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Dual Isomonodromic Tau Functions and
Determinants of Integrable Fredholm Operators

J. HARNAD

ABSTRACT. The Hamiltonian approach to dual isomonodromic deforma-
tions in the setting of rational R-matrix structures on loop algebras is
reviewed. The construction of a particular class of solutions to the defor-
mation equations, for which the isomonodromic 7-functions are given by
the Fredholm determinants of a special class of integrable integral opera-
tors, is shown to follow from the matrix Riemann—Hilbert approach of Its,
Izergin, Korepin and Slavnov. This leads to an interpretation of the notion
of duality in terms of the data defining the Riemann—Hilbert problem, and
Laplace-Fourier transforms of the corresponding Fredholm integral opera-
tors.

1. Introduction

la. Isomonodromic Deformation Equations. We consider rational covari-
ant derivative operators on the punctured Riemann sphere, having the form

‘D)\ == a —_ N()\),
N(A) := B + ; Py (1-1)

where
B:diag(ﬂla---a/@’r‘)a Nj Eg[(r,(C).

They have regular singular points at {\ = a;};—1,..» and an irregular singularity
at A = oo with Poincare index 1. If the residue matrices {N;};=1, . are de-
formed differentiably with respect to the parameters {a; }i=1,...» and {8s }a=1,....r,
the monodromy (including Stokes parameters and connection matrices) of the
operator Dy will be invariant under such deformations, as was shown in [Jimbo
et al. 1980; Jimbo et al. 1981], provided the differential equations implied by the
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commutativity conditions

[Dx, Do, =0, i=1,...,n, 1-2)
Dy, D, ] =0, a=1,...,m (1-3)
are satisfied, where the differential operators D,;, Dg, are defined by
0
Dy, = -U;
¢ aai
0
D = a5 V:za
ﬁa 8[6@
N;
Ui::— y i:l,...,n,
A — aj
r B, (Z}Ll Nj) Ey + B (Z;.;l Nj) E,
Vaiz)\Ea“r‘Z 0,—1, Ty

Ba _,Bb ’

b=1
b#a
and E, is the elementary r X r matrix with elements

(Ea)bc = 6ab5ac-
These also imply the commutativity conditions

[Da;» Da;]l = [Dei» Dp, 1= [Dp,, Dp,] =0, fori,j=1,...,nanda,b=1,...,r.

(1-4)
Equations (1-2), (1-3), and (1-4) define a Frobenius integrable system of PDE’s
for the residue matrices {N;};=1,...n. They are “zero curvature” equations, im-
plying the consistency of the overdetermined system

DU =0, Do ¥=0, Dy ¥=0. (1-5)

They may also be interpreted as Hamiltonian equations [Harnad 1994] with
respect to the Lie Poisson structure on the space (gl(r))*" = {Ny,...,N,} of
residue matrices in N(X), defined by

{(Ni)aba (Nj)cd} = ij[(Ni)ad(sbc - (Ni)bc(sad] (176)
(where we identify gl(r) and its dual space (gl(r))* through the trace pairing
(X,Y) =tr(XY)). The Hamiltonians {H;, Ko}j—1,...,n, a=1,...,r generating them
are given by

- tr (NZNJ)

)

H; .= %res,\:ai tr(N()\)z) = tr(BN;) +

' o — O
j=1
J#i

n r n N, N
Koi= D05 (Nj)yg + 3 (=5 ﬁ)_ (ﬂz’“‘l e
j=1 a b

b=1
b#a

(1-7)
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It follows from the Poisson bracket relations (1-6) that
N, Hi} = [Ui, NV,
{N()‘)7 Ka} = [Vaa N()‘)]a
which imply, together with the identities

o, N,

NNa; = A O (1-8)
Vv,

NA)g, = o) — La (1-9)

(where the subscripts in N(A)q, and N(\)g, denote derivation only with respect
to the explicit dependence on the parameters appearing in the definition of N(}\)),
that the equations obtained by equating the residues at the poles {A = ¢} in
(1-2)—(1-3) and the leading terms at A = co are the nonautonomous Hamiltonian
equations generated by the H;’s and K,’s when the «;’s and 3,’s are identified
with the respective “time” parameters.

The compatibility of these equations may be seen as a consequence of the fact
that all the Hamiltonians Poisson commute:

{H;,H;} =0, {H;,K,} =0, {K, Kp}=0,

for i,j = 1,...,n and a,b = 1,...,r. This further implies [Jimbo et al. 1980;
Jimbo et al. 1981] that the differential 1-form

n b
0:=> Hidai+ Y K,df,, (1-10)
=1 a=1

on the parameter space, taken along any solution to this system of equations,
is closed, and hence locally exact, implying the existence of the isomonodromic
7-function 7(a4,...,an, B1,--.,0r), defined up to a multiplicative constant by:

dln(r) = 0. (1-11)

The Hamiltonian structure of the above equations may be seen to follow from
a more general setting, involving commuting Hamiltonians flows on loop algebras
generated by spectral invariant functions, with respect to a rational R-matrix
structure, adapted to the case of nonautonomous Hamiltonians [Harnad 1994].
For our purposes, it is sufficient to consider the Poisson space gNIrat (r) consisting
of r x r matrix-valued rational functions X (\) of the complex parameter \, and
to split Elrat (r) into the direct sum

g[rat(r) =g+ +9-

of the subspaces g consisting of polynomial X (\)’s, and g_ consisting of X (\)’s
satisfying X (oco) = 0. Viewing each X () as an endomorphism of C", we may
concisely represent the Poisson bracket structure on the space E[mt (r) by simul-
taneously taking tensor products on the space of endomorphisms and giving an
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equation in the space End(C" ® C") that determines the Poisson brackets of all
the matrix elements of the X (\)’s:

{X(N) e X(w)} = [r(A—p), XN @ T+ T @ X(u)], (1-12)

where

P;
T‘()\ — 'U,) = )\ 12# c End((cr ®(CT), P12(U,® U) = ® u

is the rational classical R-matrix. We may view N()\) as the image of a map
Ng (el(r)™ — 9~[rat("')
Nj
A — e} '

Nﬁ:{Nl,...,Nn}»—)N()\):B—I—Xn: (1-13)

It is easily verified that this defines a Poisson embedding of (gl(r))*™" as an affine
subspace in gl (7). (If we take the union over all 7 X r matrices B, this becomes
a linear Poisson subspace, but since the coefficients of the matrices B are in the
centre of the Poisson algebra on this space, B may as well be chosen to have
fixed constant values.)

Now let J denote the ring of polynomial functions of the coefficients of ele-
ments of g~[rat (r) that are invariant under conjugation by A-dependent invertible
matrices, restricted to a finite dimensional Poisson submanifold such as, for ex-
ample, the image of the map N%4. This is just the ring of spectral invariants,
generated by the coefficients of the characteristic polynomial

det(X(N\) — =2I) := P(, 2).

The classical R-matrix theorem, adapted to the case of explicit time depen-
dence in the Hamiltonians and in the elements X (\) € gl.a4(r), then tells us that
the elements of J Poisson commute, and the Hamiltonian equations generated
by any ¢ € J may be expressed as

dX ()

= (92, XN+ X O (1-14)

where X (A); denotes the explicit time derivative, the differential d¢ is identified
as an element of the same space gl (r) through the dual pairing (X,Y) :=
resy—oo tr((X(A)Y'A)) and (d¢)+ denotes projection to the subspaces g4.
If it happens also that the term X ()); equals the A derivative of either d¢.
or —d¢_
9d(¢+)

XA =F—7F— 1-15
() =+ 2208, (1-15)
then equation (1-14) becomes a commutativity condition

0 0

ax X, 5 F(dd)+| =0. (1-16)
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(More generally, we could replace +d¢_ and —d¢ by any element along the line
(1+ ¢)dd+ + cdp— through them.) In particular, this is the case if we choose ¢
as any of the Hamiltonians {H;}i—1,....n

1
H; = 5 TeSh—a; tr(X2(\)),
which clearly are elements of the spectral ring J which, when evaluated on X (\) =
N(X) of the form (1-1), give

N;

—(dHy)- = Uy =—5—"—.

Condition (1-15) is satisfied on this subspace if we identify the time parameter as
t = a4, since this reduces to the identity (1-8), while (1-16) gives the equations
(1-2).

To obtain a similar interpretation of the equations (1-3), we note that the
Hamiltonians {K,}s—1,...» can be expressed as follows:

Ko = Lresy_o (res._g, \[(B — 2I) "N(N)]* — 2tr[(B — 2I) 'N())]),

which shows that they also belong to the spectral ring J. Taking the g, projec-
tions of the differentials dK, evaluated at X (\) = N()) gives

(dK,)4 = Vy = AEq + i Ea (Z?ﬂ Nj) ];73 i ;3: (Z?ﬂ Nj) Ea.

b=1
b#a

Identifying the time parameter as t = 3,, condition (1-15) reduces to (1-9), and
(1-16) gives the equations (1-3).

1b. Symplectic Lift and Duality. The Hamiltonian structure of the isomon-
odromic deformation equations presented above involves a degenerate Poisson
structure. (The center of the Poisson algebra consists of the elements of J ob-
tained by localizing the spectral invariants at the points {ai,...,a,,00}.) It
is possible, however, to view this space as a quotient of a symplectic space M
under a suitable Hamiltonian group action. Moreover, doing so shows that the
roles of the deformation parameters {a,...,a,} and {B1,...,05,} are in some
sense interchangeable, and there exists another “dual” isomonodromic deforma-
tion system, obtained also as a Hamiltonian quotient of the system on M, in
which the parameters {81, ...,08,} appear as the locations of the regular singu-
lar points, while {ai, ..., a,} become the eigenvalues at co of the rational matrix
defining this dual system.

To see this, suppose that the rank of the residue matrix N; is k;. We may
express N; in a factored form as the product of two maximal rank matrices of
dimensions r X k; and k; X r:

N;=-GIF;,  F,G;€Math", (1-17)
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Of course, this factorization is arbitrary up to the following action of the group
GL(k;,C) on the space of such pairs (F;, G;):

gi: (FiaGi) = (giFia (g;‘r)il)a gi € GL(kza(C)

Making a similar factorization of all the residue matrices, we let

and define the space M to consist of the set of pairs (F,G) of N X r matrices
formed from n vertical blocks of k; X r matrices of maximal rank:

Fy G1
F = Fl , G = Gl . (1*18)
F, Gn

Let A € gl(V, C) be the diagonal matrix with eigenvalues (a1, .. ., a,) appearing
with respective multiplicities (k1,...,kp).

A =diag(ag,..., ..., 00).

Using the resolvent matrix (A — AI)™', we can express the rational matrix N()
as follows:

NQA)=B+G"(A- ) 'F,

where the different possible choices for the pairs (F, G) form an orbit under the
block diagonal subgroup G4 := GL(k1,C) x - - - X GL(k,,C) C GL(N, C), under
the action G4 x M — M defined by

(9, (F,G))  (gF,(g")'G), for g € Ga. (1-19)

This subgroup G4 C GL(N,C) is just the stabilizer of A € gl(N,C) under the
adjoint (conjugation) action. Choosing the canonical symplectic structure

w :=tr(dFT A dG) (1-20)

on M, the G4 action is a free Hamiltonian group action generated by the equi-
variant moment map

JN(F,G) = (RGT,...,FGT,... F,GT)
where the dual space gl*(k;,C) is identified with the space gl(k;,C) through
the trace pairing. The Poisson subspace of (gl(r))™

{Ni,...,N,} having respective ranks {ki, ..., k,} may thus be viewed as a quo-
tient M/G 4 by the Hamiltonian group action (1-19). Composing the projection

consisting of matrices
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map 7' : M — M/G 4 with the Poisson embedding map N4 defined in (1-13),
we obtain a Poisson map J§ : M — gl (r) given by

Jg : (F,G) = N(\) :=B+GT(A-\I)'F, (1-21)

whose fibres are the orbits under the free G 4-action (1-19), allowing us to iden-
tify the image Jg both as a quotient space M /G4 and a Poisson subspace of
glat(r) (Le., the space consisting of those N(A)’s for which the residue matrices
{Ni,...,N,} have ranks {ki,...,k,}). Moreover, the ring J of spectral invari-
ants, restricted to this subspace, may be pulled back to M to define a Poisson
commuting ring

3= 340

of G g-invariant functions on M. The Hamiltonian vector fields generated by the
elements of Jg project to the corresponding vector fields on the quotient, as do
their integral curves. In particular, if we identify the parameters {aq,...,an}
and {f,...,0-} with multi-time variables associated to the pullbacks of the
Hamiltonians {Hj,...,H,} and {Kj,...,K,}, the corresponding nonautono-
mous Hamiltonian systems on M are given by

oOF X oG .
5o = B Jp"Hi}, o= ={Gi, J5"Hi},

e " oG . (1-22)
8,8,1 = {G“ JB Ka}; 85‘] = {Gla ']B Ka}7

where {-,-} denotes the Poisson brackets on M determined by the symplectic
form (1-20).

There is also a Hamiltonian action of the subgroup Gg C GL(r, C) stabilizing
the matrix B under conjugation, which commutes with the G4 action (1-19),
namely the action Gp x M — M defined by

(9,(F,G)) = (Fg ',Gg"), g€Gp. (1-23)

If the eigenvalues {f,...,0,} are required to be distinct, the group Gp just
consists of the invertible diagonal matrices in GL(r,C). (More generally, like
G4 C GL(N,C), the group Gp is identified with the block diagonal subgroup
Gp = GL(1,C) x --- x GL(l,C) C GL(r,C), where {l1,...,{,} are the multi-
plicities of the eigenvalues of B.) We make this restriction henceforth, and also
assume N > r. From its definition, the quotient map Jé intertwines the Gp
action on M with the conjugation action of Gg C GL(r, C) on gl (7). Since the
elements of the ring J are invariant under this action, they project to a Poisson
commuting ring on the double quotient Gg\M/G 4.

It is natural to now ask what happens if we interchange the roles of the
matrices A and B and the corresponding groups G 4 and Gp. We may consider
the space glra (N) consisting of N x N matrices Y (z) depending rationally on
an auxiliary complex variable z, with the rational R-matrix structure (1-12)
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(with the replacements r — N, A — z, X — Y). Restricting analogously to the
Poisson subspace consisting of elements of the form

.
M,
M(z)=A+ > . ‘,‘8 , M, e gl(N,C), (1-24)
a=1°" Fa
we must, consistently with our assumption that the matrix B has a simple spec-
trum, require the residue matrices {My,..., M.} to all have rank one. We may

now repeat the entire Hamiltonian quotienting process as above by defining a
Poisson map J% : M — glat (V) as in (1-21):

JE (F,G) = N(\) = A+ F(B - 2I)'G". (1-25)

The fibres of this map are the orbits of the free Hamiltonian Gg-action (1-23), so
we may identify the quotient space (which we express as a left quotient) Gg\M
simultaneously as the image of the map J¥ and as the Poisson subspace of
aleat (N) consisting of elements of the form (1-24) with rank one residue matrices
at the poles z = 3,. Again, the Poisson map J% intertwines the G4 action
on M with the conjugation action of G4 C GL(N,C) on gNITat(N). We may
define the ring J to consist of the spectral invariant polynomial functions formed
from the M(z)’s (i.e., generated by their characteristic polynomials), and obtain
the Poisson commutative ring J§ := J5* (j) by pulling back the elements of
J under the map JZ. Defining the projections m4 : gNIIat(r) — g~[rat(r)/GA
and 75 : ghat(N) — Gp\ghkat(NV) to the quotient space under the respective
conjugation actions, we see that the composite maps w4 o Jg‘ and 7p o J§
coincide, defining the projection from M to the double quotient Gg\M/G 4.
We can now consider the analog of the overdetermined system (1-5)

DU =0, Do ¥=0 Ds¥=0 (1-26)
with respect to the operators D by 5%, and @ga defined by
~ 0 \
D, = — —M(z),
5, ~ M)
~ 9 ~
Dy, = -V
Ba 80[1' a)
~ 6  ~
Dai = - Ui’
0Ba (1-27)
~ M
Vo= _z—l,lﬁa’ a=1,...,m7
. m 2B+ i Bi (31 Mo) B + Ej (354 M) B
— Qi — Oy
Jj=1 .
GAi i=1,...,n. )

The Frobenius integrable set of compatibility conditions for this system are again
given by the commutativity of the operators Dy, D,,, and Dg,, and these may
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again be viewed as nonautonomous Hamiltonian systems either in the quotient
space Gg\M or lifted to M. The Hamiltonians in the ring J corresponding to
the «; deformations and the 3, deformations are given respectively by

H; = }res,_o (Tesi—q, 2[(4 — AI)7'M(2))* — 2tr[(4 — AI)'"M(2)]),
K, = Lres, g, tr(M?(2)).
(1-28)
The main result relating these systems to the ones introduced in the previous
subsection is contained in the following theorem.

THEOREM 1.1 [Harnad 1994]. The two Poisson commuting rings J4 and 5§
coincide, and, in particular, we have the equalities

Jg*(HZ):JE*(ﬁ—l)a Jg*(Ka):JE*(I?a)a izla"'ana a:l,...,r.

Therefore, the lifted systems in M coincide, as do the projected systems in

Gp\M/Ga.

2. The Riemann—Hilbert Problem and Integrable Fredholm
Operators

In this section, we show how a class of solutions to the isomonodromic defor-
mation equations considered here result from the solution of a particular type of
matrix Riemann—Hilbert problem, and how the corresponding 7-function may be
identified as the Fredholm determinant of a special class of “integrable” integral
operators. In this, we follow the general approach developed in [Its et al. 1990].
The results presented here are based on joint work with Alexander Its, and are
presented in greater detail in [Harnad and Its 1997], where further developments
may also be found.

2a. Riemann—Hilbert Problem. Let I" be an oriented curve in the complex A-
plane passing sequentially through the points {a1, ..., a,}. In the following, we
take n = 2m to be even, (although we may also let it be odd by considering co as
the last point). Denote by T'; be the segment of I" from a1 to az;. Now choose
a set of constant pairs of maximal rank matrices {(f;, 9;)};=1,....m of dimensions
{r X kj}j=1,...,m, where k; < r, satisfying the orthogonality conditions:

g f;=0, j=1,....,m. (2-1)

Let 6;(\) denote the characteristic function for the segment G;, viewed as a
function defined along I', and define the piecewise constant functions

fo(A) = Z fi0;(A),  go(N) = Zgﬂj()\), (2-2)
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supported on U7, I';. Now let ¥q (M) denote the exponential “vacuum” isomon-
odromic solution

To(N) := P
satisfying
0vy 0vy 0vy
8—)\ - BWO? 6—% - 07 aﬁa - )\Ea\:[l07
and let
FO) =To(N)fo(N),  g(n) = (Tg(N) "go(N). (2-3)

Define a GL(r,C)-valued piecewise continuous exponential function along the
curve I' by

H(\) = Yo\ Ho(\) ¥y ' (N) = I + 21 f(N)g" (V)

where Hy(\) is the piecewise constant GL(r, C)-valued function
Ho(\) =TI + 21 fo(\)gg (V).

In terms of these quantities, we pose the following Riemann—Hilbert problem:
Find a GL(r,C)-valued function X (A) that is holomorphic on the complement
C\T" of the curve " and at A = oo, with the following asymptotic form near
A = 00,

X\ =I+001™,

and such that the limits X4 (\) of the values of X(\) when approaching the
curve I' from the left () and right (=) are related by

X, () =X_(NH).

Moreover, we require that the local behaviour of the singularity in X () in a
neighborhood of any of the points {a1,...,a,} should be just logarithmic. (Its
uniqueness follows from the analyticity conditions imposed.) Define

T(A) := X(A)To(N). (2-4)
Because of the orthogonality conditions (2-1), the limits

F; = Algl{ii(X(A)f(A))T,

. - (2-5)
Gi = (=1)7 lim (X(A)g(A)

(taken within the curve segments I';) exist. Now define the pair (F,G) entering
in (1-21) as in (1-18), and the residue matrices in N(\) by (1-17). Then:

THEOREM 2.1 [Harnad and Its 1997]. The matriz-valued function ¥ (X, aq,...,n,
B, ---,Br) defined in (2-4) satisfies the linear equations (1-5) with the matriz
N(X) and its residues N; determined through (1-17) in terms of the matrices
{F;,Gi}i=1,. n defined in (2-5). The corresponding pairs (F,G) € M satisfy
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Hamilton’s equations (1-22). The local behaviour of the function U(\) in a neigh-
borhood of the curve segment I'; is of the form

gT
A— Olzj—l)fJgJ
7

A— (657}

T(2) ~ w;'n@\)( (2.6)

where WI_()\) is analytic in this neighborhood. Therefore the monodromy rep-
resentation is generated by the following matrices {M;}i=1, .. am, corresponding
to simple positively oriented loops from an arbitrary base point Ao going once
around the singular points {a;}i=1,._om:

M1 = exp( 2ﬂifjg?) =TI+ 2m'fjgf,
My, :exp(—ZWifjg]-T) :I—27rifngT, j=1,...,m.

(There is no monodromy at A = oo, and the Stokes matrices are just the identity
element.)

The proof of this result is elementary; the local behaviour (2-6) follows from the
conditions of the associated Riemann—Hilbert problem, and the differential equa-
tions (1-5) follow from explicit differentiation to obtain the local pole structure
in (O¥/ON)¥ 1, and application of Liouville’s theorem. (Of course, the actual
solution of the Riemann—Hilbert problem is highly nontrivial.)

2b. The Fredholm Determinant. We now choose all the ranks {k;}i=1, . n
equal to k, and define a matrix Fredholm integral operator K : L? (F,(Ck) —
L*(T,C*) by

K@M = [ KO pods, ve IA(r,ch),
r
where the kernel is chosen to have the special form

T
K p) = 20,

with f()) and g(\) defined in (2-3). (For the case r =2, k =1, and $; = — [,
this is just the sine kernel occurring in the computation of spectral distributions
for random matrices in the GUE [Tracy and Widom 1993; 1994]. Because of the
orthogonality conditions (2-1), we have

FTg) =0,
and hence the kernel is nonsingular, with diagonal values

EX) = fT(Ng(A) = =T (Mg’ (V).

The main result relating the Riemann—Hilbert problem discussed above with this
Fredholm operator (see [Its et al. 1990]) is that its solution is equivalent to the
determination of the resolvent operator

R:=(I-K)'K.



220 J. HARNAD

Specifically:

LEMMA 2.2. The resolvent operator also has the special form

R(v)()) = / RO\ p)o(u)dp

where the kernel is

with F(X\), G(\) given by
F)=XMNfM), GO =X Ng).

Conversely, the matriz X (\) solving the above Riemann—Hilbert problem is given
by the integral formula

X(\) =1, +/r%wdu.

I
This result follows directly from the Cauchy integral representation for X (M),
given its specified analytic properties [Its et al. 1990; Harnad and Its 1997].
Using it, we find a remarkable deformation formula for the Fredholm determinant
det(I — K):

THEOREM 2.3.
dindet(I — K) = Hydoy + » Ko dfa,
k=1 a=1

where the differential is understood as taken with respect to the deformation
parameters {a1,...,a,} and {B1,...,0B-}, and the coefficients {H;}i=1,..n and
{Ko}a=1,..r are given by the formulae (1-7) defining the Hamiltonians gener-
ating the isomonodromic deformations, with the residue matrices {Ni}izl,___,n
given in terms of the matrices {F;, G;}i=1,...n defined in (2-5) by (1-17).

The proof of this result is given in [Harnad and Its 1997]. It implies that the
Fredholm determinant det(I — K) may be identified with the isomonodromic
7-function defined by formulae (1-10) and (1-11).

2c. The Dual Riemann—Hilbert Problem. The results of the previous
subsection can of course be repeated with the roles of the matrices A and B
interchanged. For this, we assume that r = 2s is even, the multiplicities k; of
the eigenvalues of A are all equal to 1, so n = N, and we choose the eigenvalues
{Ba}a=1,.. 25 of the matrix B to all have the same multiplicity ! < n (the analog
of k above), so the matrix B is now of dimension 2is x 2ls. We also choose a
set of 2s pairs { fas Jata=1...,s of fixed maximal rank matrices of dimension n x !
satisfying the orthogonality conditions

Tg,=0, a,b=1,...,s.
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As before, we choose an oriented simple curve [ in the complex z-plane passing
sequentially through the points {f1,...,82s}, and denote the segments from
,62&,1 to ﬂZa by Fa. Now let

f(z) = e Z?aea(z)a §(z) = e 4 Zgaea(z)a (2-7)

where 0, is now the characteristic function of the curve segment fa. As above,
we associate a Riemann—Hilbert problem to this data, consisting of finding an
n x n matrix valued function X (z) that is nonsingular and holomorphic on the
complement of f, with asymptotic form near z = oo

X(z) =1+0( "),
and discontinuities along T supported on the segments fa defined by
X_(2)= Xi(2)H(2), €T,
where
H(z) = I+ 27if(2)§" (2) = exp 2mif(2)§" (2).

Once again, the solution of this Riemann—Hilbert problem allows us to define

a matrix valued function
U(2) := X(2)e*4

that satisfies the linear system (1-26), where the operators (1-27) are determined
in terms of the residue matrices M, of the matrix M(z) at the points 5, by:

M, = _ﬁaéfa
with _ L _ _
Fo = Jim (R(:)7(), = (-1)" im (R()3(2).

z2—Ba
As above, we may define a Fredholm integral operator along the curve acting
on C?-valued functions @ on I' by

_ﬂm@zékwmwmm,

where -
Riow) — I723)
z—w
The corresponding resolvent operator
R=(I-K)'K

again has the form

where the kernel
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is given by ~ o ~ ~
FT(z) = X(2)f(2), G(z)=(XT(2))"'3(2).

As before, the deformation formula for the Fredholm determinant gives

n r
dindet(1 — K) =dIn7 = Zﬁj doj + Zf?a dBa,
a=1

j=1 =

where the coefficients are given by the formulae (1-28).
Defining the pair of n x rl matrices (F', G) formed from the blocks {F,, Go}

Fv::(ﬁl Fa Fr)a
T B N (2-8)
GZ=(G1 Ga Gr)a

we may express the matrix M(z) as
M(z) ;== A+ F(B — z2I)'G".

Returning to the special case | = 1, we may ask whether there are choices
of the matrices {(f;,9:)}i=1,..,m and {(fa,ga)}a:h“,s defining the respective
Riemann-Hilbert problems for which the n x r pairs of matrices (F,G) and F, G)
defined by (1-18) and (2-8) coincide, defining the same solution to the respective
dual Hamiltonian systems and dual isomonodromic deformation equations.

The following provides a particular answer to this question. Choosing k =
q=1, the (f;,;)’s and (fa, §a)’s become pairs of r-component and n-component
column vectors, respectively. We pick a fixed m X s matrix with elements
{cja}jzlw’m, a—1,...,s and choose the components of these vectors to be

(Ff)2a = (f)2a—1 = (fa)2i = (fa)2i—1 =1,
(3i)2a = —(Gi)2a—1 = (9a)2; = —(Ga)2j—1 =: cijy

fori=1,...,mand a =1,...,s. Now define, on the product I" x f, the locally

constant function
m S

K\ 2) =YY cjabj(\)a(2).

j=1a=1
Taking the Fourier—Laplace transform with respect to the variables z and A
along the curves I' and I', respectively, gives the two Fredholm kernels

K(A’u) = /fk()u’a z)ez(A_H)dZ = _fTA()gg’lE'u) )
~ N £T a
Riw,2) = [ R e au = LLE)

where f()), g(\), f(2), §(z) define the Riemann-Hilbert data for these choices
as in (2-2), (2-3), and (2-7). Then:
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THEOREM 2.4. The Fredholm determinants of these two operators are equal
and so are the matriz pairs (F,G) and (F,G) constructed from the associated
Riemann—Hilbert data.

The proof is based on a straightforward application of the Neumann expansion
for the resolvent and may be found in [Harnad and Its 1997]. In that work, fur-
ther results are presented extending the above analysis to more general classes of
isomonodromic deformation problems, corresponding to polynomial asymptotic
terms in the matrix N(\), as well as symplectic reductions by discrete symme-
tries. (Further cases corresponding to higher order poles in N(A) and applications
may be found in [Harnad and Routhier 1995; Harnad and Wisse 1996; Harnad
et al. 1993].) The 7-functions associated with the special data discussed above
in relation to the dual Fredholm operators K and K are also shown in [Harnad
and Its 1997], to be interpretable in a manner similar to multi-component KP
T-functions, as determinants of projection operators over suitably defined infinite
dimensional Grassmannians. The interchange of data underlying the duality is
then seen as an interchange of the roles of the data determining the initial point
W in the Grassmannian and the abelian group elements determining the flow.

Acknowledgements

This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada, the Fonds FCAR du Québec and the National
Science Foundation, grant DMS-9501559. The author would like to thank the
organizers of the Jan-June 1999 MSRI program on Random Matrices and their
Applications, P. Bleher, A. Edelman, A. Its, C. Tracy, and H. Widom for the
kind invitation to spend this period at the MSRI and to take part in this very
stimulating program, as well MSRI’s director D. Eisenbud, and all the staff there,
for providing such a welcoming and agreeable environment.

References

[Harnad 1994] J. Harnad, “Dual isomonodromic deformations and moment maps to
loop algebras”, Comm. Math. Phys. 166:2 (1994), 337-365.

[Harnad and Its 1997] J. Harnad and A. R. Its, “Integrable Fredholm operators
and Dual Isomonodromic Deformations”, preprint CRM-2477, Centre de recherches
mathématiques, Montreal, 1997. See http: //www.arxiv.org/abs/solv-int /9706002.

[Harnad and Routhier 1995] J. Harnad and M. Routhier, “R-matrix construction of
electromagnetic models for the Painlevé transcendents”, J. Math. Phys. 36:9 (1995),
4863-4881.

[Harnad and Wisse 1996] J. Harnad and M. A. Wisse, “Loop algebra moment maps and
Hamiltonian models for the Painlevé transcendants”, pp. 155-169 in Mechanics day
(Waterloo, ON, 1992), edited by P. S. Krishnaprasad et al., Fields Inst. Commun.
7, Amer. Math. Soc., Providence, RI, 1996.



224 J. HARNAD

[Harnad et al. 1993] J. Harnad, C. A. Tracy, and H. Widom, “Hamiltonian structure of
equations appearing in random matrices”, pp. 231-245 in Low-dimensional topology
and quantum field theory (Cambridge, 1992), edited by H. Osborn, Plenum, New
York, 1993.

[Its et al. 1990] A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, “Differential
equations for quantum correlation functions”, Internat. J. Modern Phys. B 4:5
(1990), 1003-1037.

[Jimbo et al. 1980] M. Jimbo, T. Miwa, Y. Méri, and M. Sato, “Density matrix of an
impenetrable Bose gas and the fifth Painlevé transcendent”, Phys. D 1:1 (1980),
80-158.

[Jimbo et al. 1981] M. Jimbo, T. Miwa, and K. Ueno, “Monodromy preserving
deformation of linear ordinary differential equations with rational coefficients. I.
General theory and 7-function”, Phys. D 2:2 (1981), 306—352.

[Tracy and Widom 1993] C. A. Tracy and H. Widom, “Introduction to random
matrices”, pp. 103-130 in Geometric and quantum aspects of integrable systems
(Scheveningen, 1992), edited by G. F. Helminck, Lecture Notes in Physics 424,
Springer, Berlin, 1993.

[Tracy and Widom 1994] C. A. Tracy and H. Widom, “Fredholm determinants,
differential equations and matrix models”, Comm. Math. Phys. 163:1 (1994), 33-72.

J. HARNAD

DEPARTMENT OF MATHEMATICS AND STATISTICS
CONCORDIA UNIVERSITY

7141 SHERBROOKE W.

MONTREAL, QUEBEC H4B 1R6

CANADA

CENTRE DE RECHERCHES MATHEMATIQUES
UNIVERSITE DE MONTREAL
C. P. 6128, SUCC. CENTRE VILLE
MONTREAL, QUEBEC, H3C 3J7
CANADA

harnad@crm.umontreal.ca



