 2
PlL(a) <n] = lim det(I — KX ) e (ngn1, )

=det(I — B)ez({n,nt1,...})- (3.6)

Note that combining (1.4) and (3.6) gives an interesting equality between a
Toeplitz and a Fredholm determinant, which has been generalized by Borodin
and Okounkov [2000]; see also [Basor and Widom 2000].

When we have the formula (3.6) we are not far from a proof of (1.5). Write
the Fredholm expansion of the right hand side in (3.6)

=™

m!

P[L(a) < 2v/a + ta?/%] = i

m=

X Z det(a'/®B(2v/a + ta'/® + hy, 2v/a + tal/® + hy))T_ (o /O™
heN™

By (2.11) this is approximately

o0 _1 m
> ( m? > det(A(t+ hia 8 t 4+ hja ™) (7O (3.7)
m=0 © heNm™
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for large «, and in the limit @ — oo, the Riemann sums in (3.7) converge to
integrals and we get

(=™
m!

PlL(a) < 2Va +ta/%] = 3 / det(A(z;, 2;))s_, d™
m—0 [t,00)™

det(I — A)L2[t,oo) = F(t),

by (1.6). This establishes (1.5).

The RSK correspondence actually transforms the Poissonization of the uni-
form measure on Sy (that is, we regard N as a Poisson random variable) to a
measure on partitions A = (A1, Ag,...), called the Poissonized Plancherel mea-
sure. Above we have studied the asymptotic distribution of A;, but the analysis
can be extended to the lengths of the other rows as well [Johansson 2001]. The
Poissonized Plancherel measure has also been investigated by Borodin, Okounkov
and Olshanski [Borodin et al. 2000], coming from measures on partitions moti-
vated by representation theory. They also obtain the discrete Bessel kernel and
are able to give a closely related proof of (1.5).
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