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The Extension of the Finite-Dimensional Version
of Krivine’s Theorem to Quasi-Normed Spaces

ALEXANDER E. LITVAK

Abstract. In 1980 D. Amir and V. D. Milman gave a quantitative finite-
dimensional version of Krivine’s theorem. We extend their version of the
Krivine’s theorem to the quasi-convex setting and provide a quantitative
version for p-convex norms.

Recently, a number of results of the Local Theory have been extended to
the quasi-normed spaces. There are several works [Kal1, Kal2, D, GL, KT,
GK, BBP1, BBP2, M2] where such results as Dvoretzky–Rogers lemma [DvR],
Dvoretzky theorem [Dv1, Dv2], Milman’s subspace-quotient theorem [M1], Kriv-
ine’s theorem [Kr], Pisier’s abstract version of Grotendick’s theorem [P1, P2],
Gluskin’s theorem on Minkowski compactum [G], Milman’s reverse Brunn–Min-
kowski inequality [M3], and Milman’s isomorphic regularization theorem [M4] are
extended to quasi-normed spaces after they were established for normed spaces.
It is somewhat surprising since the first proofs of these facts substantially used
convexity and duality.

In [AM2] D. Amir and V. D. Milman proved the local version of Krivine’s
theorem (see also [Gow], [MS]). They studied quantitative estimates appearing
in this theorem. We extend their result to the q- and quasi-normed spaces.

Recall that a quasi-norm on a real vector space X is a map ‖ · ‖ : X → R+

satisfying these conditions:

(1) ‖x‖ > 0 for all x 6= 0.
(2) ‖tx‖ = |t|‖x‖ for all t ∈ R and x ∈ X.
(3) There exists C ≥ 1 such that ‖x + y‖ ≤ C(‖x‖+ ‖y‖) for all x, y ∈ X.

If (3) is substituted by

(3a) ‖x + y‖q ≤ ‖x‖q + ‖y‖q for all x, y ∈ X, for some fixed q ∈ (0, 1],
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then ‖ · ‖ is called a q-norm on X. Note that 1-norm is the usual norm. It is
obvious that every q-norm is a quasi-norm with C = 21/q−1. However, not every
quasi-norm is q-norm for some q. Moreover, it is even not necessary continuous.
It can be shown by the following simple example. Let f be a positive function
on the Euclidean sphere Sn−1 defined by

f(x) =
{|x| for x ∈ A,

2|x| otherwise.

Here A is a subset of Sn−1 such that both A and Sn−1 \ A are dense in Sn−1.
Denote ‖x‖ = |x|f(x/|x|). Because f is not continuous it is clear that ‖ · ‖ is not
q-norm for any q though it is the quasi-norm.

The next lemma is the Aoki–Rolewicz Theorem ([KPR, R]; see also [K, p. 47]).

Lemma 1. Let ‖ · ‖ be a quasi-norm with the constant C in the quasi-triangle
inequality . Then there exists a q-norm ‖ · ‖ for which

‖x‖q ≤ ‖x‖ ≤ 2C‖x‖q

with q satisfying 21/q−1 = C. This q-norm can be defined as follows

‖x‖q = inf

{( n∑

i=1

‖xi‖q

)1/q

: n > 0, x =
n∑

i=1

xi

}
.

We refer to [KPR] for further properties of the quasi- and q-norms.

Theorem 1. Let {ei}n
1 be a unit vector basis in Rn, ‖ · ‖p be a lp-norm on Rn,

i .e., ‖∑n
i=1 aiei‖p =

(∑
i |ai|p

)1/p, for 0 < p < ∞. Let ‖ · ‖ be a q-norm on Rn

such that
C−1

1 ‖x‖p ≤ ‖x‖ ≤ C2‖x‖p (1)

for every x ∈ Rn. Then for every ε > 0 and C = C1C2 there exists a block
sequence u1, u2, . . . , um of e1, e2, . . . , en which satisfies

(1− ε)

( m∑

i=1

|ai|p
)1/p

≤
∥∥∥∥∥

m∑

i=1

aiui

∥∥∥∥∥ ≤ (1 + ε)

( m∑

i=1

|ai|p
)1/p

(2)

for all a1, a2, . . . , am and m ≥ C(ε, p, q) (n/ log n)ν , where

ν =
αε0

ε0 + p + αε0
for p < 1 and ν =

ε0

2ε0 + 1
for p ≥ 1;

α = min{p, q}, ε0 =
(

qε/2
1 + Cq12q/p

)p/q

.

Remark 1. If p ≥ 1 in this theorem, then we have the well-known finite-
dimensional version of Krivine’s theorem with some modifications concerning
change of the usual norm to the q-norm. In this case for small enough q we get
ε0 ≈ (qε/4)p/q and ν ≈ ε0.
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The case p < 1 is more interesting. We get an extension of the finite-
dimensional version of Krivine’s theorem. To provide an intuition for the behav-
ior of the constant in the theorem we point out that for small enough p and q

with p = q we can take ε0 ≈ qε/30 and ν ≈ ε0.

Remark 2. By Lemma 1 in the case of quasi-norm with the constant C0 the
inequality (2) is substituted with

(1− ε)

( m∑

i=1

|ai|p
)1/p

≤
∥∥∥∥∥

m∑

i=1

aiui

∥∥∥∥∥ ≤ 2(1 + ε)C0

( m∑

i=1

|ai|p
)1/p

.

Due to the example above, we can not remove the constant C0 in this inequality.

The proof of the theorem consists of two lemmas.

Lemma 2. For every η > 0 there exists a constant C(η) > 0 such that if ‖ · ‖ is
a q-norm on Rn satisfying (1) then there exists a block sequence y1, y2, . . . , yk of
e1, e2, . . . , en which is (1 + η)-symmetric and k ≥ C(η, q, p)n/log n.

Lemma 3. If y1, y2, . . . , yk is a 1-symmetric sequence in a normed space satis-
fying

C−1
1 ‖a‖p ≤

∥∥∥∥∥
k∑

i=1

aiyi

∥∥∥∥∥ ≤ C2‖a‖p

for all a = (a1, a2, . . . , ak) ∈ Rk then for every ε > 0 there exists a block sequence
u1, u2, . . . , um of y1, y2, . . . , yk such that

(1− ε)‖a‖p ≤
∥∥∥∥∥

m∑

i=1

aiui

∥∥∥∥∥ ≤ (1 + ε)‖a‖p

for all a = (a1, a2, . . . , am) ∈ Rm, where m ≥ C(p, q)εp/qkν ,

ν =
αε0

ε0 + p + αε0
for p < 1 and ν =

ε0

2ε0 + 1
for p ≥ 1,

α = min{p, q}, ε0 =
(

qε

1 + Cq12q/p

)p/q

.

At first, D. Amir and V. D. Milman ([AM2]; see also [MS]) proved Lemma 2 for
q = 1, p ≥ 1 with the estimate k ≥ C(η, q, p)n1/3. Their proof can be modified
to obtain result for 0 < p < ∞, q ≤ 1. Afterwards, W. T. Gowers [Gow] showed
that the estimate of k can be improved to k ≥ C(η, q, p)n/ ln n. In fact, he
gave two different, though similar, proofs for cases p = 1 and p > 1. The proof
given for case p = 1 strongly used the convexity of the norm and the fact that
p is equal to 1. However, the method used for p > 1 actually works for every
0 < p < ∞ and even for q-norms. Let us recall the idea of W. T. Gowers. First
we will introduce some definition.
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Let Ω be the group {−1, 1}n × Sn, where Sn is the permutation group. Let
Ψ be the group {−1, 1}k × Sk. For

b =
n∑

i=1

biei ∈ Rn, a =
k∑

i=1

aiei ∈ Rk, (ε, π) ∈ Ω, (η, σ) ∈ Ψ

set

bεπ =
n∑

i=1

εibieπ(i), aησ =
k∑

i=1

ηiaieσ(i).

Let h · k = n. For i ≤ k, j ≤ h put

eij = e(i−1)h+j , εij = ε(i−1)h+j , πij = π((i− 1)h + j).

Define an action of Ψ on Ω by

Ψησ((ε, π)) = (ε1, π1), where ε1
ij = ηiεσ(i)j , π1

ij = πσ(i)j .

For any (ε, π) ∈ Ω define the operator

Φεπ : Rk → Rn by Φεπ

(
k∑

i=1

aiei

)
=

k∑

i=1

h∑

j=1

εijaieπij .

For every a ∈ Rk by Ma denote the median of Φεπ (a) taken over Ω. Finally, let
A = {a ∈ lkp : ‖a‖p ≤ 1, a1 ≥ a2 ≥ · · · ≥ ak ≥ 0}.

The following claim, which W. T. Gowers proved for case p > 1 and q = 1, is
the main step in the proof of Lemma 2.

Claim 1. Let ‖ · ‖ be a q-norm on Rn satisfying ‖x‖p ≤ ‖x‖ ≤ B‖x‖p. There is
a constant C0 = C(p, q, δ, B) such that given λ > 0 for every a ∈ A

ProbΩ

{
∃(η, σ) : |‖Φεπ(aησ)‖q −Mq

a |1/q
>

1
21/q

δ‖a‖ph
1/p

}
< 1/N

with k = C0
n

λ log n and N = kλ.

The proof of this claim can be equally well applied for all 0 < p < ∞ and
0 < q ≤ 1. The only change that we have to do is to replace the triangle
inequality

∣∣‖x‖ − ‖y‖
∣∣ ≤ ‖x− y‖ by

∣∣‖x‖q − ‖y‖q
∣∣1/q≤ ‖x− y‖ .

The following two claims are technical and can be proved using ideas of [Gow]
with small changes, connected with replacing p ≥ 1 by p < 1 and the norm by
q-norm.

Claim 2. Let 0 < p < ∞ and δ > 0. There exist a constant λ, depending
on p and δ only , such that for every integer k the set A contains a δ-net K of
cardinality kλ.
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Claim 3. Let ‖ · ‖ be a q-norm on Rn satisfying ‖x‖p ≤ ‖x‖ ≤ B‖x‖p. If there
is (ε, π) ∈ Ω such that for every a in some δ-net K of A

∣∣‖Φεπ(aησ)‖q − ‖Φεπ(aη1σ1)‖q∣∣1/q ≤ δ‖a‖ph
1/p

for every (η, σ), (η1, σ1) ∈ Ψ then the block basis

{Φεπ(ei)}k
i=1

of (Rk, ‖ · ‖) is (1 + 6 (Bδ)q)1/q-symmetric.

These three claims imply Lemma 2 in the standard way (see [Gow] for the de-
tails).

Proof of Lemma 3. Our method of proof is close to the method used in [AM1],
but our notation follows that of [MS, chapter 10].

First, we will give the Krivine’s construction of block basis. Let a and N be
some integers which will be specified later. Let us introduce some set of numbers
{λj}J . We will say that set

{Bj,i}j∈J,i∈I

(if card I = 1 then we have only one index j) is {λj}J -set if

(1) Bj,i ⊂ {1, . . . , n} for every j ∈ J, i ∈ I,
(2) Bj,i are mutually disjoint,
(3) card Bj,i = λj for every j ∈ J, i ∈ I.

Let us fix some {[ρj ]}-set
{Aj,s}0≤j≤N−1,1≤s≤m

for ρ = 1 + 1/a.
For 0 ≤ j ≤ N − 1 and 1 ≤ s ≤ m, define

Yj,s =
∑

i∈Aj,s

yi

and

zs =
N−1∑

j=0

ρ(N−j)/pYj,s.

Clearly, ‖z1‖ = ‖z2‖ = · · · = ‖zm‖. The integer m will be defined from

k ≈ m

N−1∑

j=0

[ρ(N−j)/p] ≈ mρN (ρ− 1)−1 = ma
(

a + 1
a

)N

.

Finally, we define the block sequence {us}m
s=1 by

us = zs/‖zs‖.
Now, as in [MS], we will establish the necessary estimates.
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Fix N, M ∈ {T + 1, T + 2, . . . ,m} and ts ∈ {0, . . . , T} for s ∈ {1, . . . , m} such
that

M∑
s=1

ρ−ts = 1 + η, with |η| = 1.

Then
M∑

s=1

ρ−ts/pzs =
M∑

s=1

N−1∑

j=0

ρ(N−j−ts)/pYj,s

=
N−1+T∑

i=0

ρ(N−i)/p
∑

s≤M, j≤N−1
j+ts=i

∑

l∈Aj,s

yl =
N−1+T∑

i=0

ρ(N−i)/p
∑

l∈Bi

yl

for some {ai}-set {Bi}N−1+T
i=0 , where

ai =
∑

s≤M, j≤N−1
j+ts=i

[ρi−ts ], for 0 ≤ i ≤ N − 1 + T.

Therefore, we can choose a vector z which has the same structure as zs (i.e.,
z =

∑N−1
j=0 ρ(N−j)/p

∑
i∈Aj

yi for some {[ρj ]}-set {Aj}0≤j≤N−1) such that the
difference ∆ is

∆ =
M∑

s=1

ρ−ts/pzs − z =
N−1∑
s=1

ρ(N−i)/p
∑

l∈Ci

yl +
N−1+T∑

s=N

ρ(N−i)/p
∑

l∈Ci

yl

for some {bj}-set {Cj}N−1+T
i=0 , where

bj =
{|[ρj − aj ]| for 0 ≤ j ≤ N − 1,

aj for N ≤ j ≤ N − 1 + T.

Using techniques from [MS, pp. 66-67] we obtain

‖∆‖ ≤ C2ρ
N/p

(
4T + N |η|+ NMρ−T

)1/p and ‖z‖ ≥ (1/C1)ρN/p(N/2)1/p.

Hence
∣∣∣∣∣

∥∥∥∥∥
M∑

s=1

ρ−ts/pus

∥∥∥∥∥

q

− 1

∣∣∣∣∣ ≤
∥∥∥∥∥

M∑
s=1

ρ−ts/pus − z

‖z‖

∥∥∥∥∥

q

=
(‖∆‖
‖z‖

)q

≤ (C1C2)q

(
8T

N
+ 2|η|+ 2Mρ−T

)q/p

.

Thus ∣∣∣∣∣

∥∥∥∥∥
M∑

s=1

ρ−ts/pus

∥∥∥∥∥

q

− 1

∣∣∣∣∣ ≤ Cq(12ε0)q/p,

provided T ≤ Nε0, |η| ≤ ε0, and Mρ−T ≤ mρ−T ≤ ε0, for some ε0. Assume
T = [Nε0].
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Case 1: p < 1.
Let

∑m
s=1 |αs|p = 1 and as = |αs|. Let α = min{p, q} and δ = ε

1/p
0 /m1/α.

Take βs = ρ−ts/p or βs = 0, ts ∈ {0, 1, . . . , T} such that |as − βs| ≤ δ for every
s. It is possible if ρ−T/p ≤ δ and 1− ρ−1/p ≤ δ. Since p ≤ 1 it is enough to take
a such that it satisfies following the inequalities

(
a

a + 1

)[Nε0]

≤ δp =
ε0

mp/α
and δ ≥ 1

p(a + 1)
.

Take a = [1/(δp)] =
[
m1/α/(pε

1/p
0 )

]
. Thus δ ≥ 1

p(a+1) ,

∣∣∣
∑

ρ−ts − 1
∣∣∣ =

∣∣∣
∑

βp
s − 1

∣∣∣ ≤
∣∣∣
∑

(as + δ)p − 1
∣∣∣

≤
∣∣∣
∑

(ap
s + δp)− 1

∣∣∣ = δpm ≤ ε0

and ∣∣∣∣∣

∥∥∥∥∥
m∑

s=1

βsus

∥∥∥∥∥

q

−
∥∥∥∥∥

m∑
s=1

αsus

∥∥∥∥∥

q∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
s=1

|βs − as|us

∥∥∥∥∥

q

≤ δq

∥∥∥∥∥
m∑

s=1

us

∥∥∥∥∥

q

≤ δqm ≤ ε
q/p
0 .

Hence ∣∣∣∣∣

∥∥∥∥∥
m∑

s=1

αsus

∥∥∥∥∥

q

− 1

∣∣∣∣∣ ≤ ε
q/p
0 (1 + Cq12q/p),

if mp/α ≤ ε0(1+a
a )[Nε0] and ma( 1+a

a )N ≤ k, when a =
[

m1/α

pε
1/p
0

]
. Choose N such

that ( a
1+a )Nε0 is of the order ε0/mp/α. Then

m
m1/α

pε
1/p
0

(
mp/α

ε0

)1/ε0

=
m1+1/α+p/(αε0)

ε
1/p
0 pε

1/ε0
0

∼ k.

Thus, since 1/α ≥ max{1/p, 1/q},
m ∼ ε0 (pk)

αε0
ε0+p+αε0 ∼ ε0k

αε0
ε0+p+αε0

and for ε1 = ε
q/p
0

(
1 + cq12q/p

)

(1− ε1)
1/q ‖(αs)‖p ≤

∥∥∥
∑

αsus

∥∥∥ ≤ (1 + ε1)
1/q ‖(αs)‖p

holds. For ε1 small enough (ε1 < 2q − 1) we obtain 1 − ε1/q ≤ (1 − ε1)1/q and
1 + 2ε1/q ≥ (1 + ε1)1/q. Take ε = 2ε1/q, then

ε0 =
(

qε/2
1 + Cq12q/p

)p/q

and
m ≥ C(p, q)εp/qk

αε0
ε0+p+αε0 .
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Case 2: p ≥ 1. We use the same idea. Let
∑m

s=1 |αs|p = 1 and as = |αs|.
Let δ = ε0/(Cpm). Take βs = ρ−ts/p or βs = 0, ts ∈ {0, 1, . . . , T} such that
|ap

s − βp
s | ≤ δ for every s. It is possible if ρ−T ≤ δ and 1 − ρ−1 ≤ δ. These two

conditions are met if
(

a

a + 1

)[Nε0]

≤ δ =
ε0

Cpm
and δ ≥ 1

a + 1
.

Take a = [1/δ] = [Cpm/ε0] . Thus
∣∣∣
∑

ρ−ts − 1
∣∣∣ =

∣∣∣
∑

βp
s − 1

∣∣∣ ≤
∣∣∣
∑

(ap
s + δ)− 1

∣∣∣ = δm ≤ ε0.

Since
∥∥∥∥∥

m∑
s=1

us

∥∥∥∥∥ ≤ C1C2
‖∑m

s=1 us‖p

‖z‖p
≤ C1C2

(
m

∑
ρN−j [ρj ]
‖z‖p

p

)1/p

= Cm1/p

and
|βs − as| ≤ |βp

s − ap
s |1/p ≤ δ1/p,

we obtain
∣∣∣∣∣

∥∥∥∥∥
m∑

s=1

βsus

∥∥∥∥∥

q

−
∥∥∥∥∥

m∑
s=1

αsus

∥∥∥∥∥

q∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
s=1

|βs − as|us

∥∥∥∥∥

q

≤ δq/p

∥∥∥∥∥
m∑

s=1

us

∥∥∥∥∥

q

≤ δq/pCqmq/p ≤ ε
q/p
0 .

Hence ∣∣∣∣∣

∥∥∥∥∥
m∑

s=1

αsus

∥∥∥∥∥

q

− 1

∣∣∣∣∣ ≤ ε
q/p
0 (1 + Cq12q/p),

if m ≤ ε0
Cp ( 1+a

a )[Nε0] and ma(1+a
a )N ≤ k, when a = [Cpm/ε0]. Choose N such

that ( a
1+a )Nε0 is of the order ε0/(Cpm). Then

m
Cpm

ε0

(
Cpm

ε0

)1/ε0

=
(

Cp

ε0

)1+1/ε0

m2+1/ε0 ∼ k.

Thus
m ≥ ε0

Cp
k

ε0
2ε0+1

and, for ε1 = ε
q/p
0

(
1 + Cq12q/p

)
,

(1− ε1)
1/q ‖(αs)‖p ≤

∥∥∥
∑

αsus

∥∥∥ ≤ (1 + ε1)
1/q ‖(αs)‖p

holds. For ε1 small enough (ε1 < 2q − 1) we obtain 1 − ε1/q ≤ (1 − ε1)1/q and
1 + 2ε1/q ≥ (1 + ε1)1/q. Take ε = 2ε1/q, then

ε0 =
(

qε/2
1 + Cq12q/p

)p/q
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and
m ≥ C(p, q)εp/qk

ε0
2ε0+1 . ¤
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