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Metric Entropy of the Grassmann Manifold

ALAIN PAJOR

Abstract. The knowledge of the metric entropy of precompact subsets of
operators on finite dimensional Euclidean space is important in particular
in the probabilistic methods developped by E. D. Gluskin and S. Szarek
for constructing certain random Banach spaces. We give a new argument
for estimating the metric entropy of some subsets such as the Grassmann
manifold equipped with natural metrics. Here, the Grassmann manifold is
thought of as the set of orthogonal projection of given rank.

1. Introduction and Notation

Let A be a precompact subset of a metric space (X, τ). An ε-net of A is a
subset Λ of X such that any point x of A can be approximated by a point y of
Λ such that τ(x, y) < ε. The smallest cardinality of an ε-net of A is called the
covering number of A and is denoted by N(A, τ, ε). The metric entropy (shortly
the entropy) is the function log N(A, τ, . ).

When X is a d-dimensional normed space equipped with the metric associated
to its norm ‖ . ‖, we will denote by N(A, ‖ . ‖, ε) the covering number of a subset
A of X and by B(X) the unit ball of X. The metric entropy of a ball A = rB(X)
of radius r is computed by volumic method (see [MS] or [P]): for ε ∈]0, r],

(r

ε

)d

≤ N(rB(X), ‖ . ‖, ε) ≤
(
3
r

ε

)d

. (1)

The space Rn is equipped with its canonical Euclidean structure and denoted
by `n

2 . Its unit ball is denoted by Bn
2 , the Euclidean norm by | . | and the scalar

product by ( . , . ). For any linear operator T between two Euclidean spaces and
any p, 1 ≤ p ≤ ∞, let

σp(T ) =

(∑

i≥1

|si(T )|p
)1/p
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where si(T ), i = 1, . . . denote the singular values of T . In particular, σ1 is the
nuclear norm, σ2 is the Hilbert-Schmidt norm and σ∞ the operator norm. The
Schatten trace class of linear mapping on the n-dimensional Euclidean space
equipped with the norm σp is denoted by Sn

p . More generally, we consider a
unitarily invariant norm τ on L(`n

2 ); it satisfies τ(USV ) = τ(S) for any S ∈ L(`n
2 )

and any isometries U, V on `n
2 . It is associated to a 1-symmetric norm on Rn

and τ is the norm of the n-tuple of singular values. For any Euclidean subspaces
E, F of `n

2 , τ induces a unitarily invariant norm on L(E,F ) still denoted by τ .
Let Gn,k be the Grassmann manifold of the k-dimensional subspaces of Rn.

For any subspace E ∈ Gn,k we denote by PE the orthogonal projection onto E.
We will denote by σp the metric induced on Gn,k by the norm σp, when Gn,k is
considered as a subset of Sn

p . Similarly, we denote by τ the metric induced onto
Gn,k by the norm τ .

We are mainly interested in estimating N(B(Sn
1 ), σp, ε). The computation

of N(Gn,k, σp, ε) was done in [S1] and is the basic tool in [S2] for solving the
finite dimensional basis problem (see also [G1], [G2] and [S3]). For computing the
metric entropy of a d-dimensional manifold, we first look for an atlas, a collection
of charts (Ui, ϕi)1≤i≤N and estimate N . The situation is particularly simple if
for each of the charts, ϕi is a bi-Lipschitz correspondence with a d-dimensional
ball. Locally, the entropy is computed by volumic method. To estimate the
number N of charts in the atlas, we look at the Grassmann manifold in L(Rn)
with the right metric. Such an embedding that does not reflect the dimension
of the manifold cannot give directly the right order of magnitude of the entropy,
but as we will see, it gives an estimate of the cardinality N of a “good” atlas.
The two arguments are combined to give the right order of magnitude for the
entropy of Gn,k. We did not try to give explicit numerical constant and the same
letter may be used to denote different constants.

2. Basic Inequalities

Let G be a Gaussian random d-dimensional vector, with mean 0 and the
identity as covariance matrix. The following result is the geometric formulation
of Sudakov’s minoration (See [P]).

Lemma 1. There exists a positive constant c such that for any integer d ≥ 1,
any subset A of Rd and for every ε > 0, we have

ε
√

log N(A, | . |, ε) ≤ cE sup
t∈A

(G, t). (2)

Lemma 2. There exists a positive constant c such that for any integer n ≥ 1,
for any p such that 1 ≤ p ≤ ∞ and for every ε > 0, we have

log N(B(Sn
p ), σ2, ε) ≤ c

n3−2/p

ε2
. (3)



METRIC ENTROPY OF THE GRASSMANN MANIFOLD 183

Proof. Let A be a subset of the Euclidean space Sn
2 equipped with its scalar

product given by the trace. Applying the inequality (2) where G is a stan-
dard Gaussian matrix whose entries are independent N(0, 1) Gaussian random
variables, we get that

ε
√

log N(A, σ2, ε) ≤ cE sup
T∈A

trace(GT ).

Let q such that 1 ≤ q ≤ ∞ and 1
p + 1

q = 1. By the trace duality,

|trace(GT )| ≤ σq(G)σp(T ) ≤ σq(G),

for any T ∈ B(Sn
p ). Now it is well known that

Eσq(G) ≤ n1/qEσ∞(G) ≤ αn1/q
√

n, (4)

for some universal constant α (see [MP], Proposition 1.5.). Therefore

√
log N(B(Sn

p ), σ2, ε) ≤ cαn1/q
√

n
1
ε
,

which gives the estimate (3). ¤

The next inequality is in some sense dual to (2). Again G is a Gaussian d-
dimensional random vector.

Lemma 3 (see [PT]). There exists a positive constant c such that for any integer
d ≥ 1, any norm ‖ . ‖ on Rd and for every ε > 0, we have

ε
√

log N(Bd
2 , ‖ . ‖, ε) ≤ cE‖G‖. (5)

Lemma 4. There exists a positive constant c such that for any integer n ≥ 1
and for any q such that 1 ≤ q ≤ ∞, we have

log N(B(Sn
2 ), σq, ε) ≤ c

n1+2/q

ε2
(6)

for every ε > 0.

Proof. The proof follows from the formulae (4) and (5) applied with the norm
σq. ¤

Proposition 5. There exists a positive constant c such that for any integer
n ≥ 1, for any p, q such that 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞ and for every ε > 0, we
have

log N(B(Sn
p ), σq, ε) ≤ c

n(2−1/p−1/q)q′

εq′ , (7)

where 1/q + 1/q′ = 1.
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Proof. We observe that

N(B(Sn
p ), σq, ε) ≤ N

(
B(Sn

p ), σ2,
ε

θ

)
N(B(Sn

2 ), σq, θ).

Therefore inequalities (3) and (6) give us

log N(B(Sn
p ), σq, ε) ≤ c

(
n3−2/pθ2

ε2
+

n1+2/q

θ2

)
.

Optimizing with θ2 = εn−1+1/p+1/q we arrive at

log N(B(Sn
p ), σq, ε) ≤ 2c

n2−1/p+1/q

ε
. (8)

In particular for q = ∞, we get

log N(B(Sn
p ), σ∞, ε) ≤ 2c

n2−1/p

ε
. (9)

Let now 2 ≤ q ≤ ∞, λ = 2
q , so that 0 ≤ λ ≤ 1 and 1

q = λ 1
2 + (1 − λ) 1

∞ . By
Hölder’s inequality, for every x, y > 0, we have

N(B(Sn
p ), σq, 2xλy1−λ) ≤ N(B(Sn

p ), σ2, x)N(B(Sn
p ), σ∞, y).

This relation and inequalities (3) and (9) yield

log N(B(Sn
p ), σq, ε) ≤ 8c

(
n3−2/p

z2/λ
+

n2−1/p

(ε/z)1/1−λ

)
, z > 0

and the optimal choice z = (q − 2)(q−2)/q(q−1) ε1/(q−1) n(1−1/p)(q−2)/q(q−1) gives
the estimate (7). ¤

Remarks. 1) Estimates (7) and (8) are relevant when p ≤ 2 ≤ q, their accuracy
depends on the range of ε, particularly with respect to 1/n(1/p−1/q).

2) Note that when p = 1, inequality (7) becomes

log N(B(Sn
1 ), σq, ε) ≤ c

n

εq′ .

3) All the computation of entropy above, could have be done by the same method
for the trace classes of operators between two different finite dimensional Eu-
clidean spaces. One can use Chevet inequality [C] to get the relation corre-
sponding to (4).

3. Metric Entropy of the Grassmann Manifold

We consider now the Grassmann manifold Gn,k as a subset of Sn
q , which

means that Gn,k is equipped with the metric σq(E,F ) = σq(PE − PF ). In view
of evaluating the cardinality of a “good” atlas of the Grassmann manifold, we
begin with a first estimate for its entropy.
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Proposition 6. There exists a positive constant c such that for any integers
1 ≤ k ≤ n and for every ε > 0, we have

log N(Gn,k , σ∞, ε) ≤ c
d

ε
, (10)

where d = k(n− k).

Proof. We may suppose that k ≤ n − k. Since for any rank k orthogonal
projection σ1(P ) = k, inequality (7) with p = 1 gives by homogeneity,

log N(Gn,k , σ∞, ε) ≤ log N(B(Sn
1 ), σ∞, εk−1)

≤ c
nk

ε
≤ 2c

d

ε
. ¤

Let E, F ∈ Gn,k and U ∈ On such that U(F ) = E, then clearly

(PF⊥PE)∗ = (PF⊥UPF U∗)∗ = UPF U∗PF⊥ = UPF PE⊥U∗.

Therefore PF⊥PE and PF PE⊥ have the same singular values. Moreover, since
PE − PF = PF⊥PE − PF PE⊥ is an orthogonal decomposition, for any unitarily
invariant norm τ we have τ(PF⊥PE) = τ(PF PE⊥) and

τ(PF⊥PE) ≤ τ(E, F ) ≤ 2τ(PF⊥PE) .

Denote by PF |E the restriction over E of the orthogonal projection onto F

and consider its polar decomposition

PF |E =
k∑

i=1

siei ⊗ fi, si ≥ 0, (ei, fj) = δijsi, 1 ≤ i, j ≤ k,

with (ei)1≤i≤k an orthonormal basis of E and (fi)1≤i≤k an orthonormal basis of
F . Let e′i = (−siei + fi)/

√
1− s2

i and f ′i = (−ei + sifi)/
√

1− s2
i when i is such

that si 6= 1. The families (e′i) and (f ′i) are respectively orthonormal systems in
E⊥ and F⊥ and we have the following polar decomposition:

PE − PF = PF PE⊥ − PEPF⊥ =
∑

si 6=1

√
1− s2

i e′i ⊗ fi +
∑

si 6=1

√
1− s2

i ei ⊗ f ′i .

Consequently, for 1 ≤ q ≤ ∞

σq(E,F ) = (σq(PF⊥|E))q + σq(PF |E⊥)q)1/q =

(
2

k∑

i=1

(1− s2
i )

q/2

)1/q

.

Note that the Riemannian metric is given by σg(E,F ) =
(∑k

i=1 arccos2 si

)1/2

and therefore
σ2(E, F ) ≤

√
2σg(E, F ) ≤ π

2
σ2(E, F ).

Let E be a k-dimensional Euclidean subspace of Rn. For any 0 < ρ < 1, let

Vρ(E) = {F ∈ Gn,k : σ∞(E, F ) ≤ ρ}.
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Let us recall a standard chart: (Vρ(E), ϕE) where ϕE : Vρ(E) −→ L(E, E⊥) is
defined by

ϕE(F ) = PE⊥|F ◦ (PE|F )−1.

In other words, F is the graph of u = ϕE(F ) and F = {x + u(x) : x ∈ E}. With
this notation, we have:

Lemma 7. Let 0 < ρ < 1, E,F, G ∈ Gn,k and F, G ∈ Vρ(E), let u = ϕE(F ) and
v = ϕE(G), let τ be a unitarily invariant norm on L(`n

2 ), then we have

ϕE(Vρ(E)) =

{
w ∈ L(E, E⊥) : σ∞(w) ≤ ρ√

1− ρ2

}
, (11)

2−1τ(F, G) ≤ τ(u− v) ≤ 21/2

1− ρ2
τ(F, G). (12)

Proof. Let H ∈ Vρ(E) and w = ϕE(H). The relation (11) follows immediately
from

σ∞(PE⊥PH) = σ∞(E,H) = sup
|x|=1

|w(x)|/
√

1 + |w(x)|2 = σ∞(w)/
√

1 + σ∞(w)2.

Recall that F = {x + u(x) : x ∈ E} and G = {x + v(x) : x ∈ E}. To prove the
second relation, let x, y ∈ E such that PG(x + u(x)) = y + v(y), then

|PG⊥(x + u(x))| = |x− y + u(x)− v(y)| ≥ |x− y|.
Therefore

|u(x)−v(x)|2 = |(x+u(x))−(x+v(x))|2
= |PG⊥(x+u(x))|2 + |(y−x)+v(y−x)|2
≤ (2+σ∞(v)2)|PG⊥(x+u(x))|2,

and for every x in E we have

|PG⊥(x + u(x))| ≤ |u(x)− v(x)| ≤ (2 + σ∞(v)2)1/2|PG⊥(x + u(x))|.
The left-hand side inequality means that

|PG⊥PF (z)| ≤ |(u− v)(PEz)| for any z ∈ F.

It is well known that if S, T ∈ L(`n
2 ) satisfy |Sx| ≤ |Tx| for every x then τ(S) ≤

τ(T ). Hence
τ(PG⊥PF ) ≤ τ(u− v).

Applying the same observation to the operators S = (u− v)PE and

T = (2 + σ∞(v)2)1/2PG⊥PF (PE + uPE)

and using the right-hand side of the same inequality above, one gets

τ(u− v) ≤ (2 + σ∞(v)2)1/2(1 + σ∞(u)2)1/2τ(PG⊥PF ).

We conclude using (11) and the relation between τ(PG⊥PF ) and τ(E,F ). ¤
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We now give a new proof of a result of Szarek.

Proposition 8 (see [S2]). For any integers 1 ≤ k ≤ n such that k ≤ n− k, for
any q such that 1 ≤ q ≤ ∞ and for every ε > 0, we have

( c

ε

)d

≤ N(Gn,k, σq, εk
1/q) ≤

(
C

ε

)d

, (13)

where we set d = k(n− k) and c, C > 0 are universal constants.

Proof. The relation (11) of lemma 7 shows that if we fix ρ, say ρ = 1/2, then
ϕE is a bi-Lipschitz correspondence from the “ball” V1/2(E) onto the ball of
L(E,E⊥) of radius 1/

√
3 (in the operator norm) and from (12), the Lipschitz

constants are universal. Therefore the metric entropy of V1/2(E) for the metric
σ∞ is equivalent to the entropy of a d-dimensional ball of radius 1/

√
3 for its

own metric. From (1) we get

(c1

ε

)d

≤ N(V1/2(E), σ∞, ε) ≤
(c2

ε

)d

,

for some positive universal constants c1 and c2. From inequality (10) of Propo-
sition 6, there is an atlas (V1/2(Ei), ϕEi)1≤i≤N with

log N ≤ log N(Gn,k, σ∞, 1/2) ≤ 2c d.

Since for a fixed k-dimensional subspace E,

N(Gn,k, σ∞, ε) ≤ N(Gn,k, σ∞, 1/2)N(V1/2(E), σ∞, ε),

we get

(c1

ε

)d

≤ N(Gn,k, σ∞, ε) ≤
(

c2e
2c

ε

)d

. (14)

The computation of σq( . ) on Gn,k shows that (2k)−1/qσq(E, F ) is an in-
creasing function of q ∈ [1,∞) if E, F ∈ Gn,k and so the same is true about
log N(Gn,k , σq, ε(2k)1/q). Therefore the upper bound in (13) is a consequence
of (14).

To get a lower bound of the entropy, it is sufficient to look at only one chart,
say (V1/2(E), ϕE) and for the nuclear norm. Using lemma 7 with q = 1, we
reduce the problem to a minoration, for the nuclear metric, of the entropy of
the unit ball of L(E, E⊥) with the operator norm. Now we join the method of
[S2]; a lower bound for the covering number is obtained by evaluating the ratio
of the volume of the operator norm unit ball of L(E, E⊥) and the volume of the
nuclear norm unit ball. This concludes the proof. ¤
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