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Abstract. We survey the model theory of difference fields, that is, fields
with a distinguished automorphism σ. After introducing the theory ACFA
and stating elementary results, we discuss independence and the various
concepts of rank, the dichotomy theorems, and, as an application, the
Manin–Mumford conjecture over a number field. We conclude with some
other applications.

Difference field are fields with a distinguished automorphism σ. They were
first studied by Ritt in the 1930s. A good reference for the algebraic results is
[Cohn 1965]. Interest in the model theory of difference fields started at the end of
the eighties, particularly during the MSRI logic year, because of two questions.

The first question stemmed from the failure of Zil’ber’s conjecture: there is
a strongly minimal theory extending the theory of algebraically closed fields of
any given characteristic. People were looking at the possibility of finding a non-
definable automorphism σ of Falg

p (the algebraic closure of the field Fp with p

elements), such that Th(Falg
p ,+ , · , σ) is strongly minimal. This question so far

remains open.
The second problem had to do with the difference fields Fq = (Falg

p ,+ , · , φq),
where q is a power of p and φq : x 7→ xq is a power of the Frobenius automor-
phism x 7→ xp. The hope was to generalise the work of Ax on finite fields to
these structures, and in particular to describe the theory of the non-principal
ultraproducts of the difference fields Fq.

These questions led Macintyre, van den Dries and Wood to look for a model
companion of the theory of difference fields, and to prove various results (decid-
ability, description of the completions, etc . . . ) for this theory, henceforth called
ACFA. For details and attribution of results, see [Macintyre 1997]. I should also
mention that the second problem was solved recently, by Hrushovski [1996b] and
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Macintyre [≥ 2001], showing that non-principal ultraproducts of Fq’s are models
of ACFA.

In 1994, Hrushovski and I started looking at stability-type properties of the
theory ACFA. Our main result is a dichotomy result for types of rank 1 for
models of characteristic 0, which was later partially extended to the case of
positive characteristic with the help of Peterzil [Chatzidakis and Hrushovski
1999; Chatzidakis et al. 1999]. It has some applications to the description of
types of finite rank, and to groups definable in models of ACFA. These results
were used by Hrushovski [1995] to find explicit bounds in the Manin–Mumford
conjecture.

The first four sections of the paper give a survey of the results obtained to-
date for difference fields. In Section 5 we state the results used by Hrushovski
in his proof of the Manin–Mumford conjecture over a number field, and show
how he effectively derives from them the bounds. In the last section we conclude
with the statements of some other applications due to Hrushovski and Scanlon.

Acknowledgements. I take this opportunity to thank MSRI for their support
during the special semester on the Model Theory of Fields, and to show my
appreciation for the congenial atmosphere. I would also like to thank D. Haskell
and E. Hrushovski for many improvements to this paper.

1. Description and Elementary Results on the Theory ACFA

We work in the language L = {+,− , · , 0, 1, σ}, where +,− , · are the usual
ring operations, 0 and 1 are constants, and σ is a unary function.

1.1. Some examples

(1) The shift operator. Consider the field K = C(t), and define σ by

σ|
C

= id, σ(t) = t+ 1.

The name “difference field” originated from this example: an equation of the
form P (f(t), f(t+ 1), . . . , f(t+ n)) = 0, where f is the unknown function to be
found and P is a polynomial over K, is called an algebraic difference equation.
One can replace K by other fields, e.g., the field of meromorphic functions on C
or on R.

(2) Let K be a field, Ks its separable closure and σ ∈ Gal(Ks/K). Then
(Ks, σ) is a difference field. Note that because the algebraic closure Kalg of K
is purely inseparable over Ks, σ extends uniquely to an automorphism of Kalg.
One often identifies Gal(Ks/K) and Aut(Kalg/K).

The structures Fq described above are a particular example. More generally,
we have:

(3) Let K be a perfect field of characteristic p > 0, and q a power of p.
Then (K,φq) is a difference field. If the field K is algebraically closed then
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(Falg
p , φq) ≺ (K,φq). This is because for fixed q the map x 7→ xq is definable

in the language of fields, and because the theory of algebraically closed fields is
model complete.

1.2. Definitions, notation and some basic algebraic results. In the
literature, a difference field is a field K with a distinguished monomorphism σ.
If σ is onto, then (K,σ) is called an inversive difference field. However, a simple
inductive limit argument shows that every difference field has a unique (up to
isomorphism) inversive closure. We will assume in what follows, that all our
difference fields are inversive. The references are to [Cohn 1965].

Let K be a difference field, and let X̄ = (X1, . . . , Xn) be indeterminates.
A difference polynomial over K in X1, . . . , Xn is an ordinary polynomial with
coefficients in K, in the variables X1, . . . , Xn, σ(X1), . . . , σi(Xj), . . .. The ring of
those difference polynomials is denoted K[X1, . . . , Xn]σ, and σ extends naturally
to K[X1, . . . , Xn]σ, in the way suggested by the names of the variables.

Note. As defined, σ is not onto. It is sometimes convenient to consider the
inversive closure of this ring, namely K[σi(X1), . . . , σi(Xn)]i∈Z , but we will not
do this here.

There is a natural notion of σ-ideal, i.e., an ideal closed under σ, and of
reflexive σ-ideal (a ∈ I ⇐⇒ σ(a) ∈ I). The analog of a radical ideal is called
a perfect σ-ideal: a σ-ideal I is perfect if a ∈ I whenever ajσi(a) ∈ I for some
i, j ∈ N. A prime σ-ideal is a reflexive σ-ideal which is prime. Note that a
prime σ-ideal is perfect. K[X1, . . . , Xn]σ does not satisfy the ascending chain
condition on σ-ideals; however it satisfies it for perfect σ-ideals, and therefore
for prime σ-ideals. This allows one to define σ-closed sets and σ-varieties (also
called irreducible σ-closed sets) in affine n-spaces. They correspond dually to
perfect σ-ideals and prime σ-ideals, and are the basic closed sets of a noetherian
topology.

Let K be a difference field, a a tuple of elements (in some difference field ex-
tending K). We denote by K(a)σ the difference field generated by a over K,
by aclσ(Ka) its algebraic closure, and by degσ(a/K) the transcendence degree
of K(a)σ over K. If a is a single element and degσ(a/K) is infinite, then a

is called transformally transcendental. The elements σj(a), j ∈ Z, are then
algebraically independent over K. If degσ(a/K) is finite, then a is called trans-
formally algebraic. There are natural notions of transformal transcendence basis
and transformal dimension.

1.3. An axiomatisation of the theory ACFA. Consider the theory ACFA,
whose models are the L-structures K satisfying these conditions:

(i) K is an algebraically closed field.
(ii) σ ∈ Aut(K).
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(iii) If U and V are (affine) varieties defined over K, with V ⊆ U × σ(U) pro-
jecting generically onto U and σ(U), then there is a tuple a in K such that
(a, σ(a)) ∈ V .

Here, by a variety, we mean an absolutely irreducible Zariski closed set, i.e.,
a set defined by polynomial equations, and which is not the proper union of
two smaller Zariski closed sets. The set σ(U) is the variety obtained from U

by applying σ to the coefficients of the defining polynomials of U . When we
say that V projects generically onto U , we mean that the image of V under
the natural projection U × σ(U) → U is Zariski dense in U (i.e., not contained
in any proper Zariski closed subset). Note that (iii) is indeed a conjunction of
first-order sentences, since (by classical results on polynomial rings over fields)
the fact that polynomials f1(X̄), . . . , fn(X̄) generate a prime ideal of K[X̄] is an
elementary condition on the coefficients of f1, . . . , fn. Similarly for the inclusion
of ideals in K[X̄].

Theorem. ACFA is the model companion of the theory of difference fields.

Sketch of proof. We first need to show that every difference field embeds in
a model of ACFA. Axioms (i) and (ii) pose no problem, as every automorphism
of a field extends to its algebraic closure. Let U and V be as in (iii). Choose a
generic point (a, b) of V over K (i.e., the ideal of polynomials over K vanishing at
(a, b) is exactly the ideal of polynomials vanishing at all points of V ), in some field
containing K. Then a is a generic of U , and b is a generic of σ(U). By elementary
properties of algebraically closed fields, the isomorphism τ : K(a) → K(b) that
extends σ and sends a to b extends to an automorphism of the algebraic closure
of K(a, b).

This shows that every difference field embeds in a model of ACFA. It remains
to show that the models of ACFA are existentially closed. Let (K,σ) |= ACFA,
let ϕ(x), x a tuple of variables, be a quantifier-free formula with parameters in
K, and assume that ϕ(x) has a solution in some difference field (L, σ) extending
K. The usual trick of replacing the inequality y 6= 0 by ∃z yz − 1 = 0, shows
that one can assume that ϕ(x) is a conjunction of σ-equations. Let a ∈ L satisfy
ϕ. For n large enough, the σ-ideal I generated by the set{
f(X,σ(X), . . . , σn(X)) |

f(Y, Y1, . . . , Yn) ∈ K[Y, Y1, . . . , Yn], f(a, σ(a), . . . , σn(a)) = 0
}

is precisely the prime σ-ideal of difference polynomials over K annulled by a.
Thus any point satisfying these equations will satisfy ϕ(x).

Let U be the variety defined over K with generic (a, σ(a), . . . , σn−1(a)), and
V the variety defined over K with generic (a, σ(a), . . . , σn−1(a), σ(a), . . . , σn(a)).
Then U and V satisfy the hypotheses of axiom (iii), and therefore there is a tuple
b in K such that (b, σ(b)) ∈ V . Then b = (c, σ(c), . . . , σn−1(c)) for some c, and
K |= ϕ(c). �
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1.4. The Frobenius automorphisms. Before continuing with the elementary
properties of ACFA, we will state precisely the result of Hrushovski, from which
follows that non-principal ultraproducts of Fq’s are models of ACFA. It is then a
consequence of Tchebotarev’s theorem on the distribution of primes that ACFA
is exactly the theory of all non-principal ultraproducts of Fq’s, see [Macintyre
1997].

Theorem [Hrushovski 1996b]. Let U , V be varieties with V ⊆ U × σ(U), and
assume that the projections are onto and have finite fibers. Let d1 = [K(V ) :
K(U)], d2 = [K(V ) : K(σ(U))]i (purely inseparable degree); let c = d1/d2 and
d = dim(V ). Then for some constant C > 0, depending on the two varieties
U and V , and which remains bounded when U and V move inside an algebraic
family of varieties,∣∣Card({a ∈ (Falg

p )n | (a, aq) ∈ V })− cqd
∣∣ ≤ Cqd−1/2.

1.5. Proposition. If (K,σ) |= ACFA, then the subfield Fix(σ) of K fixed by σ
is a pseudo-finite field .

Proof. By [Ax 1968], one needs to show that: Fix(σ) is perfect; Fix(σ) has
exactly one algebraic extension of each degree; every (absolutely irreducible)
variety defined over Fix(σ) has an Fix(σ)-rational point.

The first assertion is obvious, and the third one follows easily from axiom (iii).
For the second assertion, it suffices to show that for each n > 1, the system

σn(x) = x, σj(x) 6= x for j = 1, . . . , n− 1,

has a solution in K. Since K is existentially closed, it suffices to find a differ-
ence field extending K in which this system has a solution. Consider the field
K(X1, . . . , Xn) in n indeterminates, and extend σ by defining σ(Xj) = Xj+1 for
j < n and σ(Xn) = X1. Then X1 is a solution of the system. �

In characteristic p > 0 one shows similarly that if m 6= 0 and n are integers, then
the set of elements of K satisfying σm(x) = xp

n

is a pseudo-finite field.

1.6. It turns out that many of the proofs given in [Ax 1968] for pseudo-finite
fields generalise to models of ACFA. Parts (1)–(5) of the following result appear
in [Macintyre 1997].

Proposition. (1) Let (K1, σ1) and (K2, σ2) be models of ACFA, and let E be
a common difference subfield . Then

(K1, σ1) ≡E (K2, σ2) ⇐⇒ (Ealg, σ1|Ealg) 'E (Ealg, σ2|Ealg).

(2) From this one deduces immediately that the completions of ACFA are ob-
tained by describing the action of σ on the algebraic closure of the prime field
(Qalg or Falg

p ). This then entails the decidability of the theory ACFA, as well as
of its extensions ACFA0 and ACFAp obtained by specifying the characteristic of
the field .
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(3) It also gives a description of the types. Let E be a difference field , a and b two
tuples from a model K of ACFA containing E. Then tp(a/E) = tp(b/E) if and
only if there is an isomorphism ϕ from the difference field aclσ(Ea) =def E(a)alg

σ

onto the difference field aclσ(Eb) which is the identity on E and sends a to b.
(4) If E is an algebraically closed difference field , then

ACFA ∪ qftp(E) ` tp(E),

where qftp(E) denotes the quantifier-free type of E.
(5) The algebraic closure (in the model-theoretic sense) of a set A coincides with
the algebraic closure (in the ordinary field sense) of the difference field generated
by A (which we denote by aclσ(A)).
(6) Let K |= ACFA, let U be a variety , l ≥ 1, and V a subvariety of U ×σ(U)×
· · · × σl(U). Let π1 : U × σ(U) × · · · × σl(U) → U × σ(U) × · · · × σl−1(U)
and π2 : U × σ(U) × · · · × σl(U) → σ(U) × · · · × σl(U) be the two canonical
projections, and assume that σπ1(V ) and π2(V ) have the same generics. Then
the set of points Ṽ = {x ∈ U(K) | (x, σ(x), . . . , σl(x)) ∈ V } is Zariski dense in
U .
(7) If (K,σ) |= ACFA and m ≥ 1, then (K,σm) |= ACFA.

Proof. (1) The left to right implication is almost immediate. For the other one,
moving K2 by some E-isomorphism, we may assume that E = Ealg and that K1

and K2 are linearly disjoint over E. This implies that the ring K1 ⊗E K2 is a
domain. Define σ(a⊗ b) = σ1(a)⊗ σ2(b) for a ∈ K1 and b ∈ K2; then σ extends
to an automorphism of the quotient field L of K1 ⊗E K2, which agrees with σ1

on K1 and σ2 on K2. Now, (L, σ) embeds in a model (M,σ) of ACFA, and by
model-completeness we have (K1, σ1) ≺ (M,σ) and (K2, σ2) ≺ (M,σ).

The first part of (2), (3) and (4) are immediate, applying compactness to (1).
The decidability follows from the recursive axiomatisation of ACFA, together
with the effective computability of Galois groups of the splitting fields over Q
and Fp of polynomials of Z[T ].

(5) Let A = aclσ(A) ⊆ K |= ACFA and b ∈ K \A, B = aclσ(Ab); let B1 be an
A-isomorphic copy of B, linearly disjoint over A. As in (1), there is a model of
ACFA containing the difference fields B and B1. By (3), tp(B1/A) = tp(B/A),
which shows that tp(b/A) is not algebraic.

(6) We may assume that U and V are affine. Let

W ⊆ U × σ(U)× · · · × σl−1(U)

be the Zariski closure of π1(V ). By assumption, π2(V ) is Zariski dense in σ(W ),
and we may therefore assume that l = 1. The proof that every difference field
embeds in a model of ACFA shows that if K is sufficiently saturated, then K

contains a point a such that (a, σ(a)) is a generic of V . This shows that Ṽ is
dense in U . �
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2. Independence and Rank

2.1. Definition of independence. Let A, B and C be subsets of a model K
of ACFA. We say that A and B are independent over C, and write A^C B, if
aclσ(CA) and aclσ(CB) are linearly disjoint over aclσ(C). This notion has all
the usual properties of independence in algebraically closed fields. Recall that
by Proposition 1.6(5), aclσ(A) is the model-theoretic algebraic closure of the set
A in the model K.

2.2. Definition of the SU-rank. We define a rank based on independence in
the usual way, that is, for p a type over E, realised by a tuple a:

– SU(p) = SU(a/E) ≥ 0,
– SU(p) ≥ α for α a limit ordinal, if and only if SU(p) ≥ β for every β < α,
– SU(p) ≥ α+1 if and only if there is F ⊇ E such that a /̂ EF and SU(a/F ) ≥ α.

Then SU(p) is the least ordinal α such that SU(p) 6≥ α+ 1. If ϕ(x) is a formula
with parameters in E = aclσ(E), one also defines SU(ϕ) = max{SU(a/E) |
a satisfies ϕ}.

2.3. The SU-rank shares the properties of the usual U -rank, and in particular,
the Lascar rank inequality: if a, b are tuples and E a set, then SU(a/Eb) +
SU(b/E) ≤ SU(a, b/E) ≤ SU(a/Eb) ⊕ SU(b/E), where ⊕ denotes the natural
sum on ordinal numbers. (Recall that 1 + ω = ω, while 1⊕ ω = ω + 1.)

2.4. Some examples. Let E be a difference subfield of a model K of ACFA
and a a tuple in K. From the definition of the SU-rank, it is clear that:

– SU(a/E) = 0 ⇐⇒ a ∈ aclσ(E).
– SU(a/E) = 1 ⇐⇒ a /∈ aclσ(E), and for every F ⊇ E, either a ^E F or
a ∈ aclσ(F ).

Earlier we defined degσ(a/E), which is also an invariant of tp(a/E). It has some
relation with SU-rank, since independence is defined in terms of non-forking in
algebraically closed fields. For instance, one has, for E ⊆ F difference fields and
a a tuple with degσ(a/E) <∞,

a /̂ E F ⇐⇒ degσ(a/F ) < degσ(a/E),

and this implies
SU(a/E) ≤ degσ(a/E).

Thus in particular, every non-algebraic type containing the equation σ(x) =
x2 +1 has SU-rank 1. This inequality can be strict; see the example in 2.6 below.

2.5. One can also show that the SU-rank of an element transformally tran-
scendental over the difference field E is ω: let a be such an element, and con-
sider the sequence (bi), i ∈ N, defined by b0 = a, bi+1 = σ(bi) − bi. Then
the fields Li = E(bi)σ form a decreasing sequence of subfields of E(a)σ, with
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tr deg(Li/Li+1) = 1. By additivity of rank, we obtain SU(a/Li) = i, which
implies that SU(a/E) ≥ ω. On the other hand, SU(a/E) 6≥ ω + 1: if a /̂ E F

then degσ(a/F ) <∞, which implies that SU(a/F ) < ω. Hence SU(a/E) = ω.
Note that this gives an example of the left-hand equality in 2.3: SU(a/Eb1) =

1, SU(b1/E) = ω, and SU(a/E) = ω. For a tuple b in K this also yields:
SU(b/E) < ω ⇐⇒ degσ(b/E) <∞.

2.6. Example. Consider the formula ϕ(x) : σ−2(x) = x2 + 1 (in characteristic
6= 2). Then SU(ϕ) = 1.

Proof. By 2.4, we want to show that if E is any difference field and a is any
solution of σ−2(x) = x2 +1, then either a ∈ aclσ(E), or a^E, i.e.: degσ(a/E) =
2. Let E = aclσ(E) be a field, and a a realisation of ϕ, a /∈ E. We need to show
that degσ(a/E) = 2. Since E is an arbitrary algebraically closed difference field,
this will imply: if F = aclσ(F ) contains E and tp(a/F ) forks over E, then a ∈ F ,
and therefore that SU(ϕ) = 1.

Suppose by way of contradiction that degσ(a/E) = 1, and let K = E(a, σ(a)),
m = [K : E(a)] and n = [K : E(σ(a))]. Observe that K contains all σ−j(a) for
j ≥ 0 (because σ−2j(a) ∈ E(a)). Since E(σ2(a)) is a Galois extension of E(a),
we have that [K(σ2(a)) : K] divides [E(σ2(a)) : E(a)] = 2.

Assume first that [K(σ2(a)) : K] = 1. Then σ(K) = K, which implies that
K = E(a)σ. On the other hand, E(a)σ contains the infinite algebraic extension
E(σ2j(a))j∈N of E(a), which gives us a contradiction.

Thus [K(σ2(a)) : K] = 2, and therefore E(σ2(a)) ∩K = E(a). So we have:

[E(σ(a), σ2(a)) : E(a)] = [E(σ(a), σ2(a)) : K][K : E(a)] = 2m

= [E(σ(a), σ2(a)) : E(σ2(a))][E(σ2(a)) : E(a)] = 2n

since [E(σ(a), σ2(a)) : E(σ2(a))] = [K : E(σ(a))]. This implies m = n. On the
other hand,

[E(σ(a), σ2(a)) : E(σ(a))] = [K : E(a)] = m

= [E(σ(a), σ2(a)) : K][K : E(σ(a))] = 2n

which gives m = 2n and the desired contradiction. �

2.7. The independence theorem. Let E = aclσ(E) ⊆ K, let a, b, c1 and c2 be
tuples from K such that a, b, c1 and c2 are independent over E and tp(c1/E) =
tp(c2/E). Then there is c (in some elementary extension of K) independent
from (a, b) over K, and realising tp(c1/aclσ(Ea)) ∪ tp(c2/aclσ(Eb)).

A generalised version of this theorem holds: let n ≥ 3, let x1, . . . , xn be tuples
of variables, and let W be a set of proper subsets of {1, . . . , n} closed under
intersection. Assume that for each w ∈W we are given a complete type pw(xw)
over E = aclσ(E), in the variables xw = {xi | i ∈ w}, which can be realised by
some (ai | i ∈ w) such that the elements ai, i ∈ w, are independent over E (i.e.,



A SURVEY ON THE MODEL THEORY OF DIFFERENCE FIELDS 73

for each j ∈ w, the tuple aj is independent from the set {ai | i ∈ w, i 6= j} over
E). Assume moreover that if v ⊂ w are in W then pv(xv) ⊂ pw(xw). Then the
type ⋃

w∈W
pw(xw)

can be realised by some tuple a1, . . . , an, with a1, . . . , an independent over E.
The independence theorem corresponds to the case

n = 3, W = {{1, 2}, {1, 3}, {2, 3}}.

2.8. Independence and non-forking. Using the independence theorem, one
proves that independence as defined above coincides with the usual notion of
non-forking. Namely, assume that a and F are independent over E = aclσ(E),
and let p(x) = tp(a/F ). Assume that (Fi)i∈N is an E-indiscernible sequence of
realisations of tp(F/E), and let pi(x) be the type over Fi which is the image of
p(x) by an E-automorphism mapping F to Fi. Then ∪ipi(x) is consistent. Thus
any completion of ACFA is simple in the sense of [Shelah 1980].

The connections between the independence theorem and simplicity were first
observed by Hrushovski in the context of pseudofinite fields (and more generally
bounded PAC fields); see [Hrushovski 1991; Hrushovski and Pillay 1994]. The
case n > 3 of the generalised independence theorem goes beyond simplicity, and
its model theoretic meaning remains to be clarified.

Recall that any PAC field which is not separably closed is unstable by a result
of Duret [Duret 1980]. Hrushovski recognised the usefulness of the independence
theorem for studying definable groups and generalising the techniques of stability
theory to the context of pseudofinite fields, and more generally, to models of S1-
theories (an S1-theory has finite SU-rank and some definability property of the
SU-rank).

The independence theorem is indeed a good substitute for “uniqueness of non-
forking extension” which is true in stable theories, and allows one to generalise
the concepts of generic type of a group and of stabilisers of types to groups
definable in finite fields, and later, to groups definable in models of ACFA.

The independence theorem was later generalised by B. Kim and A. Pillay
[Kim and Pillay 1997] to Lascar types in simple theories. Moreover their result
gives a nice characterisation of non-forking. The results on definable groups were
also generalised to the context of simple theories; see [Pillay 1998; Wagner 1997].

2.9. The independence theorem is also used in the proof of these two statements:

Proposition. Let K be a model of ACFA.

(1) Th(K) has elimination of imaginaries.
(2) Let S ⊆ Fix(σ)n be definable in K. Then S is definable in the pure field
Fix(σ) (maybe with additional parameters from Fix(σ)).
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2.10. Groups of finite SU-rank. Using the techniques developed in [Hru-
shovski and Pillay 1994; 1995], one obtains for instance a generalisation of a
well-known result of algebraic geometry:

Proposition. Let G be a group of finite SU-rank defined over a model K of
ACFA, and let {X(i) | i ∈ I} be a family of definable subsets of G. There is a
definable group H contained in the subgroup of G generated by the X(i), i ∈ I,
such that X(i)H/H is finite for every i ∈ I.

Note that no uniformity is assumed in the family X(i), just that each of them is
definable by some formula. The proof gives more information. Without loss
of generality we will assume that for every i ∈ I there is j ∈ I such that
X(j) = X(i)−1.

(1) There are elements i1, . . . , in ∈ I such that H ⊆ X(i1) · · ·X(in) and
n ≤ 2 SU(G).

(2) Assume that G is a subgroup of an algebraic group defined over K, that
G and the sets X(i) are irreducible σ-closed sets, and that the identity element
of the group belongs to all X(i)’s. Then H is the subgroup generated by all the
X(i)’s, and the number n in (1) is ≤ SU(G).

2.11. Finite simple groups. One can then use Hrushovski’s result on the
Frobenius automorphisms φq of Section 1.4 to get information about certain
classes of finite simple groups. With the exception of the sporadic groups and the
alternating groups, finite simple groups are defined in terms of algebraic groups,
and form families (e.g., PSLn(Fq) for fixed n and q ranging over prime powers).
All but the Suzuki and Ree families are already definable over finite fields in the
language of fields {+,− , · , 0, 1}. The Suzuki and Ree families become uniformly
definable in the structures Fpm+1 , for p = 2 or 3, as m varies over the positive
integers. Indeed, these groups are defined as follows: we have some algebraic
group G (in the family B2, G2 or F4), and an algebraic automorphism ϕ of G
whose square induces the Frobenius map φp on G(Falg

p ). Then the subgroup
2G(p2m+1) is the subgroup of G(Fp2m+1) left fixed by ϕφ−1

pm+1 (see [Suzuki 1982,
p. 388]). This implies that 2G(p2m+1) is the subgroup of G(Falg

p ) defined by the
equation σ(g) = ϕ(g) in the structure Fpm+1 .

The results in the previous subsection apply and give for instance: if m is large
enough, then any non-trivial conjugacy class of 2G(p2m) generates the whole
group in at most dim(G)+1 steps (dim(B2) = 10, dim(G2) = 14, dim(F4) = 52).

2.12. Proposition. Let G be a group of finite SU-rank defined over a model K
of ACFA. There is an algebraic group H defined over K, and a definable group
homomorphism f from some definable subgroup G0 of G of finite index in G into
H(K), with Ker(f) finite central .
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Note that f(G0) has infinite index in H(K), since H(K) has SU-rank ω dim(H).
However, if H0 is the smallest quantifier-free definable subgroup of H containing
f(G0), then f(G0) has finite index in H0, and SU(G) = SU(H0).

3. Study of Types of Finite Rank

In this section we will study types of finite SU-rank. First a reduction to types
of SU-rank 1:

3.1. Proposition. Let E = aclσ(E) and a a tuple with 0 < SU(a/E) < ω.
Then there is a tuple b independent from a over E, and an element

c ∈ aclσ(Eab) \ aclσ(Eb)

such that SU(c/Eb) = 1.

3.2. Orthogonality. Recall that two types p and q are orthogonal (denoted
by ⊥), if for every set E containing the sets over which p and q are defined, if a
and b realise non-forking extensions of p and q respectively to E, then a ^E b.
A type is orthogonal to a formula if it is orthogonal to any type containing this
formula. Two formulas ϕ(x) and ψ(y) are orthogonal if and only if, for every
F = aclσ(F ) containing the parameters needed to define ϕ and ψ, and any tuples
a and b satisfying ϕ and ψ respectively, a and b are independent over F .

Rephrased in terms of orthogonality, Proposition 3.1 says that every type of
finite SU-rank is non-orthogonal to a type of SU-rank 1.

3.3. Modularity. Let E = aclσ(E) be a subset of the model K of ACFA,
and let R ⊆ Kn be the set of realisations of a set of types over E (so, for
instance, a subset of Kn which is definable over E). We say that R is modular
(over E) if and only if any two subsets A and B of R are independent over
aclσ(EA) ∩ aclσ(EB). We say that a (possibly incomplete) type over E, or a
formula, is modular (over E) if its set of realisations is modular over E.

Remarks. (1) The definition of modularity first appears in an unstable context
in [Cherlin and Hrushovski 1998], where it is given in terms of acleq. This agrees
with our definition because ACFA eliminates imaginaries. This notion of mod-
ularity generalises several notions introduced in the eighties: locally modular,
one-based, module-like. All three were defined in a stable context, and some re-
quired the underlying set to be a set of realisations of rank 1 types, or of regular
types.

(2) It suffices to check modularity for finite sets A and B.

(3) A modular set satisfies the stronger property: if A ⊆ R and B ⊆ K, then
A and B are independent over aclσ(EA) ∩ aclσ(EB).

(4) The set of realisations of (a set of) modular types of SU-rank 1 is modular.
A subset of a modular set is modular. Any trivial type of SU-rank 1 is modular (a
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type p over E is trivial if aclσ(EA) =
⋃
a∈A aclσ(Ea) for any set A of realisations

of p).

(5) Assume that the elements of R have SU-rank 1 over E. Then the mod-
ularity of R can be rephrased as follows: there is no rank-2 family of definable
curves on R2.

(6) If p and q are non-orthogonal types of SU-rank 1, and if p is modular then
so is q.

(7) Assume that R is the set of realisations of a type of SU-rank 1 over E, and
that R is modular and stable, stably embedded. Then R satisfies the stronger
property: any two subsets A and B of R are independent over aclσ(EA) ∩
aclσ(EB) ∩ R, provided this intersection is non-empty. This coincides with the
classical notion of local modularity known to model theorists.

3.4. Additional remarks on modularity

(1) Modularity is a very strong property. In particular it implies that no
field is interpretable. As we will see below, if a stable group G is modular, then
there is essentially only one possible group law on G (see Proposition 4.2 below).
Modular stable groups are abelian by finite.

Let me show by an example that an algebraically closed field k cannot be
modular (we work in the language of rings {+,− , · , 0, 1}). Indeed, consider
three (algebraically) independent elements a, b, c in some algebraically closed field
containing k, and let d = ac+ b. Then the algebraic closures of the fields k(a, b)
and k(c, d) intersect in k; but clearly (a, b) and (c, d) are not independent over k
since e.g., tr deg(k(a, b, c, d)/k) = 3 < tr deg(k(a, b)/k) + tr deg(k(c, d)/k) = 4.
The failure of modularity is of course due to the existence of the two-dimensional
family Ca,b of curves y = ax+ b in the plane.

(2) Let K |= ACFA, let R ⊆ Kn be definable over E = aclσ(E), and assume
that R is modular. This gives us information about the field of definition of the
σ-closure R̄ of R: if a ∈ R is a generic of an irreducible component Z of R̄, then
Z is defined over aclσ(Ea). When R is quantifier-free definable, then R̄ is what
we could call a “good approximation” of R, because degσ(R̄ \ R) < degσ(R).
When R is not quantifier-free definable, then usually degσ(R̄\R) = degσ(R), and
in an unstable context it may happen that any set S containing R and satisfying
degσ(S \ R) < degσ(R) “needs” parameters from outside the algebraic closure
of the field of definition of R̄.

3.5. Proposition. Let K |= ACFA, let E = aclσ(E) ⊆ K and let p be a
non-trivial modular type over E, of SU-rank 1. Then p is non-orthogonal to the
generic of a definable subgroup of some (simple) commutative algebraic group,
i .e., a simple abelian variety , or the multiplicative group Gm, or the additive
group Ga; the latter case can only occur in positive characteristic.
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3.6. Zil’ber’s conjecture and the dichotomy. Zil’ber’s conjecture states:
Let T be a strongly minimal theory. Then either all types of T are modular, or
T interprets a (pure) algebraically closed field.

This conjecture was disproved by Hrushovski. However, the philosophy be-
hind Zil’ber’s conjecture remains true: in most natural situations, the conjecture
should be valid. An axiomatic system of such “natural situations” is given in
[Hrushovski and Zilber 1996] (Zariski geometries).

The dichotomy “modular/field” was proved for strongly minimal types in dif-
ferentially closed fields (see [Hrushovski and Ž. Sokolović 1994]) and for minimal
types in separably closed fields (see [Hrushovski 1996c; Delon 1998]). Its in-
terest lies in the fact that there is a complete characterisation of the fields of
rank 1 interpretable in the theory of differentially closed fields or in the theory
of separably closed fields of positive degree of imperfection: they are definably
isomorphic to, respectively, the field of constants and the field of elements which
are q-th powers for all power q of the characteristic. This is an important tool
in Hrushovski’s proof of the Geometric Mordell–Lang conjecture.

4. The Dichotomy Theorems

As explained in the previous section, our goal was to prove the following
dichotomy: a type of SU-rank 1 is either non-orthogonal to one of the fixed
fields, or it is modular. We first proved the characteristic 0 case, in a stronger
form. The proof in that case is very algebraic and uses ramification theory. We
were then able to establish the dichotomy in positive characteristic by completely
different methods, see 4.4 for some details.

The dichotomy result allows us to get a good description of certain definable
sets in the modular case (see Sections 4.2 and 4.7 below) and a semi-minimal
analysis of types of finite rank 4.6.

4.1. Theorem (The dichotomy in characteristic 0). Let p be a type of
SU-rank 1 over E = aclσ(E). Then either p 6⊥ (σ(x) = x), or p is modular ,
stable, stably embedded , and has a unique non-forking extension to any set con-
taining E. Also, p 6⊥ (σ(x) = x) if and only if degσ(p) = 1 and there is an
integer N such that [E(a, σk(a)) : E(a)] ≤ N for every k ∈ Z.

Stably embedded means (n the arity of p, P the set of realisations of p): if
S ⊆ Knm is definable, then S ∩ Pm = S′ ∩ Pm for some S′ definable with
parameters from P .

Note that a type can be stably embedded even if it is unstable. Indeed, one
can show that if P is the set of realisations of a type p containing the formula
σ(x) = x, then the field generated by P is all of Fix(σ). Thus, by 2.9(2), p is
stably embedded.



78 ZOÉ CHATZIDAKIS

4.2. The result of 4.1 extends to formulas: if ϕ(x) ⊥ (σ(x) = x), then the
set of elements satisfying ϕ, with the structure inherited from K, is stable and
modular. In the case of groups, this has the following striking consequence, by
a theorem of Hrushovski and Pillay [1987]:

Proposition. Assume characteristic 0. Let G be a group of finite SU-rank
definable in a model K of ACFA, and assume that the formula defining G is
orthogonal to (σ(x) = x), and has its parameters in E = aclσ(E). Let S ⊆ Gm

be definable. Then S is a Boolean combination of cosets of E-definable subgroups
of Gm.

4.3. Theorem (The dichotomy in characteristic p > 0). Let q be a type
of SU-rank 1. Then either q is modular , or q is non-orthogonal to the formula
σm(x) = xp

n

for some m > 0 and n ∈ Z.

Remarks. (1) The Frobenius automorphism x 7→ xp is definable. Hence, for
m > 0 and n ∈ Z, the formula σm(x) = xp

n

defines a pseudofinite subfield of K.
We will refer to these fields as fixed fields.

(2) The result obtained in characteristic 0 does not generalise to characteristic
p > 0. For instance, one can show that the set of realisations of σ(x) = xp −
x is unstable, and not stably embedded either. However, any complete type
containing this formula is modular. We will see below that this is enough for
some applications.

(3) There is a criterion analogous to the one given in characteristic 0 for types
non-orthogonal to (σ(x) = xp

n

): one replaces algebraic degree by separable
degree. If the field is defined by the equation σm(x) = xp

n

with m > 1, then the
criterion has to be suitably modified.

4.4. The proof of the dichotomy in characteristic p > 0 is quite different from the
one in zero characteristic. An essential ingredient of the proof is the central role
played by certain reducts of the structure. If M = (K,σ) is a model of ACFA, we
let M[n] be the structure (K,σn), which is also a model of ACFA by Proposition
1.6(7). While M[n] is a reduct of M, certain definable sets appear to attain
more structure. It turns out that M[n] behaves more and more smoothly as n
approaches infinity (a phenomenon which already showed up in the proof of the
characteristic 0 case). In the characteristic p > 0, the proof begins by defining
a certain limit structure M[∞] of the sequence M[n] (the “virtual structure”).
This limit structure is shown to be very well-behaved, and some of its properties
are translated back to the reducts M[n] and to M. This role for reducts and the
type of limit taken, appear to be new in model theory.

We put a topology on some definable subsets of M[∞], and show that it
satisfies an adapted version of the axioms of Zariski geometries. Then, given a
non-modular definable subset X of M[∞], we reproduce the proof of [Hrushovski
and Zilber 1996] to obtain a field F of rank 1 interpretable in M[∞] and non-
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orthogonal to X, and show that this field F is algebraically closed. The proof
that this gives the theorem uses the following result, of independent interest:

4.5. Proposition. Let H be a simple algebraic group, and let G be a Zariski
dense subgroup of H(K) definable in K |= ACFA. If SU(G) is infinite, then
G = H(K). If SU(G) is finite, then the generics of G are non-orthogonal to
some fixed field F . Moreover , some subgroup of finite index of G is conjugate to
a subgroup of H(F ).

4.6. Semi-minimal analysis. Let E = aclσ(E), and a a tuple with SU(a/E) <
ω. There are a1, . . . , an ∈ aclσ(Ea), such that a ∈ aclσ(Ea1, . . . , an), and for
every i, either tp(ai+1/E(ai)σ) is modular of SU-rank 1, or there is some finite
set B, such that the set of realisations of tp(ai+1/E(ai)σ) is contained in the
perfect closure of the difference field generated by E(ai) ∪ B ∪ F , where F is
some fixed field.

4.7. One can show easily that if a formula ϕ(x) is orthogonal to all fixed fields
then ϕ(x) is modular. While the full theory of the set of realisations of ϕ(x)
may be unstable, we have what is called quantifier-free ω-stability. Thus, in the
case of groups, we get the analogue of 4.2 but only for subsets of Gm defined by
quantifier-free formulas (within Gm).

I thought it worthwhile to give a proof of this result, for two reasons. The first
is the reaction of the audience during my talk at MSRI: they weren’t surprised
by the dichotomy results but by their corollaries. The second is that in the
particular context of a quantifier-free definable set X of an algebraic group H,
the classical proof of [Hrushovski and Pillay 1987] becomes very short, and still
retains many of the ingredients which demonstrate the strength of modularity.

Proposition. Let K |= ACFA, H an algebraic group defined over K, and let
G be a definable subgroup of finite SU-rank of H(K). Assume that the formula
defining G is orthogonal to all fixed fields, and has its parameters in E = aclσ(E).
Let X ⊆ H(K)m be a quantifier-free definable set . Then X ∩ Gm is a Boolean
combination of cosets of subgroups of Gm which are defined in Gm by a quantifier-
free formula with parameters in E.

Proof. The group G has finite index in the smallest quantifier-free definable
group Ḡ containing it. By 4.3, the group G is modular, which implies that Ḡ is
also modular. We may therefore assume that G is quantifier-free definable. By
an easy reduction, we may also assume that m = 1 (work in Gm), and that X is
an irreducible σ-closed set contained in G. We then want to show that X is the
coset of a σ-closed subgroup S of G, and that S is defined over E.

We will assume that the difference field (K,σ) has sufficiently many automor-
phisms. If Z is a σ-closed set defined over some difference field F , we define
degσ(Z) = max{degσ(a/F ) | a ∈ Z}. Note that degσ is invariant under trans-
lation, that is, degσ(Z) = degσ(aZ) for any a ∈ G. In analogy with algebraic
varieties, if Z is an irreducible σ-closed set defined over some field F , we will
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say that a is a generic of Z over F if a ∈ Z and every difference polyno-
mial over F which vanishes at a, vanishes on Z. Equivalently, if a ∈ Z and
degσ(a/F ) = degσ(Z). One can show that the generics of the group G in the
stability theoretic sense (i.e., of maximal SU-rank) are precisely the generics of
G in this sense.

Let F be the smallest algebraically closed difference field containing E and
over which X is defined. Let S = {h ∈ G | hX = X}, fix a generic a of X over
F , and a generic g of G over F (a)σ. Then S is a σ-closed subgroup of G defined
over F , and b = ga is a generic of G over aclσ(Fa). Consider the set Y = gX;
then b is a generic of Y over aclσ(Fg).

Claim 1. Let τ be an automorphism of the difference field (K,σ), which is the
identity on F . Then τ(Y ) = Y ⇐⇒ τ(gS) = gS.

Proof. Indeed, using the fact that X and S are defined over F , we get: τ(Y ) =
Y ⇐⇒ τ(gX) = gX ⇐⇒ τ(g)X = gX ⇐⇒ g−1τ(g) ∈ S ⇐⇒ τ(gS) = gS,
which gives the result. �

Claim 2. The fields of definition of Y and of gS are equi-algebraic over F .

Proof. This follows from Claim 1 and the following two observations: (1)
If τ does not fix the field of definition of an irreducible σ-closed set Z, then
τ(Z) 6= Z. (2) Let k0 ⊆ k1 ⊆ K be fields, with k1 6⊆ aclσ(k0). Then there is
some automorphism τ of (K,σ) which fixes aclσ(k0) and does not fix k1. �

By modularity and because b is a generic of Y over aclσ(Fg), the field of definition
of Y is contained in aclσ(Fb)∩ aclσ(Fg). Choose a c ∈ aclσ(Fb)∩ aclσ(Fg) that
generates the field of definition of Y (and the one of gS by Claim 2). Using b = ga

and the fact that g and b are independent from a over F , and hence over F (c)σ,
we obtain that degσ(Y ) = degσ(b/F (c, a)σ) = degσ(g/F (c, a)σ) = degσ(gS).
Hence degσ(S) = degσ(X), and from Sa ⊆ X and the irreducibility of the
σ-closed set X, we deduce that S = Xa.

Because g is a generic of the coset gS and by modularity, gS is defined over
aclσ(Eg), which implies that S = g−1(gS) is also defined over aclσ(Eg). So, S
is defined over aclσ(Eg) ∩ F = E. �

5. Application: the Manin–Mumford Conjecture
over a Number Field

The result of Raynaud [1983] (which implies the Manin–Mumford conjecture)
states that if A is an abelian variety and X a subvariety of A, then Tor(A) ∩X
is a finite union of sets of the form ai + Tor(Ai), with Ai a group subvariety of
A. (Here, Tor(A) denotes the set of torsion points of A.) This result was later
extended by Hindry and McQuillan. It is a particular case of a conjecture of
Lang; for details see [Lang 1991, p. 37].
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Hrushovski saw that the results on difference fields could be used to obtain a
new proof of this theorem, for A a commutative algebraic group defined over a
number field K. His proof gives an explicit bound on the number of cosets, of the
form M = cdeg(X)e, where c and e depend on A but not on X, and deg(X) is
the degree of the variety X with respect to a fixed embedding of A into projective
space. His result appears in [Hrushovski 1995]; see also [Pillay 1997]. His bound
is explicit modulo the choice of two primes of good reduction for A; see Section
5.10 for the definition of good reduction. (If A is semi-abelian, let h(A) denote
the height of A in the sense of Faltings; according to one specialist, the order of
magnitude of a bound for a prime of good reduction is likely to be h(A).)

The strategy is very simple. Suppose we are given a commutative algebraic
group A, a subvariety X of A, and some subgroup Γ of A. Then we would like
to find an automorphism σ of some large model L of ACFA containing Γ, and
a modular definable subgroup G of A(L) containing Γ. The result then would
follow by 4.2. This is however too simple to work. There are two problems:

– In characteristic 0, every proper definable subgroup ofGa(L) is non-orthogonal
to the fixed field (see Section 5.9), and is therefore never modular. One gets
around this difficulty by reducing to the case of a semi-abelian variety, using
model theory.

– In order to get explicit bounds, one needs an explicit description of G (and
not only its mere existence). When Γ is the subgroup Torp′(A) of prime-to-
p-torsion, for p a prime with good properties, then Weil’s result on abelian
varieties defined over finite fields gives an equation of bounded complexity for
σ a lifting of the Frobenius. However, this doesn’t say anything on the points
of order a power of p. A further trick is needed, involving some model theory
and ugly computations.

We indicate below some of the ingredients involved in the proof of Hrushovski.
This section is organised as follows. We first introduce some tools and definitions
from algebraic geometry, and state the main results used in Hrushovski’s proof.
Of particular interest in my opinion is his description of definable subgroups
of abelian varieties and of their definable endomorphisms. And of course, his
criterion for modularity is absolutely fundamental in the proof; see Theorem 5.6.
We then show in Section 5.13 how to obtain the qualitative result, and reduce
the problem of finding an explicit bound for the number of cosets to the case
where the group variety A is a semi-abelian variety.

We give a fairly detailed exposition on how to get the explicit bound. This
part is essentially self-contained if one accepts the results stated earlier together
with those of Section 5.12. We start with the “easy case” of the p′-torsion
subgroup in Theorem 5.14. We then proceed slowly towards a proof of the full
result, given in Theorem 5.17.
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5.1. Degrees of varieties. We embed our algebraic group A in some projective
space Pn. By the degree of a subset of Pn we mean the degree of its Zariski
closure. It is convenient to define a degree on algebraic subsets of cartesian
powers of Pn, in such a way that it satisfies the following conditions:

(1) Let V1, . . . , Vr be algebraic subsets of (Pn)l, and let Z1, . . . , Zs be the irre-
ducible components of V1 ∩ · · · ∩ Vr. Then

s∑
i=1

deg(Zi) ≤
r∏
j=1

deg(Vj).

(2) Let V be an algebraic subset of (Pn)l × (Pn)k, and consider the projection
ρ : (Pn)l × (Pn)k → (Pn)l. Then deg(ρ(V )) ≤ deg(V ).

(3) Let V be an algebraic subset of (Pn)l× (Pn)k, and let ρ be defined as above.
For a ∈ (Pn)l define V (a) = V ∩ ρ−1(a). Suppose that dim(V (a)) = r

for generic a ∈ ρ(V ). Then the Zariski closure V ∗ of the set {a ∈ (Pn)l |
dim(V (a)) > r} has degree ≤ deg(V ).

For the definition of this degree and further properties, see [Fulton 1984, Example
8.4.4] or [Hrushovski 1995].

5.2. Let A be an algebraic group. Then A has a unique maximal connected
linear subgroup H, and A/H is an abelian variety, i.e., a commutative projective
group variety. If H is commutative then the simple factors of H are isomorphic
to either the multiplicative group Gm or the additive group Ga.

A semi-abelian variety is a commutative algebraic group A with no simple
factor isomorphic to Ga. If A is an abelian variety, then there is an isogeny
(epimorphism with finite central kernel) from some product A1 × · · · ×An onto
A, with the Ai’s simple abelian subvarieties of A. A good reference for facts on
abelian varieties is [Lang 1959].

5.3. We first show how to get from an effective description of G to an effective
bound M . The group G will be described as {g ∈ A(K) | (g, σ(g), . . . , σl(g)) ∈
S} for some algebraic subgroup S of A × σ(A) × · · · × σl(A). We view A

as embedded in Pn, and define deg(S) and deg(X) with respect to this em-
bedding. Let V = S ∩ (X × σ(X) × · · · × σl(X)). Then dim(V ) ≤ e =
min{dim(S), (l+1) dim(X)} and deg(V ) ≤ deg(X)l+1 deg(S). Thus an effec-
tive bound for the number of components of the Zariski closure of G∩X is given
by the following result:

Lemma. Let V ⊆ Al+1 be an algebraic set , and set

Ṽ = {g ∈ A(K) | (g, σ(g), . . . , σl(g)) ∈ V }.

Then the Zariski closure of Ṽ has degree at most deg(V )2dim(V )
. If V is defined

over L(c), where σ(L) = L, then Z is defined over

L
(
σ−dim(V )(c), . . . , c, σ(c), . . . , σdim(V )(c)

)
.
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The proof of this result uses the properties of degrees of varieties stated in
Section 5.1. We’ll make a simple observation on how the irreducible components
of Z are obtained. Let π0 denote the projection on the first copy of Pn, π1 the
projection on the first l copies of Pn, and π2 the projection on the last l. The
irreducible components of Z are images by π0 of algebraic subsets W of Pl+1

n

satisfying σπ1(W ) = π2(W ). Thus the procedure for getting the irreducible
components of Z is as follows: start with some irreducible component W of V .
If σπ1(W ) = π2(W ), π0(W ) will be an irreducible component of Z. If not, then
consider W ∩ π−1

2 σπ1(W ), look at its irreducible components and repeat the
procedure. This procedure stops after dim(V ) + 1 steps.

This result needs to be refined to give more information when X varies in a
family of varieties (we are now thinking of X + a for various a’s in the p-torsion
subgroup).

5.4. Notation. Let P = (Pn)k×(Pn)m, and ρ : P → (Pn)k the projection. If Z
is a subvariety of P and a ∈ (Pn)k we define Z(a) = {b ∈ (Pn)m | (a, b) ∈ Z}, and
if r = dim(Z(a)) for generic a ∈ ρ(Z), we set Z∗ = {a ∈ ρ(Z) | dim(Z(a)) > r}.

Proposition. Let (K,σ) |= ACFA, and let V be a closed subset of Pl defined
over K. There exist irreducible subvarieties Zi of P satisfying these properties:

(1) If a ∈ Ṽ =def {x ∈ P(K) | (x, σ(x), . . . , σl−1(x)) ∈ V }, then there is an i

such that a ∈ Zi, a /∈ ρ−1(Z∗i ).
(2) Zi(K) ∩ Ṽ is dense in Zi for every i.
(3)

∑
i deg(Zi) ≤

∑dim(V )
j=0 deg(V )2j ≤ 2 deg(V )2dim(V )

.
(4) If i 6= j and Zi is a proper closed subset of Zj , then ρ(Zi) ⊆ Z∗j .

5.5. Definable endomorphisms and definable subgroups of an abelian
variety. Let A be an abelian variety defined over a model (K,σ) of ACFA,
and let End(A) denote the ring of algebraic endomorphisms of A, Endσ(A) the
ring of definable endomorphisms of A. Denote by E(A) and Eσ(A) the rings
Q ⊗Z End(A) and Q ⊗Z Eσ(A) respectively. Then E(A) and Eσ(A) have a
description in terms of matrix rings over E(Ai) and Eσ(Ai) for some simple
abelian subvarieties of A. The result is well-known for E(A) because of Poincaré’s
reducibility theorem, and we will describe what happens for Eσ(A):

Proposition. Let A be an abelian variety defined over K.

(1) Let A1, . . . , An be abelian subvarieties of A such that A and A1 × · · · × An
are isogenous. Let I ⊆ {1, . . . , n} be maximal such that if i 6= j are in I and
k ∈ N, then Ai and σk(Aj) are not isogenous. For each i ∈ I let m(i) be the
number of indices j ≤ n such that Aj and σk(Ai) are isogenous for some k ∈ N.
Then Eσ(A) '

∏
i∈IMm(i)(Eσ(Ai)).

(2) Let k ≥ 1 and let B be a definable subgroup of Ak(K). Then B is com-
mensurable with a finite intersection H of kernels of definable homomorphisms
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Ak(K) → A(K) (commensurable means that B ∩H has finite index in both B

and H). If k = 1, a single homomorphism suffices.

Thus the study of definable subgroups of A(K) reduces to the study of the rings
Eσ(Ai), i ∈ I. Of particular interest are the c-minimal subgroups of A(K), i.e.,
definable subgroups which are minimal up to commensurability, because of the
following result:

Lemma. Let B be a definable subgroup of A(K) A. Then B is modular if and
only if , for every f ∈ Endσ(A), every c-minimal subgroup of f(B) is modular .
If B = Ker(fg) for f, g ∈ Endσ(A) with infinite kernels, then B is modular if
and only if Ker(f) and Ker(g) are modular .

The next result gives a complete description.

5.6. Theorem. Let A be a simple abelian variety defined over K |= ACFA.

(1) Assume that for every n ∈ N, A and σn(A) are not isogenous. Then
Eσ(A) = E(A), and every definable proper subgroup of A(K) is finite.
(2) Assume that n ≥ 0 is minimal such that there is an isogeny h : A→ σn(A),
and let h′ : σn(A)→ A and m ∈ N>0 be such that h′h = [m]. Define ψ = σ−nh

and ψ′ = h′σn. Then Eσ(A) is isomorphic to the twisted Laurent polynomial
ring E(A)[ψ,ψ′]. Note that ψ′ψ = [m].

From now on we assume that the hypotheses in (2) hold .

(3) Let f 6= 0 be an element of Endσ(A). Then f is onto and Ker(f) has finite
rank .
(4) A definable subgroup B of A(K) is c-minimal if and only if it is commensu-
rable with Ker(f), for some f ∈ Endσ(A) which is irreducible in Eσ(A). Thus,
if f ∈ Endσ(A) is non-zero, then Ker(f) is modular if and only if Ker(g) is
modular for every irreducible divisor g of f .
(5) Let B be a c-minimal subgroup of A(K). If B is not modular , then there is
an abelian variety A′ defined over Fix(τ) for some τ = σmφ−np , and an algebraic
isomorphism ϕ : A→ A′ such that ϕ(B) ⊆ A′(Fix(τ l)) for some l.

Similar results hold for the multiplicative group Gm (with Eσ(Gm) ' Q[σ, σ−1]),
and putting everything together, one obtains:

Theorem. Let A be a semi-abelian variety defined over Fix(σ), and let f(T ) ∈
Z[T ]. Assume that f(T ) is relatively prime to all cyclotomic polynomials. Then
Ker(f(σ)) is orthogonal to the formula σ(x) = x, and therefore modular if the
characteristic is 0.

5.7. Remark. In characteristic p, one obtains a similar criterion for semi-
abelian varieties defined over Fix(σ) or over Fix(τ) for some τ = σ−mφnp .

Also, observe that if A is a simple abelian variety defined over Fix(σ) and if
A(K) has a definable subgroup B of finite rank non-orthogonal to the formula
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σm(x) = xp
n

for some m > 0, n ∈ Z with n 6= 0, then A must be isomorphic
to a variety A′ defined over Fix(τ), where τ = σ−mφnp . This implies that the
field of definition of A is contained in a finite algebraic extension of Fix(τ), and
therefore is finite, since Fix(σ) ∩ Fix(τ l) = Fix(σ, φnlp ) ⊆ Fpnl .

Assume that A is defined over the finite field Fq fixed by σ. Let f(T ) ∈ Z[T ],
and consider the subgroup B of A(K) defined by the equation f(σ)(x) = 0. Let
α1, . . . , αr be the roots of f(T ) = 0 (in C). Going to some power of τ , we may
assume that σm and φnp commute with all elements of End(A) (and fix the field
of definition of A). To finish the discussion we need the following result of Weil
(see [Weil 1971] or [Mumford 1974, pp. 203 and 205]), which will also be used in
the proof:

Theorem. Let A be an abelian variety defined over a finite field Fq, and consider
the endomorphism φq : x 7→ xq of A. If ω1, . . . , ω2d are the roots in C of
the characteristic polynomial of φq on A(Falg

q ), then d = dim(A), the ωi’s are
algebraic integers of modulus |ωi| = q1/2, and q/ωi is among the ωj’s.

Hence, the endomorphism τ satisfies a functional equation g(T ) = 0 on B, where
the roots of g(T ) are of the form α−mi ωlj , where l is such that ql = pn. Thus, B
is orthogonal to Fix(τ) if and only if no α−mi ωlj is a root of unity.

Thus we obtain: B is modular if and only if α−mi ωlj 6= 1 for every i and j,
m 6= 0 and l.

5.8. Before going on with Hrushovski’s proof, we mention an easy corollary of
his characterisation of modular subgroups.

Proposition. Let A be a semi-abelian variety , and X a subvariety of A. As-
sume that m is an integer > 1 and prime to the characteristic of the field of
definition of A, such that [m]X = X. Then X = a+ C for some group subvari-
ety C of A and element a ∈ A[m− 1].

Proof. Let k be an algebraically closed field over which X and A are defined,
and embed k in a model (L, σ) of ACFA, with σ being the identity on k. By
assumption, if u is a generic of X, then so is [m]u, and they have the same
type (in the language of fields) over k. Hence, in L there is a generic u of X
such that σ(u) = [m]u. Consider the subgroup B of A defined by the equation
σ(x) = [m]x. Since m > 1 is prime to the characteristic of k, B is modular.
Hence, B ∩ X is a finite union of cosets of definable subgroups of B. On the
other hand, B∩X contains a generic point of X, which implies that one of these
cosets is Zariski dense in X. This shows that X = a + C for some algebraic
subgroup C of A. We also have: [m]X = [m]a+ C = X = a+ C, which implies
that [m−1]a ∈ C. Since C is divisible, we may choose a ∈ A[m−1]. �

5.9. Definable subgroups of Ga(K). The ring of endomorphisms of Ga de-
finable in the model (K,σ) of ACFA contains the twisted ring EndK(Ga)[σ, σ−1],
with the appropriate action of σ on EndK(Ga). If the characteristic is 0, then
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EndK(Ga) is canonically isomorphic to K. If the characteristic is p > 0, then
EndK(Ga) is generated over K by the Frobenius φp : x 7→ xp.

In characteristic 0, a definable subgroup of Ga(K) will be commensurable to
a subgroup defined by an equation

∑n
i=0 aiσ

i(x) = 0 for some n and a0, . . . , an ∈
K. One checks easily that a polynomial

∑n
i=0 aiσ

i with an = 1 can be written
as a product of linear terms of the form σ − a. Furthermore, if a 6= 0 then the
solution set of σ(x) = ax is non-orthogonal to the fixed field: if b1 and b2 are
two solutions then σ(b1/b2) = b1/b2.

5.10. Hypotheses and some notations. Let A be a commutative algebraic
group defined over a number field K. Choose a sequence (0) = D0 ⊂ D1 ⊂
· · · ⊂ Ds = A of algebraic subgroups of A such that each factor Di+1/Di is a K-
irreducible abelian variety or torus for i ≥ 1. Let {Ej} be a set of representatives
of the K-isogeny classes of the factors Di+1/Di and define d =

∑
dim(Ej). Note

that this number d does not change when we take powers of A.
We fix a prime p of good reduction, by which we mean: if Fq is the residue field

of K modulo p and D̄i denotes the algebraic set obtained by reducing modulo p,
then each D̄i is a reduced connected algebraic group. Moreover, for each i ≥ 1,
D̄i+1/D̄i and Di+1/Di have the same dimension and are of the same type (i.e.,
an abelian variety or a torus). We also request that D̄1 be a vector group.

We denote by Torp′(A) the subgroup of torsion elements of A of order prime
to p, and by Torp(A) the subgroup of torsion elements of A of order a power of
p. Then Tor(A) = Torp′(A)⊕ Torp(A).

5.11. Proposition. With notation as above, there is σ ∈ Aut(Qalg) and an
integral polynomial F (T ) with no roots of unity among its roots, such that F (σ)
vanishes on Torp′(A). Furthermore, the degree of F is at most 2d and the sum
of the absolute values of its coefficients is bounded by (1 + q1/2)2d.

Proof. Consider the Frobenius map φq : x 7→ xq defined on Falg
p , and let

σ ∈ Gal(Qalg/K) be a lifting of φq. Note first that our assumptions on p imply
that reduction modulo p induces an isomorphism Torp′(A) → Torp′(Ā). Thus,
for F (T ) ∈ Z[T ], if F (φq) vanishes on Torp′(Ā), then F (σ) will automatically
vanish on Torp′(A).

Note also that if f(T ), g(T ) ∈ C[T ], then the sum of the absolute values of the
coefficients of fg(T ) is no greater than the product of the sums of the absolute
values of the coefficients of f(T ) and of g(T ). It therefore suffices to show the
assertion for each of the factors D̄i+1/D̄i and for D̄1. Since D̄1 has no points
of order prime to p, we may take the constant polynomial 1. If D̄i+1/D̄i is
a K-simple abelian variety, then Weil’s result 5.7 gives us a monic polynomial
of degree 2 dim(D̄i+1/D̄i), with roots of modulus q1/2. Hence the sum of the
absolute values of the coefficients of this polynomial is ≤ (1+q1/2)2 dim(Di+1/Di).
Assume that D̄i+1/D̄i is a torus, isomorphic to Gnm via an algebraic map ϕ

defined over the finite field Fql . The Frobenius map on D̄i+1/D̄i induces an
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automorphism ψ of Gnm, which is the composition of θ = ϕ ◦ φq(ϕ)−1 with
raising to the q-th power in Gnm. Since θ ∈ End(Gnm) ' GLn(Z), it is left fixed
by φp. Hence,

θl = θ ◦ φq(θ) ◦ · · · ◦ φl−1
q (θ) = id,

which implies that the roots of the characteristic polynomial of θ in GLn(Z) are
roots of unity. Thus, the characteristic polynomial of ψ has degree n and its
roots have absolute value q. Going back to D̄i+1/D̄i we get the result.

Since we may choose the same polynomial within a K-isogeny class, we get
the correct bounds. �

5.12. Now comes the time to take care of the vector subgroup of G (a vector
group is an algebraic group isomorphic to a product of copies of the additive
group Ga). For that, we need two results, which we state below. The proof of the
Proposition uses model theory and the full strength of Theorem 4.1. In positive
characteristic the proof seems to work for quantifier-free definable subsets of G.
The proof of the lemma is purely algebraic.

Definition. Let A be a commutative algebraic group, and let V be the maximal
vector subgroup of A. A definable set X ⊆ A(K) is special if it is of the form
Y + C where Y is a definable subset of V (K) and C is a coset of a definable
subgroup of A(K). Similarly, an algebraic subset of A is special if it is of the
form Y +C where Y is an algebraic subset of V and C is a coset of an algebraic
subgroup of A.

Proposition. Assume characteristic 0. let (K,σ) |= ACFA and let A be a com-
mutative algebraic group defined over Fix(σ). Let F (T ) ∈ Z[T ] be a polynomial
with no root of unity among its roots, and let G = {g ∈ A(K) | F (σ)(g) = 0}.
Then every definable subset of G is a finite Boolean combination of special sub-
sets of G. If X is a subvariety of A, then X ∩ G is a finite union of special
subvarieties of A.

Lemma. Let A be a commutative algebraic group defined over Qalg, and T the
group of torsion points of A (or of prime-to-p torsion points of A). Let X be a
subvariety of A and assume that X ∩ T ⊆

⋃M
i=1Di, where each Di is a special

subvariety of X. Then the Zariski closure of X ∩ T is the union of at most M
cosets of group subvarieties of A. More precisely , for every i, Di ∩ T is either
empty or its Zariski closure is the coset of a group subvariety of A.

5.13. The qualitative result and reduction to the semi-abelian case.
Let A be a commutative algebraic group defined over the number field K, let
V be the maximal vector subgroup of A and B = A/V . We want to find
σ′ ∈ Gal(Qalg/K) and G(T ) ∈ Z[T ] such that G(σ′) vanishes on Tor(A). Since
the reduction map A→ B is injective on Tor(A), it suffices to find σ′ and G(T )
such that G(σ′) vanishes on Tor(B).
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By Proposition 5.11 applied to two primes p and l of good reduction for B,
there are σ ∈ Gal(K(Torp′(B))/K) and τ ∈ Gal(K(Torp(B))/K), and polyno-
mials Fp(T ), Fl(T ) ∈ Z[T ], with no roots of unity among their roots, and such
that Fp(σ) vanishes on Torp′(B) and Fl(τ) vanishes on Torp(B).

Using a result of Serre [1985/86], one can show that the field

L = K(Torp′(B)) ∩K(Torp(B))

is a finite Galois extension of K, over which K(Torp′(B)) and K(Torp(B)) are
linearly disjoint. Hence, for m = [L : K], there is σ′ ∈ Gal(Qalg/L) that extends
σm on K(Torp′(B)) and τm on K(Torp(B)). Let α1, . . . , α2d and β1, . . . , β2d be
the roots of Fp(T ) and Fl(T ) respectively, and define

G(T ) =
2d∏
i=1

(T − αmi )(T − βmi ).

Then G(σ′) vanishes on Tor(B), and Ker(G(σ′)) defines a modular subgroup of
B in any model of ACFA extending (Qalg, σ′).

This shows immediately, by the two results in Section 5.12, that the Zariski
closure of X ∩ Tor(A) is the union of finitely many cosets of group subvarieties
of A. However, since we don’t know [L : K], we cannot expect to get an explicit
bound on the number of cosets. To get the explicit bound we reduce to the
semi-abelian case via the following observation:

Let Y be the image of X in B. Then the map A → B, which is injective on
Tor(A), establishes a bijection between the irreducible components of the Zariski
closure of X ∩ Tor(A) and the irreducible components of the Zariski closure Z
of Y ∩ Tor(B). Thus the Zariski closure of X ∩ Tor(A) is the union of at most
deg(Z) cosets of algebraic subgroups of A. So, we have

Theorem. Let A be a commutative algebraic group defined over the number field
K, let X be a subvariety of A. Then X ∩Tor(A) =

⋃M
i=1 ai+Tor(Ai) where each

Ai is an algebraic subgroup of A. Let V be the maximal vector subgroup of A,
and Y the image of X in B = A/V . The number M is bounded by the number
of irreducible components of the Zariski closure of Y ∩ Tor(B).

5.14. Theorem (The bound on M in the case of the p′-torsion sub-

group). Let A be a commutative algebraic group over a number field K, let X
be a subvariety of A, and fix a prime p such that A has good reduction at p. Let
q be the size of the residue field of K at p. Then

X ∩ Torp′(A) =
M⋃
i=1

ai + Torp′(Ai),

where each Ai is an algebraic subgroup of A. If d ≤ dim(A) is defined as in
Section 5.10, and if d+ is the degree of the graph of addition in A3, then

M ≤
(
deg(X)2d+1d

2d2(2d+1)(log2(1+q1/2)+1)2

+

)2d dim(X)

.
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Proof. Choose σ and F (T ) =
∑2d
i=0miT

i as in 5.11, and work in a model
of ACFA extending (Q̃, σ). Let S̃ = KerF (σ) and consider the subgroup
S of A2d+1 defined by {(a0, . . . , a2d) ∈ A2d+1 |

∑2d
i=0[mi]ai = 0}. Using

the fact that
∑
i |mi| ≤ (1 + q1/2)2d, and that multiplication by a number

M ≥ 2 can be achieved with log2(M)(log2(M) + 1)/2 additions, one obtains

deg(S) ≤ d2d2(2d+1)(log2(1+q1/2)+1)2

+ . Let Z be the Zariski closure of S̃∩X. Then
5.3 gives

deg(Z) ≤ (deg(X)2d+1 deg(S))22d dim(X)
.

Furthermore, by modularity of S̃, Z consists of cosets of algebraic subgroups
of A. Each of these cosets intersects Torp′(A) in either the empty set or a Zariski
dense set. This gives the result. �

5.15. The whole torsion subgroup. Finding the bound on M in the case of
all torsion is rather involved. By the qualitative result in Section 5.13 we may
assume that A is semi-abelian. Fix two primes p and l of good reduction for A,
and let Fp(T ), Fl(T ) ∈ Z[T ] and σ, τ ∈ Aut(Qalg) be as in 5.13. Choose also
some (Kp, σ) and (Kl, τ) models of ACFA and extending (Qalg, σ) and (Qalg, τ)
respectively. We may, and will, identify the fields Kp and Kl. That is, we are
working in a large algebraically closed field Kp = Kl, with two distinguished
automorphisms σ and τ . Write Fp(T ) =

∑2d
i=0miT

i and Fl(T ) =
∑2d
i=0 niT

i.
Put

Sq =

{
(a0, . . . , a2d)

∣∣∣∣∑
i

[mi]ai = 0

}
and

S̃q =
{
a ∈ A(Kp) | (a, σ(a), . . . , σ2d(a)) ∈ Sq

}
,

and define the sets Sl and S̃l similarly. The groups S̃q and S̃l are modular in the
structures (Kp, σ) and (Kl, τ) respectively.

Set also

ω1 = 2d dim(X) (≤ 2d dim(A)), ω2 = 2ω1 + 1, ω3 = 2dω2 dim(A).

We know that if b is any element of A, then (X − b) ∩ S̃q is of the form
Cb(Kp) ∩ S̃q, with Cb(Kp) ∩ S̃q Zariski dense in Cb, and where Cb is a finite
union of cosets of algebraic subgroups of A; moreover we know that Cb is defined
over L(σ−ω1(b), . . . , σω1(b)), where L = σ(L) is a finite Galois extension of K
over which X is defined.

We first define the various components of Cb uniformly in b. For that we need
to look at the Zariski closure of the set (σ−ω1(b), . . . , σω1(b), a) when b ranges
over A(Kp), a ∈ S̃q and a+ b ∈ X, and more precisely at the algebraic set which
defines it, i.e., at the algebraic subset S of (Aω2 ×A)2d+1 defined by:

(1) (x0, . . . , x2d) ∈ Sq;
(2) (xi + y0,i) ∈ σi(X) for 0 ≤ i ≤ 2d;
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(3) yj,i+1 = yj+1,i for 0 ≤ i ≤ 2d− 1, −ω1 ≤ j ≤ ω1.

A word about the indices: xi corresponds to σi(a), and yj,i to σi(σj(b)). One
verifies that

dim(S) = 2d dim(A) + (2d+ 1) dim(X) + 2ω1 dim(A) ≤ (4d+ ω2) dim(A),

deg(S) ≤ deg(A)2ω1 deg(Sq)(deg(X)d+)2d+1.

We now apply Lemma 5.4 to S and obtain a set of irreducible subvarieties
Wi of Aω2 × A, such that, if ρ : Aω2 × A→ Aω2 is the projection, the following
conditions hold:

(i) If (b, a) ∈ S̃ =def {(b, a) | ((b, a), . . . , σ2d(b, a)) ∈ S}, then for some i we have
(b, a) ∈Wi and b /∈W ∗i .

(ii) The set W̃i = Wi(Kp) ∩ S̃ is Zariski dense in Wi.
(iii)

∑
i deg(Wi) ≤

∑dim(S)
i=0 deg(S)2i ≤ 2 deg(S)2dim(S)

.

By (ii) we may choose (b, a) ∈ S̃ which is a generic of Wi (in the sense of
the Zariski topology). Since Wi is irreducible, we know that the irreducible
components of ρ−1(b) ∩ Wi are conjugate over L(b). Since S̃q is modular we
also know that these components are cosets of some algebraic subgroups of A.
Let Ai be the algebraic subgroup of A such that the component of ρ−1(b) ∩Wi

containing (b, a) is a coset of Ai. If c is a generic of Ai, then (b, a+c) is a generic
of ρ−1(b) ∩Wi and therefore (b, a + c) is a generic of Wi. Since Wi is closed
this shows that Wi = Wi + ((0) × Ai), and therefore that for every y ∈ ρ(Wi),
ρ−1(y) ∩Wi is a union of cosets of Ai. Furthermore these cosets are finite in
number if y /∈W ∗i .

5.16. Working on Wi. Fix i, let W 0
i = Wi \ ρ−1(W ∗i ), Bi = A/Ai and let

θi : A → Bi be the natural projection. For j ∈ Z let τ j(Bi) = A/τ j(Ai) and
τ j(θi) = τ jθiτ

−j : A→ τ j(Bi). Define also B′i =
∏ω3
j=0 τj(Bi), C = Aω2 .

We are interested in the set Θi = {(b, θi(a)) | (b, a) ∈ W̃i, b /∈ W ∗i , b ∈ S̃
ω2
l }.

Note that if (b, c) ∈ Θi then c ∈ L(b)alg. From degτ (b) ≤ 2dω2 dim(A) = ω3 we
deduce that degτ (c) ≤ ω3.

Let R ⊆ Cω3+1 be defined by

R =

{
(y0, . . . , yω3) ∈ Cω3+1

∣∣∣∣ 2d∑
j=0

[nj ]yi+j = 0 for 0 ≤ i ≤ ω3 − 2d

}
.

Then dim(R) = ω3 and deg(R) ≤ deg(Sl)ω2(ω3−2d+1). Consider now the closed
set Ui ⊆ (C×Bi)× (C×τ(Bi))×· · ·× (C×τω3(Bi)) which is the Zariski closure
of the set of tuples ((y0, z0), . . . , (yω3 , zω3)) satisfying:

– (y0, . . . , yω3) ∈ R.
– For every 0 ≤ j ≤ ω3, and xj such that τ j(θ)(xj) = zj , (yj , xj) ∈ τ j(W 0

i ).
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We also let Vi be the image of Ui in B′i under the natural projection

(C ×A)ω3+1 → Aω3+1 →
ω3∏
j=0

τ j(Bi).

Then deg(Vi) ≤ deg(Ui) ≤ deg(R) deg(Wi)ω3+1, and dim(Ui) = dim(Vi) ≤
dim(R) ≤ ω3.

By Theorem 5.14 the Zariski closure Zi of Vi ∩ Tp′(B′i) is a finite union of
cosets of definable subgroups of B′i, and dim(Zi) ≤ ω3. Moreover,

deg(Zi) ≤ (deg(Vi)2d+1 deg(Sq)ω3+1)22d dim(R)
.

Claim. Z̃i,τ = {a ∈ Bi | (a, τ(a), . . . , τω3(a)) ∈ Zi} is a finite union of cosets of
τ -definable subgroups of Bi of finite SU-rank.

Proof. Being a coset of a subgroup is a property preserved under homomor-
phisms and intersections. The first assertion follows since Z̃i,τ is obtained from
Zi using projections, intersections, and the maps τ, τ−1.

Let a be a generic of Z̃i,τ . Since dim(Zi) ≤ ω3, we have

tr deg(a, τ(a), . . . , τω3(a)) ≤ ω3,

which implies that degτ (a) <∞ and that the SU-rank of Z̃i,τ in (Kl, τ) is finite.
�

Now consider the set

Ũi,τ =
{

(b, a) ∈ S̃ω2
l ×Bi | ((b, a), . . . , τω3(b, a)) ∈ Ui, (a, . . . , τω3(a)) ∈ Zi

}
.

Since Zi ⊆ B′i and ((b, a), . . . , τω3(b, a)) ∈ Ui implies b ∈ S̃ω2
l , Lemma 5.3

implies that the Zariski closure of Ũi,τ has degree ≤ (deg(Ui) deg(Zi))2dim(R)
,

and Ũi,τ ⊆ S̃ω2
l × Z̃i,τ . By the claim, Z̃i,τ is a union of cosets of definable

subgroups of Bi of finite SU-rank. We also know that Z̃i,τ is modular (since
every element in it is algebraic over a tuple from S̃l). Hence, every definable
subset of S̃ω2

l × Z̃i,τ is a Boolean combination of cosets of definable subgroups
of Aω2 ×Bi.

This implies that {(θ−1
i (a) + b0) | (b−ω1 , . . . , bω1 , a) ∈ Ũi,τ} is the union of at

most (deg(Ui) deg(Zi))2dim(R)
cosets of definable subgroups of A.

5.17. Theorem. Let A be a commutative algebraic group defined over a number
field K and X a subvariety of A. Then the Zariski closure of X∩Tor(A) consists
of finitely many cosets of algebraic subgroups of A, and a bound on the number
M of these cosets can be effectively computed (modulo the choice of the primes
p and l).

Proof. The first assertion is proved in Section 5.13. It remains to show that
the results of the previous paragraph give us the bound. For that we need to
show:
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Claim. If c ∈ Tor(A) ∩X, if c = a+ b with a ∈ Torp′(A) and b ∈ Torp(A) and
b∗ = (σ−ω1(b), . . . , σω1(b)), then (b∗, θi(a)) ∈ Ũi,τ for some i.

By definition, a ∈ S̃q and a+b ∈ X so that (b∗, a) ∈ S̃ (see Section 5.15). Choose
i such that (b∗, a) ∈W 0

i . Then τ j(b∗, a) ∈ τ j(W 0
i ) and τ j(b∗) ∈ S̃ω2

l for every j.
Hence, ((b∗, θi(a)), . . . , τω3(b∗, θi(a)) ∈ Ui, so that (b∗, θi(a)) ∈ Ũi,τ . �

Note also that if (c−ω1 , . . . , cω1 , d) ∈ Ũi,τ , then (c0 + d) ∈ X, so that the Zariski
closure of the coset containing a+ b is contained in X.

To conclude, we obtain the following bound on the number of cosets: M

is bounded by the sum over i of the degrees of the Zariski closures of Ũi,τ .
Unwinding, we get

M ≤
∑
i

deg Ũi,τ ≤
∑
i

(deg(Ui) deg(Zi))2ω3
,∑

i

deg(Ui) deg(Zi) ≤ deg(Sq)(ω3+1)22dω3
∑
i

deg(Vi)(2d+1)22dω3+1,∑
i

deg(Vi) ≤ deg(Sl)ω2(ω3−2d+1)
∑
i

deg(Wi)ω3+1,∑
i

deg(Wi) ≤ 2 deg(S)2dim(S)

≤ 2(deg(A)2ω1 deg(Sq) deg(X)2d+1d2d+1
+ )2(4d+ω2) dim(A)

,

so that
M ≤ 2M1 deg(Sq)M2 deg(Sl)M3 deg(A)M4(d+ deg(X))M5 ,

where
M1 = (ω3 + 1)((2d+ 1)22dω3 + 1)2ω3 ,

M2 = 2(4d+ω2) dim(A)M1 + (ω3 + 1)2(2d+1)ω3 ,

M3 = ω2(ω3 − 2d+ 1)((2d+ 1)22dω3 + 1)2ω3

M4 = 2ω12(4d+ω2) dim(A)M1,

M5 = (2d+ 1)2(4d+ω2) dim(A)M1.

The order of magnitude of ω3 is 8d2 dim(A) dim(X) ≤ 8d2 dim(A)2.

6. Some Other Applications

In this section we state without proofs some other applications of the results
on difference fields. We start with a result of Hrushovski, and conclude with two
results by T. Scanlon.

6.1. Reduction of a conjecture of Lang. Let A be a commutative algebraic
group defined over a number field K, let Γ be the division group of A(K), i.e., the
set of elements a ∈ A(Kalg) such that [m]a ∈ A(K) for some non-zero integer m.
A conjecture of Lang states that if X is a subvariety of A containing no cosets
of infinite algebraic subgroups of A, then X ∩ Γ is finite.
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The techniques used in the previous paragraph give the following reduction
of the conjecture (also proved by Raynaud, Hindry, McQuillan), with effective
bounds:

Theorem [Hrushovski 1995]. Let A be a commutative algebraic group defined
over a number field , and let Γ be the division group of A(K). Suppose that
X is a subvariety of A, containing no cosets of infinite algebraic subgroups of
A. One can effectively find an integer M such that Γ ∩ X(Kalg) ⊆ 1

MA(K).
Moreover one can effectively find coset representatives ri of A(K)/MA(K) such
that Γ ∩X(Kalg) ⊆

⋃
i
ri
M +A(K).

Idea of the proof. Fix a prime p of good reduction for A and let Γp′ denote
the p′-division subgroup of A(K), i.e. we require that the integer m in the
definition of division group be prime to p. Let Fq be the residue field of K at
p, σ a lifting of the Frobenius φq : x 7→ xq to K, and Fp(T ) ∈ Z[T ] the Weil
polynomial.

One first shows that (σ − 1)Fp(σ) vanishes on Γp′ . Using the fact that
Ker(Fp(σ)) is orthogonal to the fixed field and the assumption on X, one then
shows that that X(Kalg)∩Ker((σ−1)Fp(σ)) is contained in finitely many cosets
of Ker(σ − 1) = A(Fix(σ)). From this one deduces a number Mp such that
Mp(X(Kalg) ∩ Γp′) ⊆ A(K).

Choosing another prime l of good reduction for A one obtains a number Ml

such that Ml(X(Kalg) ∩ Γl′) ⊆ A(K). Then MpMl(X(Kalg) ∩ Γ) ⊆ A(K). The
bound MpMl is effective, modulo the choice of the two primes p and l. �

6.2. Conjecture (Tate and Voloch). Let G be a semi-abelian variety
defined over Cp, and let X be a subvariety of G. There is a constant N such
that for any P ∈ Tor(G), either P ∈ X or d(P,X) > N .

Here Cp is the completion of the algebraic closure of Qp (with respect to the
p-adic valuation on Qalg

p ), and d(P,X) is a p-adic distance associated to the valu-
ation. IfX is a subvariety of an affine space, one defines d(P,X)=max{p−v(f(P )) |
f ∈ I}, where I is the ideal of polynomials defining X. In the general case, one
extends the definition by using a cover by affine sets.

When G is a torus, this conjecture is a theorem [Tate and Voloch 1996]. Hru-
shovski [1996a] proved the conjecture when G is over Qalg

p , has good reduction,
and for prime-to-p torsion points. Scanlon [1998; 1999a] proved the conjecture
when G is defined over Qalg

p . He considers liftings σ of the Frobenius, a Weil
polynomial Fq(T ), and uses the fact that Tor(G) ⊆ Ker((σ − 1)Fq(σ)).

6.3. Drinfeld modules. Let K be an algebraically closed field of positive char-
acteristic p and of positive transcendence degree. Consider the ring EndK(Ga)
of endomorphisms of Ga defined over K. Then EndK(Ga) is isomorphic to the
twisted polynomial ring K[φp]. Let A = Fp[T ] and view it as a subring of K, by
identifying T with some transcendental t ∈ K.
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A Drinfeld module (over A) is given by a ring homomorphism ϕ : A →
EndK(A) so that if ϕ(T ) =

∑n
i=0 aiφ

i
p, then a0 = t and an = 1.

Theorem [Scanlon 1999b]. Let ϕ be a Drinfeld module. Consider KN as an
A-module via ϕ. If X is a subvariety of KN then the intersection of X, the
A-torsion subgroup of KN (that is, {x ∈ KN | ϕ(a)(x) = 0 for some non-
zero a ∈ A}) is a finite union of translates of A-torsion subgroups of algebraic
subgroups of KN .
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