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Abstract. We give a short argument that for some C > 0, every n-
dimensional Banach ball K admits a 256-round subquotient of dimension at
least Cn/(log n). This is a weak version of Milman’s quotient of subspace
theorem, which lacks the logarithmic factor.

Let V be a finite-dimensional vector space over R and let V ∗ denote the dual
vector space. A symmetric convex body or (Banach) ball is a compact convex
set with nonempty interior which is invariant under under x 7→ −x. We define
K◦ ⊂ V ∗, the dual of a ball K ⊂ V , by

K◦ = {y ∈ V ∗∣∣y(K) ⊂ [−1, 1]}.

A ball K is the unit ball of a unique Banach norm ‖ · ‖K defined by

‖v‖K = min{t∣∣v ∈ tK}.

A ball K is an ellipsoid if ‖·‖K is an inner-product norm. Note that all ellipsoids
are equivalent under the action of GL(V ).

If V is not given with a volume form, then a volume such as Vol K for
K ⊂ V is undefined. However, some expressions such as (Vol K)(Vol K◦) or
(Vol K)/(Vol K ′) for K, K ′ ⊂ V are well-defined, because they are independent
of the choice of a volume form on V , or equivalently because they are invariant
under GL(V ) if a volume form is chosen.

An n-dimensional ball K is r-semiround [8] if it contains an ellipsoid E such
that

(Vol K)/(Vol E) ≤ rn.
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It is r-round if it contains an ellipsoid E such that K ⊆ rE. Santaló’s inequality
states that if K is an n-dimensional ball and E is an n-dimensional ellipsoid,

(Vol K)(Vol K◦) ≤ (Vol E)(Vol E◦).

(Saint-Raymond [7], Ball [1], and Meyer and Pajor [4] have given elementary
proofs of Santaló’s inequality.) It follows that if K is r-round, then either K or
K◦ is

√
r-semiround.

If K is a ball in a vector space V and W is a subspace, we define W ∩ K

to be a slice of K and the image of K in V/W to be a projection of K; they
are both balls. Following Milman [5], we define a subquotient of K to be a slice
of a projection of K. Note that a slice of a projection is also a projection of a
slice, so that we could also have called a subquotient a proslice. It follows that
a subquotient of a subquotient is a subquotient. Note also that a slice of K is
dual to a projection of K◦, and therefore a subquotient of K is dual to a proslice
(or a subquotient) of K◦.

In this paper we prove the following theorem:

Theorem 1. Suppose that K is a (2k+1n)-dimensional ball which is (2(3/2)k ·4)-
semiround , with k ≥ 0. Then K has a 256-round , n-dimensional subquotient .

Corollary 2. There exists a constant C > 0 such that every n-dimensional
ball K admits a 256-round subquotient of dimension at least Cn/(log n).

The corollary follows from the theorem of John that every n-dimensional ball is
(
√

n)-round.
The corollary is a weak version of a celebrated result of Milman [5; 6]:

Theorem 3 (Milman). For every C > 1, there exists D > 0, and for every
D < 1 there exists a C, such that every n-dimensional ball K admits a C-round
subquotient of dimension at least Dn.

However, the argument given here for Theorem 1 is simpler than any known
proof of Theorem 3.

Theorem 3 has many consequences in the asymptotic theory of convex bodies,
among them a dual of Santalo’s inequality:

Theorem 4 (Bourgain, Milman). There exists a C > 0 such that for every
n and for every n-dimensional ball K,

(Vol K)(Vol K◦) ≥ Cn(Vol E)(Vol E◦).

Theorem 4 is an asymptotic version of Mahler’s conjecture, which states that
for fixed n, (Vol K)(Vol K◦) is minimized for a cube. In a previous paper, the
author [3] established a weak version of Theorem 4 also, namely that

Vol (K)Vol (K◦) ≥ (log2 n)−n Vol (E)Vol (E◦)

for n ≥ 4. That result was the motivation for the present paper.
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The author speculates that there are elementary arguments for both Theo-
rems 3 and 4, which moreoever would establish reasonable values for the arbitrary
constants in the statements of these theorems.

The Proof

The proof is a variation of a construction of Kashin [8]. For every k let Ωk be
the volume of the unit ball in Rk; Ωk is given by the formula

πk/2

Γ(k
2 + 1)

.

Let V be an n-dimensional vector space with a distinguished ellipsoid E, to be
thought of as a round unit ball in V , so that V is isometric to standard Rn

under ‖ · ‖E . Give V the standard volume structure d~x on Rn. In particular,
Vol E = Ωn. Endow ∂E, the unit sphere, with the invariant measure µ with
total weight 1. If K is some other ball in V , then

Vol K = Ωn

∫

∂E

‖x‖−n
K dµ

and, more generally,
∫

K

‖x‖k
E d~x =

nΩn

n + k

∫

∂E

‖x‖−n−k
K dµ.

Let f be a continuous function on ∂E. Let 0 < d < n be an integer and consider
the space of d-dimensional subspaces of V . This space has a unique probability
measure invariant under rotational symmetry. If W is such a subspace chosen
at random with respect to this measure, then for any continuous function f ,

∫

∂E

f(x)dµ = E

[∫

∂(E∩W )

f(x)dµ

]
, (1)

where µ denotes the invariant measure of total weight 1 on E ∩ W also. In
particular, there must be some W for which the integral of f on the right side
of equation (1) is less than or equal to that of the left side, which is the average
value.

The theorem follows by induction from the case k = 0 and from the claim
that if K is a (2n)-dimensional ball which is r-semiround, then K has an n-
dimensional slice K ′′ such that either K ′′ or its dual is (2r)2/3-semiround. In
both cases, we assume that K is r-semiround and has dimension 2n and we
proceed with a parallel analysis.

There exists an (n + 1)-dimensional subspace V ′ of V such that:
∫

∂E′
‖x‖−2n

K dµ ≤ Vol K

Vol E
= r2n, (2)
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where E′ = E ∩ V ′. Let K ′ = V ′ ∩K. Then∫

∂E′
‖x‖−2n

K dµ =
2n

(n− 1)Ωn+1

∫

K′
‖x‖n−1

E′ d~x. (3)

Let p be a point in K ′ such that s = ‖p‖E is maximized; in particular K ′ is s-
round Let V ′′ be the subspace of V ′ perpendicular to p and define K ′′ = V ′′∩K

and E′′ = V ′′∩E. The convex hull S(K ′′) of K ′′∪{p,−p} is a double cone with
base K ′′ (or suspension of K ′′), and S(K ′′) ⊆ K ′. We establish an estimate that
shows that either s or Vol K ′′ is small. Let x0 be a coordinate for V ′ given by
distance from V ′′. Then∫

K′
‖x‖n−1

E′ d~x ≥
∫

S(K′′)
‖x‖n−1

E′ d~x >

∫

S(K′′)
|x0|n−1 d~x

= 2
∫ s

0

xn−1
0

(
Vol

(
1− x0

s

)
K ′′

)
dx0

= 2(Vol K ′′)sn

∫ 1

0

tn−1(1− t)n dt

= (Vol K ′′)sn 2(n− 1)!n!
(2n)!

. (4)

We combine equations (2), (3), and (4) with the inequality

Ωn4n(n− 1)!n!
Ωn+1(n− 1)(2n)!

=
2Γ(n+3

2 )(n− 2)!n!√
πΓ(n+2

2 )(2n− 1)!
> 4−n.

(Proof: Let f(n) be the left side. By Stirling’s approximation, f(n)4n → 23/2 as
n →∞. Since

f(n + 2)
f(n)

=
1
4

n2 + 2n− 3
4n2 + 8n + 3

<
1
16

,

the limit is approached from above.) The final result is that

Vol K ′′

Vol E′′ ≤ (2r)2ns−n.

In the case k = 0, r = 8. Since E′′ ⊆ K ′′, Vol K ′′ ≥ Vol E′′, which implies
that s ≤ 4r2 = 256. Since K ′′ is s-round, it is the desired subquotient of K.

If k > 1, then suppose first that s ≤ (2r)4/3. In this case K ′′ is (2r)4/3-round,
which implies by Santaló’s inequality that either K ′′ or K ′′◦ is (2r)2/3-semiround.
On the other hand, if s ≥ (2r)4/3, then K ′′ is (2r)2/3-semiround. In either case,
the induction hypothesis is satisfied.
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