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Recent Techniques in Hyperbolicity Problems

YUM-TONG SIU

Abstract. We explain the motivations and main ideas regarding the new
techniques in hyperbolicity problems recently introduced by the author
and Sai-Kee Yeung and by Michael McQuillan. Streamlined proofs and
alternative approaches are given for previously known results.

We say that a complex manifold is hyperbolic if there is no nonconstant holo-
morphic map from C to it. This paper discusses the new techniques in hyper-
bolicity problems introduced in recent years in a series of joint papers which I
wrote with Sai-Kee Yeung [Siu and Yeung 1996b; 1996a; 1997] and in a series of
papers by Michael McQuillan [McQuillan 1996; 1997]. The goal is to explain the
motivations and the main ideas of these techniques. In the process we examine
known results using new approaches, providing streamlined proofs for them.

The paper consists of three parts: an Introduction, Chapter 1, and Chapter 2.
The Introduction provides the necessary background, states the main problems,
and discusses the motivations and the main ideas of the recent new techniques.
Chapter 1 presents a proof of the following theorem, using techniques from dio-
phantine approximation.

Theorem 0.0.1. Let m̂ be a positive integer . Let Vλ (1 ≤ λ ≤ Λ) be regular
complex hypersurfaces in Pn of degree δ in normal crossing . Let ϕ : Cm̂ → Pn
be a holomorphic map whose image is not contained in any hypersurface of Pn.
Then the sum of the defects

∑Λ
λ=1 Defect(ϕ, Vλ) is no more than ne for any δ ≥ 1

and is no more than n+ 1 for δ = 1.

Chapter 2 presents a streamlined proof of the following result:

Theorem 0.0.2 [Siu and Yeung 1996a]. The complement in P2 of a generic
curve of sufficiently high degree is hyperbolic.

An overview of the proof of these two theorems can be found in Section 0.10
(page 446).
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Introduction

0.1. Statement of Hyperbolicity Problems. Hyperbolicity problems have
two aspects, the qualitative aspect and the quantitative aspect. The easier qual-
itative aspect of the hyperbolicity problems is to prove that certain classes of
complex manifolds are hyperbolic in the following sense. A complex manifold
is hyperbolic if there is no nonconstant holomorphic map from C to it. There
are two classes of manifolds which are usually used to test techniques introduced
to prove hyperbolicity. One class is the complement of an ample divisor in an
abelian variety, or a submanifold of an abelian variety containing no translates
of abelian subvarieties. The second class is the complement of a generic hyper-
surface of high degree (at least 2n+ 1) in the n-dimensional projective space Pn
or a generic hypersurface of high degree (at least 2n− 1 for n ≥ 3) in Pn. The
general conjecture is that any holomorphic map from C to a compact complex
manifold with ample canonical line bundle (or even of general type) must be
algebraically degenerate in the sense that its image is contained in a complex
hypersurface of the manifold.

The harder quantitative aspect of the hyperbolicity problems is to get a defect
relation. The precise definition of defect will be given below. Again there are two
situations which are usually used to test new techniques to get defect relations.
The first situation is to show that the defect for an ample divisor in an abelian
variety is zero. The second situation is to show that for any algebraically nonde-
generate holomorphic map from C to Pn the sum of the defects for a collection
of hypersurfaces of degree δ in normal crossing is no more than (n+ 1)/δ. The
general conjecture is that, for any algebraically nondegenerate holomorphic map
from C to a compact complex manifold M and for a positive line bundle L on
M , the sum of the defects for a collection of hypersurfaces in normal crossing
is no more than γ if each hypersurface is the divisor of a holomorphic section
of L and if (γ + ε)L +KM is positive for any positive rational number ε. Here
KM means the canonical line bundle of M and the positivity of the Q-bundle
(γ + ε)L +KM means that some high integral multiple of (γ + ε)L + KM is a
positive line bundle.

So far as hyperbolicity problems are concerned, whatever can be done for
abelian varieties can also usually be done, with straightforward modifications,
for semi-abelian varieties. So we will confine ourselves in this paper only to
abelian varieties and not worry about the seemingly more general situation of
semi-abelian varieties.

We now state more precisely what has been recently proved and what conjec-
tures remain unsolved. We do not include here a number of very recent results
available in preprint form whose proofs are still in the process of being studied
and verified.

Since at this point the major difficulties of the hyperbolicity problems al-
ready occur in the case of abelian varieties and the complex projective space, we
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will confine ourselves to abelian varieties and the complex projective space and
will not elaborate further on the case of a general compact projective algebraic
manifold.

Theorem 0.1.1 [McQuillan 1996; Siu and Yeung 1996b; 1997]. The defect of
an ample divisor in an abelian variety is zero. In particular , the complement of
an ample divisor in an abelian variety is hyperbolic.

Conjecture 0.1.2. The complement in Pn of a generic hypersurface of degree
at least 2n+ 1 is hyperbolic.

Conjecture 0.1.3. A generic hypersurface of degree at least 2n − 1 in Pn is
hyperbolic for n ≥ 3.

For dimensions higher than 1, one known case for Conjecture 0.1.2 is the follow-
ing.

Theorem 0.1.4 [Siu and Yeung 1996a]. The complement in P2 of a generic
curve of sufficiently high degree is hyperbolic.

There are many partial results in cases when the hypersurface in Conjecture
0.1.2 or Conjecture 0.1.3 is not generic and either has many components or is of
a special form such as defined by a polynomial of high degree and few nonzero
terms. Since there are already quite a number of survey papers about such
partial results for non generic hypersurfaces (for example [Siu 1995]), we will not
discuss them here.

In the formal analogy between Nevanlinna theory and diophantine approxi-
mation [Vojta 1987], Conjecture 0.1.2 corresponds to the theorem of Roth [Roth
1955; Schmidt 1980] and Conjecture 0.1.3 corresponds to the Mordell Conjecture
[Faltings 1983; 1991; Vojta 1992]. For that reason very likely a proof of Con-
jecture 0.1.3 may require some techniques different from those used in a proof
of Conjecture 0.1.2. For example, the analog of Theorem 0.1.4 for the setting
of Conjecture 0.1.3 is still open. The most difficult step in the proof of Theo-
rem 0.1.4, which involves the argument of log-pole jet differentials and touching
order, uses in an essential way the disjointness of the entire holomorphic curve
from the generic curve of sufficiently high degree (see Remarks 0.3.1 and 0.3.2
and also Section 2.8).

For quantitative results involving defects the basic conjecture in the complex
projective space is the following.

Conjecture 0.1.5. Let Vλ (1 ≤ λ ≤ Λ) be regular complex hypersurfaces
in Pn of degree δ in normal crossing . Let ϕ : C → Pn be a holomorphic map
whose image is not contained in any hypersurface of Pn. Then the sum of defects∑Λ
λ=1 Defect(ϕ, Vλ) is no more than (n+ 1)/δ.

The main difficulty of the conjecture occurs already for a single hypersurface.
If there is a method to handle the case of a single hypersurface for Conjecture
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0.1.5, very likely the same method works for the general case of a collection of
hypersurfaces in normal crossing. Though the conjecture for a single hypersur-
face does not imply immediately Conjecture 0.1.2, it is very likely that its proof
can be modified to give Conjecture 0.1.2. An example by Biancofiore [1982]
shows that the algebraic nondegeneracy condition in Conjecture 0.1.5 cannot be
replaced by the weaker condition that the image of ϕ is not contained in any
hypersurface of degree δ.

0.2. Characteristic Functions, Counting Functions, Proximity Func-
tions, and Defects. We now give certain definitions needed for precise discus-
sion. Let M be a compact complex manifold with a positive holomorphic line
bundle L whose positive definite curvature form is θ. Let s be a holomorphic
section of L over M whose zero-divisor is W . Let ϕ : C →M be a holomorphic
map. We multiply the metric of L by a sufficiently large positive constant so
that the pointwise norm ‖s‖ of s with respect to the metric of L is less than 1
at every point of M . The characteristic function is defined by

T (r, ϕ, θ) =
∫ r

ρ=0

dρ

ρ

∫
|ζ|<ρ

ϕ∗θ

which changes by a bounded term as r → ∞ when another positive definite
curvature form of L is used. Let n(ρ, ϕ∗W ) denote the number of zeroes (with
multiplicities) of the divisor ϕ∗W in {|ζ| < ρ}. The counting function is defined
as

N(r, ϕ,W ) =
∫ r

ρ=0

n(ρ, ϕ∗W )
dρ

ρ

which we also denote by N(r, ϕ, s). When Z is a divisor in C, we also denote by
n(ρ, Z) the number of zeroes (with multiplicities) of the divisor Z in {|ζ| < ρ}
and define

N(r, Z) =
∫ r

ρ=0

n(ρ, Z)
dρ

ρ
.

Let
∮
|ζ|=r denote the average over the circle {|ζ| = r}. The proximity function

is defined by

m(r, ϕ, s) =
∮
|ζ|=r

log
1

‖ϕ∗s‖
which changes by a bounded term as r →∞ when another metric of L is used.
We will denote m(r, ϕ, s) also by m(r, ϕ,W ). The defect is defined as

Defect(ϕ, s) = liminfr→∞
m(r, ϕ, s)
T (r, ϕ, θ)

which we also denote by Defect(ϕ,W ). Let σ be a positive number and let
ϕ̃σ(ζ) = ϕ(σζ). Then from the definitions we have

T (r,ϕ, θ) =T
(
r

σ
, ϕ̃σ , θ

)
, N(r,ϕ, s) =N

(
r

σ
, ϕ̃σ , s

)
, m(r,ϕ, s) =m

(
r

σ
, ϕ̃σ, s

)
.
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When M = Pn and L is the hyperplane section line bundle of Pn and θ is
the Fubini–Study form, we simply denote T (r, ϕ, θ) by T (r, ϕ). In the case a
holomorphic map from Cm̂ to M , its characteristic function, counting function
and proximity function is defined by computing those of the restriction of the
map to a complex line in the complex vector space Cm̂ and then averaging over
all such complex lines. Its defect is defined in the same way from its proximity
function and its characteristic function as in the case m̂ = 1.

There is an alternative description of the characteristic function in the case
of the complex projective space and we need this alternative description for the
dimension one case later. For a holomorphic map ϕ from C to Pn we can use
the homogeneous coordinates of Pn and represent ϕ in the form [ϕ0, . . . , ϕn] by
n+ 1 holomorphic functions ϕj (0 ≤ j ≤ n) without common zeroes on C. Let
θ be the Fubini–Study form on Pn. Then

ϕ∗θ =
√
−1

2π
∂∂̄ log(

n∑
j=0

|ϕj|2)

and two integrations give

T (r, ϕ, θ) =
∮
|ζ|=r

1
2 log

( n∑
j=0

|ϕj|2
)
− 1

2 log

( n∑
j=0

|ϕj(0)|2
)
.

Since

max
0≤j≤n

log |ϕj| ≤ 1
2

log

( n∑
j=0

|ϕj|2
)
≤ 1

2
log
(
(n+ 1) max

0≤j≤n
log |ϕj|2

)
≤ max

0≤j≤n
log |ϕj|+ 1

2
log(n+ 1),

it follows that up to a bounded term the characteristic function T (r, ϕ, θ) can be
described by

∮
|ζ|=r max0≤j≤n log |ϕj|.

Consider the special case n = 1. The characteristic function T (r, ϕ) up to a
bounded term is equal to∮

|ζ|=r
max (|ϕ0|, |ϕ1|) =

∮
|ζ|=r

log |ϕ0|+
∮
|ζ|=r

max
(

1, log
∣∣∣ϕ1

ϕ0

∣∣∣)
= log |ϕ(0)|+N(r, ϕ0, 0) +

∮
|ζ|=r

log+
∣∣∣ϕ1

ϕ0

∣∣∣.
Here log+ means the maximum of log and 0. Thus for a single meromorphic
function F the characteristic function for the map C → P1 defined by F is
equal to ∮

|ζ|=r
log+ |F |+N(r, F,∞)

up to a bounded term.
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0.3. The Approach of Jet Differentials. There are two different approaches
to proving hyperbolicity. One originated with Bloch [1926], who introduced the
use of holomorphic jet differentials vanishing on some ample divisor. Another
has its origin from the theory of diophantine approximation. From our present
understanding of the so-called Ahlfors–Schwarz lemma for jet differentials, the
technique of jet differentials and the technique of diophantine approximation
share the same origin of using meromorphic functions of low pole order with high
vanishing order, as explained later in this section by means of the logarithmic
derivative lemma.

A holomorphic (respectively meromorphic) k-jet differential ω of total weight
m on a complex manifold M with local coordinates z1, . . . , zn is locally a poly-
nomial, with holomorphic (respectively meromorphic) functions as coefficients,
in the variables dlzj (1 ≤ l ≤ k, 1 ≤ j ≤ n) and of homogeneous weight m
when dlzj is given the weight l. A meromorphic k-jet differential M is said to
be a log-pole k-jet differential M if it is locally a polynomial, with holomorphic
functions as coefficients, in the variables dlzj , dν log gλ (1 ≤ l ≤ k, 1 ≤ j ≤ n,
1 ≤ ν ≤ k, 1 ≤ λ ≤ Λ), where the gλ (1 ≤ λ ≤ Λ) are local holomorphic func-
tions whose zero-divisors are contained in a finite number of global nonnegative
divisors of M .

The key step in the approach using holomorphic jet differentials is what is
usually referred to as the Ahlfors–Schwarz lemma or simply as the Schwarz
lemma which says the following. If ϕ is a holomorphic map from C to a complex
manifoldM and if ω is a holomorphic (or log-pole) k-jet differential on M which
vanishes on an ample divisor of M (and the image of ϕ is disjoint from the
log-pole of ω), then ϕ∗ω is identically zero on C.

Remark 0.3.1. In the Schwarz lemma for log-pole jet differentials, the image
of the map has to be disjoint from the log-pole of the jet differential. This is one
of the main reasons why Conjecture 0.1.3 may require some techniques different
from those used in a proof of Conjecture 0.1.2. It is the same reason why the
proof of Theorem 0.1.4 cannot be readily modified to yield its analog in the
setting of Conjecture 0.1.3.

Remark 0.3.2. Nevanlinna’s original theory already makes use of the log-pole
differential ( m∏

j=1

1/(z − aj)
)
dz

on P1 with affine coordinate z for m ≥ 3. Note that, in the Schwarz lemma, the
vanishing of the pullback of a meromorphic jet differential vanishing on some
ample divisor requires the following two key ingredients. The first one is that
only log-pole singularities are allowed. Other kinds of pole orders are not allowed.
The second one is that the image of the map has to be disjoint from the log-pole.
Since the two key ingredients are already essential in the case M = P1, one
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cannot weaken the two requirements by simply assuming that the poles of the
meromorphic jet differential are in some normal form.

We denote by Jk(M) the bundle of all k-jets of M so that J1(M) is simply the
tangent bundle of M . An element of Jk(M) at a point P of M is defined by
a holomorphic map γ : U → M for some open neighborhood U of 0 in C with
γ(0) = P and another γ̃ defines the same element of Jk(M) if γ and γ̃ agree up
to order k at 0.

Define the map dkϕ : C → Jk(M) so that its value at ζ ∈ C is the k-jet at
ϕ(ζ) ∈M defined by the curve ϕ : C →M . The Schwarz lemma means that the
image of C under ϕ satisfies the differential equation ω = 0. For this, it suffices
to have the k-jet differential ω defined as a function on (dkϕ)(C) instead of on
all of Jk(M). When we have enough independent differential equations of such a
kind, we can eliminate the derivatives of ϕ from the differential equations to get
the constancy of the map ϕ and conclude hyperbolicity. An equivalent way of
looking at it is to get hyperbolicity by constructing a holomorphic (or log-pole)
k-jet differential on the Zariski closure in Jk(M) of ϕ(C) which vanishes on an
ample divisor. It suffices also to construct a collection of local holomorphic (or
log-pole) k-jet differential onM vanishing on an ample divisor so that they can be
pieced together to give a well defined function on the Zariski closure of (dkϕ)(C)
in Jk(M). Here the Zariski closure of (dkϕ)(C) in Jk(M) means the intersection
with Jk(M) of the Zariski closure of (dkϕ)(C) in the compactification of Jk(M).

The geometric reason for the Schwarz lemma can be heuristically explained
as follows. The existence of a holomorphic section ω of the k-jet bundle Jk(M)
which vanishes on an ample divisor D means that Jk(M) carries certain posi-
tivity. The pullback ϕ∗ω is a holomorphic section of Jk(C) and vanishes on the
pullback of the zero divisor of ω. On the other hand, since the bundle Jk(C) over
C is globally trivial, there is no positivity of Jk(C) to support the zero divisor of
the holomorphic section ϕ∗ω which contains ϕ∗D if ϕ∗ω is not identically zero.

A so-called pointwise version of the Schwarz lemma could be formulated and
proved by using arguments involving curvature or some generalized notion of it
(see for example [Siu and Yeung 1997]). Such a pointwise version implies the
Schwarz lemma just stated. However, the most natural proof of the Schwarz
lemma is from the use of the logarithmic derivative lemma in Nevanlinna theory.
Let F (ζ) denote the value of ω at (dkϕ)(ζ) ∈ Jk(M). Assume that ϕ∗ω is not
identically zero and we will get a contradiction. For some suitable coordinate ζ
of C, the holomorphic function F (ζ) is not identically zero. The characteristic
function T (r, F ) of F is computed by

T (r, F ) =
∮
|ζ|=r

log+ |F (ζ)|.

The key point is that ω is dominated in absolute value by a polynomial with
constant coefficients of a finite number of variables of the form dl log g with
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1 ≤ l ≤ k for some meromorphic functions g on M . The logarithmic derivative
lemma says that ∮

|ζ|=r
log+ |dl log g(ϕ(ζ))| = O(logT (r, ϕ))

for l ≥ 1. (Note that later on, when we have inequalities derived from the
logarithmic derivative lemma, they will hold only outside a set of finite measure
with respect to dr/r. This is not made explicit in the notation, but it should not
cause confusion.) Hence T (r, F ) = O(logT (r, ϕ)). On the other hand, since ω
vanishes on an ample divisor of M , we must have T (r, F ) ≥ N(r, F, 0) ≥ cT (r, ϕ)
for some positive c, giving T (r, ϕ) = O(logT (r, ϕ)) which contradicts ϕ being
a nonconstant map. This proof works also when ω is a k-jet differential with
at most log-pole singularities vanishing on an ample divisor if the image of ϕ is
disjoint from the log-pole. The idea of this proof in the case of an abelian variety
was already in [Bloch 1926] and for the case of a general complex manifold was
already in [Ru and Wong 1995]. The proof can be interpreted by the pole-order
and the vanishing order in the spirit of the method of diophantine approximation
as follows. The pullback of the holomorphic 1-jet differential when regarded as
a holomorphic function must vanish because the logarithmic derivative lemma
takes care of the differentials so that the characteristic function is less than the
case of the pole order of any ample divisor but the counting function is like the
case of the vanishing order of an ample divisor.

When it comes to the quantitative aspect involving defects, the approach of
jet differentials uses jet differentials with low pole-order but high vanishing order
along the hypersurfaces whose defects are under consideration. There are two
difficulties, the first difficulty is to construct a jet differential with low pole order
but high vanishing order along the hypersurfaces. The second difficulty is to
make sure that the pullback, to the entire holomorphic curve, of the constructed
jet differential is not identically zero.

To handle the first difficulty, when we construct jet differentials we can adjoin
many variables of the form dl log g, with l ≥ 1 and g holomorphic, to increase the
available degrees of freedom to get more vanishing order along the hypersurfaces,
without essentially increasing the growth order of the pullback of the constructed
jet differential. What makes this possible is the logarithmic derivative lemma.
The troublesome point is that we have to make sure that, after adjoining variables
of the form dl log g, the counting function for the pole order is somehow still under
control. The situation is much easier in the case of an abelian variety, because
we can use the differentials

dlzj = dl exp zj

of coordinates of Cn as dl log g and the nowhere vanishing of the exponential
function exp zj makes it unnecessary for us to worry about the difficulty of the
increased growth of the counting function for the pole order.
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When the difficulty of constructing a jet differential with low pole order and
high vanishing order along the hypersurfaces and the difficulty of making sure
that its pullback to the entire holomorphic curve is not identically zero are both
overcome, the above proof of the Schwarz lemma by Nevanlinna theory is easily
adapted to give a defect relation.

The second difficulty of making sure the non identical vanishing of the pullback
of the jet differential to the entire holomorphic curve corresponds to the step in
the proof of Roth’s theorem [Roth 1955; Schmidt 1980] of making sure that the
constructed polynomial of low degree and high vanishing order has low vanishing
order at a point whose components are all equal to the given algebraic number.
In the proof of Roth’s theorem it was originally done by using Roth’s lemma
[Roth 1955; Schmidt 1980] and could also be handled by methods introduced
later such as the product theorem of Faltings [1991].

For function theory, so far there are two ways of handling the difficulty. One
is the use of the translational invariance of the Zariski closure of the differential
of a Zariski dense entire curve [Siu and Yeung 1996a; 1997]. Another is the
independent slight rescaling of the parameters of the component functions of an
entire curve in a product of copies of an abelian variety [McQuillan 1997] which
we will discuss more in Section 0.4. Both were introduced to prove Theorem
0.1.1.

Probably the correct way of handling the situation is to use the product the-
orem of Faltings [1991], but so far there is no way to overcome the following
difficulty of adapting Faltings’s product theorem to the function theory case.
For the application of Faltings’s product formula, the ratio of the degrees of
the constructed polynomial in consecutive sets of variables has to be greater
than some appropriate constant. For diophantine approximation the sequence
of approximating rational numbers are chosen to have heights and proximities
corresponding to the degrees. An analogous situation for function theory is that,
for the component functions of an entire curve in a product of copies of the target
manifold, one chooses a rescaling of the parameters to make the characteristic
functions and at the same time the proximity functions correspond to the de-
grees of the constructed polynomial in various sets of variables. However, unlike
the case of diophantine approximation where a finite sum is used for the corre-
sponding situation, in function theory the proximity function is defined by an
integral, which gives rise to a more complicated technical difficulty, so far not
overcome.

0.4. The Approach Motivated by Diophantine Approximation. Now
we discuss the second approach of using techniques motivated from those of
diophantine approximation. The key feature of this second approach is that the
k-jet bundle Jk(M) of the target manifold M in the jet differential approach is
replaced by a product M×(k+1) of k + 1 copies of M . A jet differential in the
first approach is replaced by a section of a certain positive line bundle L over
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M×(k+1) in the second approach. For example, in the case where M is an abelian
variety A, one can use as L the pullback under

A×(k+1) → A×(k+1),

(x0, . . . , xk) 7→ (x0, x1 − x0, . . . , xk − xk−1)

of the tensor product of appropriate ample line bundles on the factors ofA×(k+1).
For the defect of a hypersurface D in M or the hyperbolicity of M − D, this
approach involves constructing holomorphic sections s of L over M×(k+1) so
that the sections vanish to high order along D×(k+1) and yet the characteristic
function, with respect to the positive curvature form of L, of the diagonal map
ϕ̃ : C →M×(k+1) of the holomorphic map ϕ : C →M has slow growth.

For the abelian variety A, the use of xj − xk in the approach of diophantine
approximation corresponds to the use of dxj in the approach of jet differentials.
It gives us more available degrees of freedom to get more vanishing order, without
essentially increasing the growth order of the pullback of the constructed section
by the diagonal map, because xj − xk vanishes on the diagonal map.

As in the approach of jet differentials, there are in the approach of diophantine
approximation the same two major difficulties. The first difficulty is to construct
a holomorphic section of a line bundle on the product space with high vanishing
order along certain subvarieties so that its pullback to the entire holomorphic
curve has low pole order (i.e. small characteristic function). The second difficulty
is to make sure that the pullback ϕ̃∗s of the section s to the entire holomorphic
curve is not identically zero.

One advantage of the approach of diophantine approximation is that it is
easier to use the assumption of algebraic nondegeneracy of the map ϕ to handle
the difficulty of the identical vanishing of ϕ̃∗s. When M is an abelian variety
A, for this step McQuillan [1996; 1997] introduced the technique of considering
the map Ck+1 → A×(k+1) induced by ϕ and rescaling separately the variable of
each factor of Ck+1. He chose the difference between the rescaling factors and
1 to be of the order of the reciprocal of some high power of the characteristic
function at r when integration over the circle {|ζ| = r} is considered.

On the other hand, for the approach of diophantine approximation it can be
very hard to construct a holomorphic section of a line bundle on the product
space with high vanishing order along certain subvarieties whose pullback to the
entire holomorphic curve has low pole order. How hard it is depends on which
subvarieties the section is required to vanish along to high order. For example,
in the case of the complex projective space it is not possible to require vanishing
to high order along the product D×(k+1) of one single hypersurface D, but it is
easy to require vanishing to high order only along the diagonal of D×(k+1). In
order to use rescaling techniques to rule out identical vanishing of the pullback
to the entire holomorphic curve, the vanishing along D×(k+1), instead of merely
its diagonal, is needed. That is the reason why for Theorem 0.0.1 only the case of
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many hypersurfaces gives nontrivial results. For the case of many hypersurfaces
D =

⋃
λ Vλ, the argument goes through also when vanishing to high order along⋃

λ V
×(k+1)
λ is used instead of D×(k+1).

The abelian case is special in that there is an addition so that for a holomor-
phic map ϕ from C to an abelian variety, the rescaled map ϕλ(ζ) := ϕ(λζ) gives
the following inequality concerning the characteristic function of the difference
of two rescaled maps:

T (ϕλ − ϕµ, r) ≤
|λ− µ|r

(R− |λ|r)(R− |µ|r)T (ϕ,R) +O(1)

when max(|λ|, |µ|)r < R, which enables one to control the characteristic func-
tion after separate rescaling. Note that, when one has a holomorphic map
ϕ : C → Cn, this inequality for the characteristic functions of the difference of
two rescaled maps does not hold for the difference operation in Cn. In the case
of the abelian variety A we can use the difference operation in A to construct a
holomorphic section of a line bundle on A×(k+1) with high vanishing order along
D×(k+1) whose pullback to the entire holomorphic curve has low pole order. The
above inequality makes sure that after the perturbation by rescaling, there is no
essential increase in the pole order of the pullback.

One also has to control the effect of the separate rescaling on the counting
function which was worked out in [McQuillan 1997]. That particular control
works in the case of the projective variety as well as for the abelian variety and
it is explained in Section 1.3.

For the first approach of jet differentials, Pit-Mann Wong with his collab-
orators Min Run and Julie Wang also started introducing the perturbation of
(dkϕ)(C) to handle the difficulty that ϕ∗ω is identically zero. The difficulties
with such perturbation methods for the approach of jet differentials are the same
as those occurring in the approach of diophantine approximation when one re-
quires a constructed section to vanish to high order only along the diagonal of
D×(k+1). So far such difficulties are essential and cannot yet be overcome. We
will explain more about them later in Section 0.8.

To see how the techniques mentioned above are applied to hyperbolicity prob-
lems and to understand the major obstacles for further progress, we discuss the
hyperbolicity problems of the abelian variety which by now have been completely
proved and understood. The starting point is the following theorem of Bloch.

Theorem 0.4.1 [Bloch 1926; Green and Griffiths 1980; Ochiai 1977; Wong
1980; Kawamata 1980; Noguchi and Ochiai 1990]. Let A be an abelian variety
and ϕ : C → A be a holomorphic map. Let X be the Zariski closure of the image
of ϕ. Then X is the translate of an abelian subvariety of A.

0.5. Proof of Bloch’s Theorem. Denote by X the Zariski closure of (dkϕ)(C)
in Jk(A). Here and in the rest of this discussion the Zariski closure in Jk(A)
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means the intersection with Jk(A) of the Zariski closure of (dkϕ)(C) in the
compactification A× Pnk of Jk(A) = A× Cnk. Consider the diagram

X
σk- Cnk

A

τ
?

where σk is induced by the natural projection map Jk(A) = A × Cnk → Cnk

and τ comes from the composite of the map Jk(X)→ X and X ↪→ A.
The proof of Bloch’s theorem depends on two observations of Bloch.

Observation 0.5.1 (Bloch). For k ≥ n if the map σk : X → Cnk is not
generically finite onto its image, then X is invariant under the translation by
some nonzero element of A.

Proof. Take a point ζ0 ∈ C so that ϕ(ζ0) is a regular point of X. Let N be the
complex codimension of X in A. Let ω1, . . . , ωN be local holomorphic 1-forms
on A whose common zero-set is the tangent bundle of X near ϕ(ζ0). There is
a tangent vector ξ to Jk(X) at the point (dkϕ)(ζ0) which is mapped to zero by
σk. The tangent vector ξ is given by a one-parameter local perturbation Φ(ζ, t)
of the curve ϕ inside X defined near the point (ζ, t) = (ζ0, 0). The vanishing
of σk(ξ) means that the tangent vector field ∂Φ

∂t (ζ, 0) has zero derivative up to
order k along ϕ(C) at ϕ(ζ0). Here the differentiation of a tangent vector field
of A is with respect to the flat connection for A. Then the fact that ξ ∈ Jk(X)
implies that the value of the derivatives of ωj up to order k along ϕ(C) vanishes
at the tangent vector ∂Φ

∂t (ζ0, 0). Thus the ((k + 1)N)× n matrix formed by the
derivatives up to order k, of ωj( ∂

∂zν
) (1 ≤ ν ≤ n, 1 ≤ j ≤ N) along ϕ(C) at

ζ0 has rank less than n. Since this holds when ζ0 is replaced by an arbitrary ζ

near ζ0, it follows from the standard Wronskian argument that there is a nonzero
constant tangent vector η on A such that ωj(η) is identically zero along ϕ(ζ) near
ζ = ζ0. The Zariski density of the image of ϕ in X implies that X is invariant
under the translation in the direction of the tangent vector η. �

Observation 0.5.2 (Bloch). If σk : X → Cnk is generically finite onto its
image, then for any ample divisor D of A there exists some polynomial of dlzj
(1 ≤ l ≤ k, 1 ≤ j ≤ n) with constant coefficients which vanishes on τ−1(D) but
does not vanish identically on X.

Proof. The existence of P is verified as follows. For q sufficiently large, there
exists a meromorphic function F on A whose divisor is E − qD so that E ∩X
and D ∩ X do not have any common branch. Since τ is surjective and σk is
generically finite onto its image, F ◦ τ belongs to a finite extension of the field of
all rational functions of Cnk. Thus there exist polynomials Pj (0 ≤ j ≤ p) with
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constant coefficients in the variables dlzν (1 ≤ l ≤ k, 1 ≤ ν ≤ n) such that
p∑
j=0

(σ∗kPj)(τ
∗F )j = 0

on X and σ∗kPp is not identically zero on X. Then Pp must vanish on τ−1(D)
and the holomorphic jet differential Pp on X must vanish on τ−1(D). We need
only set P = Pp. �

Bloch’s theorem now follows easily from the two observations in the following
way. Assume that X is not a translate of an abelian subvariety of A. Let A′

be the quotient of A by the subgroup of all elements whose translates leave X
invariant. By replacing ϕ by its composite with the quotient map A → A′, we
can assume without loss generality that X is not invariant by the translation
of any element of A. From Bloch’s first observation σk is generically finite onto
its image. From Bloch’s second observation and the Schwarz’s lemma ϕ∗P is
identically zero, which contradicts the non identical vanishing of P on X.

In Observation 0.5.1 the significance of the number n in the inequality k ≥ n
is that there are n coefficients in each ω1, . . . , ωN , which means that k ≥ the
dimension of X. The zero-dimensionality of the generic fiber of σk corresponds to
the following statement used in diophantine approximation [Vojta 1996, Lemma
5.1].

Proposition 0.5.3. Suppose A is an abelian variety and X is a subvariety of A
which is not invariant under the translation of any nonzero element of A. Then
for any m > dimX the map X×m → A×(m(m−1)/2) defined by (xj)1≤j≤m 7→
(xj − xk)1≤j<k≤m is generically finite onto its image.

0.6. Proof of Hyperbolicity of Complement of an Ample Divisor in
an Abelian Variety. Bloch’s argument is modified in [Siu and Yeung 1996a]
with the introduction of a log-pole jet differential to give the hyperbolicity of the
complement of A−D for any ample divisor D of the abelian variety A. Suppose
there is a nonconstant holomorphic map ϕ : C → A − D and we will derive a
contradiction. By Bloch’s theorem we can assume that the image of ϕ is Zariski
dense in A. Let E be the largest subspace of Cn such that the lifting of ϕ to
C → Cn is contained in a translate of E. A basis of E is given by ∂/∂zν1 , . . . ,
∂/∂zνq . Let k = q + 1. Let θ be a theta function defining the ample divisor D.
The locally defined k-jet differential

det


d log θ dzν1 dzν2 · · · dzνq
d2 log θ d2zν1 d2zν2 · · · d2zνq

...
...

...
. . .

...

dq+1 log θ dq+1zν1 dq+1zν2 · · · dq+1zνq


gives a well-defined function Θ on the Zariski closure X of (dkϕ)(C) in Jk(A).
Now add the function Θ to the nk coordinates of the map σk : X → Cnk to
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form σ̃k : X→ Cnk+1. We now use σ̃k instead of σk in Bloch’s two observations.
Bloch’s second observation shows that the map σk cannot be generically finite
onto its image. Bloch’s first observation shows that there exists some nonzero
constant direction

∑n
α=1 cα

∂
∂zα

such that ϕ∗
(∑n

α=1 cα
∂
∂zα

)
Θ is identically zero.

The standard Wronskian argument then shows that ϕ∗
(∑n

α=1 cα
∂
∂zα

)2 log θ is
identically zero on C. Because of the Zariski density of ϕ(C) in A, this implies
that

(∑n
α=1 cα

∂
∂zα

)2 log θ is identically zero on A, which is a contradiction.

0.7. Proof of the Defect Relation for Ample Divisors of Abelian Vari-
eties. The defect relation in Theorem 0.1.1 for an ample divisorD in an abelian
variety A was proved in [Siu and Yeung 1997] by using the following generaliza-
tion of Bloch’s theorem. If the image of a holomorphic map ϕ : C → A is Zariski
dense in an abelian variety A, then the Zariski closure (dkϕ)(C) of (dkϕ)(C) in
Jk(A) = A× Pnk is invariant under the translation by any element of A.

The translational invariance of (dkϕ)(C) by elements ofAmeans that (dkϕ)(C)
is of the form A×W for some complex subvariety W ⊂ Pnk of complex dimen-
sion d. When k ≥ n, since the dimension of Jk(D) ∩ (A × W ) is at most
(n + d) − (k + 1) ≤ d − 1 which is less than the complex dimension of W , by
the theorem of Riemann–Roch, for any ε > 0 we obtain the following. There
exist positive integers p, q with p/q < ε and there exist pD-valued holomorphic
k-jet differentials on A vanishing to order at least q on Jk(D) so that they give
a non identically zero well-defined function on (dkϕ)(C). Then the following
standard application of the First Main Theorem technique and the logarithmic
derivative lemma yields the upper bound ε for the defect Defect(ϕ,D) of the
map ϕ : C → A and the ample divisor D.

Let Ar(·) denote the operator which averages over the circle in C of radius
r centered at the origin. Let A = Cn/Λ for some lattice Λ and let the divisor
D be defined by the theta function θ on Cn which satisfies the transformation
equation

θ(z + u) = θ(z) exp
(
πH(z, u) +

π

2
H(u, u) + 2π

√
−1K(u)

)
for some positive definite Hermitian form H(z, w) and some real-valued function
K(u) for u ∈ Λ so that exp

(
2π
√
−1K(u)

)
is a character on the lattice Λ. Let

Lθ be the line bundle on A associated to the divisor D. We choose the global
trivialization of the pullback of Lθ to Cn so that the theta function θ on Cn

corresponds to a holomorphic section of Lθ whose divisor is D. We give Lθ a
Hermitian metric so that with respect to our global trivialization of the pullback
of Lθ to Cn, it is given by exp(−πH(z, z)). The connection from the Hermitian
metric is given by Dg = ∂g − πH(dz, z)g on Cn. In particular,

Dθ = dθ+
n∑

µ,ν=1

hµ,ν̄ z̄νdzµθ,
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where H(z, z) =
∑n
µ,ν=1 hµ,ν̄zµz̄ν , and

Dθ

θ
= d log θ +

n∑
µ,ν=1

hµ,ν̄ z̄νd log exp zµ.

Let
~ν = (να,β)1≤α≤k,1≤β≤n , weight(~ν) =

∑
1≤α≤k
1≤β≤n

ανα,β,

and
d~νz =

∏
1≤α≤k
1≤β≤n

(dαzβ)να,β .

An pD-valued holomorphic k-jet differential on A vanishing to order at least q
on Jk(D) means

P =
∑

weight(~ν)=p

τ~ν
(
d~νz
)
,

where τ~ν is an entire function on Cn so that τ~ν
θp defines a meromorphic function

on the abelian variety A. In other words, τ~ν defines a holomorphic section of
pLθ over A. Moreover, P vanishes to order at least q along

{θ = dθ = · · · = dkθ = 0},

which means that we can write

P =
∑

ν0+ν1+···+νk=q

aν0,ν1,...,νkθ
ν0 (Dθ)ν1 · · ·

(
Dkθ

)νk
with smooth functions aν0,ν1,...,νk on Cn so that aν0,ν1,...,νk

θp−q defines a function on
A. In other words, aν0,ν1,...,νk is a smooth section of (p− q)Lθ over A. Then

P

θq
=

∑
ν0+ν1+···+νk=q

aν0,ν1,...,νk

(
Dθ

θ

)ν1

· · ·
(

Dkθ

θ

)νk
Let ϕ̃ be the lifting of ϕ to C → Cn. Now we compute the characteristic function
of ϕ̃∗P which is regarded as a meromorphic function on C (by identifying it with
the coefficient of (dζ)m with ζ ∈ C. By the logarithmic derivative lemma

Ar

(
log+ |ϕ̃∗(dzν)|

)
= O (log r + logT (r, ϕ)) .

Since
|τ~ν |2 exp (−pπH(z, z))

is smooth bounded function on Cn, it follows that

Ar

(
log+ |ϕ̃∗τ~ν |

)
= Ar

(pπ
2
H(z, z)

)
≤ pT (r, ϕ)

and

(0.7.1) T (r, ϕ̃∗P ) = p T (r, ϕ) +O (log r + logT (r, ϕ)) .



444 YUM-TONG SIU

We also need the estimate for Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣). From

(0.7.2)
P

θq
=

∑
ν0+ν1+···+νk=q

aν0,ν1,...,νk

(
Dθ

θ

)ν1

· · ·
(

Dkθ

θ

)νk
and

(0.7.3)
Dθ

θ
= d log θ+

n∑
µ,ν=1

hµ,ν̄ z̄νd log exp zµ

it follows that

Ar

(
log+

∣∣∣∣ϕ̃∗(Dθ

θ

)∣∣∣∣) = O (log r + logT (r, ϕ)) .

Since
|aν0,ν1,...,νk |

2 exp (−pπH(z, z))

is smooth bounded function on Cn, it follows that

Ar

(
log+ |ϕ̃∗aν0,ν1,...,νk|

)
= Ar

(pπ
2
H(z, z)

)
≤ pT (r, ϕ).

Thus

(0.7.4) Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣) ≤ pT (r, ϕ) +O (log r + logT (r, ϕ)) .

The vanishing of the defect Defect(ϕ,D) now follows from p
q < ε and from

q m (r, θ, 0) = Ar

(
log+

∣∣∣ϕ̃∗( 1
θq

)∣∣∣) ≤ Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣)+ T

(
r, ϕ̃∗

( 1
P

))
≤ Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣)+ T (r, ϕ̃∗P )

which by Equations (0.7.1) and (0.7.4) is no more than

2pT (r, ϕ) +O (log r + logT (r, ϕ)) .

S.-K. Yeung observed that the proof in [Siu and Yeung 1997] could be slightly
refined as follows to give the following stronger Second Main Theorem for an
ample divisor D in an abelian variety A and for any positive number ε.

m (r, ϕ,D) + (N (r, ϕ,D)−Nn (r, ϕ,D)) ≤ ε T (r, ϕ) + O (log r + logT (r, ϕ)) ,

where Nn (r, ϕ,D) is defined in the same as the counting function N (r, ϕ,D)
except that the counting is truncated at multiplicity n so that multiplicity greater
than n is counted only as n. The refinement is as follows. From Equations (0.7.2)
and (0.7.3) it follows that

N

(
r, ϕ̃∗

(
P

θq

)
,∞
)
≤ qNn (r,D, 0) .
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and

T

(
r, ϕ̃∗

(
P

θq

))
= Ar

(
log+

∣∣∣ϕ∗(P
θq

)∣∣∣)+N

(
r, ϕ∗

(
P

θq

)
,∞
)
.

Moreover, it follows from (0.7.4) that

T

(
r, ϕ̃∗

(
P

θq

))
≤ pT (r, ϕ) + qN (r,D, 0) +O (log r + logT (r, ϕ)) .

and

q m (r, ϕ,D) + qN (r, ϕ,D) = T

(
r, ϕ̃∗

( 1
θq

))
+O(1)

= T

(
r, ϕ̃∗

(
P

θq
1
P

))
+O(1)

≤ T
(
r, ϕ̃∗

(
P

θq

))
+ T

(
r, ϕ̃∗

( 1
P

))
+O(1)

≤ T
(
r, ϕ̃∗

(
P

θq

))
+ T (r, ϕ̃∗P ) +O(1)

≤ 2pT (r, ϕ) + qNn (r, ϕ,D) +O (log r+ logT (r, ϕ)) .

Dividing both sides by q and using p/q yields the stronger Second Main Theorem.

0.8. Perturbation of Holomorphic Maps. By the second approach of using
techniques motivated by diophantine approximation, McQuillan [1996] gives an
alternative proof of Bloch’s theorem and obtains [1997] the zero defect of an
ample divisor D of A. He uses different rescalings of variables of C to handle
the problem of the identical vanishing of the pullback of a section constructed
for an appropriate line bundle. It comes as a great surprise that his method of
perturbation by rescaling of variables works, but in fact it does. Since in Chapter
1 of this paper we will apply the rescaling method to the complex projective space
to get a proof of Theorem 0.0.1, we will not elaborate further on that method
here.

We make a remark about the difficulty of using perturbation for the approach
by jet differentials. For hyperbolicity problems Pit-Mann Wong with his collab-
orators introduces the method of perturbing the map dkϕ : C → Jk(M) into
another map Φk : C → Jk(M) so that the composite of Φk and the natural pro-
jection Jk(M)→ M is ϕ. The main difficulty with such a perturbation is that,
unlike the case of using the product of a number of copies of the target manifold,
there is yet no known good way of perturbation which could control the change
of the proximity term, even when the perturbation is done by rescaling. The
problem can be illustrated by the simple case of k = 1 and M being an abelian
variety A whose universal cover has coordinates z1, . . . , zn. Suppose

ϕ(ζ) = (ϕ1(ζ), . . . , ϕn(ζ))
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in terms of z1, . . . , zn and we perturb dϕ to

(dϕ)(ζ) =
(
ϕ(ζ),

(
∂ϕ1

∂ζ

)
(ξ1ζ), . . . ,

(
∂ϕn
∂ζ

)
(ξnζ)

)
∈ A× Cn

with some rescaling factors ξ1, . . . , ξn. When we estimate the effect of the pertur-
bation on the proximity function for some theta function sD defining an ample
divisor D, even with the possible use of another rescaling factor ξ′ there is no
way to handle the difficulty coming from the discrepancy between(

∂sD
∂ζ

)
(ξ′ζ) and

n∑
ν=1

(
∂sD
∂zν

)
(ϕ(ζ))

(
∂ϕν
∂ζ

)
(ξνζ).

0.9. Since the main ideas of the streamlined version of the proof of Theorem
0.1.4 will be discussed in the overview in Chapter 2, here in the Introduction
we will confine ourselves to only a couple of comments on the relation between
number theory and the easier first step of finding meromorphic 1-jet differentials
whose pullback on the entire holomorphic curve vanishes.

The construction of 2-jet differentials of certain explicit forms given in Chap-
ter 2 is accomplished by using polynomials whose terms contain the factors
f, df, d2f to a certain order, where f is the polynomial defining the plane curve
C of degree δ (see 2.1.2). This means that the constructed jet differential van-
ishes to that order along J2(C). This requirement is related to the techniques
discussed above.

On the branched cover X over P2 with branching along C, the construction
of holomorphic 2-jet differentials is possible because there are more divisors on
Jk(X) and some factors from the additional ways of factorization become holo-
morphic jet differentials; see Section 2.3. This is analogous to the following
observation due to Vojta in number theory. The finiteness of rational points
for a subvariety of abelian varieties not containing the translate of an abelian
variety is the consequence of the fact that in the product space of many copies
of the subvariety there are more line bundles or divisors than constructed from
the factors which are copies of the subvariety [Faltings 1991; Vojta 1992].

On the other hand, the existence of more divisors in Jk(X) and more ways of
factorization mean that it is easier for two jet differentials to share a common
factor and as a result it is more difficult to conclude that the zero-sets of two jet
differentials do not have a branch in common.

0.10. Overview of the Proofs. We conclude this introduction with a brief
discussion of the proofs of the main results. The proof of Theorem 0.0.1 is parallel
to that of Roth’s Theorem [Roth 1955; Schmidt 1980]. It provides more tangible
evidence to support the formal analogy between Nevanlinna theory and dio-
phantine approximation pointed out by Osgood [1985] and Vojta [1987]. It also
introduces a new approach to the hyperbolicity problem of the complement of a
generic hypersurface of high degree in a complex projective space, which might
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hold a better promise than other approaches for an eventual solution to the full
conjecture with optimal bounds involving such complements of hypersurfaces.
There is no attempt to get the optimal bound from the proof of Theorem 0.0.1.
Some small improvements in the bounds may be possible from that argument.

Theorem 0.0.1 is not a new result. The case of m̂ = 1 of Theorem 0.0.1 is
contained in the defect relation of Cartan [1933] and Ahlfors [1941] and the
following result of Eremenko and Sodin. The case of general m̂ of Theorem 0.0.1
follows from the standard process of averaging over the complex lines in the
complex vector space Cm̂.

Theorem 0.10.1 [Erëmenko and Sodin 1991, p. 111, Theorem 1]. If Qν (1 ≤
ν ≤ q) are homogeneous polynomials of degree dν in n + 1 variables so that no
more than n of them have a common zero in Cn+1 − 0 and if ϕ : C → Pn so
that ϕ∗Qν is not identically zero for 1 ≤ ν ≤ q, then

(q − 2n)T (r, ϕ) ≤
q∑
ν=1

1
dν
N(r, Qk, 0) + o(T (r, ϕ))

where T (r, ϕ) is the characteristic function, N(r, Qk, 0) is the counting function,
and the inequality holds outside a subset of the real line with finite measure with
respect to dr/r.

Chapter 2 is devoted to the proof of Theorem 0.0.2, which contains two main
steps. The first is to produce a meromorphic 1-jet differential h whose pullback to
the entire holomorphic curve is zero; see Sections 2.2 to 2.5. When the degree of
h in the affine variables is at least 4 times its degree in the differentials of those
variables, the proof is rather easily finished by using arguments of Riemann–
Roch to construct some holomorphic 1-jet differential defined only on a branched
cover of the zero-set of h which vanishes on an ample divisor of P2; see Section
2.6. The second step is to deal with the most difficult remaining case. When
the curve C is defined by a polynomial f of the affine coordinates, the main
idea is to use an appropriate meromorphic 1 form η of low degree and consider
the restriction of η

f to the zero-set of h. When there is a good upper bound
for the touching order of the “integral curves” of h and C, the argument for
the Ahlfors–Schwarz lemma for log-pole jet differentials finishes the proof; see
Section 2.8. The main streamlining is some new ingredients in the touching order
argument in the difficult last step; see Section 2.7. A less important streamlining
is that we employ more the cleaner language of cohomology theory, instead of
the direct arguments of using polynomials, in the first step of constructing the
meromorphic 1-jet differential h whose pullback to the entire holomorphic curve
is zero. The method of proof is chosen and presented in a way which facilitates
possible generalizations to the higher dimensional case.
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1. Sum of Defects of Hypersurfaces in the Projective Space

We prove in this chapter the following theorem, which is the case of m̂ = 1
in Theorem 0.0.1. All the principal difficulties of the proof of Theorem 0.0.1
already occur in the special case of m̂ = 1. So for notational simplicity we give
only the details for the case of m̂ = 1 and then present the minor modifications
needed for the case of a general m̂ after the proof of Theorem 1.0.1.

Theorem 1.0.1. Let Vλ (1 ≤ λ ≤ Λ) be regular complex hypersurface in Pn
of degree δ in normal crossing . Let ϕ : C → Pn be a holomorphic map whose
image is not contained in any hypersurface of Pn. Then the sum of the defects∑Λ
λ=1 Defect(ϕ, Vλ) is no more than ne for any δ ≥ 1 and is no more than n+1

for δ = 1.

The method of proof uses techniques motivated by diophantine approximation.
We construct holomorphic section s of low degree on the product P×mn of m
copies of Pn which vanishes to high order at points of

⋃
λ∈Λ V

×m
λ . Then we

use McQuillan’s estimate [1997] for the proximity function with a rescaling of
the variable of C. The m different rescalings on C for the map from C to P×mn
induced by ϕ guarantee the non identical vanishing of the pullback to C of s by
the perturbed map. The defect relation then follows from the standard argument
of the Poisson–Jensen formula or the First Main Theorem. The normal crossing
condition is required to make sure that the product of the multi-order ideal
sheaves for V ×mλ is equal to their intersection.

1.1. Preliminaries on Combinatorics and Integrals

Lemma 1.1.1. Let n be a positive integer . For any positive number τ > 1 let
Θn(τ) be

limm→∞

(∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1− x1)n−1 · · · (1− xm)n−1
dx1 · · ·dxm

)1/m

.

Then

Θn(τ) ≤ min
(

e

τ(n + 1)
,

1
n
e
− 1

4(n+1)2 (1− 1
τ )2
)
.

Proof. First we show that

Θn(τ) ≤ 1
n
e
− 1

4(n+1)2 (1− 1
τ )2

.

We need the following combinatorial lemma, which follows from [Schmidt 1980,
p. 122, Lemma 4C] and the fact that the number of n-tuples of nonnegative
integers i1, . . . , in with i1 + · · ·+ in = r is equal to

(
r+n−1
r

)
.
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Lemma 1.1.2. Let d1, . . . , dm be positive integers, 0 < ε < 1, and n be a positive
integer . Then∑
���� j1d1 +···+ jm

dm

�
− m
n+1

���≥εm

(
d1−j1+n−1

n−1

)
· · ·
(
dm−jm+n−1

n−1

)

≤
(
d1+n
n

)
· · ·
(
dm+n
n

)
·2e− ε

2m
4 .

Setting ε = 1
n+1

(
1− 1

τ

)
and d1 = · · · = dm = d, we get

∑
j1+···+jm< md

τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
≤
(
d+n
n

)m
2e−

m
4(n+1)2 (1− 1

τ )2

.

Forming the Riemann sum by choosing 1/d as the size of an increment for each
variable and choosing the points xν = jν/d for 1 ≤ jν ≤ d from each rectangular
parallelpiped of size 1/d and passing to limit as d→∞, we get

lim
d→∞

1
dnm

∑
j1+···+jm< md

τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)

=
1

((n−1)!)m

∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm.

On the other hand,

lim
d→∞

1
dnm

(
d+ n

n

)m
2e−

m
4(n+1)2 (1− 1

τ )2

=
1

(n!)m
2e−

m
4(n+1)2 (1− 1

τ )2

.

After taking the m-th root in the above two limits and using 1.1.2 and letting
m→∞, we get

Θn(τ) ≤ 1
n
e
− 1

4(n+1)2 (1− 1
τ )2

.

For the other inequality, Θn(τ) ≤ e
τ(n+1) , we make the substitution xν = yν

τ

and get∫
(

y1+···+ym<m
τ(n+1)

0<x1<1,...,0<xm<1

) (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm

=
1
τm

∫
�

y1+···+ym< m
n+1

0<y1<τ,...,0<ym<τ

� (1−y1

τ

)n−1

· · ·
(

1−ym
τ

)n−1

dy1 · · ·dym

≤ 1
τm

Volume of
{
y1+· · ·+ym <

m

n+1
: y1 > 0, . . . , ym > 0

}
≤ mm

m!

(
1

τ(n+1)

)m
.
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Taking the m-th root and letting m→∞ and using

lim
m→∞

m! em

mm
√

2πm
= 1,

from Stirling’s formula, we get Θn(τ) ≤ e
τ(n+1) . �

Lemma 1.1.3. Let δ,Λ be positive integers and τ be a number > 1 such that
δnΘn(τ) < 1. Then there exists m0 such that for m ≥ m0 there exists d0

depending on m with the property that for d ≥ d0 one has

Λδm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
.

Proof. Let 0 < η < 1 such that δnΘn(τ) < 1 − η. There exists m0 such that
Λ (1− η)m < 1 for m ≥ m0 and such that for m ≥ m0 we have

(δn)m
∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm < (1− η)m .

Choose any m ≥ m0. Forming the Riemann sum by choosing 1/d as the size of
an increment for each variable and choosing the points xν = jν/d for 1 ≤ jν ≤ d
from each rectangular parallelpiped of size 1/d and passing to limit as d→ ∞,
we get

lim
d→∞

1
dnm

∑
j1+···+jm< md

τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)

=
1

((n−1)!)m

∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm.

Since

lim
d→∞

1
dnm

(
d+n
n

)m
=

1
(n!)m

,

it follows that there exists d0 depends on m such that for d ≥ d0 one has

δm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
(1−η)m

and

Λδm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
. �
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1.2. Construction of Sections of Low Degree and High Vanishing Or-
der

Proposition 1.2.1. Let Vλ (1 ≤ λ ≤ Λ) be nonsingular hypersurfaces of degree
δ in Pn in normal crossing . Let τ > 1 satisfy δnΘn(τ) < 1. There exists m0

and for m ≥ m0 there exists d0 depending on m such that for d ≥ d0 there exists
an element

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
which vanishes at each V ×mλ to every multi-order (j1, . . . , jm) which satisfies

j1 + · · ·+ jm <
dm

τ(n+ 1)
.

Proof. The space of all homogeneous polynomials of degree r on Vλ is equal to
the space of all polynomials of degree r on Pn quotiented by the ideal generated
by the defining polynomial for Vλ. Thus

dimC H0(Vλ,OVλ(r)) =
(
r+n
n

)
−
(
r−δ+n
n

)
.

It follows from the following identity for binomial coefficients(
b+1
c+1

)
−
(

b

c+1

)
=
(
b

c

)
that

dimC H0(Vλ,OVλ(r)) =
δ∑
ν=1

(
r−δ+ν+n

n

)
−
(
r−δ+ν+n−1

n

)

=
δ∑
ν=1

(
r−δ+ν+n−1

n−1

)
≤ δ
(
r+n−1
n−1

)
,

where we use the definition(
a

b

)
=
∏b
ν=1(a− b+ ν)

b!

so that
(
a
b

)
= 0 for a < b and we use the inequality(

a

b

)
<

(
c

b

)
for integers b ≤ a < c. By Künneth’s formula we have

dimC H0(V ×mλ ,OV ×mλ
(d1, . . . , dm)) ≤ δm

m∏
ν=1

(
dν + n− 1
n − 1

)
.

Let zν,0, . . . , zν,n be the homogeneous coordinates for the ν-th factor of P×mn .
An element

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
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is represented by a polynomial in the m(n + 1) variables

z1,0, . . . , z1,n, . . . , zm,0, . . . , zm,n,

which is homogeneous of degree dν in the variables zν,0, . . . , zν,n for 1 ≤ ν ≤ m.
Assume that the complex line zν,1 = · · · = zν,n = 0 is not contained in any Vλ.
Then the vanishing of F on Vλ to every multi-order (j1, . . . , jm) with

j1 + · · ·+ jm <
md

τ(n+ 1)

means that
∂j1+···+jm

∂zj11,0 · · ·∂z
jm
m,0

F

as an element of

H0
(
P×mn ,OP×mn (d− j1, . . . , d− jm)

)
vanishes identically on Vλ for every multi-order (j1, . . . , jm) satisfying

j1 + · · ·+ jm ≤
md

τ(n+ 1)
.

There exists

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
which vanishes at each V ×mλ to every multi-order (j1, . . . , jm) which satisfies

j1 + · · ·+ jm <
md

τ(n+ 1)

if

Λδm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
,

which is the case by Lemma 1.1.3 and the assumption δnΘn(τ) < 1. �

1.3. Effect of Rescaling on Proximity Term. For the estimate of the effect
of rescaling on the proximity term we follow the method of [McQuillan 1997].
Let

GR,a(ζ) =
R2 − aζ
R(ζ − a)

,

so that
1

GR,a(ρζ)
=
R(ρζ − a)
R2 − aρζ .
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We have

1
GR,a(ρ1ζ)

− 1
GR,a(ρ2ζ)

=
R(ρ1ζ − a)
R2 − aρ1ζ

− R(ρ2ζ − a)
R2 − aρ2ζ

= R

{
(ρ1 − ρ2)R2ζ + (ρ2 − ρ1)aaζ

(R2 − aρ1ζ)(R2 − aρ2ζ)

}
= R(ρ1 − ρ2)ζ

R2 − aa
(R2 − aρ1ζ)(R2 − aρ2ζ)

.

Now we impose the conditions

|ρ1| < R, |ρ2| < R, |a| ≤ R.

Let

γR,ρ1,ρ2 =
R|ρ1 − ρ2|

(R− |ρ1|)(R− |ρ2|)
.

For |ζ| = 1 we have∣∣∣∣ 1
GR,a(ρ1ζ)

− 1
GR,a(ρ2ζ)

∣∣∣∣ ≤ R|ρ1 − ρ2| ·
R2

(R2 − |ρ1a|)(R2 − |ρ2a|)

≤ R|ρ1 − ρ2|
(R− |ρ1|)(R− |ρ2|)

= γR,ρ1,ρ2

and∣∣∣∣GR,a(ρ2ζ)
GR,a(ρ1ζ)

−1
∣∣∣∣ ≤ γR,ρ1,ρ2 |GR,a(ρ2ζ)| ,

∣∣∣∣GR,a(ρ2ζ)
GR,a(ρ1ζ)

∣∣∣∣ ≤ 1+γR,ρ1,ρ2 |GR,a(ρ2ζ)| .

Poisson’s integral formula states that for h(ζ) meromorphic on {|ζ| ≤ R} we
have

log |h(ζ)| =
∫ 2π

θ=0

log |h(Reiθ)|Re
(
Reiθ + ζ

R eiθ − ζ

)
dθ

2π
− log

∏
|a|≤R

∣∣∣∣ R2 − aζ
R(ζ − a)

∣∣∣∣ordah

.

In particular, when ζ = 0 we have

log |h(0)| =
∫ 2π

θ=0

log |h(Reiθ)| dθ
2π
− log

∏
|a|≤R

∣∣∣∣Ra
∣∣∣∣ordah

.

Apply the last equation to the special case

h(ζ) =
∏
|a|≤R

(
R2 − aζ
R(ζ − a)

)ordah
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with R replaced by r < R in the formula. Then

log
∏
|a|≤R

∣∣∣∣Ra
∣∣∣∣ordah

=
1

2π

∫
|ζ|=r

log
∏
|a|≤R

∣∣∣∣ R2 − aζ
R(ζ − a)

∣∣∣∣ordah

− log
∏
|a|≤r

∣∣∣ r
a

∣∣∣ordah

.

If Z is a divisor on C and Z ∩ {|ζ| < t} = {a1, . . . , aN} with multiplicity, then

N(R,Z) =
∫ R

t=0

n(t, Z)
dt

t

N∑
ν=1

log
∣∣∣∣ Raν

∣∣∣∣ .
Hence

1
2π

∫
|ζ|=r

log
∏
|a|≤R

∣∣∣∣ R2 − aζ
R(ζ − a)

∣∣∣∣ordah

= (N(R, {h = 0})−N(r, {h = 0}))− (N(R, {h =∞})−N(r, {h =∞})) .

Now for |ρ1| < R, |ρ2| < R we have

log
∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣ =
∫ 2π

θ=0

log
∣∣h(Reiθ)

∣∣Re
(
Reiθ + ρ1ζ

R eiθ − ρ1ζ
− Reiθ + ρ2ζ

R eiθ − ρ2ζ

)
dθ

2π

− log
∏
|a|≤R

∣∣∣∣ GR,a,ρ1ζ

GR,a(ρ2ζ)

∣∣∣∣ordah

.

To estimate the right-hand side, we observe that

Reiθ + ρ1ζ

Reiθ − ρ1ζ
− Reiθ + ρ2ζ

R eiθ − ρ2ζ
=

2(ρ1 − ρ2)ζR eiθ

(Reiθ − ρ1ζ)(Reiθ − ρ2ζ)
.

Hence ∣∣∣∣Re
(
Reiθ + ρ1ζ

Reiθ − ρ1ζ
− Reiθ + ρ2ζ

R eiθ − ρ2ζ

)∣∣∣∣ ≤ 2|ρ1 − ρ2|R
(R− |ρ1|)(R− |ρ2|)

.

So

log+

∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣ ≤ ∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ 2|ρ1 − ρ2|R
(R− |ρ1|)(R− |ρ2|)

dθ

2π

+ log
∏

|a|≤R,ordah>0

(1 + γR,ρ1,ρ2) |GR,a(ρ1ζ)|ordah

+ log
∏

|a|≤R,−ordah>0

(1 + γR,ρ1,ρ2) |GR,a(ρ2ζ)|−ordah .
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Now averaging over {|ζ| = 1} gives us

∮
|ζ|=1

log+

∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣
≤ 2|ρ1 − ρ2|R

(R− |ρ1|)(R− |ρ2|)

∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+
∑
|a|≤R

ordah>0

log(1 + γR,ρ1,ρ2) +
∑
|a|≤R

ordah>0

∮
|ζ|=1

(ordah) log |GR,a(ρ1ζ)|

+
∑
|a|≤R
−ordah>0

log(1 + γR,ρ1,ρ2) +
∑
|a|≤R
−ordah>0

∮
|ζ|=1

(−ordah) log |GR,a(ρ2ζ)|

=
2|ρ1 − ρ2|R

(R− |ρ1|)(R− |ρ2|)

∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+
∑
|a|≤R

ordah6=0

log(1 + γR,ρ1,ρ2) + (N(R, {h = 0})−N(|ρ1|, {h = 0}))

+ (N(R, {h =∞})−N(|ρ2|, {h =∞})) .

Observe that if Z is a divisor in C whose support does not contain the origin,
then

n(R,Z) =
∑
a∈Z

0<|a|<R

ordaZ ≤
1

log R̃
R

∑
a∈Z

0<|a|<R

(ordaZ) log
R̃

|a|

≤ 1

log R̃
R

N(R̃, Z).

Moreover, for 0 < ρ < R we have

N(R,Z)−N(ρ, Z) =
∑

0<|a|<ρ
ordaZ log

R

ρ
+

∑
ρ≤|a|<R

ordaZ log
R

|a|

≤
∑

0<|a|<R
ordaZ log

R

ρ

= log
R

ρ
n(R,Z) ≤

log R
ρ

log R̃
R

N(R̃, Z).

Using log(1 + x) ≤ x for x ≥ 0, we now summarize our result in the following
proposition.
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Proposition 1.3.1. Let h(ζ) be a holomorphic function on {ζ ∈ C : |ζ| ≤ R}
and let ρ1, ρ2 be complex numbers such that |ρ1| < R, |ρ2| < R. Let R̃ > R. Then∮
|ζ|=1

log+

∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣
≤ |ρ1 − ρ2|R

(R− |ρ1|)(R− |ρ2|)

×
(

2
∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+ n(R̃, {h = 0}) + n(R̃, {h =∞})
)

+ (N(R, {h = 0})−N(|ρ1|, {h = 0}))

+ (N(R, {h =∞})−N(|ρ2|, {h =∞}))

≤ |ρ1 − ρ2|R
(R− |ρ1|)(R− |ρ2|)

×
(

2
∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+
N(R̃, {h = 0})

log R̃
R

+
N(R̃, {h =∞})

log R̃
R

)
+ (N(R, {h = 0})−N(|ρ1|, {h = 0}))

+ (N(R, {h =∞})−N(|ρ2|, {h =∞})) .

1.4. Lower Bound of Some Derivative at One Point. Now we make
precise what rescaling is required for the perturbation of the holomorphic map
to make sure that the pullback of the constructed section to C is not identically
zero. Let

ϕ̃m : C×m → P×mn

be defined by

ϕ̃m(ζ1, . . . , ζm) = (ϕ(ζ1), . . . , ϕ(ζm)) .

We expand ϕ̃∗mF into homogeneous components ϕ̃∗mF =
∑∞
µ=0 Gµ in the m

variables (ζ1, . . . , ζn). Since the image of ϕ is not contained in any hypersurface
of Pn, it follows that there exists the smallest l such that Gl is not identically
zero. We now consider the worst case where F (ϕ(ζ), . . . , ϕ(ζ)) is identically zero.
In particular, Gl(1, . . . , 1) = 0. Choose positive numbers τ1, . . . , τm less than 1

2

such that Gl(1 + τ1, . . . , 1 + τm) is nonzero. Since Gl(ζ1, . . . , ζm) is homogeneous
in the m variables ζ1, . . . , ζm, we can write

Gl(1 + τ1ζ, . . . , 1 + τmζ) = χpζ
p + χp+1ζ

p+1 + · · ·+ χlζ
l

with 0 6= χp ∈ C. Let η0 be a positive number such that∣∣χp+1ζ + · · ·+ χlζ
l−p∣∣ ≤ 1

2
|χp|
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for |ζ| ≤ η0. Suppose A > 1/η0. Let r be a positive number and let ρν =
r (1 + τν/A). Let

ϕρ1,...,ρm(ζ) = (ϕ(ρ1ζ), . . . , ϕ(ρmζ)) .

Then ∣∣∣∣ limζ→0

1
ζl
(
ϕ∗ρ1,...,ρmF

)
(ζ)
∣∣∣∣ ≥ rl

2
|χp|

1
Ap
,

because

Gl (ρ1ζ, . . . , ρmζ) = rlζlFl
(

1 +
τ1
A
, . . . , 1 +

τm
A

)
= rlζl

1
Ap

(
χp + χp+1

( 1
A

)
+ · · ·+ χl

( 1
A

)l−p)
.

In our application we will use A = 1
r2T (r,ϕ)κ with κ > 4.

1.5. Computation of Defect and the Proof of Theorem 0.0.1. Let sVλ ∈
H0(Pn,OPn(δ)) (1 ≤ λ ≤ Λ) define the smooth hypersurface Vλ in Pn. By
Lemma 1.1.3 we can choose τ > 1 such that δnΘn(τ) < 1. Then we can choose
m sufficiently large and then choose d sufficiently large such that there exists

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
so that F vanishes to any multi-order (j1, . . . , jm) at V ×mλ (1 ≤ λ ≤ Λ) which
satisfies

j1 + · · ·+ jm <
md

τ(n+ 1)
.

Let x be an (n + 1)-tuple of functions which form the coordinate system of the
affine part Cn of Pn. When Pn is the j-th factor of P×mn we relabel x as xj so
that (x1, . . . , xm) form the affine coordinate system of the affine part of P×mn .
We rescale the coordinate ζ of C to ρνζ to get from ϕ another map from C to Pn
for 1 ≤ ν ≤ m, where ρ1, . . . , ρm are from Section 1.4. We let x̃ν = xν (ϕν(ρνζ))
and x̂ = x(ϕ(rζ)). Let q be the largest integer less than md

τ(n+1) .

We now make the following trivial observation. Let Λ, m,N be positive inte-
gers such that Λn ≤ N . Let z1, . . . , zN be the coordinates of CN . For 1 ≤ λ ≤ Λ
let I(λ, jλ,1, . . . , jλ,n) be the principal ideal generated by

∏n
ν=1 z

jλ,ν
λn+ν over the

local ring OCN ,0 of CN at the origin. Then

Λ⋂
λ=1

I(λ, jλ,1, . . . , jλ,n) =
Λ∏
λ=1

I(λ, jλ,1, . . . , jλ,n)

for any nonnegative integers jλ,ν (1 ≤ λ ≤ Λ, 1 ≤ ν ≤ n), because both are equal
to the principal ideal generated by the single element∏

1≤λ≤Λ
1≤ν≤m

z
jλ,ν
λn+ν .
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Since the hypersurfaces Vλ (1 ≤ λ ≤ Λ) of Pn are in normal crossing, the trivial
observation implies that the ideal sheaf of germs of holomorphic functions on
P×mn which vanish to multi-order (j1, . . . , jm) on each V ×mλ is generated by∏

1≤λ≤Λ
1≤ν≤m

(π∗νsVλ)jν ,

where πν : P×mn → Pn is the projection onto the ν-th factor.

Let lµ(x1, . . . , xm) (1 ≤ µ ≤ k) be a product of m generic polynomials
respectively of degree 1 in the affine coordinates x1, . . . , xm of P×mn . For N
sufficiently large we can write

F (x1, . . . , xm)lµ(x1, . . . , xm)N

=
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

( ∏
1≤λ≤Λ
1≤ν≤m

sVλ(xν)jλ,ν

)
Gµ,{jλ,ν} 1≤λ≤Λ

1≤ν≤m
(x1, . . . , xm).

We have ∏m
ν=1

(
1 + |x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

≥
(
1 + |x̂|2

) qδΛ
2∏Λ

λ=1 |sVλ(x̂)|q

∏m
ν=1

(
1 + |x̃ν|2

) d+N
2
/ (

1 + |x̂|2
) qδΛ

2∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

1≤µ≤k

∣∣∏ 1≤λ≤Λ
1≤ν≤m

sVλ(x̃ν)jλ,ν
∣∣ ∣∣Gµ,{jλ,ν} 1≤λ≤Λ

1≤ν≤m

∣∣ .
Note that instead of using lµ(x1, . . . , xm) (1 ≤ µ ≤ k), one could also write
F (x1, . . . , xm) as a linear combination of∏

1≤λ≤Λ
1≤ν≤m

sVλ(xν)jλ,ν

with smooth sections of

OP×mn (d− q, . . . , d− q)

over P×mn as coefficients as in Section 0.7. We consider the following long string
of inequalities:

(1.5.1)

log

(
1+|x̂|2

) qδΛ
2∏Λ

λ=1 |sVλ(x̂)|q
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≤ log
∏m
ν=1

(
1+|x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

+log

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

1≤µ≤k

∏
1≤λ≤Λ
1≤ν≤m

∣∣∣ sVλ(x̃ν )

sVλ (x̂)

∣∣∣jλ,ν ∣∣Gµ,{jλ,ν} 1≤λΛ
1≤ν≤m

(x̃1, . . . , x̃m)
∣∣

∏m
ν=1 (1+|x̃ν|2)

d+N
2 / (1+|x̂|2)

qδΛ
2

≤ log
∏m
ν=1

(
1+|x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

+log
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

∏
1≤λ≤Λ
1≤ν≤m

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣jλ,ν

×
k∑
µ=1

( ∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

∣∣
∏m
ν=1 (1+|x̃ν|2)

d+N−(j1,ν+···+jΛ,ν)δ
2

m∏
ν=1

(
1+|x̂|2
1+|x̃ν|2

) (j1,ν+···+jΛ,ν)δ
2

)

≤ log
∏m
ν=1

(
1+|x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

log+
∏

1≤λ≤Λ
1≤ν≤m

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣jλ,ν

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q
1≤µ≤k

log+

∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

∣∣
∏m
ν=1 (1+|x̃ν|2)

d+N−(j1,ν+···+jΛ,ν)δ
2

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q
1≤µ≤k,1≤ν≤m

log+

(
1+|x̂|2
1+|x̃ν|2

) (j1,ν+···+jΛ,ν )δ
2

+Cm,q

= log
A
∏m
ν=1

(
1+|x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)| +log
∏m
ν=1

(
1+|x̃ν|2

)N
2∑k

µ=1 |lµ(x̃1, . . . , x̃m)|N

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

(j1,ν+· · ·+jΛ,ν) log+

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣
+

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

1≤µ≤k

log+

∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

∣∣
∏m
ν=1 (1+|x̃ν|2)

d+N−(j1,ν+···+jΛ,ν)
2

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q
1≤µ≤k,1≤ν≤m

1
2(j1,ν+· · ·+jΛ,ν)δ log+

(
1+|x̂|2
1+|x̃ν|2

)
+Cm,q−logA,



460 YUM-TONG SIU

where Cm,q is a constant depending only on m and q and A is a positive constant
chosen so large that

log
A
∏m
ν=1

(
1 + |x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)| > 0

at every point of P×mn . We will average the left-hand side and the right-hand
side of 1.5.1 over the unit circle {|ζ| = 1}. We will consider a lower bound for the
averaged left-hand side of 1.5.1 and also conisder the an upper bound for each
of the averaged term on the right-hand side of 1.5.1, in order to get the defect
relation stated in Theorem 1.0.1.

First we look at an upper bound for each of the averaged term on the right-
hand side of 1.5.1. Both terms

log
∏m
ν=1

(
1 + |x̃ν|2

)N
2∑k

µ=1 |lµ(x̃1, . . . , x̃m)|N

and

log+

∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

(x̃1, . . . , x̃m)
∣∣

∏m
ν=1 (1 + |x̃ν|2)

md+mN−(j1,ν+···+jΛ,ν )δ
2

are uniformly bounded on P×mn .
To get an upper bound of the average of

log
A
∏m
ν=1

(
1 + |x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)|

over the circle {|ζ| = 1}, we apply the standard First Main Theorem argument
of two integrations to

∂∂̄ log
∣∣∣∣F (x̃1, . . . , x̃m)

ζl

∣∣∣∣
which is nonzero at ζ = 0, we get∮
|ζ|=1

log
A
∏m
ν=1

(
1 + |x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)| ≤ d
m∑
ν=1

T (ρν , ϕ) + lim
ζ→0

log

∣∣ζl∣∣
|F (x̃1, . . . , x̃m)| +O(1)

≤ d
m∑
ν=1

T (ρν , ϕ) + log
(
rl

2
|χp|r2T (r, ϕ)κ

)
+O(1)

≤ d
m∑
ν=1

T (ρν , ϕ) +O (log r+ logT (r, ϕ)) ,

where l, p, χp come from Section 1.4.
To get an upper bound for

log+

(
1 + |x̂|2
1 + |x̃ν|2

)
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we use the following trivial inequality

1 + a1 + · · ·+ an
1 + b1 + · · ·+ bn

≤ 1 +
a1

b1
+ · · ·+ an

bn
.

for positive numbers a1, . . . , an, b1, . . . , bn. Let x = (z1, . . . , zn). Then x̂(ζ) =
(z1(ϕ(rζ)), . . . , zn(ϕ(rζ))) and x̃ν(ζ) = (z1(ϕ(ρνζ)), . . . , zn(ϕ(ρνζ))). We have

log+

(
1 + |x̂|2
1 + |x̃ν|2

)
= log+

(
1 +

∑n
λ=1 |zλ(ϕ(rζ))|2

1 +
∑n
λ=1 |zλ(ϕ(ρνζ))|2

)
≤ log+

(
1 +

n∑
λ=1

∣∣∣∣ zλ(ϕ(rζ))
zλ(ϕ(ρνζ))

∣∣∣∣2
)

≤
n∑
λ=1

log+

(∣∣∣∣ zλ(ϕ(rζ))
zλ(ϕ(ρνζ))

∣∣∣∣2
)

+ log(n+ 1).

To estimate the discrepancy from rescaling of the coordinate of C, we need to
compare at the same time both the characteristic function and the counting
function at a pair of points whose distance is of the order of the reciprocal of
the characteristic function. For that we need the following simple lemma on real
functions, which is modified from [Hayman 1964, p. 14] so that the conclusion is
valid at the same time for several functions.

Lemma 1.5.2 (Real Functions [Hayman 1964, p. 14]). Suppose that S1(r),
. . . , Sk(r) are positive nondecreasing functions for r0 ≤ r <∞ which are bounded
in every interval [r0, r1] for r0 ≤ r1 <∞. Then given K > 1, B1 > 1, and B2 > 1
with B2

∑k
ν=1 Sν(r0) > 1 there exists a sequence rµ →∞ such that

Sν(r) < K Sν(rµ) for rµ < r < rµ +
B1(

log
(
B2

∑k
ν=1 Sν(rµ)

))K .
Proof. Assume that our conclusion is false. Then for all sufficiently large r we
can find ρ such that

r < ρ < r +
B1(

log
(
B2

∑k
ν=1 Sν(r)

))K
and Sν (ρ) ≥ K Sν(r) for some ν with 1 ≤ ν ≤ k.

Choose r1 so that this holds for r ≥ r1. Then if rµ has already been defined
we define rµ+1 so that

rµ < rµ+1 < rµ +
B1(

log
(
B2

∑k
ν=1 Sν(rµ)

))K
and Sνµ(rµ+1) ≥ K Sνµ(rµ) for some νµ with 1 ≤ νµ ≤ k.

Let pν,µ = 1 if ν = νµ and pν,µ = 0 for ν 6= νµ and 1 ≤ ν ≤ k. Then

Sν(rµ+1) ≥ Kpν,µSν(rµ) for 1 ≤ ν ≤ k.
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We have
k∑
ν=1

Sν (rµ+1) ≥
k∑
ν=1

Kpν,1+···+pν,µSν(r0) ≥Kµ min (S1(r0), . . . , Sk(r0)) .

Thus

rµ+1 − rµ ≤
B1

(µ logK + log (B2 min (S1(r0), . . . , Sk(r0))))K

and
∑∞
µ=1(rµ+1−rµ) converges so that supµ rµ is finite. On the other hand, there

exists some ν0 such that there are infinitely many pν0,ml = 1 with 1 ≤ ml < ∞
and from the nondecreasing property of Sν0(r) we have

Sν0(rµ+1) ≥ KqµSν0(r1),

where qµ is the number of ml less than µ. Since qµ → ∞ as n → ∞, we
conclude that Sν0(r) is unbounded on the finite interval [r0, supµ rµ], which is a
contradiction. �

Corollary 1.5.3. Given any K > 1 and B > 1 there exists a sequence rµ →∞
such that

T (rµ +
B

T (rµ, ϕ)
, ϕ) ≤ KT (rµ), N(rµ +

B

T (rµ, ϕ)
, ϕ) ≤ KN(rµ).

Proof. If T (r, ϕ) is bounded, the statement is trivial. If T (r, ϕ) is unbounded,
we have

B

T (r, ϕ)
<

B

log (2T (r, ϕ))
<

B + 1
log (T (r, ϕ) +N(r, ϕ))

for r sufficiently large. �

Let η be an arbitrary positive number and we choose κ > 4. Now choose a
sequence {rµ}1≤µ<∞ going to infinity such that

rµ ≥ 2, T (rµ, ϕ) ≥ 2, T
(
rµ +

1
T (rµ, ϕ)

, ϕ
)
≤ (1 + η)T (rµ, ϕ),

N
(
rµ +

1
T (rµ, ϕ)

, ϕ
)
≤ (1 + η)N(rµ, ϕ), R = rµ +

1
2T (rµ, ϕ)

,

R̃ = rµ +
1

T (rµ, ϕ)
, ρν = rµ +

τν
rµ T (rµ, ϕ)κ

,

where τ1, . . . , τm are from Section 1.4. From here to the end of the section r

will be a member of the sequence {rµ}1≤µ<∞ though for notational simplicity
we suppress the subscript µ of rµ. Since log(1 + η) ≥ η− η2

2 for η < 1, it follows
that both log R̃

R and log R
ρν

are at most

1
rT (r, ϕ)

− 1
2(rT (r, ϕ))2

− 1
2rT (r, ϕ)

≥ 1
4rT (r, ϕ)

.
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Moreover, both

(ρν − ρµ)R
(R− ρν)(R− ρµ)

and
(ρν − r)R

(R − ρν)(R − ρµ)

are no less than
τν − τµ

r2T (r, ϕ)κ
(r +

1
4

)(
1
4T (r, ϕ)

)2 ≤ 32
r T (r, ϕ)κ−2

.

By Proposition 1.3.1,∮
|ζ|=1

log+

∣∣∣∣ zλ ◦ ϕ(rζ)
zλ ◦ ϕ(ρνζ)

∣∣∣∣2
≤ 32
r T (r, ϕ)κ−2

(
2(1 + η)T (r, ϕ) + 8r T (r, ϕ)2

)
+ 2ηT (r, ϕ) +O(1)

≤ 2ηT (r, ϕ) + O(1),

because κ > 4. Hence∮
|ζ|=1

log+

(
1 + |x̂|2
1 + |x̃ν|2

)
≤ 4nηT (r, ϕ) + O(1)

and ∮
|ζ|=1

log+

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣ ≤ 2δηT (r, ϕ) +O(1).

Thus we have the upper bounds∮
|ζ|=1

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q
1≤µ≤k,1≤ν≤m

1
2 (j1,ν + · · ·+ jΛ,ν) δ log+

(
1 + |x̂|2
1 + |x̃ν|2

)

≤ 2nδkmΛq
(
q +m− 1
m− 1

)Λ

ηT (r, ϕ) + O(1).

and∮
|ζ|=1

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

(j1,ν + · · ·+ jΛ,ν) log+

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣
≤ 2δΛq

(
q +m− 1
m− 1

)Λ

ηT (r, ϕ) + O(1).

To get a lower bound for the left-hand side of 1.5.1, we use the definition of
defect and get∮

|ζ|=1

log

(
1 + |x̂|2

) qδΛ
2∏Λ

λ=1 |sVλ(x̂)|q
≥ qδ

( Λ∑
λ=1

Defect(ϕ, sVλ)− η
)
T (r, ϕ)

for r sufficiently large.
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We now put together the lower bound for the averaged left-hand side of 1.5.1
and the upper bounds for the averaged terms on the right-hand side of 1.5.1. We
get

qδ

( Λ∑
λ=1

Defect(ϕ, sVλ)− η
)
T (r, ϕ)

≤ d(1 + η)
m∑
ν=1

T (r, ϕν) + 2δ(nmk + 1)Λq
(
q +m− 1
m− 1

)Λ

ηT (r, ϕ) + O(1).

Since η is an arbitrary positive number, it follows that

Λ∑
λ=1

Defect(ϕ, sVλ) ≤ md

qδ
.

The number q is chosen so that q is the largest integer less than md
τ(n+1) with

δnΘn(τ) < 1. Hence∑
λ∈Λ

Defect(ϕ, Vλ) ≤ n+ 1
δ

Θ−1
n

(
1
nδ

)
.

This gives Theorem 1.5.4 below for the case q = 1. It now follows from

Θn(τ) ≤ min
(

e

τ(n+ 1)
,

1
n
e
− 1

4(n+1)2 (1− 1
τ )2
)

that
∑
λ∈Λ Defect(ϕ, Vλ) is no more than ne for any δ ≥ 1 and is no more than

n + 1 for δ = 1. This proves the Theorem 1.0.1. The modification needed to
prove Theorem 0.0.1 and Theorem 1.5.4 is standard. The modification is to
restrict ϕ to a complex line in the complex vector space Cm̂ and then compute
the proximity term by restricting and average over the complex line with respect
to the Fubini–Study volume form of Pm̂−1.

Theorem 1.5.4. For τ > 0 let Θn(τ) be

limm→∞

(∫
n
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

o (1− x1)n−1 · · · (1− xm)n−1
dx1 · · ·dxm

)1/m

,

which is bounded by the minimum of e
τ(n+1) and 1

ne
− 1

4(n+1)2 (1− 1
τ )2

. Let Vλ (1 ≤
λ ≤ Λ) be regular complex hypersurfaces in Pn of degree δ in normal crossing .
Let ϕ : C → Pn is a holomorphic map whose image is not contained in any
hypersurface of Pn. Then

Λ∑
λ=1

Defect(ϕ, Vλ) ≤ n+ 1
δ

Θ−1
n

(
1
nδ

)
.
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2. Hyperbolicity of the Complement
of a Generic High Degree Plane Curve

2.1. Overview of the Method of Proof. In this Chapter we will give a
streamlined version of the proof of Theorem 0.1.4 [Siu and Yeung 1996a]. As
explained in the introduction of this paper for the approach of jet differentials,
the main difficulty of proving hyperbolicity is how to construct enough holomor-
phic jet differentials vanishing on an ample divisor which are independent in an
appropriate sense.

As discussed in Section 0.10, there are two main steps in the proof. Though
the first step is easier, we will spend more time in explaining the techniques in it,
because these techniques may be generalizable to the higher dimensional case.
In this overview the techniques of the first step are explained from here to the
end of 2.1.4 and the techniques of the second step are explained in 2.1.5.

For the first step of constructing a meromorphic 1-jet differential whose pull-
back to the entire holomorphic curve vanishes, we use the following three ingre-
dients to construct holomorphic 2-jet differentials vanishing on an ample divisor
on a branched cover of P2 (see 2.1.1 and 2.1.2):

(i) meromorphic nonlinear connections of low pole order for the tangent bundle,
(ii) the Wronskian, and
(iii) the positivity of the canonical line bundle.

This particular way of constructing holomorphic 2-jet differentials gives us some
control over their explicit forms so that by comparing degrees with respect to
suitable distinct polarizations we can get the independence of two 2-jet differ-
entials to obtain our desired meromorphic 1-jet differential as their resultant
(see 2.1.4). A polarization here means a collection of affine variables and their
differentials with respect to which degrees are measured. So far our method
works only in the 2-dimensional case. The difficulty of extending it to the case
of general dimension is that the algebraic procedure of concluding independence
by comparing degrees with respect to suitable distinct polarizations is not yet
developed for the case of general dimension. Such an algebraic procedure used
in the dimension two case is done in a very ad hoc way by brute force.

2.1.1. Use of Linear Connections. To put our construction in the proper context,
we first consider the the use of meromorphic linear connection of low pole order
in some special cases. Let us look at the situation of lifting a connection for the
tangent bundle of the base manifold to a branched cover. We assume that the
branching is cyclic and the branching locus is smooth. In addition we assume
that the second fundamental form of the branching locus with respect to the
connection is zero in the sense that with respect to the connection the derivative
of a local vector field with another local vector field always vanishes when both
vector fields are tangential to the branching. Let z1, . . . , zn be local coordinates
for the base manifold and w1, . . . , wn be local coordinates for the branched cover
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so that wn = (zn)
1
δ and wα = zα for 1 ≤ α ≤ n− 1. Let D denote a connection

for the tangent bundle of the base manifold and let Γγαβ be its Christoffel symbol
so that

D ∂
∂zα

∂

∂zβ
= Γγα β

∂

∂zγ
.

Here we use the summation convention of summing over an index appearing both
in the superscript and subscript positions. Let the lifting of D to the branched
cover be D̃ with Christoffel symbol Γ̃νλµ so that

D ∂
∂wλ

∂

∂wµ
= Γ̃νλµ

∂

∂wν
.

From

D ∂
∂wλ

∂

∂wµ
= D ∂

∂wλ

(
∂zβ

∂wµ
∂

∂zβ

)
=

∂2zβ

∂wλ∂wµ
∂

∂zβ
+
∂zα

∂wλ
∂zβ

∂wµ
Γγαβ

∂

∂zγ

it follows that

(2.1.1.1) Γ̃νλ µ =
∂2zβ

∂wλ∂wµ
∂wν

∂zβ
+
∂zα

∂wλ
∂wν

∂zγ
∂zβ

∂wµ
Γγα β.

Suppose D is locally holomorphic. We would like to compute the pole-order of D̃

by using the condition that the second fundamental form of the branching locus
is zero with respect to D. From (2.1.1.1) the only pole contribution comes from

∂wn

∂zn
=

1
δ

1
(wn)δ−1

.

The pole could occur only in Γ̃nλµ, which has the two terms

T1 :=
∂2zn

∂wλ∂wµ
∂wn

∂zn
, T2 :=

∂zα

∂wλ
∂wn

∂zn
∂zβ

∂wµ
Γnαβ .

Since the only term in T1 that is nonzero is for the case λ = µ = n, it follows
that

T1 =
∂2zn

(∂wn)2

∂wn

∂zn
= (δ − 1)

1
wn

.

For the term T2 the only pole contribution comes from the case 1 ≤ λ, µ ≤ n−1.
In that case from the vanishing of the second fundamental form of the branching
locus with respect to D we know that

Γnλµ = O(zn) = O((wn)δ)

which more than makes up for the pole contribution from ∂wn

∂zn . Thus we conclude
that the pole of D̃ is at most order one along the branching locus {wn = 0} of
the branched cover.

Let the branching locus be defined locally by a function f = 0. We would like
to see what the vanishing of the second fundamental form of the branching locus
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means in terms of the defining function f of the branching locus. Let ξ, η be arbi-
trary local vector fields tangential to the branching locus. Let df, ω1, . . . , ωn−1 be
a local basis of 1-forms. From the vanishing of 〈df, ξ〉 and 〈df,Dηξ〉 the equation

dη 〈df, ξ〉 = 〈Dηdf, ξ〉+ 〈df,Dηξ〉

imples that 〈Ddf, ξ ⊗ η〉 = 0. By writing

Ddf = df ⊗ df + df ⊗
n−1∑
j=1

ajωj +

( n−1∑
j=1

bjωj

)
⊗ df +

n−1∑
j,k=1

cj kωj ⊗ ωk

for some local scalar functions aj , bj, cj k, we conclude that the term

n−1∑
j,k=1

cj kωj ⊗ ωk

must vanish on {f = 0}. Thus on {f = 0} we have

Ddf = df ⊗ df + df ⊗
n−1∑
j=1

ajωj +

( n−1∑
j=1

bjωj

)
⊗ df,

or in terms of the first-order derivative fα and the second-order derivatives fα β
we have scalar functions Aβ , Bα, Cαβ such that

fα β − Γγαβfγ = fαAβ + Bαfβ +Cαβf.

We now start our construction of holomorphic jet differentials from mero-
morphic connections. Let z = ϕ(ζ) represent a local holomorphic curve in an
n-dimensional complex manifold X and let D̃ be the meromorphic connection
for the tangent bundle of X. Then

ϕ 7→ dϕ ∧ D̃dϕ ∧ · · · ∧ D̃n−1dϕ

defines a KX-valued n-jet differential. Let ω ∈ Γ(X,mKX). Then

ϕ 7→
〈
ω, (dϕ ∧ D̃dϕ ∧ · · · ∧ D̃n−1dϕ)⊗m

〉
defines an n-jet differential. If the pole order of D̃ is small and the vanishing
order of ω is high, then the n-jet differential

ϕ 7→
〈
ω, (dϕ ∧ D̃dϕ ∧ · · · ∧ D̃n−1dϕ)⊗m

〉
is holomorphic.

Suppose C is a smooth curve in P2 defined by the polynomial f(x, y) = 0 in
the affine coordinates x, y of degree δ and X is the branched cover over P2 with
cyclic branching of order δ along C. Suppose D is a meromorphic connection of
low pole order for the tangent bundle of P2 such that the second fundamental
form of C with respect to D is zero in the sense that the covariant derivatives of
tangent vector fields of C in the direction of C with respect to D are zero. Then
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the connection D for the tangent bundle of P2 can be lifted to a connection D̃

for the tangent bundle of X. We could define such a connection D if

fxx = a0f + a1fx + a2fy ,

fxy = b0f + b1fx + b2fy,

fyy = c0f + c1fx + c2fy ,

by using z1 = x, z2 = y and defining the Christoffel symbol

Γljk ⊗
∂

∂zl
⊗ dzj ⊗ dzk

for the connection D by

Γ1
1 1 = a1, Γ1

1 2 = b1, Γ1
1 1 = c1,

Γ2
1 1 = a2, Γ2

1 2 = b2, Γ2
2 2 = c2.

For a local holomorphic curve ϕ : U → X parametrized by an open subset U of
C, we form

Φ = (Dζϕ
α
ζ )ϕβζ

(
∂

∂zα
∧ ∂

∂zβ

)
= 1

2

(
(Dζϕ

α
ζ )ϕβζ − (Dζϕ

β
ζ )ϕαζ

)( ∂

∂zα
∧ ∂

∂zβ

)
.

Let s = sα βdz
α ∧ dzβ be a 2-form. Then the evaluation of s at Φ gives

〈s,Φ〉 = 1
2

(
(Dζϕ

α
ζ )ϕβζ − (Dζϕ

β
ζ )ϕαζ

)
sα β.

From
Dζϕ

α
ζ = ϕαζ ζ + Γαλµϕ

λ
ζϕ

µ
ζ

it follows that

(Dζϕ
α
ζ )ϕβζ − (Dζϕ

β
ζ )ϕαζ =

(
ϕαζ ζϕ

β
ζ − ϕ

β
ζ ζϕ

α
ζ

)
+ ϕλζϕ

µ
ζ

(
Γαλ µϕ

β
ζ − Γβλµϕ

α
ζ

)
.

For our special case, when we set s = dx∧ dy and z1 = x, z2 = y, we get

〈s,Φ〉 = ϕ∗
{

(d2x dy− dx d2y)

+ dx2(a1 dy − a2 dx) + 2 dx dy(b1 dy − b2 dx) + dy2(c1 dy − c2 dx)
}

= ϕ∗
{

(d2x dy− dx d2y)

+ (a1 dx
2 + 2b1 dx dy+ c1 dy

2) dy − (a2 dx
2 + 2b2 dx dy+ c2 dy

2) dx
}

Let tδ = f(x, y). On X the pullback of the 2-form dx∧ dy yields a holomorphic
2-jet differential after we divide it by an appropriate power of t, because its
vanishing order in t along the branching locus more than offsets its pole order
along the infinity line of P2. An analytic way of seeing it is that

dx ∧ dy =
dx ∧ df
fy

=
δtδ−1

fy
(dx ∧ dt) ,

which says that
1

tδ−1
(dx∧ dy)
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is a holomorphic 2-jet differential on X. The key point is that dx∧df is divisible
by fy as well as by tδ−1.

Now we come back to 〈s,Φ〉. Geometrically we know that

g(x, y)
tδ−2

〈s,Φ〉

is a holomorphic 2-jet differential if the pole divisor of meromorphic connection D̃

is contained in the zero divisor of g(x, y) in the affine part, because the pullback
of a holomorphic 2-jet differential to the branched cover has at most a simple
pole along the branching locus. We would like to see analytically why we the
2-jet differential

g(x, y)
tδ−2

〈s,Φ〉

is holomorphic on X. We do it in a way analogous to the analytic proof of the
holomorphicity of

1
tδ−1

(dx∧ dy)

by the divisibility of dx ∧ df by fy as well as by tδ−1. Just as in the case of the
analytic proof of the holomorphicity of

1
tδ−1

(dx∧ dy) ,

we first convert djy to djf for j = 1, 2. We use

d2f dx− d2x df = fy(d2y dx− d2x dy) + II dx,

where

II = fxx dx
2 + 2fxy dx dy+ fyy dy

2.

Write

II = (a0 dx
2 + 2b0 dx dy+ c0 dy

2)f

+(a1 dx
2 + 2b1 dx dy+ c1 dy

2)fx + (a2 dx
2 + 2b2 dx dy+ c2 dy

2)fy

and use

fx dx = df − fy dy

to get
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d2f dx− d2x df

= fy(d2y dx−d2x dy) + (a0 dx
2+2b0 dx dy+c0 dy2)f dx

+ (a1 dx
2+2b1 dx dy+c1 dy2)fx dx+ (a2 dx

2+2b2 dx dy+c2 dy2)fy dx

= fy(d2y dx−d2x dy) + (a0 dx
2+2b0 dx dy+c0 dy2)f dx

+ (a1 dx
2+2b1 dx dy+c1 dy2)(df−fy dy) + (a2 dx

2+2b2 dx dy+c2 dy2)fy dx

= fy
{

(d2y dx−d2x dy) + (a2 dx
2+2b2 dx dy+c2 dy2) dx

− (a1 dx
2+2b1 dx dy+c1 dy2) dy

}
+ (a0 dx

2+2b0 dx dy+c0 dy2)f dx+ (a1 dx
2+2b1 dx dy+c1 dy2) df.

Thus,

〈s,Φ〉 = ϕ∗
{

(d2x dy− dx d2y)

+ (a1 dx
2 + 2b1 dx dy+ c1 dy

2) dy − (a2 dx
2 + 2b2 dx dy+ c2 dy

2) dx
}

=
1
fy

{
d2f dx− d2x df

−(a0 dx
2 + 2b0 dx dy+ c0 dy

2)f dx− (a1 dx
2 + 2b1 dx dy+ c1 dy

2) df
}

and
g(x, y)
tδ−2

〈s,Φ〉 =
g(x, y)
tδ−2fy

{
d2f dx− d2x df

−(a0 dx
2 + 2b0 dx dy+ c0 dy

2)f dx− (a1 dx
2 + 2b1 dx dy+ c1 dy

2) df
}

is holomorphic, because f = tδ implies that

df = δtδ−1dt,

d2f = δ(δ − 1)tδ−2dt2 + δtδ−2d2t = δtδ−2((δ − 1)(dt)2 + td2t).

2.1.2. Use of Nonlinear Connections. In general, we do not have

fxx = a0f + a1fx + a2fy ,

fxy = b0f + b1fx + b2fy,

fyy = c0f + c1fx + c2fy ,

with low pole order for aj, bi, cj (j = 0, 1, 2). On the other hand, we know that
the theorem of Riemann–Roch guarantees the existence of holomorphic 2-jet
differentials in general. The theorem of Riemann–Roch is just a more refined
form of counting the number of unknowns and the number of equations. The
disadvantage of the use of the theorem of Riemann–Roch is that we do not
have any explicit form of holomorphic 2-jet differentials to obtain any conclusion
about independence. For the general case we need to modify our approach
of using connections to get holomorphic 2-jet differentials in an explicit form.
The connections constructed above for the special cases are linear connections.
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When we differentiate a tangent vector field without a connection, we end up
with a field of 2-jets. A connection is a way of converting such a field of 2-jets
back to a tangent vector field. For the purpose of constructing a holomorphic
2-jet differential we do not have to confine ourselves to a linear connection.
The conversion of a field of 2-jets back to a tangent vector field can involve a
conversion function which is not linear. For example, the conversion function can
be an algebraic function which is a root of a polynomial equation. Geometrically
there is no existing interpretation for a connection which is an algebraic function.
If we just carry out in a purely analytic way the analog of the argument for a
linear connection, we should consider, in the case of a connection which is an
algebraic function, a polynomial of the form

Φ =
m∑
k=0

ωs+3kf
2(m−k)(d2f dx− d2x df)m−k

which is divisible by fy, where

ωµ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p. The integers s, p, m
are chosen so that the counting of the number of coefficients and the number of
equations yields the existence of a function Φ which is not identically zero. The
powers of f in the above expressions are used so that

1
fs+3m

Φ =
m∑
k=0

( 1
fs+3k

ωs+3k

)(
d2f

f
dx− d2x

df

f

)m−k
is divisible by fy, where

1
fµ
ωµ =

∑
ν0+ν1+ν2=µ

aν0ν1ν2(x, y)
(
df

f

)ν0

(dx)ν1(dy)ν2 .

With

df

f
= δ

dt

t
,

d2f

f
= δ

(
d2t

t
+ (δ − 1)

(
dt

t

)2
)
,

d2f

f
dx− d2x

df

f
= δ
(
d2t

t
dx− dt

t
d2x
)

+ δ(δ − 1)
(
dt

t

)2

dx,

it means that, when we set

Φ̃ =
1

fs+3m
Φ, ω̃µ =

1
fµ
ωµ,
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we are looking for

Φ̃ =
m∑
k=0

ω̃s+3k

(
δ
(
d2t

t
dx− dt

t
d2x
)

+ δ(δ − 1)
(
dt

t

)2

dx

)m−k
to be divisible by fy , where

ω̃µ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(x, y)
(
δ
dt

t

)ν0

(dx)ν1(dy)ν2 .

Thus we can construct a 2-jet differential which has small degrees with respect
to

dx, dy,
dt

t
,
d2t

t
dx− dt

t
d2x.

2.1.3. Independence from Degree Considerations for Different Polarizations.

By interchanging the rôles of x and y, we can also construct a 2-jet differential
which has small degrees with respect to

dx, dy,
dt

t
,
d2t

t
dy− dt

t
d2y.

The expressions dx, dy, dt
t

used in the two sets of polarizations above are not
completely independent. They are related by

dt

t
=

1
δ

(
fx
f
dx+

fy
f
dy
)
.

The difference between the two sets of polarizations

dx, dy,
dt

t
,
d2t

t
dx− dt

t
d2x

and

dx, dy,
dt

t
,
d2t

t
dy − dt

t
d2y

is the last component in each, namely

d2t

t
dx− dt

t
d2x and

d2t

t
dy − dt

t
d2y.

They are related by

1
fy

(
d2t

t
dx−dt

t
d2x
)

+
1
fx

(
d2t

t
dy−dt

t
d2y
)

=

(
II
δf
−(δ−1)

(
dt

t

)2
)( 1

fy
dx− 1

fx
dy
)

which has large degree in x, y. From this, for generic affine coordinates x, y and
for generic f of sufficiently high degree we get the following statement which will
later be given and proved in detail in Section 2.8.

Claim 2.1.4. There exist two affine coordinate systems so that the irreducible
branch of the zero-set of one 2-jet differential containing the entire holomorphic
curve constructed from one affine coordinate system is different from the one
constructed from the other affine coordinate system.



RECENT TECHNIQUES IN HYPERBOLICITY PROBLEMS 473

This statement is actually obtained by using the set of holomorphic 2-jet differ-
entials ωγ from the action of γ ∈ SU(2,C) on the affine coordinates x, y and by
using the restriction placed on the coefficients of f by the differential equation
on f which f is forced to satisfy when the set of holomorphic 2-jet differentials
have a common irreducible branch containing the 2-jets of the entire holomor-
phic curve. We use more than just the high degree in x, y of the relation of the
two different sets of polarizations, but we also use the fact that the polarizations
involve differentials so that dependence in our sense implies that f satisfies a
differential equation which imposes conditions on the coefficients of f , thereby
making f not generic.

Since the 2-jet differential is of homogeneous weight in dx, dy, d2x dy−dx d2y,
its zero-set is of complex dimension 3. The common zero-set of the two irre-
ducible branches is of complex dimension 2.

Because dx, dy, dt
t

have the relation

dt

t
=

1
δ

(
fx
f
dx+

fy
f
dy
)
,

when we factor any of the two 2-jet differentials we have to worry about losing
the property of having small degree with respect to either(

dx, dy,
dt

t
,
d2t

t
dx− dt

t
d2x
)

and (
dx, dy,

dt

t
,
d2t

t
dy− dt

t
d2y
)
.

For that we need the following irreducibility criterion, which is given as Propo-
sition 2.3.2 below.

Suppose P (x, y, dx, dy, df
f
, Z) is irreducible as a polynomial of the 6 variables with

degree p in x and y and homogeneous degree m in dx, dy, df
f
, Z. If p+m+1 ≤ δ,

then P
(
x, y, dx, dy, df

f
, Z
)

is irreducible as a polynomial in dx, dy, Z over the field
C(x, y).

In the application the weight of Z is 3 while the weight of each of dx, dy, dff
is 1. To handle that, we rewrite P

(
x, y, dx, dy, df

f
, Z
)

as P1

(
x, y, dx, dy, df

f
, Z
dx2

)
so that the weight of Z

dx2 is 1 and can be regarded as a new variable Z̃ = Z
dx2 .

2.1.5. Touching Order with 1-Jet Differential of Low Pole Order. When we take
the resultant of the two irreducible factors of the two 2-jet differentials, we have
to use either d2t

t
dx− dt

t
d2x or d2t

t
dy − dt

t
d2y at the same for both factors and

we end up with a relation among x, y, dx, dy, dt
t

which is of small degree with
respect to

(
dx, dy, dt

t

)
. We use δ dt

t
= df

f
to write the relation as a polynomial in

x, y, dx, dy which is homogeneous in dx, dy. The pullback of this relation to the
entire holomorphic curve is identically zero. So the pullback of one of its factors
to the entire holomorphic curve is identically zero. Let h = h(x, y, dx, dy) be
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that factor. Let q be its degree in x, y and m be its degree as a homogeneous
polynomial in dx, dy.

Let h̃ be the pullback of h to the δ-sheeted branched cover X over P2. Let
Vh̃ be the zero-set of h̃ as a function on the projectivization of P(TX) of the
tangent bundle TX of X. Let LX be the line bundle over P(TX) so that the
global sections of rLX correspond to 1-jet differentials over X of degree r.

We use, for sufficiently large r, the existence of a nontrivial global holomorphic
section of r(F − G) over Y if F,G are two ample line bundles over a compact
complex variety Y of complex dimension n with F n > nF n−1G. We apply it to
the case rLX = F −G with F = (r+ 1)(LX + 3HP2) and G = LX + 3(r+ 1)HP2

over a branch of Vh̃. We use the branch of Vh̃ which contains a lifting of the
entire holomorphic curve. The cyclic group of order δ which is the Galois group
of X → P2 acts on the set of all branches of Vh̃. When q > 4m, by using the
Galois group of X → P2, for sufficiently large δ we obtain a nontrivial global
section s of rLX over that branch of Vh̃ for r sufficiently large. The zero-set of s
projects down to an algebraic curve in P2 which contains the entire holomorphic
curve. So the case that remains is q ≤ 4m.

The number m can be chosen to be independent of δ. There are integers
N, δ0 depending only on q,m such that a generic curve of degree δ ≥ δ0 can-
not be tangential, to order N at any point, to any irreducible 1-jet differential
θ(x, y, dx, dy) of degree q in x, y and of homogeneous degree m in dx, dy. We
can choose δ sufficiently large relative to N . We choose a polynomial S(x, y)
with degree small relative to δ so that S vanishes to order N at all the points on
the zero-set of f(x, y) where the discriminant of h(x, y, dx, dy) as a homogeneous
polynomial of dx, dy vanishes. Let η be any meromorphic 1-jet differential of
low pole order (for example, a suitable linear combination of dx and dy) whose
pullback to the entire holomorphic curve is not identically zero. We then prove
an inequality of Schwarz lemma type:

√
−1

2π
∂∂̄ log

(∥∥f N−1
N S(x, y)η

∥∥2

‖f‖2 (log ‖f‖2)2

)
≥ ε

∥∥f N−1
N S(x, y)η

∥∥2

‖f‖2 (log‖f‖2)2

for some positive number ε when pulled back to C by the entire holomorphic
curve. The Schwarz lemma type inequality implies the nonexistence of the entire
holomorphic curve. This concludes the overview of our proof. Now we give the
details.

2.2. Construction of Holomorphic 2-Jet Differentials. Let p be a posi-
tive integer and s be a nonnegative integer. We are going to construct a 2-jet
differential Φ of degree m on X of the form

Φ =
m∑
k=0

ωs+3kf
2(m−k)(d2fdx− d2xdf)m−k,
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where
ωµ =

∑
ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p. We are going to
choose the polynomials aν0ν1ν2(x, y) so that Φ is divisible by fy. Then we will
conclude that t−Nf−1

y Φ is a holomorphic 2-jet differential on X when certain
inequalities involving p, s, δ, m, and N are satisfied. This is done by regarding
the coefficients of the polynomials aν0ν1ν2(x, y) as unknowns and counting the
number of linear equations corresponding to divisibility of Φ by fy and solving the
linear equations when the number of unknowns exceeds the number of equations.
In order to guarantee that the 2-jet differential Φ obtained by solving the linear
equations is not identically zero, we need the following lemma involving the
independence of the coefficients of the polynomials aν0ν1ν2(x, y).

Lemma 2.2.1. Let q be a positive integer < δ. Let l be any positive integer . For
ν0 + ν1 + ν2 = l let bν0ν1ν2(x, y) be a polynomial in x and y of degree at most q.
If
∑
ν0+ν1+ν2=l bν0ν1ν2(df)ν0(f dx)ν1(f dy)ν2 is identically zero, then bν0ν1ν2(x, y)

is identically zero for ν0 + ν1 + ν2 = l.

Proof. Regard (x, y) as the affine coordinate for P2 and introduce the homo-
geneous coordinates [ξ, η, ζ] for anther P2. On the product P2×P2 consider the
hypersurface M of bidegree (δ, 1) defined by

f(x, y)ζ = fx(x, y)ξ + fy(x, y)η.

Let
s ∈ Γ (P2 × P2,OP2×P2(q, l))

be defined by ∑
ν0+ν1+ν2=l

bν0ν1ν2(x, y)ζν0ξν1ην2 .

The assumption of the Lemma means that the restriction of s to M is identically
zero. Since q < δ, from the exact sequence

0 = H0 (P2 × P2,OP2×P2(q − δ, l − 1))→
H0 (P2 × P2,OP2×P2(q, l))→ H0 (M,OP2×P2(q, l)|M)

it follows that s is identically zero. �

2.2.2. Computation of the numbers of equations and unknowns. On P2×P2×P1

we use the affine coordinate (x, y) for the first factor and use the affine coordinate
(dx, dy) for the second factor and then use the affine coordinate d2x dy− d2y dx

for the third factor. Then consider

Φ =
m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k,
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as a holomorphic section of OP2×P2×P1(a, b, c) over P2 × P2 × P1 for suitable
integers a, b, c and then restrict to the hypersurface defined by fy(x, y) = 0. We
do the counting of the dimensions of the section modules to show that there
exists Φ not identically zero whose restriction to {fy(x, y) = 0} is identically
zero. Here P2 × P2 × P1 is regarded as birationally equivalent to the space of
special 2-jet differentials over P2.

We now compute the number of equations involved in setting

Φ =
m∑
k=0

ωs+3kf
2(m−k)(fxx dx2 + 2fxy dx dy+ fyy dy

2)m−kdxm−k

equal to zero modulo fy . Using

d2f dx− d2x df = (fxx dx2 + 2fxy dx dy+ fyy dy
2) dx− fy(d2x dy− d2y dx)

and expanding Φ, we end up with an expression of the form

s+3m∑
j=0

bj(x, y) dxj dys+3m−j

modulo fy, where bj = bj(x, y) is a polynomial in x and y of degree at most
p+ (s+ 3m)δ. The number of coefficients in each bj is at most

1
2(p + (s+ 3m)δ + 2)(p+ (s+ 3m)δ + 1).

For each bj(x, y) we have to rule out expressions of the form qj(x, y)fy(x, y) with
the degree of qj(x, y) in x and y no more than p+ (s+ 3m)δ − (δ − 1). So the
number of possible constraints for each bj is at most

1
2
(p+ (s+3m)δ + 2)(p+ (s+3m)δ + 1)

−1
2(p + (s+3m)δ + 2− (δ−1))(p+ (s+3m)δ + 1− (δ−1)),

which is to say

(δ − 1)(p+ (s+3m)δ)− 1
2(δ2 − 5δ + 4).

There are altogether s+ 3m+ 1 such functions bj(x, y). Thus the total number
of equations is at most

(s+ 3m+ 1)((δ − 1)(p + (s+ 3m)δ) − 1
2(δ2 − 5δ + 4)).

Now we would like to compute the number of unknowns. The number of
unknowns is the sum of the number of unknowns from each ωµ. For

ωµ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(df)ν0(f dx)ν1(f dy)ν2 ,

the number of unknowns from ωµ is equal to the sum of the number of coefficients
in each of the polynomials aν0ν1ν2 with ν0+ν1+ν2 = µ. There are 1

2
(µ+2)(µ+1)
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such aν0ν1ν and each aν0ν1ν has 1
2(p+2)(p+1) coefficients. Hence the number of

unknowns in ωµ is 1
4(µ+2)(µ+1)(p+2)(p+1). The total number of unknowns is

m∑
k=0

1
4 (s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1).

When the number of unknowns exceeds the number of equations, for a generic
f we can solve the linear equations and the solutions will be rational functions
of the coefficients of f . We summarize the result in the following lemma.

Lemma 2.2.3. To be able to construct a 2-jet differential Φ which is divisible by
fy and which is of the form

m∑
k=0

ωs+3kf
2(m−k)(d2f dx− d2x df)m−k,

where

ωµ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p, it suffices to have the
following inequalities p < δ − 1 and

m∑
k=0

1
4

(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1)

> (s+ 3m+ 1)((δ − 1)(p+ (s+ 3m)δ) − 1
2 (δ2 − 5δ + 4)).

Moreover , for a generic f the coefficients of aν0ν1ν2(x, y) are rational functions
of the coefficients of f .

The reason for the last statement of Lemma 2.2.3 is as follows. When we solve
the system of homogeneous linear equations for the coefficients of aν0ν1ν2(x, y),
we choose a square submatrix A with nonzero determinant in the matrix of
the coefficients of the system of homogeneous linear equations so that A has
maximum size among all square submatrices with nonzero determinants and
then we apply Cramer’s rule to those equations whose coefficients are involved
in A to solve for the the coefficients of aν0ν1ν2(x, y). When we do this process,
we can regard the coefficients of the system of homogeneous linear equations as
functions of the coefficients of f . The square submatrix A has maximum size
among all square submatrices whose determinants are not identically zero as
functions of the coefficients of f . A sufficient condition for the genericity of f
involved in this process is that the point represented by the coefficients of f is
outside the zero set of A when A is regarded as a function of the coefficients of f .
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2.2.4. Condition for the holomorphicity of the 2-jet differential. We would like
to determine under what condition the constructed 2-jet differential t−Nf−1

y Φ is
holomorphic on X and vanishes on some ample curve of X.

First we consider the pole order at infinity of various factors. Recall that
[ζ0, ζ1, ζ2] is the homogeneous coordinates of P2 with x = ζ1/ζ0 and y = ζ2/ζ0.
At a point at the infinity line we assume without loss of generality that ζ1 6= 0.
At that point of the infinity line we use the affine coordinates u = ζ0/ζ1 = 1/x
and v = ζ2/ζ1 = y/x. Thus x = 1/u and y = xv = v/u. We have

dx = −du
u2
, dy =

dv

u
− v du

u2
, d2x dy− d2y dx = − 1

u3
(d2u dv − d2v du).

Thus we conclude that the pole order of d2x dy− d2y dx at infinity is 3. From

d2xdf − d2f dx = −fxx
(
−du
u2

)3

− 2fxy
(
−du
u2

)2(dv
u
− v du

u2

)
−fyy

(
−du
u2

)(
dv

u
− v du

u2

)2

− fy
u3

(d2u dv − d2v du)

we conclude that the pole order of d2xdf − d2fdx at infinity is δ + 4. From

df = fx

(
−du
u2

)
+ fy

(
dv

u
− v du

u2

)
we have the pole order δ + 1 for df at infinity.

Since f = tδ and df = δtδ−1dt and d2f = δtδ−1d2t+δ(δ−1)tδ−2dt2, it follows
that from ωµ we can factor out tµ(δ−1). From d2fdx − d2xdf we can factor out
tδ−2. Hence from the term ωs+3kf

2(m−k)(d2fdx− d2xdf)m−k we can factor out
t to the power (s+ 3k)(δ− 1) + 2(m− k)δ+ (m− k)(δ− 2) which is the same as
(s+ 3m)δ − (s+ 2m+ k) for 0 ≤ k ≤ m. We can only factor out the minimum
power of t, namely (s + 3m)(δ − 1). When we can divide by fy, we factor out
a pole order of δ − 1 which corresponds to the power δ − 1 of t. On the other
hand, the pole order at infinity for ωµ is p + µ(δ + 2) and as a result the pole
order of the term ωs+3kf

2(m−k)(d2fdx− d2xdf)m−k of Φ at infinity is

p+ (s+ 3k)(δ+ 2) + 2(m− k)δ+ (m− k)(δ+ 4) = p+ (s+ 3m)δ+ 2s+ 4m+ 2k

for 0 ≤ k ≤ m. We have to take in this case the maximum of the expression for
0 ≤ k ≤ m and we get p+ (s+ 3m)(δ+ 2). Take a positive integer q. To end up
with a holomorphic jet differential t−(s+3m)(δ−1)f−1

y Φ on X with at least q zero
order at infinity, we can impose the condition

δ − 1 + (s+ 3m)(δ − 1) ≥ q + p+ (s+ 3m)(δ + 2)

which is the same as p ≤ δ − q − 1− 3s− 9m.
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2.3. Two Kinds of Irreducibility. In number theory it was first pointed out
by Vojta that the finiteness of rational points for a subvariety of abelian varieties
not containing the translate of an abelian variety is the consequence of the fact
that in the product space of many copies of the subvariety there are more line
bundles or divisors than constructed from the factors which are copies of the
subvariety [Faltings 1991; Vojta 1992]. In hyperbolicity problems the analog of
taking the product of copies of a manifold is to use the space of jets. The analog
of the existence of more divisors or line bundles is the existence of more ways of
factorization for meromorphic jet differentials. Some factors from the additional
ways of factorization become holomorphic jet differentials. In our construction
we pullback

Φ =
m∑
k=0

ωs+3kf
2(m−k)(d2fdx− d2xdf)m−k,

to the space of 2-jets of the branched cover and obtain a new factor tN so that
one of the other factors becomes a holomorphic 2-jet differntial on the branched
cover.

On the other hand, the many more different ways of factorization makes it
more difficult to control the factors to get the independence of holomorphic jet
differentials. Two meromorphic jet differentials on the complex projective plane
constructed in different ways may share a common factor when pulled back to the
branched cover, because there are more ways of factorization in the space of jets
of the branched cover. We have to strike a balance between having many ways of
factorization to get holomorphic jet differentials and having not too many ways
of factorization to get the independence of holomorphic jet differentials. The
way we handle it is to construct an appropriate intermediate manifold between
the space of jets of the complex projective space and the space of jets of the
branched cover. On this intermediate manifold we introduce a certain class
of meromorphic functions with the following property. Every memomorphic
function in that class can be pulled back to the space of jets of the branched
cover to give a factor which is a holomorphic jet differential. On the other
hand, for that particular class of meromorphic functions the number of ways
of factorization is not too numerous that we could construct two meromorphic
functions in that class having no common factors before being pulled back to the
jet space of the branched cover.

Proposition 2.3.1. Let gj(z0, z1, z2) (0 ≤ j ≤ 2) be homogeneous polynomials
of degree δ whose common zero-set consists only of the single point

(z0, z1, z2) = 0.

Let P (x, y, w0, w1, w2, Y ) be a polynomial of the 6 variables x, y, w0, w1, w2, Y
with degree p in x, y and homogeneous degree m in w1, w2, w3 and of degree q
in Y . Let Q be obtained from P by replacing w0 by a function in w1, w2, x, y



480 YUM-TONG SIU

satisfying
∑2
j=0 gj(1, x, y)wj = 0, in other words,

Q(x, y, w1, w2, Y ) = P (x, y,−g1(1, x, y)
g0(1, x, y)

w1 −
g2(1, x, y)
g0(1, x, y)

w2, w1, w2, Y ).

Suppose P (x, y, w0, w1, w2, Y ) is irreducible as a polynomial of the 6 variables
x, y, w0, w1, w2, Y . If p < δ, then Q(x, y, w1, w2, Y ) is irreducible as a polynomial
of the 3 variables w1, w2, Y over the field C(x, y).

Proof. Introduce the homogeneous variables z0, z1, z0 of P2 so that x = z1
z0

and y = z2
z0

. Introduce the homogeneous variables Z0, Z1 of P1 so that Y =
Z1
Z0

. We use the coordinates
(
[z0, z1, z2], [w0, w1, w2], [Z0, Z1]

)
for the product

P2 × P2 × P1. Let M be the subvariety in P2 × P2 × P1 defined by

2∑
j=0

gj(z0, z1, z2)wj = 0.

Since gj(z0, z1, z2) (0 ≤ j ≤ 2) have no common zeroes except the single point
(z0, z1, z2) = 0, it follows that M is a submanifold of P2 × P2 × P1. Let π̃j be
the projection of P2 × P2 × P1 onto its j-th factor (1 ≤ j ≤ 3). Let πj be the
restriction of π̃ to M . Let

π̃ : P2 × P2 × P1 → P2 × P1

be the projection(
[z0, z1, z2], [w0, w1, w2], [Z0, Z1]

)
7→
(
[z0, z1, z2], [Z0, Z1]

)
;

in other words, π̃ = π̃1 × π̃3. Let π : M → P2 × P1 be the restriction of π̃ to M .
Then π : M → P2 × P1 is a P1-bundle over P2 × P1 whose fiber over the point(
[z0, z1, z2], [Z0, Z1]

)
is the complex line

2∑
j=0

gj(z0, z1, z2)wj = 0

in the projective plane P2 with homogeneous coordinates [w0, w1, w2].
Clearly the inclusion map M ⊂ P2 × P2 × P1 induces the isomorphisms

Rπ̃j∗Z
≈−→ Rπj∗Z (0 ≤ j ≤ 2),

Rπ̃j∗OP2×P2×P1

≈−→ Rπj∗OM (0 ≤ j ≤ 2).

From these isomorphisms and the standard spectral sequence arguments the
following isomorphisms follow.

Hj (P2 × P2 × P1,Z) ≈−→ Hj (M,Z) (0 ≤ j ≤ 2),

Hj (P2 × P2 × P1,OP2×P2×P1) ≈−→ Hj (M,OM ) (0 ≤ j ≤ 2).
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In particular, we have the isomorphisms between the group of holomorphic line
bundles over P2 × P2 × P1 and the group of holomorphic line bundles over M ,
namely,

(2.3.1.1) H1
(
P2 × P2 × P1,O

∗
P2×P2×P1

) ≈−→ H1 (M,O∗M ) .

Then a holomorphic line bundle over M is of the form

OM (k1, k2, k3) := (π1)∗ (OP2(k1)) ⊗ (π2)∗ (OP2(k2))⊗ (π3)∗ (OP1(k3)) .

By Künneth’s formula we have

(2.3.1.2) H1 (P2 × P2 × P1,OP2×P2×P1(k1, k2, k3)) = 0 for k3 ≥ 1,

because H1(P2,OP2(k)) = 0 for every integer k and H1(P1,OP1(k)) = 0 for every
integer k ≥ −1. Let

ψ ∈ Γ(P2 × P2 × P1,OP2×P2×P1(δ, 1, 0))

be defined by multiplication by
∑2
j=0 gj(z0, z1, z2)wj = 0, From (2.3.1.2) and

the short exact sequence

0→ OP2×P2×P1(k1 − δ, k2 − 1, k3) θ−→ OP2×P2×P1(k1, k2, k3)

→ OM (k1, k2, k3)→ 0

with θ defined by multiplication by ψ it follows that

Θk1,k2,k3 : Γ(P2 × P2 × P1,OP2×P2×P1(k1, k2, k3))→ H0(M,OM (k1, k2, k3))

is surjective for k3 ≥ −1 and that Θk1,k2,k3 is injective for k1 < δ.
Let s be the meromorphic function on P2×P2×P1 be defined by P/wm0 . Let

H̃1(respectively H̃2, H̃3)be the hypersurface in P2 × P2 × P1 defined by z0 = 0
(respectively w0 = 0, Z0 = 0). Let Hl = M ∩ H̃l for 1 ≤ l ≤ 3. The pole divisor
of s is pH1 +mH2 + qH3.

Suppose Q(x, y, w1, w2, Y ) is not irreducible as a polynomial of the 3 variables
w1, w2, Y over the field C(x, y). Then we can write Q(x, y, w1, w2, Y ) as a prod-
uct of two factors Qj(x, y, w1, w2, Y ) (j = 1, 2) each of which is a polynomial
of positive degree in the 3 variables w1, w2, Y over the field C(x, y). Thus the
restriction s|M of s to M can be written as the product of two meromorphic
functions s1s2 on M with sj defined by Qj(x, y, w1, w2, Y ) (j = 1, 2). Let

Wj − Vj −
3∑
l=1

r′j,lHl

be the divisor of sj (j = 1, 2), where Wj , Vj are effective divisors with support
not contained in

⋃3
l=1 Hl. We know that π1(Vj) is a proper subvariety of P2 for

j = 1, 2, because of the factorization of Q into the product of Q1 and Q2 over
the field C(x, y). We also know that for j = 1, 2 both r′j,2, r

′
j,3 are nonnegative
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and one of them is positive. The key point is that by (2.3.1.1) there exists a
meromorphic function σj on M such that the divisor of σj is equal to

Vj −
3∑
l=1

r′′j,lHl

for some integers r′′j,l.
The integers r′′j,l (1 ≤ l ≤ 3) are all nonnegative, because of the following fact.

Claim 2.3.1.3. If u is a non-identically-zero meromorphic function on M whose
divisor is E−

∑3
l=1 κlHl, where E is an effective divisor of M , then the integers

κl (1 ≤ l ≤ 3) are all nonnegative.

Proof. Suppose the contrary. Let b = max (−1, κ3). Then one of κ1, κ2, b is
negative. Let

τ ∈ Γ (M,OM (rj,1, rj,2, b))

be defined by u(z0)κ1(w0)κ2(Z0)b. Since b ≥ −1, it follows from the surjectivity
of Θκ1,κ2,b that τ can be lifted to an element

τ̃ ∈ Γ
(
P2 × P2 × P1,OP2×P2×P1(κ1, κ2, b)

)
.

Since one of κ1, κ2, b is negative, it follows that τ̃ is identically zero, which is a
contradiction and concludes the proof of Claim 2.3.1.3. �

Since s|M = s1 s2 on M , it follows that the support of the divisor of the mero-
morphic function (s|M)(σ1 s1σ2 s2)−1 on M is contained in

⋃3
l=1 Hl. By (2.3.1.1)

we know that the meromorphic function (s|M)(σ1 s1σ2 s2)−1 on M must be a
constant.

The divisor of sj σj is equal to

Wj −
3∑
l=1

(r′j,l + r′′j,l)Hl.

At least one of the two integers r′j,2 + r′′j,2 and r′j,3 + r′′j,3 is positive. Both are
nonnegative. By Claim (2.3.1.3) the integer r′j,1 +r′′j,1 is nonnegative for j = 1, 2.
From s|M = c(s1 σ1)(s2 σ2) on M for some nonzero constant c it follows that for
j = 1, 2 we have

0 ≤ r′j,1 + r′′j,1 ≤ p,
0 ≤ r′j,2 + r′′j,2 ≤ m,
0 ≤ r′j,3 + r′′j,3 ≤ q

and one of r′j,2 + r′′j,2, r
′
j,3 + r′′j,3 is positive. From p < δ it follows that

Θrj,1+r′j,1,rj,2+r′j,2,rj,3+r′j,3

is an isomorphism and sj σj is induced by a polynomial Rj(x, y, w0, w1, w2, Y )
of degree r′j,1 + r′′j,1 ≤ p in x, y and of degree r′j,2 + r′′j,2 ≤ m in w0, w1, w2 and
of degree r′j,3 + r′′j,3 ≤ q in Z. From P = cR1R2 and one of r′j,2 + r′′j,2, r

′
j,3 + r′′j,3
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being positive for j = 1, 2, we have a contradiction to the irreducibility of P in
the six variables x, y, w0, w1, w2, Z. �

Proposition 2.3.2. Suppose P
(
x, y, dx, dy, dff , Z

)
is irreducible as a polynomial

of the 6 variables with degree p in x and y and homogeneous weight m in dx, dy,
df
f , Z when each of dx, dy, df

f has weight 1 and Z has weight 3. If p +m < δ,
then P

(
x, y, dx, dy, dff , Z

)
is irreducible as a polynomial in dx, dy, Z over the field

C(x, y) for generic f .

Proof. We rewrite P
(
x, y, dx, dy, df

f

)
as

P1

(
x, y,

dx

x
,
dy

y
,
df

f

)
and introduce the symbols

w0 =
df

f
, w1 =

dx

x
, w2 =

dy

y
.

The degree p′ of P1

(
x, y, dxx ,

dy
y ,

df
f

)
in x, y can be as high as p + m when

P1

(
x, y, dx

x
, dy
y
, df
f

)
is regarded as a polynomial of the 5 variables x, y, w0, w1, w2.

Let
g0(z0, z1, z2) = −zδ0f

(
z1

z0
,
z2

z0

)
,

g1(z0, z1, z2) = zδ−1
0 z1fx

(
z1

z0
,
z2

z0

)
,

g2(z0, z1, z2) = zδ−1
0 z2fy

(
z1

z0
,
z2

z0

)
,

so that

g1(z0, z1, z2)
g0(z0, z1, z2)

= −xfx(x, y)
f(x, y)

,
g2(z0, z1, z2)
g0(z0, z1, z2)

= −yfy(x, y)
f(x, y)

,

with x = z1/z0 and y = z2/z0. For a generic f the three polynomials g0, g1, g2

have no common zeroes other than the point (z0, z1, z2) = 0, because it is the
case for the special f(x, y) = 1 + xδ + yδ , where

g0(z0, z1, z0) = −(zδ0 + zδ1 + zδ2),

g1(z0, z1, z2) = δzδ1,

g2(z0, z1, z2) = δzδ2.

The result now follows from Proposition 2.3.1. �

2.4. Degree of Second Order Differential Greater Than One. We factor

Φ =
m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k

into irreducible factors
Φ = Φ1Φ2 · · ·Φk
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as polynomials in the independent variables

dx

x
,

dy

y
,

df

f
,

d2f dx− d2x df

f

with coefficients in the field C(x, y) and then clear the denominators. The poly-
nomial Φ satisfies the following three properties:

(1) Φ has homogeneous total weight≤ s+3m when dx, dy, df are assigned weight
1 and d2f dx− df d2x is assigned weight 3.

(2) The degree of Φ as a polynomial in d2f dx− df d2x is at most m.
(3) When Φ is written as a polynomial in

x, y,
dx

x
,
dy

y
,
df

f
,
d2f dx− d2x df

f
,

the degree of Φ in x, y is ≤ p+ 3m+ s.

Hence each of the factors Φj (1 ≤ j ≤ k) satisfies the same three properties. The
third property means that, when Φj is written

Φj =
mj∑
k=0

ω
(j)
f,sj+3kf

2(mj−k)(d2f dx− d2x df)mj−k,

with

ω
(j)
f,µ =

∑
ν0+ν1+ν2=µ

a
(j)
f,ν0ν1ν2

(x, y)(df)ν0(f dx)ν1(f dy)ν2 ,

the degree of the polynomial a(j)
f,ν0ν1ν2

(x, y) in x, y is at most p+ 3m+ s. Since
Φ is divisible by fy , at least one of the factors Φj divisible by fy. We can now
replace Φ by that factor Φj and assume that Φ is irreducible. One difference is
that after this replacement the degree of the polynomial aν0ν1ν2(x, y) in x, y is
now at most p+ 3m+ s instead of at most p.

The degree m of the irreducible new Φ in f2(d2f dx− d2x df) may be equal
to 1 or even 0. If m is zero, then we can get a holomorphic 1-jet differential on
X which according to Sakai’s result [1979] is impossible. We now would like to
rule out the case of m = 1 for a generic f of sufficiently large degree δ relative
to m, p, s. Assume m = 1 and we are going to derive a contradiction. The case
of m = 1 means that we have the divisibility of ωsII + ωs+3 by fy . We use the
following terminology. For a polynomial g(x, y) of degree ≤ k, by the element
of H0 (P2,OP2(k)) defined by g we mean the element defined by the element of
H0 (P2,OP2(k)) defined by the homogeneous polynomial G(z0, z1, z2) given by

G(z0, z1, z2) = zk0 g
(
z1

z0
,
z2

z0

)
.
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Lemma 2.4.1. Suppose g(x, y), g1(x, y), g2(x, y) are polynomials of degree δ

in x, y. Let G,G1, G2 be elements of H0(P2,OP2(δ)) defined respectively by
g, g1, g2. Assume that G,G1, G2 have no common zeroes on P2. Let k ≥ δ. If
a(x, y), a1(x, y), a2(x, y) are polynomials of degree ≤ k so that ga = a1g1 + a2g2,
then there exist polynomials b1, b2 of degree ≤ k − δ such that a = b1g1 + b2g2.

Proof. Let E be the element in H0 (P2,OP2(e)) (with 0 ≤ e ≤ δ whose zero-set
is the union of all the common branches of the zero-set of G1 and the zero-set of
G2. Let G̃j = Gj

E ∈ H0 (P2,OP2(δ − e)) for j = 1, 2. Let I be the ideal sheaf on
P2 generated by G1, G2. Consider the exact sequence

0→ OP2(k − 2δ + e) σ−→ OP2(k − δ)⊕2 τ−→ I(k)→ 0

with σ defined by the 2 × 1 matrix
(
−G̃2

G̃1

)
and with τ defined by the 1 × 2

matrix (G1, G2). Since H1(P2, I(k − 2δ + e)) = 0, it follows that the map

σ̃ : H0(P2,OP2(k − δ))⊕2))→ H0(P2,OP2(k))

is surjective. Let A,A1, A2 be elements of H0(P2,OP2(k)) defined by a, a1, a2.
It follows from ga = a1g1 + a2g2 that GA = A1G1 + A2G2. Since G,G1, G2

have no common zeroes in P2, it follows that A ∈ H0(P2, I(k)). Hence there
exist B1, B2 ∈ H0(P2,OP2(k−δ)) such that A = σ̃(B1, B2). Let b1(x, y), b2(x, y)
be polynomials of degree ≤ k − δ corresponding respectively to B1, B2. Then
a = b1g1 + b2g2. �

Lemma 2.4.2. Suppose g(x, y), g1(x, y), g2(x, y) are polynomials of degree δ in
x, y. Let G,G1, G2 be elements of H0(P2,OP2(δ)) defined respectively by g, g1, g2.
Assume that G,G1, G2 have no common zeroes on P2. Let aµ(x, y) (0 ≤ µ ≤ s) be
polynomials of degree at most p so that aµ(x, y) (0 ≤ µ ≤ s) are not all identically
zero. Let h(x, y) be a polynomial of degree k. Let bµ(x, y) (0 ≤ µ ≤ s + 1) be
polynomials of degree at most p+ k − δ. Suppose( q∑
µ=0

aµ(x, y)g1(x, y)q−µg2(x, y)µ
)
h(x, y)+

( q+1∑
ν=0

bν(x, y)g1(x, y)q+1−νg2(x, y)ν
)

is divisible by g(x, y). Then there exist non identically zero polynomials a(x, y),
c1(x, y), c2(x, y), c(x, y) of degree at most p such that

a(x, y)h(x, y) = c1(x, y)g1(x, y) + c2(x, y)g2(x, y) + c(x, y)g(x, y).

Proof. By replacing g1(x, y), g2(x, y) by

g̃1(x, y) = α1g1(x, y) + α2g2(x, y),

g̃2(x, y) = β1g1(x, y) + β2g2(x, y),
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for some suitable constants αj, βj (j = 1, 2), we can assume without loss of
generality that a0(x, y) is not identically zero. Then

g1(x, y)q (a0(x, y)h(x, y) + b0(x, y)g1(x, y)) = ψ2(x, y)g2(x, y) + ψ(x, y)g(x, y),

where

ψ2(x, y) = −
q∑

µ=1

aµ(x, y)gq−µ1 g2(x, y)µ−1h(x, y)−
q+1∑
µ=1

bµ(x, y)gq+1−µ
1 g2(x, y)µ−1

and ψ(x, y) are polynomials in x, y of degree at most qδ + p+ k.
Applying q times Lemma 2.4.1 gives us polynomials c2(x, y), c(x, y) of degree

at most p+ k − δ such that

a0(x, y)h(x, y) + b0(x, y)g1(x, y) = c2(x, y)g2(x, y) + c(x, y)g(x, y).

It suffices to set a(x, y) = a0(x, y) and c1(x, y) = −b0(x, y). �

2.4.3. The case m = 1 means that there exist polynomials aν0ν1ν2 of degree at
most p such that∑
ν0+ν1+ν2=s

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2f2(d2f dx− d2x df)

+
∑

ν0+ν1+ν2=s+3

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

is divisible by fy. This means that∑
ν0+ν1+ν2=s

aν0ν1ν2(x, y)(fx)ν0fν1+ν2+2(dx)ν0+ν1+1(dy)ν2II

+
∑

ν0+ν1+ν2=s+3

aν0ν1ν2(x, y)(fx)ν0fν1+ν2(dx)ν0+ν1(dy)ν2

is divisible by fy. Let

ξl =
l∑

ν=0

aν,l−ν,s−l(x, y)(fx)νfs+2−ν , ηl =
l∑

ν=0

aν,l−ν,s+3−l(x, y)(fx)νfs+3−ν .

Then
s∑
l=0

ξl(dx)l+1(dy)s−l
(
fxx dx

2 + 2fxy dx dy+ fyy dy
2
)
−
s+3∑
l=0

ηl(dx)l(dy)s+3−l

is divisible by fy.
Let l0 be the largest l such that the polynomial ξl(x, y) is not identically zero.

Let l1 be the smallest l such that the polynomial ξl is not identically zero. Then
from the coefficient of (dx)l0+3(dy)s−l0 we conclude that

ξl0fxx − ηl0+3
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is divisible by fy. From the coefficient of (dx)l1+1(dy)s+2−l1 we conclude that

ξl1fyy − ηl1+1

is divisible by fy. From the coefficient of (dx)l0+2(dy)s−l0+1 we conclude that

ξl0+1fxx + 2ξl0fxy − ηl0+2

is divisible by fy. Hence

2ξ2
l0fxy − ξl0ηl0+2 + ξl0+1ηl0+3

is divisible by fy.
Choose two polynomials λ1(x, y), λ2(x, y) of degree 1 in x, y such that the ele-

ments in H0(P2,OP2(δ)) defined by λ1(x, y)fx(x, y), λ2(x, y)fy(x, y), and f(x, y)
have no common zeroes on P2. Let g1(x, y) = λ1(x, y)fx(x, y) and g2(x, y) =
λ2(x, y)fy(x, y), and

ξ̃l = λl1ξl =
l∑

ν=0

aν,l−ν,s−l(x, y)λl−ν1 (g1)νfs+2−ν ,

η̃l = λl1ηl =
l∑

ν=0

aν,l−ν,s+3−l(x, y)λl−ν1 (g1)νfs+3−ν .

Then the three polynomials

λ2λ
3
1ξ̃l0fxx − λ2η̃l0+3,

λ2λ1ξ̃l1fyy − λ2η̃l1+1,

2λ2λ
4
1ξ̃

2
l0fxy − λ2λ

2
1ξ̃l0 η̃l0+2 + λ2ξ̃l0+1η̃l0+3

are all divisible by g2.
By Lemma 2.4.2 there exist polynomials ci,j(x, y) such that

c1,0fxx = c1,1λ1fx + c1,2λ2fy + c1,3f,

c2,0fxy = c2,1λ1fx + c2,2λ2fy + c2,3f,

c3,0fxx = c3,1λ1fx + c3,2λ2fy + c3,3f,

with
deg c1,j ≤ p+ l0 + 4,

deg c2,j ≤ p+ l1 + 2,

deg c3,j ≤ p+ 2l0 + 5

for 0 ≤ j ≤ 3. Consider the above system of linear equations in

fxx, fxy, fyy, fx, fy

as a system of linear differential equations for the unknown functions fx, fy, f .
Counting the degree of freedom for all the polynomials ci,j, we conclude from
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the uniqueness property of the system of differential equations that the degree
of freedom for f is no more than

3 + 4
((

p+ s+ 4
2

)
+
(
p+ s+ 2

2

)
+
(
p+ 2s+ 5

2

))
.

So when(
δ + 2

2

)
> 3 + 4

((
p+ s+ 4

2

)
+
(
p+ s+ 2

2

)
+
(
p+ 2s+ 5

2

))
,

the case of m = 1 cannot occur for a generic f of degree δ.

2.5. Independence of Special 2-Jet Differentials by Invariant Theory.
Let p be a positive integer and s be a nonnegative integer. By solving linear
equations we can generically construct a special 2-jet differential Φ of total weight
s+ 3m (m ≥ 1) on X of the form

Φ =
m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k,

where
ωf,µ =

∑
ν0+ν1+ν2=µ

af,ν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and af,ν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p so that Φ is divisible
by fy and as a consequence t−Nf−1

y Φ is a holomorphic 2-jet differential on X

defined by tδ = f(x, y), when certain inequalities involving p, s, δ, m, and N are
satisfied.

We can assume that Φ, as a polynomial in

x, y, dx, dy,
df

f
,
d2f dx− dx d2f

f2
,

is irreducible and the coefficients of aν0,ν1,ν2 are rational functions of the coeffi-
cients of f(x, y). This assumption is possible because we can replace Φ by the
corresponding irreducible factor which is divisible by fy. This means that we
can assume without loss of generality that Φ as a polynomial in x, y, dx, dy,
d2x, dy − dx, d2y is irreducible.

Consider the space F of polynomials f . Let G = SL(2,C). Let C be the
curve defined by f . For γ ∈ G, the defining function for γ(C) is (γ−1)∗f . Let
(xγ , yγ) = γ(x, y). We have a procedure which gives us a special 2-jet differential
Ψf for f ∈ F generically. We can use γ ∈ SL(2,C) to get another γ∗Ψ(γ−1)∗f .
Suppose this procedure with the use of γ ∈ SL(2,C) does not give us at least
two independent special 2-jet differentials. By Proposition 3.3.1 each γ∗Ψ(γ−1)∗f

is irreducible over C(x, y) as a polynomial of dx, dy, d2x dy − dx d2y. Then we
have

γ∗Ψ(γ−1)∗f = Rγ,f(x, y)Ψf
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for some rational function Rγ,f(x, y) in x, y. To take away Rγ,f(x, y) we define
for every γ the following. Let Zf be the union of all algebraic complex curves
Z′f in C2 such that the inverse image of Z′f in the space of 2-jets is contained
in the zero-set of Ψf . In other words, Ψf is divisible by the polynomial in x, y

which defines Z′f . Let gf(x, y) be a polynomial in x, y which defines Zf . In
other words, gf(x, y) is the polynomial (defined up to a nonzero constant) which
divides Ψf . Then we conclude that

γ∗
(

1
g(γ−1)∗f

Ψ(γ−1)∗f

)
= cγ,f

1
gf
Rγ,f(x, y)Ψf

for some nonzero constant cγ,f . Let gγ,f = γ∗g(γ−1)∗f .

2.5.1. For γ ∈ SL(2,C) let fyγ be the partial derivative with respect to yγ in
the coordinate system (xγ , yγ). We have

1
gγ,f

f−1
yγ

m∑
k=0

γ∗(ω(γ−1)∗f,s+3k)f2(m−k)(d2f d(xγ) − d2(xγ) df)m−k

= cγ,f
1
g1,f

f−1
y

m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k

and

γ∗ω(γ−1)∗f,µ =
∑

ν0+ν1+ν2=µ

a(γ−1)∗f,ν0ν1ν2(xγ , yγ)(df)ν0(f d(xγ))ν1(f d(yγ))ν2 .

We use
d2f dx− d2x df = fy(d2y dx− d2x dy) + II dx,

where
II = fxx dx

2 + 2fxy dx dy+ fyy dy
2.

Since d2y dx− d2x dy and II are both invariant under SL(2,C), it follows that

d2f d(xγ) − d2(xγ) df = γ∗
(
d2((γ−1)∗f) dx− d2x d(γ−1)∗f)

)
= fyγ (d2y dx− d2x dy) + II d(xγ).

Thus

(2.5.1.1)

1
gγ,f

f−1
yγ

m∑
k=0

γ∗(ω(γ−1)∗f,s+3k)f2(m−k)
(
fyγ (d2y dx− d2x dy) + II d(xγ)

)m−k
= cγ,f

1
g1,f

f−1
y

m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k.

We consider the terms in (2.5.1.1) with the highest power for the factor d2y dx−
d2x dy and conclude that

(2.5.1.2)
1
gγ,f

γ∗(ω(γ−1)∗f,s)(fyγ )m−1 = cγ,f
1
g1,f

ωf,s(fy)m−1.
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2.5.2. From Section 2.4 we know that m > 1. Let q be the largest integer such
that gγ,f is divisible by (fyγ )q for a generic γ.

Again we differentiate between two cases. The first case is that q < m − 1.
Since for any integer l ≥ 2 the distinct generic elements

γj =
(
αj βj
σj τj

)
∈ SL(2,C) (1 ≤ j ≤ l)

the l polynomials fγjy = −βjfx + αjfy are relatively prime. it follows from
(2.5.1.2) that ωf,s contains the factor

∏l
j=1(−βjfx + αjfy) for arbitrarily large

l and we have a contradiction.
Now consider the second case of q ≥ m− 1. Then (fyγ )m−1 divides gγ,f for a

generic γ. As a consequence

m∑
k=0

γ∗(ω(γ−1)∗f,s+3k)f2(m−k)
(
fyγ (d2y dx− d2x dy) + II d(xγ)

)m−k
is divisible by (fyγ )m. Since we consider a generic f , we can assume that γ being
equal to the identity element is the generic case. By considering the coefficient
of
(
d2y dx− d2x dy

)m−1, we conclude that fy divides mωsII+ωs+3 and the 2-jet
differential

f−1
y

(
mωsf

2(d2f dx− df d2x) + ωs+3

)
gives rise to a holomorphic 2-jet differential, which means that we have the case
of m = 1, contradicting the earlier conclusion that the case of m = 1 cannot
occur.

2.6. Construction of Sections of Multiples of Differences of Ample
Line Bundles. We now take the resultant for the two independent holomor-
phic 2-jet differentials and get a meromorphic 1-jet differential h whose pullback
by the entire holomorphic curve is identically zero. After replacing h by one
of its factors, we can also assume without loss of generality that h is and its
homogeneous degree q in x, y be m.

Lemma 2.6.1 (Ample Line Bundle Difference [Siu 1993]). Let F and G be
ample line bundles over a reduced compact complex space X of complex dimen-
sion n. If F n > nF n−1G, then for k sufficiently large there exists a nontrivial
holomorphic section of k(F −G) which vanishes on some ample divisor of X.

Proof. By replacing F and G by their sufficiently high powers, we can assume
without loss of generality that both F and G are very ample. Let k be any
positive integer. We select k+1 reduced members Gj, 1 ≤ j ≤ k+1 in the linear
system |G| and consider the exact sequence

0→ H0(X, kF −
∑
j

Gj)→ H0(X, kF )→
⊕k+1

j=1 H
0(Gj , kF |Gj).
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By Kodaira’s vanishing theorem and the theorem of Riemann–Roch

dimC H0(X, kF − (k + 1)G) ≥ kn

n!
F n −

k+1∑
j=1

kn−1

(n− 1)!
F n−1Gj − o(kn−1)

≥ kn

n!
(F n − nF n−1G)− o(kn).

So for k sufficiently large there exists a nontrivial global holomorphic section s

of kF − (k + 1)G over X. We multiply s by a nontrivial global holomorphic
section of G on X to get a nontrivial holomorphic section of k(F − G) over X
which vanishes on an ample divisor of X. �

Lemma 2.6.2. Let h(x, y, dx, dy) be an irreducible polynomial in x, y, dx, dy

which is of degree q in x, y and is of homogeneous degree m ≥ 1 in dx, dy.
Suppose q ≥ 4m and δ ≥ 1. Let f(x, y) be a polynomial of degree δ such that the
curve C in P2 defined by f is smooth. Then there exists no holomorphic map
ϕ : C → P2 −C such that the image of ϕ is Zariski dense in P2.

Proof. Assume that there is a holomorphic map ϕ : C → P2−C such that the
image of ϕ is Zariski dense in P2. We are going to derive a contradiction.

Let X be the surface in P3 which has affine coordinates x, y, t with tδ =
f(x, y) so that X is a cyclic branched cover over P2 with branching along C with
projection map π : X → P2. Let C̃ = π−1(C) and ϕ̃ : C → X − C̃ be the lifting
of ϕ so that π ◦ ϕ̃ = ϕ.

We use the following notations. For a vector space E over C, we let P(E)
denote the space of all 1-dimensional C-linear subspaces of E. For a vector
bundle σ : B → Y we let P(B) denote the bundle of projective spaces over Y so
that the fiber of P(B) over a point y ∈ Y is P(σ−1(y)). We let LX denote the
line bundle over P(TX) whose restriction to the fiber of P(TX)→ X over x ∈ X
is the hyperplane section line bundle of P(TX,x), where TX,x is the tangent space
of X at x. We regard h as a holomorphic section of mLX + qHP2 . For the proof
we will produce a non identically zero holomorphic section of LX over the Zariski
closure of the image of ϕ̃ which vanishes on ample divisor, which then yields a
contradiction by the usual Schwarz lemma argument.

We will compute the Chern classes of LX and use the following well-known
formula of Grothendieck [Fulton 1976; Grothendieck 1958] to do the computation
to produce such a holomorphic section of LX .

Formula 2.6.3 (Grothendieck). Let E be a vector bundle of rank r over X
and p : P(E∗) → X be the projection from the projectivization of the dual of E.
Let LE be the hyperplane section line bundle over P(E∗). Then

r∑
j=0

(−1)jp∗(cj(E∗))(c1(LE))j = 0,

where c0(E∗) means 1. �
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To compute the Chern classes of TX we use the exact sequence

0→ TX → TP3 |X → δHP3 |X → 0.

From the Euler sequence

0→ 1→ H⊕4
P3
→ TP3 → 0

we conclude that the total Chern class of TP3 is (1 + HP3)4. Thus the total
Chern class of TX is (1 +HP3)4(1 + δHP3)−1|X and the total Chern class of T ∗X
is (1 − HP3)4(1 − δHP3)−1|X. We conclude that c1(T ∗X) = (δ − 4)HP3 |X and
c2(T ∗X) = (δ2−4δ+6)H2

P3
|X. Grothendieck’s formula yields L2

X−(δ−4)HP3LX+
(δ2− 4δ+ 6)H2

P3
= 0 on P(TX). Since HP3 is lifted up from X via the projction

map P(TX)→ X, we have H3
P3
|X = 0. Hence L2

XHP3 = (δ − 4)H2
P3
LX and

L3
X = (δ − 4)HP3L

2
X − (δ2 − 4δ + 6)H2

P3
LX

= (δ − 4)2H2
P3
LX − (δ2 − 4δ + 6)H2

P3
LX

= (−4δ + 10)H2
P3
LX .

Note that HP3 |X = π∗(HP2) so that we simply write HP3 |X = HP2 . It follows
from H2

P2
|P2 = 1 that H2

X |X = δ and LXH
2
P2
|P(TX) = δ. Hence L2

XHP2 =
δ(δ − 4) and L3

X = δ(−4δ + 10).
We know that LX + 3HP2 is positive on P(TX) as we can easily see by using

dx, dy, dt and considering the order of their poles at infinity. Take a large positive
integer r. Now to apply Lemma 2.6.1, we let F = (r + 1)(LX + 3HP2) and
G = LX + 3(r + 1)HP2 so that rLX = F −G. We have to verify F 2 > 2FG on
Vh. In other words,

((r + 1)(LX + 3HP2))2 (mLX + qHP2)

> 2 ((r + 1)(LX + 3HP2)) (LX + 3(r + 1)HP2) (mLX + qHP2),

because Vh as a hypersurface in P(TX) is defined by h = 0. We rewrite this
inequality as

(r+1)2
(
mL3

X + (6m+q)L2
XHP2 + (6q+9m)LXH2

P2

)
> 2(r+1)

(
mL3

X + (3m(r+2)+q)L2
XHP2 + (9m(r+1)+3q(r+2))LXH2

P2

)
.

Dividing both sides of the inequality by (r + 1)δ, we get

(r + 1) (m(−4δ + 10) + (6m+ q)(δ − 4) + (6q + 9m))

> 2 (m(−4δ + 10) + (3m(r + 2) + q)(δ − 4) + (9m(r + 1) + 3q(r + 2))) .

Since we are free to choose arbitrarily large r, it suffices to consider the coeffi-
cients of r on both sides. The coefficient of r on the left-hand side is

(2m+ q)δ + 2q − 5m = (2m+ q)(δ − 1) + 3q − 3m
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and the coefficient of r on the right-hand side is

6mδ + 3q − 15m = 6m(δ − 1) + 3q − 9m.

If q ≥ 4m, we get the inequality we want for r sufficiently large.
Since the 1-jet differential h on P2 is irreducible, its zero-set in P (TP2) is

again irreducible. However, the pullback h̃ of h to the branched cover X over
P2 may not be irreducible. The holomorphic section of rLX over Vh̃ we get may
be identically zero on the branch of Vh̃ which contains the lifting of the entire
holomorphic curve. To deal with this case, we will use the observation that the
subvariety Vh̃ of P(TX) is branched over the subvariety Vh of P (TP2) and the
branching is cylic. The action of the cyclic group of order δ acting on Vh̃ will
in the following way help us get a non identically zero section on the branch we
want.

We lift ϕ : C → P2 − C to ϕ̃ : C → X − C̃. We consider the projectivization
P(TX) of the tangent bundle TX of X and let pX : P(TX)→ X be the projection
map. We also consider the projectivization P(TP2) of the tangent bundle TP2 of
P2 and let pP2 : P(TP2) → X be the projection map. The projection map π :
X → P2 induces a meromorphic map P(π) : P(TX) → P(TP2) whose restriction
to P(TX−C̃ ) is holomorphic. We have a holomorphic map P(dϕ) : C → P(TP2)
which we define first at points of C where dϕ is nonzero and then extend by
holomorphicity to all of C. Likewise we have a holomorphic map P(dϕ̃) : C →
P(TX) which we define first at points of C where dϕ is nonzero and then extend
by holomorphicity to all of C. Let W be the Zariski closure in P(TP2) of the
image of P(dϕ). Let W̃ be the Zariski closure in P(TX) of the image of P(dϕ̃).
We let (P(π))(W̃ ) denote the proper image of W̃ under P(π) in the sense that
it is Zariski closure in P(TP2) of the image of P(π) of W ∩ P(TX−C̃ ). Then
W = (P(π))(W̃ ). We know that W = Vh. Also we know that W̃ is a branch
of Vh̃. Let Ŵ be a branch of Vh̃ where the 1-jet differential ω constructed as a
section of the difference of ample line bundles is not identically zero. There is a
proper subvariety Ẽ of X such that the projection under pX of the intersection of
any two distinct branches of Vh̃ onto X is contained in Z̃. Let Z be the projection
of Z̃ to P2. Take a point P0 ∈ P2 − (C ∩ Z) such that Vh ∩ π−1

P2
(P0) consists

of precisely m distinct points Q1, . . . , Qm. The inverse image of P0 under π
consists of δ distinct points P ν0 (1 ≤ ν ≤ δ). The inverse image of Qj under P(π)
consists of δ distinct points Q(ν)

j (1 ≤ ν ≤ m) so that Q(ν)
j ∈ π−1

X (P (ν)
0 ). Some

Q
(ν0)
j0
∈ Ŵ . Then there exists some ν1 such that Q(ν1)

j0
∈ W̃ . There exists an

element γ in the Galois group of automorphisms of X over P2 such that γ maps
P

(ν1)
0 to P (ν0)

0 . Then the induced automorphism of γ̃ P(TX) over P(TP2) maps
Q

(ν1)
j0

to Q(ν0)
j0

. As a consequence γ̃∗(ω) is not identically zero on the branch W̃

of Vh̃ which is the Zariski closure of the image of P(dϕ̃). This forces the pullback
by dϕ̃ of γ̃∗(ω) to vanish identically on C, which is a contradiction. �
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2.7. An Algebraic Geometric Lemma on Touching Order

Lemma 2.7.1. Let F (x, y) =
∑m
ν=0 aν(x)yν be an irreducible polynomial in x, y,

where the degree of aν(x) in x is no more than q. Let y0(x) be a polynomial in
x such that the vanishing order N of F (x, y0(x)) in x at x = 0 is greater than
(2m − 1)q. Let e be the vanishing order of ∂F

∂y (x, y0(x)) in x at x = 0. Then
e ≤ (2m− 1)q.

Proof. Consider the system of 2m− 1 linear equations
m∑
ν=0

aν(x)yν+j
0 = xNg(x)yj0 (0 ≤ j ≤ m− 2),

m−1∑
ν=0

(ν + 1)aν+1(x)yν+j
0 = xeh(x)yj0 (0 ≤ j ≤ m− 1).

Let D(x) be the resultant of F (x, y) and ∂F
∂y as polynomials in y. We can solve

for the unknowns 1, y(x), . . . , y(x)2m−2 in the above system of 2m − 1 linear
equations and get D(x)y(x)k ≡ 0 mod xmin(N,e) for 0 ≤ k ≤ 2m−2. The degree
of the (2m− 1) × (2m− 1) determinant D(x) in x is at most (2m − 1)q. Since
D(x) is not identically zero due to the irreducibility of F (x), the vanishing order
of D(x) in x is at most (2m−1)q. Since D(x) ≡ 0 mod xmin(N,e), it follows from
the case k = 0 in D(x)y(x)k ≡ 0 mod xmin(N,e) and from N > (2m− 1)q that
e ≤ (2m− 1)q. �

Lemma 2.7.2. Let F (x, y) =
∑m
ν=0 aν(x)yν be a polyomial in x, y, where the

degree of aν(x) in x is no more than q. Let e be the vanishing order of ∆(x) =
∂F
∂y

(x, y0(x)). Let l be a positive integer > 2e. Let y0(x) be a polynomial in x

such that
F (x, y0(x)) ≡ 0 mod xl.

Then there exists a convergent power series ỹ(x) in x such that F (x, ỹ(x)) = 0
and ỹ(x) ≡ y0(x) mod xl−e. In particular , if l > 2(2m− 1)q and the polynomial
F (x, y) is irreducible, then there exists a convergent power series ỹ(x) in x such
that F (x, ỹ(x)) = 0 and ỹ(x) ≡ y0(x) mod xl−(2m−1)q.

Proof (adapted from the proof of [Artin 1968, Lemma 2.8]). Let ∆(x) =
∂F
∂y

(x, y0(x)). We now apply Taylor’s formula and consider the equation

0 = F (x, y0(x) + xl−2e∆(x)h(x))

= F (x, y0(x)) + ∆(x)2xl−2eh(x) + P (x)∆(x)2x2(l−2e)h(x)2.

It follows from
F (x, y0(x)) ≡ 0 mod xl.

that F (x, y0(x)) = xl−2e∆(x)2ψ(x) for some convergent power series ψ(x). We
have

0 = xl−2e∆(x)2ψ(x) + xl−2e∆(x)2h(x) + P (x)∆(x)2x2(l−2e)h(x)2
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for some polynomial P (x). Division by xl−2e∆(x)2 yields

0 = ψ(x) + h(x) + P (x)xl−2eh(x)2.

From l > 2e it follows that
∂

∂Y

(
ψ(x) + Y + P (x)xl−2eY 2

)
= 1 + 2P (x)xl−2eY 2 = 1

at x = 0. The implicit function theorem yields a convergent power series h(x)
so that

0 = F (x, y0(x) + xl−2e∆(x)h(x))

It suffices to set y(x) = y0(x) + xl−2e∆(x)h(x). When F (x, y) is irreducible, it
follows from l > (2m− 1)q and Lemma 2.7.1 that e ≤ (2m− 1)q. �

For the rest of this paper, for any real number u we use buc to denote the
round-down of u, which means the largest integer not exceeding u.

Lemma 2.7.3. Let F (x, y) =
∑m
ν=0 aν(x)yν be a non identically zero polyomial

in x, y, where the degree of aν(x) in x is no more than q. Let l be a positive
integer > 2m(2m− 1)q. Let y0(x) be a polynomial in x such that

F (x, y0(x)) ≡ 0 mod xl.

Then there exists a convergent power series ỹ(x) in x such that F (x, ỹ(x)) = 0
and ỹ(x) ≡ y0(x) mod xbl/mc−(2m−1)q.

Proof. Let

F (x, y) =
m̃∏
λ=1

Fλ(x, y)

be the decomposition into irreducible factors. Then 1 ≤ m̃ ≤ m and the degree
of each Fλ(x, y) in x is no more than q and its degree in y is no more than m.
It follows from

F (x, y0(x)) ≡ 0 mod xl

that there exists some 1 ≤ λ ≤ m̃ such that

Fλ(x, y0(x)) ≡ 0 mod xbl/mc.

By Lemma 2.7.2 there exists a convergent power series ỹ(x) in x such that
Fλ(x, ỹ(x)) = 0 and ỹ(x) ≡ y0(x) mod xbl/mc−(2m−1)q. Hence F (x, ỹ(x)) = 0
and ỹ(x) ≡ y0(x) mod xbl/mc−(2m−1)q. �

Lemma 2.7.4. Let aν(x) be polynomials of degree at most q in x (0 ≤ ν ≤ m)
not all identically zero. Let N be an integer > 2m(2m− 1)q. Then in the space
of all polynomials y(x) of degree at most N in x the subset defined by

m∑
ν=0

aν(x)y(x)ν ≡ 0 mod xN

is of codimension at least bN/mc − (2m− 1)q.
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Proof. Let F (x, y) =
∑m
ν=0 aν(x)yν and let y0(x) be an arbitrary polynomial

of degree at most N which satisfies

m∑
ν=0

aν(x)y0(x)ν ≡ 0 mod xN .

By Lemma 2.7.3, there exists a convergent power series ỹ(x) such that

m∑
ν=0

aν(x)ỹ(x)ν = 0

and

ỹ(x) ≡ y0(x) mod xbN/mc−(2m−1)q.

On the other hand, there are only a finite number of convergent power series
ỹ(x) which could satisfy the equation

m∑
ν=0

aν(x)ỹ(x)ν = 0.

This means that there are only a finite number of possibilities for the first
bN/mc − (2m − 1)q terms of y0(x) if y0(x) is an arbitrary polynomial of de-
gree at most N in x satisfying

m∑
ν=0

aν(x)y(x)ν ≡ 0 mod xN . �

Proposition 2.7.5. Suppose m, q,N, δ are positive integers such that(
δ + 2

2

)
> N ≥ 3

2
(2m+ q)(m+ 1)

(
(2m− 1)(q +m) +

(
q + 2

2

)
(m+ 1) + 2

)
.

Then a generic polynomial f(x, y) of degree δ in x, y cannot be tangential at any
point to order at least N to any 1-jet differential h of the form

m∑
ν=0

aν(x, y)(dx)m−ν(dy)ν

where aν(x, y) (0 ≤ ν ≤ m) is a polynomial in x, y of degree at most q with
a0(x, y), . . . , am(x, y) not all identically zero. Here tangential to order N at a
point P means that the restriction, to the zero-set of f(x, y), of

m∑
ν=0

aν(x, y)(−fy)m−ν (fx)ν

vanishes to order at least N at P .
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Proof. Let Ω be the set of all polynomials f(x, y) of degree δ such that the
homogeneous polynomial zδ0f

(
z1
z0
, z1z0

)
in the homogeneous coordinates [z0, z1, z2]

defines a nonsingular complex curve in P2. For any nonnegative integer l, any
point P0 ∈ C2, and any non identically zero 1-jet differential

h :=
m∑
ν=0

aν(x, y)(dx)m−ν(dy)ν ,

we let Ah,l,P0 be the set of all f ∈ Ω such that f(P0) = 0 and(
fy

∂

∂x
− fx

∂

∂y

)j ( m∑
ν=0

aν(x, y)(−fy)m−ν(fx)ν
)

vanishes at P0 for all 0 ≤ j < l. In other words, Ah,l,P0 consists of all f ∈ Ω
such that h is tangential to the zero-set of f at P0 to order at least N . The
definition of Ah,l,P0 shows how the algebraic set Ah,l,P0 depends algebraically on
the coefficients of h and on the coordinates of P0.

Let Hm,q be the set of all non identically zero polynomials

h(x, y, dx, dy) =
m∑
ν=0

aν(x, y)(dx)m−ν(dy)ν ,

in x, y, dx, dy of degree no more than q in x, y and of homogeneous degree no
more than m in dx, dy. The complex dimension of Hm,q is (m + 1)

(
q+2

2

)
. The

degree of freedom of the point P0 is 2 as it varies in C2. Since the complex
dimension of Ω is

(
δ+2

2

)
, to finish the proof of the Proposition it suffices to show

that for any fixed h ∈ Hm,q and P0 ∈ C2, the complex codimension of Ah,N,P0

is greater than 2 + (m+ 1)
(
q+2

2

)
, because then⋃{

Ah,N,P0

∣∣ h ∈ Hm,q, P0 ∈ C2
}

is not Zariski dense in Ω. We will prove

codim Ah,N,P0 > 2 + (m+ 1)
(
q + 2

2

)
at a point f ∈ Ω by showing that

codim Ah,N,P0 ∩ Z > k + 2 + (m+ 1)
(
q + 2

2

)
for some subvariety germ Z of Ω at the point f defined by k local holomorphic
functions on Ω at the point f .

Fix P0 ∈ C2. By an affine coordinate change in C2 we can assume without
loss of generality that P0 is the origin of C2. For a nonnegative integer l we
define Zl as the set of all f ∈ Ω such that

(1) f(0, 0) = fx(0, 0) = 0, and
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(2) the convergent power series yf (x) defined by f(x, yf (x))=0 satisfies yf (x)≡0
mod xl.

For the rest of the proof of this proposition we will use yf (x) to denote such a
convergent power series. The subvariety Zl of Ω is locally defined by l functions
and its codimension in Ω is l when l does not exceed the dimension of Ω. Let
κ = b2N/(3(2m+ q))c. Then(

δ + 2
2

)
> N ≥ (2m+ q)3

2
κ

and

min
(κ

2
,
κ

m
− (2m− 1)(q +m)

)
>

(
q + 2

2

)
(m+ 1) + 2.

The subvariety germ Z mentioned above will be Zκ and the number k mentioned
above will be κ.

Fix an element

h(x, y, dx, dy) =
∑

0≤λ,µ≤q
0≤ν≤m

cλµνx
λyµ(dx)m−ν(dy)ν

of Hm,q. Choose (µ0, ν0) so that µ0 + ν0 is the minimum among all µ+ ν with
cλµν 6= 0 for some λ. Let

Pν(x) =
q∑

λ=0

∑
µ0+ν0=µ+ν

cλµνx
m−ν+λ.

When Pν(x) is not identically zero for some ν > 0, we let G1(x), . . . , Gm̃(x) be
the set of all convergent power series such that

m∑
ν=0

Pν(x)Gj(x)ν = 0.

We know that m̃ ≤ m. For a given nonnegative integer l we let Wl be the set of
all f ∈ Z0 such that

(1) yf(x) ≡ 0 mod xl, and
(2) when we write yf (x) = xlỹf (x), we have

ỹf (x) = ỹf (0) exp
(∫ x

ξ=0

Gj(ξ) −Gj(0)
ξ

dξ

)
mod xbl/mc−(2m−1)(q+m)

for some 1 ≤ j ≤ m̃.

The codimension of Wl in Ω is at least l + bl/mc − (2m − 1)(q + m) if the
dimension of Ω is at least l + bl/mc − (2m− 1)(q +m), because each choice of
the m̃ set of conditions means bl/mc − (2m− 1)(q +m) independent conditions
on the coefficients of ỹf (x), which translates to l + bl/mc − (2m − 1)(q + m)
independent conditions on the coefficients of yf (x) = xlỹf (x). When Pν(x) is
identically zero for all ν > 0, we do not define Wl.
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Claim 2.7.5.1. If Ah,N,P0 ∩ Zκ is not contained in Zb3κ/2c, then Pν(x) is not
identically zero for some ν > 0 and

Ah,N,P0 ∩ Zκ ⊂ Zb3κ/2c ∪
( b3κ/2c⋃

l=κ

Wl

)
.

Proof. Take f ∈ Ah,N,P0 ∩Zκ such that f does not belong to Zb3κ/2c. Let l be
the vanishing order at x = 0 of the convergent power series yf(x). Then l < 3

2
κ.

Write yf (x) = xlỹf (x). Then

xy′f
yf

= l+
xỹ′f
ỹf

which is equal to l at x = 0. We have∑
0≤λ,µ≤q
0≤ν≤m

cλµνx
m−ν+λyµ+ν

f

(xy′f
yf

)ν
=

∑
0≤λ,µ≤q
0≤ν≤m

cλµνx
m−ν+λyµf (xy′f)ν

= xm
∑

0≤λ,µ≤q
0≤ν≤m

cλµνx
λyµf (y′f )ν ≡ 0 mod xm+N

(which is from the definition of Ah,N,P0). It follows from l < 3
2κ that N >

(2m+ q)l. Since µ0 ≤ q and ν0 ≤ m, we have N > (µ0 + ν0 + 1)l. Hence∑
0≤λ,µ≤q
0≤ν≤m

cλµνx
m−ν+λyµ+ν

f

(
xy′f
yf

)ν
≡ 0 mod x(µ0+ν0+1)l.

Since cλµν = 0 for µ + ν < µ0 + ν0, it follows that we can divide the above
congruence relation by x(µ0+ν0)l and get∑

0≤λ≤q
µ+ν=µ0+ν0

cλµνx
m−ν+λ

(
xy′f
yf

)ν
≡ 0 mod xl.

We cannot have cλµν = 0 zero for all µ + ν = µ0 + ν0 and ν > 0, otherwise∑
0≤λ≤q

µ+ν=µ0+ν0

cλµνx
m−ν+λ ≡ 0 mod xl,

contradicting l ≥ κ > m+ q and cλµν 6= 0 for some µ+ ν = µ0 + ν0. Thus
m∑
ν=0

Pν(x)
(
xy′f
yf

)ν
≡ 0 mod xl

with Pν(x) not identically zero for some ν > 0. By Lemma 2.7.3 we know that

xy′f
yf
≡ Gj(x) mod xbl/mc−(2m−1)(m+q)
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for some 1 ≤ j ≤ m̃. It follows that

ỹf (x) = ỹf(0) exp
(∫ x

ξ=0

Gj(ξ)− l
ξ

dξ

)
mod xbl/mc−(2m−1)(q+m).

Thus f ∈Wl and Claim (2.7.5.1) is proved. �

The codimension of Wl in Ω is at least κ + bκ/mc − (2m − 1)(q + m) and the
codimension of Zb3κ/2c in Ω is b3κ/2c. Hence the codimension of Ah,N,P0 ∩ Zκ
in Ω is at least

min (κ+ bκ/mc − (2m− 1)(q +m), b3κ/2c) .

Since Zκ is locally defined by κ holomorphic functions, it follows that the codi-
mension of Ah,N,P0 in Ω is at least

min (bκ/mc − (2m− 1)(q +m), bκ/2c) > 2 + (m+ 1)
(
q + 2

2

)
.

This concludes the proof of Proposition 2.7.5. �

2.8. A Schwarz Lemma Using Low Touching Order. We now resume
our argument of the hyperbolicity of the complement of a generic plane curve of
sufficiently high degree. We can assume that we have an irreducible meromorphic
1-jet differential h(x, y, dx, dy) whose pullback by the entire holomorphic curve
is identically zero. Moreover, the degree of h(x, y, dx, dy) in x, y is q and the
homogeneous degree of h(x, y, dx, dy) in dx, dy is m with q ≤ 4m. We consider
the resultant R(x, y) of

h(x, y, dx, dy)
dxm

=
m∑
ν=0

hν(x, y)
(
dy

dx

)ν
and its derivative with respect to dy

dx

m−1∑
ν=0

(ν + 1)hν+1(x, y)
(
dy

dx

)ν
as polynomials in dy

dx . Since h(x, y) is irreducible, the resultant R(x, y) is not
identically zero and its degree is no more than (2m− 1)q. Let Z be the common
zero-set of R(x, y) and f(x, y). The number of points in Z is no more than
(2m − 1)qδ. When a point of P2 is not a zero of R(x, y) we can have a finite
number of families of local integral curves going through that point and the
entire holomorphic curve is locally contained in such a local integral curve.

Let N be the smallest integer satisfying

N ≥ 3
2

(2m+ q)(m+ 1)
(

(2m− 1)(q +m) +
(
q + 2

2

)
(m+ 1) + 2

)
.
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Assume that
(
δ+2

2

)
> N . Then by Proposition 2.7.5 for our generic f , the

touching order of f with h(x, y, dx, dy) is no more than N . Let S(x, y) be a non
identically zero polynomial of degree r with(

r + 2
2

)
> (2m− 1)qδ

(
N + 2

2

)
such that it vanishes to order at least N at each point of the common zero-
set Z of R(x, y) and f(x, y). Let e−ψ0 be a smooth metric for the hyperplane
section line bundle HP2 of P2 with strictly positive curvature. Let A be a positive
number and let locally ψ = ψ0 + A so that e−ψ is a metric for HP2 . We will
later choose A to be sufficiently large for our purpose. Let θψ =

√
−1

2π ∂∂̄ψ be the
curvature form of the metric e−ψ.

For a holomorphic section u of a line bundle with a metric, we use ‖u‖ to
denote its pointwise norm with respect to the metric and we use |u| to denote
the absolute value of a function which represents u in a local trivialization of
the line bundle. The pointwise norm ‖u‖ is used to give a globally well defined
expression. In proving results involving estimates of the norm, we will use local
trivialization of the line bundle and it does not matter which local trivialization
of the line bundle is used.

Consider f as a section of the δ-th power of the hyperplane section line bundle
so that the pointwise norm of f is given by ‖f‖2 = |f |2e−δψ . We assume that
A is chosen so large that ‖f‖ < 1 on all of P2. Let (xj, yj) (1 ≤ j ≤ J)
be a finite number of affine coordinates of affine open subsets of P2 so that
dx1, dy1, . . . , dxJ , dyJ generate at every point of P2 the cotangent bundle of P2

tensored by 2HP2 . Let {ηj}j denote the set {dx1, dy1, . . . , dxJ , dyJ}. We use
‖ηj‖2 to denote |ηj|2e−2ψ, which is a function on the tangent bundle of P2. Let∥∥f N−1

N S
∥∥2 =

∣∣f N−1
N S

∣∣2e−( (N−1)δ
N +r)ψ,

which can be geometrically interpreted as the N -th root of the pointwise square
norm of the section of

N
((N − 1)δ

N
+ r
)
HP2

over P2 defined by
(
f
N−1
N S

)N .

Proposition 2.8.1. Assume δ > (r + 2)N . Let

Ψ =

∥∥f N−1
N S

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 .

Then, when A is sufficiently large, there exists a positive constant ε such that
the pullback of √

−1 ∂∂̄ log Ψ ≥ εΨ
to any local holomorphic curve Γ in P2 − {f = 0} holds if Γ satisfies h = 0.
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Proof. From standard direct computation we have the following Poincaré–
Lelong formula on P2 in the sense of currents.
√
−1

2π
∂∂̄ log

∥∥f N−1
N S

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 =
( δ
N
− (r + 2)− 2δ

log 1
‖f‖2

)
θψ −

1
N
Zf

+ZS +
√
−1

2π
∂∂̄ log

∑
j

|ηj|2 +
2

‖f‖2
(
log 1
‖f‖2

)2 √−1
2π

Df ∧Df.

Here Zf (respectively ZS) is the (1, 1)-current defined by the zero-set of f (re-
spectively S) and Df is the smooth δHP2-valued 1-form on P2 which is the
covariant differentiation of the section of δHP2 defined by f with respect to the
metric e−ψ of HP2 .

Since we could change affine coordinates, we need only verify the inequality
on any compact subset of the affine plane C2 with affine coordinates x, y. Fix
a point P in the common zero-set Z of R(x, y) and f(x, y) and take a compact
neighborhood UP of P in C2 disjoint from Z − {P}. We are going to derive an
inequality on UP (which we may have to shrink to get the inequaltiy). Without
loss of generality we can assume that fx 6= 0 on UP (after shrinking UP and
making an affine coordinate transformation if necessary). We write

h =
m∑
ν=0

ĥν(df)m−ν(dy)ν

with

ĥm =
m∑
ν=0

hν

(
−fy
fx

)m−ν
.

We use the following two trivial inequalities for positive numbers a, b and α, β

with α+ β = 1.

aαbβ ≤ αa+ βb,

am + bm ≤ (a+ b)m ≤
(
2 max(a, b)

)m ≤ 2m(am + bm).

We use Cj to denote positive constants. We consider separately the case of m > 1
and the case of m = 1. We first look at the case of m > 1. For a nonnegative
bounded continuous function ρ we have

ρ|ĥm(dy)m|2 ≤ C1

(
ρ|h|2 +

m−1∑
ν=0

(
|df |

2(m−ν)
m (ρ

1
ν |dy|2)

ν
m

)m
|ĥν |2

)
≤ C2

(
ρ|h|2 + |df |2m + ρ

m
m−1 |dy|2m

)
.

Hence

ρ
1
m |ĥm|

2
m |dy|2 ≤ C

1
m
2

(
ρ

1
m |h| 2

m + |df |2 + ρ
1

m−1 |dy|2
)
,

ρ
1
m

(
|f |2 + |ĥm|

2
m

)
|dy|2 ≤ C3

(
ρ

1
m |h| 2

m + |f |2|dy|2 + |df |2 + ρ
1

m−1 |dy|2
)
.
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For m > 1 we set ρ =
(
2C3

)−m(m−1)(|f |2 + |ĥm|
2
m

)m(m−1). Then

C3ρ
1

m−1 |dy|2 = 1
2
ρ

1
m
(
|f |2 + |ĥm|

2
m
)
|dy|2

and (
|f |2 + |ĥm|2

)
|dy|2 ≤ C4

(
|h| 2

m + |f |2|dy|2 + |df |2
)
.

For m = 1 the inequality is obviously true. Since the vanishing order of ĥm on
{f = 0} at P is at most N and the vanishing order of S(x, y) at P is at least N ,
it follows that on UP (after shrinking UP if necessary)

|S|2|dy|2 ≤ C5

(
|f |2 + |ĥm|2

)
|dy|2 ≤ C6

(
|h| 2

m + |f |2|dy|2 + |df |2
)
.

Using the inequalities
|df |2 ≤ C7

(
|f |2 + |Df |2

)
and

|f |2|dy|2

‖f‖2
(
log 1
‖f‖2

)2 ≤ ε0θψ

for any positive number ε0 when A is sufficiently large, we conclude from the
Poincaré–Lelong formula that

|S|2|dy|2

‖f‖2
(
log 1
‖f‖2

)2 ≤ ε0θψ+C8
|Df |2

‖f‖2
(
log 1
‖f‖2

)2 ≤C9

√
−1

2π
∂∂̄ log

∥∥f N−1
N S

∥∥2∑
j |ηj|2

‖f‖2
(
log 1
‖f‖2

)2
when pulled back to any local holomorphic curve in UP which is disjoint from
the zero-set of f and which satisfies h = 0. We repeat the same argument for
a finite number of other affine coordinates instead of (x, y) and sum up to get
the inequality we want to prove on local holomorphic curves in UP which are
disjoint from the zero-set of f and which satisfies h = 0.

We can find an open neighborhoodW of the zero-set of f so that W−
⋃
P∈Z UP

is disjoint from the zero-set of R. At every point Q of W where R is not zero, we
can find an open neighborhood ΩQ of Q in W so that the equation h = 0 gives
rise to a finite number of families of integral curves. The vanishing order of f
on each such integral curve Γ is at most N . With respect to a local holomorphic
coordinate ζ, the function f(ζ) = ζlg(ζ) with g(0) 6= 0 for some l ≤ N . Since
δ
N
> r + 2, by choosing A sufficiently large we have

δ

N
> r + 2 +

2δ
log 1
‖f‖2

.

Hence when pulled back to Γ, at points not on the zero-set of f we have
√
−1

2π
∂∂̄ log

∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 ≥ C10
|df |2

‖f‖2
(
log 1
‖f‖2

)2
≥ C11

|dζ|2

‖ζ|2
(
log 1
‖f‖2

)2 ≥ C12

∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 .
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After shrinking W if necessary, the positive constant C12 can be made inde-
pendent of the integral curve Γ of h = 0 as long as it is inside W . This gives
us on W −

⋃
P∈Z UP the inequality stated in the Proposition. On P2 −W the

inequality stated in the Proposition is clear, because there∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 ≤ C13θψ

and the Poincaré–Lelong formula gives

θψ ≤ C14

√
−1

2π
∂∂̄ log

∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2
when pulled back to local holomorphic curves in P2 − {f = 0} which satisfy
h = 0. �

Corollary 2.8.2. If δ > (r + 2)N , then there is no entire holomorphic curve
in P2 which is disjoint from the curve in P2 defined by f = 0 for a generic f .

Proof. The inequality
√
−1 ∂∂̄ log Ψ ≥ εΨ

from Proposition 2.8.1 implies that the pullback of Ψ to any such entire holo-
morphic curve must be identically zero. This means that the entire holomorphic
curve must be contained in the zero-set of S, which is not possible for a generic f .

�

2.9. The Final Step. We now combine all the preceding steps together and
formulate our theorem.

Theorem 2.9.1. Let δ, p,m,N, r be positive integers and s a nonnegative inte-
ger , and set m̃ = (s + 3m)(2m− 1). Assume that the following inequalities are
satisfied :

(a)
∑m
k=0

1
4
(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1) > (s+ 3m+ 1)

×((δ − 1)(p+ (s+ 3m)δ) − 1
2
(δ2 − 5δ + 4)).

(b) p ≤ δ − 2− 4(s+ 3m).

(c)
(
δ+2

2

)
> 3 + 4

((
p+s+4

2

)
+
(
p+s+2

2

)
+
(
p+2s+5

2

))
.

(d) N ≥ 3
2 (6m̃+ 1)(m̃+ 1)

(
(2m̃− 1)(5m̃+ 1) +

(
4m̃+3

2

)
(m̃+ 1) + 2

)
.

(e)
(
r+2

2

)
> (2m̃− 1)(4m̃+ 1)δ

(
N+2

2

)
.

(f) δ > (r + 2)N .

Let f(x, y) be any generic polynomial of degree δ in x, y and C be the complex
curve in P2 defined by f = 0. Then P2 − C is hyperbolic in the sense that there
is no nonconstant holomorphic map from C to P2 −C.
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Proof. Because of the inequality
m∑
k=0

1
4
(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1)

>(s+ 3m+ 1)((δ − 1)(p+ (s+ 3m)δ) − 1
2 (δ2 − 5δ + 4)),

by Lemma 2.2.1 we can construct a 2-jet differential Φ which is divisible by fy
and which is of the form

m∑
k=0

ωs+3kf
2(m−k)(d2f dx− d2x df)m−k,

where
ωµ =

∑
ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p. By Proposition 2.3.1
and the paragraphs before Lemma 2.4.1, we can factor Φ and get Φ1 which is
divisible by fy and which is of the form

Φ1

m1∑
k=0

ω
(1)
s1+3kf

2(m1−k)(d2f dx− d2x df)m1−k

which is irreducible as a polynomial in dx, dy, d2x dy− dx d2y, where

ω(1)
µ =

∑
ν0+ν1+ν2=µ

a(1)
ν0ν1ν2

(x, y)(df)ν0(f dx)ν1(f dy)ν2

and a(1)
ν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p+ 3m1 + s1. We know

that s1 + 3m1 ≤ s+ 3m.
By 2.2.4 it follows from the inequality

p+ 3m1 + s1 ≤ δ − 2− 3(s1 + 3m1)

that t−(s1+3m1)(δ−1)f−1
h Φ1 defines a holomorphic 2-jet differential on X which

vanishes on an ample divisor. Thus the pullback of Φ1 to the entire holomorphic
curve in P2 −C is identically zero. To emphasize the dependence of Φ1 on f we
denote Φ1 also by Φ1,f . By Section 2.4 we know that m1 > 1. By Section 2.5
we can choose an element γ ∈ SL(2,C) such that

Φ̃1 := γ∗
(
Φ1,(γ−1)∗f

)
and Φ1 are independent in the sense that the resultant h(x, y, dx, dy) of Φ1 and
Φ̃1 as polynomials in the variable d2x dy − dx d2y is not identically zero. Since
t−(s1+3m1)(δ−1)f−1

h Φ̃1 also defines a holomorphic 2-jet differential on X which
vanishes on an ample divisor, the pullback of Φ̃1 to the entire holomorphic curve
in P2 − C is also identically zero. It follows that the pullback of h to the entire
holomorphic curve in P2−C is again identically zero. We factor the polynomial
h(x, y, dx, dy) into irreducible factors. Then one of the factors h1(x, y, dx, dy)
satisfies the property that its pullback to the entire holomorphic curve in P2−C is
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identically zero. Since the homogeneous degree of h(x, y, dx, dy) in the variables
dx, dy is at most (s1 +3m1)(2m1−1), the homogeneous degree of h1(x, y, dx, dy)
in the variables dx, dy is at most (s1 + 3m1)(2m1 − 1) which is no more than
(s+ 3m)(2m− 1) which is m̃. Let q be the degree of h1(x, y, dx, dy) in x, y. If
q ≥ 4m̃, then by § 6 we know that the entire holomorphic curve in P2 −C must
be contained in an algebraic curve in P2. This means that for a generic C there
is no entire holomorphic curve in P2 − C. So we now assume that q < 4m̃. By
Proposition 2.7.5 and Corollary 2.8.2 we know that there cannot be any entire
holomorphic curve in P2 − C. �

2.9.1. Example of the Degree and a Set of Parameters. We could choose s = 0
and m = 145. Then m̃ = 3m(2m − 1) = 125715 and we choose N to be the
smallest integer satisfying

N ≥ 3
2

(6m̃+ 1)(m̃+ 1)
(

(2m̃− 1)(5m̃+ 1) +
(

4m̃+ 3
2

)
(m̃+ 1) + 2

)
.

and choose r to be the smallest integer satisfying

r ≥ (2m̃− 1)(4m̃+ 1)(N + 2)(N + 1)

and finally choose δ as the smallest integer satisfying

δ > ((2m̃− 1)(4m̃+ 1)(N + 2)(N + 1) + 3)N.

The number p is set to be the largest integer not exceeding 12
145δ. Such values of

s, p,m, m̃, N, r, δ satisfy all the inequalities in the statement of Theorem 2.9.1.
Note that the dominant term in

m∑
k=0

1
4

(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1)

is 3
4
m3p2 and the dominant term in (s+3m+1)((δ −1)(p+(s+ 3m)δ)− 1

2
(δ2−

5δ + 4)) is 9m2δ2. To make sure that the condition(
δ + 2

2

)
> 3 + 4

((
p + s+ 4

2

)
+
(
p+ s+ 2

2

)
+
(
p+ 2s+ 5

2

))
is satisfied for sufficiently large δ we have to require that δ2 > 12p2. Hence the
smallest m one should use to get a sufficiently large δ to satisfy the inequality∑m
k=0

1
4(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p + 1)

> (s+ 3m+ 1)((δ − 1)(p+ (s+ 3m)δ) − 1
2 (δ2 − 5δ + 4)),

is m = 145.
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