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On the Equivalence Between Geometric and
Arithmetic Means for Log-Concave Measures

RAFAÃL LATAÃLA

Abstract. Let X be a random vector with log-concave distribution in
some Banach space. We prove that ‖X‖p ≤ Cp‖X‖0 for any p > 0, where

‖X‖p = (E‖X‖p)1/p, ‖X‖0 = exp E ln ‖X‖ and Cp are constants depend-
ing only on p. We also derive some estimates of log-concave measures of
small balls.

Introduction. Let X be a random vector with log-concave distribution (for
precise definitions see below). It is known that for any measurable seminorm
and p, q > 0 the inequality

‖X‖p ≤ Cp,q‖X‖q

holds with constants Cp,q depending only on p and q (see [4], Appendix III).
In this paper we show that the above constants can be made independent of q,
which is equivalent to the inequality

‖X‖p ≤ Cp‖X‖0, (1)

where ‖X‖0 is the geometric mean of ‖X‖. In the particular case in which X

is uniformly distributed on some convex compact set in Rn and the seminorm is
given by some functional, inequality (1) was established by V. D. Milman and A.
Pajor [3]. As a consequence of (1) we prove the result of Ullrich [6] concerning
the equivalence of means for sums of independent Steinhaus random variables
with vector coefficients, even though these random-variables are not log-concave
(Corollary 2).

To prove (1) we derive some estimates of log-concave measures of small balls
(Corollary 1), which are of independent interest. In the case of Gaussian random
variables they were formulated and established in a weaker version in [5] and
completelely proved in [2].
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Definitions and Notation. Let E be a complete, separable, metric vector
space endowed with its Borel σ−algebra BE .By µ we denote a log-concave prob-
ability measure on (E, BE) (for some characterizations, properties and examples,
see [1]) i.e. a probability measure with the property that for any Borel subsets
A,B and all 0 < λ < 1 we have

µ(λA + (1− λ)B) ≥ µ(A)λµ(B)1−λ.

We say that a random vector X with values in E is log-concave if the distribution
of X is log-concave.For a random vector X and a measurable seminorm ‖.‖ on
E (i.e. Borel measurable, nonnegative, subadditive and positively homogeneous
function on E) we define

‖X‖p = (E‖X‖p)1/p for p > 0

and
‖X‖0 = lim

p→0+
‖X‖p = exp(E ln ‖X‖).

Let us begin with the following Lemma from [1].

Lemma 1. For any convex , symmetric Borel set B and k ≥ 1 we have

µ((kB)c) ≤ µ(B)

(
1− µ(B)

µ(B)

)(k+1)/2

.

Proof. The statement follows immediately from the log-concavity of µ and the
inclusion

k − 1
k + 1

B +
2

k + 1
(kB)c ⊂ Bc. ¤

Lemma 2. If B is a convex , symmetric Borel set , with µ(KB) ≥ (1 + δ)µ(B)
for some K > 1 and δ > 0 then

µ(tB) ≤ Ctµ(B) for any t ∈ (0, 1),

where C = C(K/δ) is a constant depending only on K/δ.

Proof. Obviously it’s enough to prove the result for t = 1/2n, n = 1, 2, . . . . So
let us fix n and define, for u ≥ 0,

Pu = {x : ‖x‖B ∈ (u− 1/2n, u + 1/2n)},
where

‖x‖B = inf{t > 0 : x ∈ tB}.
By simple calculation λPu + (1− λ)(2n)−1B ⊂ Pλu, so

µ(Pλu) ≥ µ(Pu)λµ((2n)−1B)1−λ for λ ∈ (0, 1). (2)

From the assumptions it easily follows that there exists u ≥ 1 such that µ(Pu) ≥
δµ(B)/Kn. Let µ((2n)−1B) = κµ(B)/n. If κ ≤ 2δ/K we are done, so we will
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assume that κ ≥ 2δ/K. Then by (2) it follows that µ(P1) ≥ δµ(B)/Kn. The
sets P(n−1)/n, P(n−2)/n, . . . , P1/n, (2n)−1B are disjoint subsets of B, and hence

µ(B) ≥ µ(P(n−1)/n) + · · ·+ µ(P1/n) + µ((2n)−1B).

Using our estimations of µ(P1) and µ((2n)−1B) we obtain by (2)

µ(B) ≥ n−1µ(B)((δ/K)(n−1)/nκ1/n + · · ·+ (δ/K)1/nκ(n−1)/n + κ) =

=
κ

n
µ(B)

1− δ/Kκ

1− (δ/Kκ)1/n
≥ κ

2n
µ(B)

1
1− (δ/Kκ)1/n

.

Therefore
κ ≤ 2n(1− (δ/Kκ)1/n) ≤ 2 ln Kκ/δ,

so that κ ≤ C(K/δ) and the lemma follows. ¤

Corollary 1. For each b < 1 there exists a constant Cb such that for every
log-concave probability measure µ and every measurable convex , symmetric set
B with µ(B) ≤ b we have

µ(tB) ≤ Cbtµ(B) for t ∈ [0, 1].

Proof. If µ(B) = 2/3 then by Lemma 1 µ(3B) ≥ 5/6 = (1 + 1/4)µ(B), so by
Lemma 2 for some constant C̃1, µ(tB) ≤ C̃1tµ(B).

If µ(B) ∈ [1/3, 2/3] then obviously µ(tB) ≤ 2C̃1tµ(B).
If µ(B) < 1/3, let K be such that µ(KB) = 2/3. By the above case µ(B) ≤

C̃1K
−1µ(KB), and hence

K ≤ 2C̃1

(
µ(KB)
µ(B)

− 1

)
.

So Lemma 2 gives in this case that µ(tB) ≤ C̃2tµ(B) for some constant C̃2.
Finally if µ(B) > 2/3, but µ(B) ≤ b < 1 then by Lemma 1 for some Kb < ∞,

µ(K−1
b B) ≤ 2/3 and we can use the previous calculations. ¤

Theorem 1. For any p > 0 there exists a universal constant Cp, depending only
on p such that for any sequence X1, . . . , Xn of independent log-concave random
vectors and any measurable seminorm ‖.‖ on E we have

∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
p

≤ Cp

∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
0

.

Proof. Since a convolution of log-concave measures is also log-concave (see [1])
we may and do assume that n = 1. Let

M = inf{t : P (‖X1‖ ≥ t) ≤ 2/3}.
Then by Lemma 1 (used for B = {x ∈ E : ‖x‖ ≤ M}) it follows easily that
‖X1‖p ≤ apM for p > 0 and some constants ap depending only on p. By similar
reasoning Corollary 1 yields ‖X1‖0 ≥ a0M . ¤



126 RAFAÃL LATAÃLA

Corollary 2. Let E be a complex Banach space and X1, . . . , Xn be a sequence
of independent random variables uniformly distributed on the unit circle {z ∈ C :
|z| = 1}. Then for any sequence of vectors v1, . . . , vn ∈ E and any p > 0 the
following inequality holds:

∥∥∥
∑

vkXk

∥∥∥
p
≤ Kp

∥∥∥
∑

vkXk

∥∥∥
0
,

where Kp is a constant depending only on p.

Proof. It is enough to prove Corollary for p ≥ 1. Let Y1, . . . , Yn be a sequence
of independent random variables uniformly distributed on the unit disc {z :
|z| ≤ 1}. By Theorem 1 we have

∥∥∥
∑

vkYk

∥∥∥
p
≤ Cp

∥∥∥
∑

vkYk

∥∥∥
0
. (3)

But we may represent Yk in the form Yk = RkXk, where Rk are independent,
identically distributed random variables on [0, 1] (with an appropriate distribu-
tion), which are independent of Xk. Hence, by taking conditional expectation
we obtain ∥∥∥

∑
vkYk

∥∥∥
p
≥ (ER1)

∥∥∥
∑

vkXk

∥∥∥
p
. (4)

Finally let us observe that for any u, v ∈ E the function f(z) = ln ‖u + zv‖ is
subharmonic on C, so g(r) = E ln ‖u + rvX1‖ is nondecreasing on [0,∞) and
therefore ∥∥∥

∑
vkXk

∥∥∥
0
≥

∥∥∥
∑

vkYk

∥∥∥
0
. (5)

The corollary follows from (3), (4) and (5). ¤
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References

[1] C. Borell, “Convex measures on locally convex spaces”, Ark. Math. 12 (1974),
239–252.
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