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Functional Equations and Electrostatic Models
for Orthogonal Polynomials

MOURAD E. H. ISMAIL

To my dear friend Walter K. Hayman on the occasion of his 75th birthday.

ABSTRACT. This article deals with connections between orthogonal poly-
nomials, functional equations they satisfy, and some extremal problems.
We state Stieltjes electrostatic models and Dyson’s Coulomb fluid method.
We also mention the evaluation of the discriminant of Jacobi polynomials
by Stieltjes and Hilbert. We show how these problems can be extended
to general orthogonal polynomials with absolutely continuous measures or
having purely discrete orthogonality measures whose masses are located at
at most two sequences of geometric progressions.

1. Introduction

This is a survey article dealing with connections between orthogonal polyno-
mials, functional equations they satisfy, and some extremal problems. Although
the results surveyed are not new we believe that we are putting together results
from different sources which appear together for the first time, many of them
are of recent vintage.

One question in the theory of orthogonal polynomials is how the zeros of a
parameter dependent sequence of orthogonal polynomials change with the pa-
rameters involved. Stieltjes [1885a; 1885b] proved that the zeros of Jacobi poly-
nomials PI(Va’ﬁ ) (z) increase with 8 and decrease with « for a > —1 and 8 > —1.
The Jacobi polynomials satisfy the following orthogonality relation [Szeg6 1975,
(4.3.3)]:
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In Section 2 we state Stieltjes’s results and describe the circle of ideas around
them. Section 3 surveys the Coulomb Fluid method of Freeman Dyson and its
potential theoretic set-up.

We shall use the shifted factorial notion [Andrews et al. 1999]

(N = ﬁ(H k—1),
k=1

and the hypergeometric notation [Andrews et al. 1999]
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The Jacobi polynomials have the explicit form

(a+1), —n, n+a+p+1|1-z

PP () = = 7oy ( ot T) ' (1-2)

The discriminant of a polynomial g,

gn(x) :=ypz™ + lower order terms, -y, # 0, (1-3)
is defined by
D(ga) =v*> I (25 -z, (1-4)
1<j<k<n
where 1, Za, .. ., T, are the zeros of g,(x); see [Dickson 1939]. The discriminant

has the alternate representation

D(gn) = (1) D22 T gh(z). (1-5)

=1

See, for example, Dickson [1939, § 100].

2. Stieltjes

Stieltjes [1885a; 1885b] considered the following electrostatic model. Fix two
charges (o +1)/2 and (8 + 1)/2 at z = 1 and © = —1, respectively, then put
N movable unit charges at distinct points in (—1,1). The potential here is a
logarithmic potential so the potential energy of a system of two charges e; and
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e located at = and y is —2ejes In |z — y|. Let the position of the unit charges be
at x1,Z2,...,zN. Thus the energy of this system is

N N
Ex(@)=—(a+1)) Infl—azg) - (B+1) > In|l+ a4l
k=1

k=1
-2 Z In|z; — x|,

1<j<k<N

where
a::(:vl,acg,...,xN). (2—1)

For convenience we consider the function
Tn(x) := exp(—En(z)),

that is ,

TN(ZB) =

=

1—zp)* A+ az)™ ] [z -] (2-2)
1 1<i<j<N

k

The equilibrium position of the system occurs at the points which minimize
En(z) or equivalently maximize Ty (x).

THEOREM 2.1 (STIELTJES). The mazimum of the function Tn(x) taken over
x € RY is attained when @ is formed by the zeros ofPJ(Va’ﬂ)(as). In other words the
equilibrium position of the movable charges in the electrostatic model described
above is attained at the zeros of the Jacobi polynomial PJ(VO"ﬂ ) (z).

In Section 4, we will give a proof of a generalization of Theorem 2.1.
Stieltjes found a closed form expression for the maximum value of Ty (z) in
Theorem 2.1. He observed that (1-2) implies

—N

o 2
PJ(V ’ﬁ)(m) =(N+a+p8+ DNWJUN + lower order terms,

so that if z1 y > zo v > -+ > zn N are the zeros of PI(Va’ﬂ) (x) then

N

H(:i:.’[) _mk,N) = (

k=1

2N N1 (e.8)
PP (+a),
N+a+p+1)n N (e)

so that at equilibrium the first product in (2-2) can be found from

N N
27 N! (a,B)

II 1 : Py (1

( T N) (N+a+fB+1)n N (1)
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Clearly (1-2) implies
PP (1) = (a+ 1)x /N

Since the weight function and the right-hand side in (1-1) are symmetric under
the exchange (z,a, 8) — (—z, 3, a) then

P](Va,ﬁ)(_l) = (—1)NP](Vﬁ’a)(1) = (_1)N%'

The second product in (2-2) at equilibrium is the discriminant of Jacobi polyno-
mials. Stieltjes then found explicit formulas for the discriminants of the Jacobi
polynomials. His formula in our notation is

N
D(P](Vﬁm‘)) — 27N(N71)Hkk+272N(k+a)k71(k+ﬁ)k71(N+ k _{_a_}_lg)ka.
k=1 (2-3)

Since the Hermite and Laguerre polynomials are limiting cases of Jacobi poly-
nomials, (2-3) yields explicit evaluations for the discriminants of the Hermite
and Laguerre polynomials. Shortly after Stieltjes work appeared, Hilbert [1888]
gave another proof of (2-3). Schur [1931] also gave a very elegant proof. We
reproduce the proof here to make the paper as self-contained as possible and also
because Schur’s method proved to be central in the generalizations of Stieltjes
results to general orthogonal polynomials.

LEMMA 2.2 [Schur 1931]. Assume that {pn(x)} is a sequence orthogonal polyno-
mials satisfying a three-term recurrence relation of the form

prnt1(z) = (Ent1T + Mny1)pn(x) — Cn+1pn71($), (2_4)

and the initial conditions
po(z) =1, pi(z) =&z + . (2-5)

If
Tip > Tap > > Tnn (2-6)
are the zeros of pn(x) then
n n
[1 pna(@rn) = (102 [T G, (2-7)
k=1 k=1

with Cl = 1.
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PRrROOF. Let A,, denote the left-hand side of (2-7). The coefficient of z™ in p,, ()
is £1&3 ... &,. Thus by expressing p,, in terms and p,,1 of their zeros we find

n+l n

Api1 = (L& &)™ H H et = Tim)
k=1 j=1
n n+l
= (-1 (s 0 [T T @ — 25m00)
G=1 k=1
ntl N
_ (&6 Prt1(2jn)-

(Lt Enp)n i

On the other hand, the three-term recurrence relation (2-4) simplifies the ex-
treme right-hand side in the above equation and we get

Ani1=86& . & &1 (—Cni1) " An.

By iterating this relation we establish (2-7).

The relevance of Schur’s lemma to the evaluation of discriminants of Jacobi
polynomials is the fact that the Jacobi polynomials satisfy a lowering (annihila-
tion) relation of the type

d
PP (@) = An(@) Py (@) - B (@) Py (a),

with [Rainville 1960, (7), § 136]

2(N +a)(N + ) N(8—a+(a+B+2N)z)
AN( ) = 2\’ BN(x) = 2
(a+B+2N)(1—22) (a+B+2N)(1—22)
Thus
d (a
%PI(V ’ﬂ)(wk,N) — AN(«’Ek,N)P( ’ﬁ)(l‘k ~)
and (1-5) and Schur’s lemma lead to the evaluation of the discriminant. O

We now formulate this procedure as a general property of polynomials satisfying
three term recurrence relations and possessing a lowering operator.

THEOREM 2.3. Let a system of polynomials {p.(x)} be generated by (2-4) and
(2-5) and assume that the zeros of pp(x) be arranged as in (2-6). If {pn(z)}
satisfies the differential recurrence relation

d

%pn( ) = An(x)pnfl(m) - Bﬂ(m)pn(x)’ (278)

then the discriminant of p,(z) is given by

D(pn) = <HA"(xJ, ) H£2n 2k IC

=1
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PrOOF. The 7, in (1-3) is & ...&,. Thus (1-5) and Lemma 2.2 give

D(py) = (=1)""D/2(g; g, 2 (—1)n(n /2 H A (zhn) G,
k=1

which establishes the theorem. O

It is clear that Theorem 2.3 implies the evaluation (2-3) of the discriminant of
the Jacobi polynomials once we know the three-term recurrence relation sat-
isfied by Jacobi polynomials [Rainville 1960, (1) §137]. From [Bauldry 1990;
Bonan and Clark 1990; Chen and Ismail 1997], we now know that every poly-
nomial sequence orthogonal with respect to a weight function, satisfying certain
smoothness conditions (see §4), satisfies a differential recurrence relation of the
type (2-8). Hence, Theorem 2.3 holds for orthogonal polynomials in this gener-
ality, a result from [Ismail 1998].
Selberg [1944] proved

/ <Ht;”1(1—tj)y1) II 1ti—tel*dts ... dts,
[0,1]™ \ ;=1 1<i<k<n

n

“TI L(z+(n—5)2) T(y+(n—5)2) T(Gz+1)
N I'(z+y+(2n—75-1)2)T(2+1)

(2-9)

i=1

for Rez > 0, Rey > 0, and Rez > —min{l/n, Rez/n — 1, Rey/(n—1)}. Here
[0,1]™ is the unit cube in R™. The integral evaluation (2-9) is the multivariate
generalization of the beta integral and is now called the Selberg integral [Andrews
et al. 1999]. It is important to note that if we normalize the Jacobi polynomials
to be orthogonal on [0, 1] then the Stieltjes—Hilbert results provide the L., norm
of

(Ht;(l —t]-)ﬁ> II ®-tl’ te(-1,1)for1<j<n. (2-10)
j=1 1<i<k<n

On the other hand, the Selberg integral (2-9) essentially gives the L, norm of
the expression in (2-10). One is then led to view the Stieltjes—Hilbert results as
a limiting case of the Selberg integral.

3. Dyson and Potential Theory

As a generalization of the Stieltjes electrostatic problem we consider a system
of N logarithmically repelling particles obeying Boltzmann statistics subject to
a common external potential v(x) in one dimension. Let ®(x) denote the total
energy of the system, that is

d@)= Y v@)-2 Y Inje -,

1<j<N 1<j<k<N
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and z is as in (2-1). Here the particles are assumed to be confined to a real
interval K, finite, semi-infinite, or infinite. Dyson’s idea [1962a; 1962b; 1962c]
was that for large IV, one would expect that this collection of particle can be
approximated by a continuous fluid where techniques of macroscopic physics
such as thermodynamics and electrostatics can be applied. The Coulomb fluid
approximation is described by an equilibrium density o(z), supported on a set
J C K, which is obtained by minimizing the free energy functional, F[o]

Flo] :/ dm—// Vn |z — y| o(y) dy dz, (3-1)

subject to the side condition

/ o()dz = N. (3-2)
J

From the Euler-Lagrange equations for the system (3-1) it follows that the
density o(x) satisfies the singular integral equation

v'(z) = 2P / oW gy wed (3-3)
Jr—Y
Therefore
A=v(@)-2 [ oly)inlz-sldy, s, (3-4)
J

where A is the Lagrange multiplier for the constraint (3—2) and is recognized as
the chemical potential for the fluid. Determining J is part of the solution of the
variational problem.

Let v(z) is convex for z € R, so that v"/(z) > 0 almost everywhere. We shall
assume v’(z) > 0 on a set of positive measures. At this stage, some physical con-
siderations are invoked. With the condition v(z) > 0 it follows that J is a single
interval denoted by (a,b). Intuitively, this physical principle can be understood
by using an analogy from elasticity theory [Muskhelishvili 1953], where the fluid
density o(z) is identified with the pressure under a stamp pressing vertically
downwards against an elastic half-plane. If the applied force is moderate, the
end points of the interval, a and b, are the points for which the elastic material
come into contact with the rigid stamp. On the other hand if the force applied
to the stamp is too great the end points will be fixed as the end points of the
boundary of the stamp.

We seek a solution of (3-3) which is nonnegative on (a,b). If imposing the
boundary conditions o(a) = o(b) = 0 lead to a o satisfying o(z) > 0 on (a,b)
then, according to the standard theory of singular integral equations [Gakhov
1990], the solution of (3-3) is

\/ —z)(z —a) (z) -
=0 [ e vk
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and a and b must satisfy the constraint (3-2) as well as the supplementary

condition,
b ’
0= / Y@ g (3-6)
a V(b—1z)(z—a)
Using (3—6) the normalization condition becomes
1 b /
@ g, (3-7)

Vool Voo a

The end points of the support of the density, a and b, that are solutions of (3-6)
and (3-7)are denoted by a(N) and b(N).

Sometimes the boundary conditions that o(z) vanishes at the endpoints of J
do not lead to a solution o(x) which is nonnegative on J. In this case other forms
of solutions of (3—4) can be used. A good application of this physical approach
is to the Freud weights

w(z, a) = exp(—|z|*), a>0, (3-8)

so that v(z) = |z|*. Since w is even then a(N) = —b(N). From (3-5) and (3-6)
we find that the density, denoted by o(z, @), to be

a 217°T(a)
s a2
™ (N(e/2))

The form (3-7) of side condition (3-2) gives

oz, a) = (b(N))* 24/ (B(N)) *=22 o Fy (1—r/2,1; 3; 1—(z/b(V))?).

B 21—a21—ar(a) o
N="mra B

Since the Coulomb fluid approximation works for large NV then we find the as-
ymptotic result

b(N) = (—F2(“/ 227N )/
[(a)
This gives the large N behavior of the position of the charges on the extreme
right (= b(N)) and extreme left (= —b(N)). Furthermore, motivated by the
Stieltjes result, this was believed to be the positions of the largest and smallest
zeros of the polynomials orthogonal with respect to exp(—|z|%).

What is outlined so far was started by Dyson [1962a; 1962b; 1962c] for the
circular ensemble of random matrix theory. It was further developed and applied
to orthogonal polynomials by many physicists, too many to be cited in this short
article. Having said this, perhaps it is not too impertinent to mention a sample
of the work of Yang Chen and his collaborators [Chen et al. 1995; Chen and
Manning 1996], especially since my good friend, Yang Chen, is the one who
introduced me to this subject, and one of the co-authors of the cited work was
a co-organizor of the MSRI program on Random Matrices.
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This approach can be made rigorous by using potential theory [Saff and Totik
1997] and Riemann-Hilbert problems starting from the pioneering work of Ble-
her and Its [1999] and cumulating in the recent series of monumental papers of
Deift, Kriecherbauer, McLaughlin, Zhou, and others. First one starts with poly-
nomials {p,(z) : 0 < n} orthogonal with respect to a weight function w(z)
on an interval K and associate with it an external field v(z) := —Inw(z).
The weight function w(z) is assumed to be positive on the interior of K. Let
Ti,N > ToN > --- > &n,N be the zeros of py(z). Define a probability mea-
sure vy to have masses 1/N at Zr,N, for 1 < k < N. When this sequence of
measures converge in the weak-* topology to a probability measure v then v
will be called the equilibrium measure associated with the external field v(x).
In general the equilibrium position of N movable charges in the external field
v(x) is not at the zeros of py(z) but at what is called the Fekete points, say
Yi,N > Y28 > --- > yn,N. One can think of the equilibrium measure as
N~'o(x)dz, where o is Dyson’s fluid density. The absolute continuity of v
was not proved till very recently by Deift, Kriecherbauer, and McLaughlin [Deift
et al. 1998], for real analytic external fields, thus confirming Dyson’s intuition.
Potential theory [Saff and Totik 1997] also confirms that the largest (y1,5) and
smallest (yn,n) Fekete points are asymptotically equivalent to the largest (z1,n)
and smallest (zn,n) zero of py(x), respectively, that is,

TN,N . T1,N

lim — = lim
N—oco YN,N N —oo Y1,N

=1

4. Differential Equations and Discriminants

In this section, we shall assume that {p,(z)} is a sequence of orthonormal
polynomials whose weight function is w(z), that is

b
/ P (2)pn(2)w(2)dz = G .
a
Throughout this section we shall assume that w(z) > 0 on (a,b),
w(z) = exp(—v(z)), =€ (a,b), (4-1)

and that v has a continuous derivative on (a,b). We shall normalize w by setting

/abw(a:)dw: 1.

The initial values and three-term recurrence relation of {p,(x)} take the form

po(z) =1, pi(z) = (z —bo)/a,

(4-2)
TPn(2) = @ni1Pn11(T) + bnpn(z) + anpn-1(z), n>0.



234 MOURAD E. H. ISMAIL

Assume v has a continuous first derivative on (a,b). We define A, (z) and B, ()

Anla) = )P 0)  anwla?) ()
b, 2
+an /a %_y(y)pi(y) w(y)dy (4-3)
and
Bo(z) = “nw@*fi(c;)pnfl(@ N w(b*)bpi(i) p1(b)
b, —
+an / wpn(y)pnl(y) w(y)dy.  (4-4)

In (4-3) and (4-4) it is assumed that
V() =o' (y)

r—=Yy
are integrable over (a, b) and the boundary terms in (4-3) and (4—4) exist. Under

the latter assumptions, the orthonormal polynomials p,,’s satisfy the differential
recurrence relation [Bauldry 1990; Bonan and Clark 1990; Chen and Ismail 1997],

w(y), n=0,1,...,

Pn(z) = An(@)pn-1(2) — Ba(z)pa(), (4-5)
and the second-order differential equation
Pp(@) + R (@)py, (z) + Sn(z)pn() =0, (4-6)
where A (2)
oa) = - (v(@) + ). (47
and
,(0) i= Bl (o) = Bula) ) ~ Balo)(¢/(0) + Bula)
+ ~An(@)Ana(z). (48)

Bonan and Clark [1990] and Bauldry [1990] were the first to establish (4-5)
and (4-6), with the boundary terms assumed to vanish. Chen and Ismail [1997]
rediscovered these results, and proved several others. The form of R, (x) of (4-7)
in [Bonan and Clark 1990] and [Bauldry 1990] was more complicated, but Chen
and Ismail [1997] observed that

T — by,

Bni1(z) + Bu(z) = An(z) =2/ (), (4-9)

an
which simplified R, (z) to the form in (4.10). Ismail and Wimp [1998] further
proved that
al A, 1(z) 1

— — . 4-1
an-1(x—>b,) -0y, (4-10)

Bt (@) = Ba(w) = —-Ania ()
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The recurrence relations (4-9) and (4-10) are curious because by solving them
for B, (z) or Byy1(z) we find expressions for By, (z) and By, 1(z) whose consis-
tency lead to five term inhomogeneous recursion relations for A, (z). Further-
more (4-9) gives An(z) in terms of B,(z) and Bp41(z) then (4-10) yields a
five-term inhomogeneous recursion relations for B, (z). The details are in [Is-
mail and Wimp 1998]. They have another implication. It is clear from (4-9)
and (4-10) that if for some n, A,(z), Bn(z), and By11(z) are polynomial (or ra-
tional) functions then v'(z) is a polynomial (or rational) function. Furthermore
the relationships (4-3) and (4—4) show that if v'(z) is a polynomial (or rational)
function then both A, (x) and B, (z) are polynomial (or rational, respectively)
functions for all n.

For completeness, we indicate how differential equation (4-6) follows from
(4-5). Eliminate p,,_1(z) between (4-5) and the second line in (4-2) to get

@+ (T4 0) - Bl@)) ) = L Aol ),

anp,

In view of (4-9), we see that the polynomials {p,(z)} have the raising and
lowering operators Ly 1, and Ly o

d d
Li,=—+B,(x), Lo,=——+B, ().
1n= 2+ Bae), Lo =~ + Ba(2) +v'(2)
Indeed

Qn

Ll,npn(x) = An(x)pn(x)a L2,npn—1($) = An—l(x)pn(x)-

an—1

The differential equation (4-6) is the expanded form of

Lan (i (1@ ) = 22 Ana(alpa)
The differential equation (4-6) and the creation and annihilation operators
L, and L, have many applications. First Chen and Ismail [1997] pointed
out that Lo, and Li, are adjoints in the Hilbert space La(R,w(z)). Chen
and Ismail also proved that the Lie algebras generated by L;, and Ly, are
finite dimensional when v(x) is a polynomial. The rest of this section will cover
two applications of (4-5) and (4-6), where we generalize Stieltjes’ electrostatic
problem and the evaluation of discriminants of orthogonal polynomials.

We now indicate how (4-6) leads to a generalization of the Stieltjes problem.
This material is from [Ismail 2000b]. We propose that a weight function w(x)
creates two external fields. One is an external field whose potential at a point
z is v(z), v(z) is as in (4-1). In addition in the presence of N unit charges w
produces a second field whose potential is In(An(z)/an). Thus the total external
potential V(z) is

V(z) = v(z) + In(An(z)/an). (4-11)
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Consider the system of N movable unit charges in [a,b] in the presence of the
external potential V(z) of (4-11). Let x be as in (2-1) where z1, ...,z are the
positions of the particles arranged in decreasing order. The total energy of the
system is

N
:ZV(wk)—2 Z Inz; — x|

k=1 1<j<k<N
Let
Ty (x) := exp(~En(@)).

THEOREM 4.1 [Ismail 2000b]. Assume w(x) > 0, z € (a,b) and let v(z) of (4-1)
and v(z) + In An(z) be twice continuously differentiable functions whose second
derivative is nonnegative on (a,b). Then the equilibrium position of N movable
unit charges in [a,b] in the presence of the external potential V(z) of (4-11) is
unique and attained at the zeros of pn(x), provided that the particle interaction
obeys a logarithmic potential and that Tx(z) — 0 as x tends to any boundary
point of [a, b, where

exp 9
(H An(zj) /aN) H (=0 =)

1<I<k<N
PROOF. Since T is symmetric in z1,...,zx and Tx(x) vanishes when two of
the z’s coincide, we may assume that
X1 >Tg > - >IN- (4712)

The assumption v”’(z) > 0 ensures the positivity of Ax(z). To find an equilib-
rium position we solve

ilnTN() 0, j=1,2,...,N.

Oz
This system is
Al (z; 1
—'(z;) — n (@) +2 ) =0, j=1,2,...,N. (4-13)
An(zg) L2y T Tk
¥
The system of equations (4-13) is nonlinear in the unknowns z1,...,zn. To

change this to a linear system we set

N
=l
Jj=1
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and turn the system (4-13) to a differential equality in f(z) satisfied at the
points z;,1 < 5 < N. To see this, first observe that

1 . (f’(x) 1 )

E = lim —

Sy T T w0 flx) z—x;
k#3

= lim
T—Tj

(=25l

which implies, via L‘Hopital’s rule,

Now this and (4-13)

or equivalently
f"(@) + By(2)f'(z) =0, x=w=z1,...,2n,

with Ry as in (4-7). In other words

F"(2) + Ra(2)f'(2) + Sx(2)f(2) =0, @ =a1,...,a. (4-14)
To check for local maxima and minima consider the Hessian matrix
8?InTn(z)
H = (hy;), hjyj=—7"-—+""—. 4-15
( J) J amiamj ( )

It readily follows that

hij = 2(-’1/11 _xj)72a Z#]a
My 0 ([ An(zi) . 1
=== g (560) 2 2, e

- T
1<j<N

J#i

This shows that the matrix —H is positive definite because it is real, symmetric,
strictly diagonally dominant and its diagonal terms are positive [Horn and John-
son 1992, Cor. 7.2.2]. Therefore, InTn(x) has no relative minima nor saddle
points. Thus any solution of (4-14) will provide a local maximum of In Ty (x)
or Tx(x). There cannot be more than one local maximum since T (x) — 0 as
x — any boundary point along a path in the region defined in (4-12). Thus the
system (4-14) has at most one solution. On the other hand, (4-6)—(4-8) show
that the zeros of

f(z) =aias ... anpn(2),

satisfy (4-14), hence the zeros of py(x) solve (4-14). This completes the proof
of Theorem 4.1. O
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Observe that the convexity of v in Theorem 4.1 can be replaced by requiring
that A,(z) >0 for a <z < b.

The next result is a generalization of the Stieltjes—Hilbert evaluation of the
discriminant of Jacobi polynomials (2-3). Observe that (4-5) is exactly the
assumption (2-8) of Theorem 2.3. Thus we have established the following result.

THEOREM 4.2 [Ismail 1998]. Let {pn(z)} be orthonormal polynomials and let
{an} and {bn} be the recursion coefficients in (4-2). Let

T1,N > T2,N > -~ > ITN,N,

be the zeros of pn(x). Then the discriminant of {pn(x)} is given by

D(pN) _ <H AN(xij)> ( ik 2N+2>

a
j=1 N k=1

We next give a representation for the maximum value of T (z) or the minimum
value of En(x) in terms of the recursion coefficients {a, }.

THEOREM 4.3. Let Ty and En be the mazimum value of Tn(x) and the equi-
librium energy of the N particle system in Theorem 4.1. Then

N N
ty= ([wem) (). Bv=Y ot —22J .
j=1 k=1 j=1
This follows from Theorems 4.1 and 4.2.

Theorem 4.3 extends the Stieltjes results from Jacobi polynomials to general
orthogonal polynomials, so it would be of interest to explore the analogue of the
Selberg integral. This means replace the Lo, norm in Theorem 4.1 by the L,
norm and evaluate the integral

eXp ’ i — 2p
/ab]N<H /GN) IT Gi—t)*Pdt - din.

1<i<k<N

Chihara [1985] studied orthogonal polynomials which result from modifying
the orthogonality measure of a given set orthogonal by adding a one-point mass
at the end of the spectral interval. He also considered specific cases of adding
two point masses in certain special cases. Chihara’s construction uses the ker-
nel polynomials. Recently, Kiesel and Wimp [1995] found a different approach
which avoids the use of kernel polynomials and in their later work [Kiesel and
Wimp 1996], applied their results to the Koornwinder polynomials [Koornwinder
1984]. They derived closed form expressions for the recursion coefficients and the
coeflicients in the differential equation satisfied by the Koornwinder polynomials.

Griinbaum [1998] described an electrostatic interpretation for the zeros of the
Koornwinder polynomials [Koornwinder 1984], which are orthogonal on [—1,1]
with respect to measure with the absolutely continuous component (1 — z)* X
(1 +z)% on [—1,1] and two discrete masses at £1. This motivated us to write
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[Ismail 2000c] where we derived second order differential equations for general
polynomials orthogonal with respect a measure with a non-trivial absolutely
continuous part supported on an interval and a finite discrete part outside the
interval. We also extended the electrostatic models of Stieltjes and Hilbert to
polynomials orthogonal with respect to a weight function supported on an in-
terval [a, b] with at most two discrete mass points at the finite end points of the
interval. So far the only interesting example of this type is the Koornwinder
polynomials and their special cases. Kiesel and Wimp studied the Kornwinder
polynomials extensively in [Kiesel and Wimp 1996; Wimp and Kiesel 1995].
Griinbaum [> 2001], however, continued his research employing the Darboux
transformation and described electrostatic models where the movable charges
are restricted to an interval but the external field is generated by fixed charges
in the plane.

5. Generalized and Quantized Discriminants

Motivated by (1-5) we were led in [Ismail 2000a] to define discriminants as-
sociated with linear operators, which reduce to (1-5) when the linear operator
is the derivative operator.

DEFINITION 5.1. Let T be a linear degree reducing operator, that is (T'f)(z) is a
polynomial of exact degree n—1 whenever f has precise degree n and the leading
terms in f and T'f have the same sign. We define the (generalized) discriminant
relative to T by

n
D(gn,T) = (_1)n(n_1)/2’7;1R{nggn} = (_1)n(n_1)/2’77?_2 H(Tgﬂ)(xj)v
=1

for g, as in (1-3), and R{gp, fm} is the resultant
R{gn, fm} =" H fm(zj), for fu(x) = am ™ + lower order terms.
j=1

In this set up Theorem 2.3 becomes

THEOREM 5.2. Let T be a linear degree reducing operator and assume that
{pn(x)} is a system of polynomials generated by (2-4) and (2-5) and assume
that the zeros of pn(z) be arranged as in (2-6). If {pn(x)} satisfies the functional
recurrence relation

Tpn((L‘) = An(m)pnfl(x) - Bn(m)pn(m)v (571)

then the discriminant of p,(z) relative to T is given by

n

D(pn) = <H An(xj,n)) H éinizkildzil'

=1



240 MOURAD E. H. ISMAIL

For particular T the above definition provides a quantization of the concept of a
discriminant and leads to what we call ¢g-discriminants which correspond to the
case T'= Dy,
f(z) — f(qz)

D =<7

(Duf)(@) = =
The operator D, is called the g-difference operator [Andrews et al. 1999; Gasper
and Rahman 1990]. Furthermore, D, f — f’ as ¢ — 1, for differentiable functions

f- An easy calculation gives

D(gn; q) := D(gn, Dy)
_ ,_Y2nf2qn(n71)/2 H (q*1/2x¢ _ q1/2$j)(q1/2mi _ q71/2mj).

1<i<j<n
In other words,
D(gn;q) :=7"" 2" V2 ] (6F +2f = (¢ + Qmizy). (5-2)
1<i<j<n

The representations (1-4) and (5-2) reaffirm the fact that D(gn;q) — D(gn) as
q — 1. We shall refer to D(gy; q) as the quantized discriminant. For n = 2, that
is g(x) = Az? + Bz + C, the quantized discriminant is gB? — (14 q)2AC, to be
contrasted with the usual discriminant B2 — 4AC.

In [Ismail 2000a] we extended many of the results of in §4 to polynomials
orthogonal with respect to a discrete measure whose masses are at the union of
at most two geometric progressions. To state these results we need the concept
of a g-integral [Andrews et al. 1999; Gasper and Rahman 1990]:

b oo oo
/ f@)dgz =b(1— ) S ¢ fba™) —a(l—q) S " flag™),  (5-3)
a n=0

n=0

with
| @ = -0 S s

The orthogonality relation of discrete g-orthonormal polynomials is of the form

b

/ Prs(@)pn (2) W(2) dg = b . (5-4)

In [Ismail 2000a] we proved the following extension of (4-3)—(4-5) to discrete
g-orthonormal polynomials.

THEOREM 5.3 [Ismail 2000a]. Let {p.(z)} be a sequence of discrete q-ortho-
normal polynomials satisfying equalities (4-2). Then they have a lowering (an-
nihilation) operator of the form

D pn(z) = An(2)pn—1(z) — Bn(z)pn(z), (5-5)
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where Ap(z) and By (z) are given by

b b _u
An() = an 2/ q)mp ’i(z)/z n(y/ Q)L +a, /a %pn(y) Pn(y/9) w(y) dgy,
and
_ w(y/pa )P (y/9)]"
Bu(e) = an z—y/q L

b —u
+an / wpn(y)pnfl(y/q)w(y) dqy,

qr —y

where u is defined by

Dyw(z) = —u(qz)w(qz).
Furthermore the corresponding raising operator is

an
o An(2) pn(2) — Bn(z) pn(z) — Dy pr(z) = a+1 An(z) prta(z).

We used (5—4) and (5-5) to evaluate the functions the functions A, (z) and B, (z)
explicitly in [Ismail 2000a]. In [Ismail 2000a] we also computed the quantized
discriminants of the big g-Jacobi polynomials. It is interesting to note that by

experimentation we found that the usual discriminants for these polynomials for
degrees 5 and 6 do not factor nicely.

T — b,

We now proceed to study the generalized discriminants when T is the Askey—
Wilson operator. Given a polynomial f we set f(e?’) := f(x) for x = cos0; that
is,

F2) = F((z + 1/2)/2), 2= é".
In other words, we think of f(cosf) as a function of €. In this notation, the
Askey—Wilson divided difference operator D, is defined by

F(q1/2ei%) — F(q—1/2¢i6
(Dgf)(z) := ];E 1;2610; ]éc(( 1//2610)) z = cos0, (5-6)
with
e(z) = z.
A calculation reduces (5-6) to
F(q' /2 — f(q /%)
(Do f)(z) = (@72 —q1/7) i sinf ’ x = cosb.

It is not difficult to see that
hm( of)(x) = f'(z).

Tt is not difficult to compute the action of Askey—Wilson operator on the Cheby-
shev polynomials of the first kind, T, (),

T, (cos 0) = cos(nd). (5-7)
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Indeed,

(qn/2 _ q—n/2)
(¢1/2 — ¢~1/2)
In [Ismail 2000a] we showed how that the appropriate generalized discriminant

D,To(z) = Un_1(2). (5-8)

for the continuous g-Hermite and continuous g-Jacobi polynomials is D(f,D,)
and we applied Theorem 5.2 because (5-1) is known when T' = D, and p,(z) is
any of the above mentioned polynomials.

It may be of interest to compute D(f,D,) for f(z) = Az* + Bz + C and
compare it with the familiar B2 — 4AC. Since, with z = cos 6,

A A
Az? + Bz 4+ C = 500s(20)—|—Bc050+C+ 3

then (5-7) and (5-8) give

Alag — —1
Puf)(o) = L)+ B,

so that D (f,Dy) is (¢V/2 + ¢ V2 —1) B — (¢ + q*1/2)2 AC.

One advantage of visiting an institute like MSRI is getting the opportunity
to meet very bright young mathematicians with different backgrounds. I had
the good fortune of meeting Naihuan Jing and talking to him about the differ-
ent discriminants I encountered. He found interpretation of D(f) = D(f, %),
D(f; D,) and D(f; Ar) as expectation values of vertex operators, where

(Anf)(2) := f(x +h) = f(z).

Our conversations led to [Ismail and Jing > 2001].
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