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On a Generalization
of the Busemann–Petty Problem

JEAN BOURGAIN AND GAOYONG ZHANG

Abstract. The generalized Busemann–Petty problem asks: If K and L are
origin-symmetric convex bodies in Rn, and the volume of K ∩H is smaller
than the volume of L ∩H for every i-dimensional subspace H, 1 < i < n,
does it follow that the volume of K is smaller than the volume of L? The
hyperplane case i = n−1 is known as the Busemann–Petty problem. It has
a negative answer when n > 4, and has a positive answer when n = 3, 4.
This paper gives a negative answer to the generalized Busemann–Petty
problem for 3 < i < n in the stronger sense that the integer i is not fixed.
For the 2-dimensional case i = 2, it is proved that the problem has a positive
answer when L is a ball and K is close to L.

1. Introduction

Denote by voli(·) the i-dimensional Lebesgue measure, and denote by Gi,n

the Grassmann manifold of i-dimensional subspaces of Rn. The generalized
Busemann–Petty problem asks:

GBP. If K and L are origin-symmetric convex bodies in Rn, is there the impli-
cation

voli(K ∩ ξ) ≤ voli(L ∩ ξ), ∀ξ ∈ Gi,n =⇒ voln(K) ≤ voln(L)? (1.1)

The case of i = 1 is trivially true. The hyperplane case i = n− 1 is well-known
as the Busemann–Petty problem (see [BP] and [Bu]). Many authors contributed
to the solution of the Busemann–Petty problem (see [Ba] [Bo] [G1] [Gia] [Gie]
[GR] [Ha] [Lu] [LR] [Pa] [Z1]). The problem has a negative answer when n > 4
(see [G1], [Pa] and [Z2]), and it has a positive answer when n = 3, 4 (see [G2]
and [Z4]). The notion of intersection body, introduced by Lutwak [Lu], plays an
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important role in the solution of the Busemann–Petty problem. It relates to the
positivity of the inverse spherical Radon transform.

Because of the special feature of the answer to the Busemann–Petty problem,
it is interesting to consider the generalized Busemann–Petty problem. What
are the dimensions of cross sections and ambient spaces so that the generalized
Busemann–Petty problem has a positive or negative answer? By introducing
the notion of i-intersection body and using techniques in functional analysis and
Radon transforms on Grassmannians, it is proved in [Z3] that the answer to the
generalized Busemann–Petty problem is equivalent to the existence of origin-
symmetric convex bodies which are not i-intersection bodies. When 3 < i < n,
we give a negative answer to the problem. The argument shows that cylinders
are not i-intersection bodies if 3 < i < n. We also give a partial answer to the
case of 2-dimensional sections. We remark that one of the results in [Z3] that no
polytope is an i-intersection body is not correct.

It is shown in [Z3] that the generalized Busemann–Petty problem has a pos-
itive answer if K is an i-intersection body, in particular, if K is a ball in Rn.
However, when L is a ball, the generalized Busemann–Petty problem may still
have a negative answer. For instance, Keith Ball observed that one can con-
struct counterexamples by using the techniques in [Ba] and letting K = the unit
cube, L = a ball of appropriate radius when n and i are sufficiently large. We
prove that, when L is a ball and K is sufficiently close to L, the generalized
Busemann–Petty problem of 2-dimensional sections has a positive answer. The
result is contained in the following theorem.

Theorem 1.1. Let K be a centered convex body and let Bn be the standard unit
ball in Rn. There exists δ0 > 0 which only depends on the dimension so that if
dist(K, Bn) < δ0 then

vol2(K ∩ ξ) ≤ vol2(Bn ∩ ξ), ∀ξ ∈ G2,n =⇒ voln(K) ≤ voln(Bn).

Let ωn be the volume of Bn. By the homogeneity of the inequalities in the last
implication, we obtain the following corollary.

Corollary 1.2. Let K be a centered convex body in Rn. There exists δ0 > 0
which only depends on the dimension so that if the distance of K to a ball is less
than δ0, then

voln(K)
2
n ≤ ω

2
n
n

π
max

ξ∈G2,n

vol2(K ∩ ξ). (1.2)

Inequality (1.2) is proved for any centered convex bodies in R3 in [G3]. It might
be still true for any centered convex bodies in all dimensions as well.

Note that, for the generalized Busemann–Petty problem, the dimension i of
sections in the implication (1.1) is fixed. It is natural to ask what will happen if
the dimension i of sections is not fixed but takes different values. We would like
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to thank V.D. Milman who brought our attention to this question. Our answer
is contained in the following theorem.

Theorem 1.3. There exist centered convex bodies of revolution K and L so
that , for all 3 < i < n,

voli(K ∩ ξ) < voli(L ∩ ξ), ∀ξ ∈ Gi,n,

but
voln(K) > voln(L).

This result is best possible in the class of convex bodies of revolution. It is proved
that, if K is a centered convex body of revolution, then

voli(K ∩ ξ) ≤ voli(L ∩ ξ), ∀ξ ∈ Gi,n, =⇒ voln(K) ≤ voln(L),

when i = 2, or 3. See [G1], [Z2] and [Z3].
The proofs of Theorems 1.1 and 1.3 use the tools of Radon transforms on

Grassmannians. We give definitions and basic facts of the Radon transforms for
later use.

Let Ce(Sn−1) be the space of continuous even functions on the unit sphere
Sn−1, and denote by C(Gi,n) the space of continuous functions on Gi,n. The
Radon transform, for 2 ≤ i ≤ n− 1,

Ri : Ce(Sn−1) −→ C(Gi,n)

is defined by

(Rif)(ξ) =
1

iωi

∫

u∈Sn−1∩ξ

f(u) du, ξ ∈ Gi,n, f ∈ Ce(Sn−1),

where ωi and du are the volume and the surface area element of the i-dimensional
unit ball, respectively.

Let ρK be the radial function of a centered convex body K in Rn given by

ρK(u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1.

The Radon transform Ri is closely connected with the central sections of
centered bodies by the following formula

(Riρ
i
K)(ξ) =

1
ωi

voli(K ∩ ξ), ξ ∈ Gi,n. (1.3)

The dual transform Rt
i of Ri is the map C(Gi,n) → Ce(Sn−1) given by

(Rt
ig)(u) =

∫

u∈ξ∈Gi,n

g(ξ) dξ, u ∈ Sn−1, g ∈ C(Gi,n).

We have the following duality [He, pp. 144 and 161]:

〈Rif, g〉 = 〈f, Rt
ig〉, f ∈ Ce(Sn−1), g ∈ C(Gi,n), (1.4)

where 〈 · , · 〉 is the usual inner product of functions in homogeneous spaces.
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2. Two-Dimensional Sections

In this section we give the proof of Theorem 1.1. One technical part of the
proof is to approximate arbitrary convex bodies by smooth convex bodies quan-
titatively. We use convolutions on the rotation group SO(n) of Rn.

Let G be a compact Lie group. Let C(G) be the space of continuous functions
on G with the uniform topology. For f, g ∈ C(G), the convolution f ∗ g ∈ C(G)
of f and g is defined by

(f ∗ g)(u) =
∫

v∈G

f(uv−1)g(v) dv =
∫

v∈G

f(v)g(v−1u) dv,

where dv is the invariant probability measure of G.
Associated with a convex body K is its support function hK defined on Sn−1

by

hK(u) = max{〈u, x〉 : x ∈ K}, u ∈ Sn−1,

where 〈u, x〉 is the usual inner product of u and x in Rn. The polar body K∗ of
K is defined by

K∗ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K}.

Its support function is given by

hK∗(u) = ρ−1
K (u), u ∈ Sn−1.

If hK is the support function of K, and f is a positive function on SO(n), then
f ∗hK is the support function of another convex body. Moreover, the convolution
preserves the symmetry of the convex body. For a proof of this fact and more
details on convex bodies and convolutions, see [GZ].

Lemma 2.1. Let G be a compact Lie group of dimension m. If f is Lipschitz
continuous on G, then there exists δ0 > 0 which depends only on G and the
Lipschitz constant of f , so that for any δ < δ0 there exists C∞ positive function
φδ satisfying

|φδ ∗ f − f | < δ, ‖φδ ∗ f‖C2 < δ−m−3.

Proof. Let Bδ be the geodesic ball of radius δ at the unit of G. Let φ be a C∞

nonnegative function which is strictly positive inside Bδ/2 but is zero outside Bδ.
Let exp : TeG → G be the exponential map. Condiser the C∞ function

φδ(x) = a−1
δ φ

(
exp(δ−1 exp−1(x))

)
,

where aδ =
∫

G
φ
(
exp(δ−1 exp−1(x))

)
dx. When δ is small,

aδ ∼ cδm, (2.1)

for some constant c.
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Since f is Lipschitz continuous, we have

|φδ ∗ f(x)− f(x)| =
∣∣∣∣
∫

G

φδ(y)f(yx) dy −
∫

G

φδ(y)f(x) dy

∣∣∣∣

≤
∫

G

φδ(y)|f(yx)− f(x)| dy ≤ c1δ. (2.2)

From the following equalities,

φδ ∗ f(x) =
∫

G

φδ(xy−1)f(y) dy = a−1
δ

∫

G

φ
(
exp(δ−1 exp−1(xy−1))

)
f(y) dy,

the second order derivatives of φδ ∗ f yield a factor δ−2. Therefore, when δ is
small (depending on the upper bound of f), (2.1) gives

‖φδ ∗ f‖C2 ≤ c2δ
−m−2. (2.3)

Note that c1 and c2 only depend on G and the Lipschitz constant of f . From
(2.2) and (2.3), the required inequalities follow immediately. ¤

Lemma 2.2. Let K be a centered convex body in Rn. There exists δ0 > 0 which
only depends on the dimension and the diameters of K and its polar body , so that
for any δ < δ0 there exists a centered convex body Kδ with C∞ radial function
ρKδ

so that

|ρKδ
− ρK | < δ, ‖ρKδ

‖C2 < δ−n2
. (2.4)

Proof. Consider the support function hK∗ of the polar body K∗ of K. Since the
sphere Sn−1 = SO(n)/ SO(n− 1) is a homogeneous space, the support function
hK∗ on Sn−1 can be viewed as a function on SO(n). From Lemma 2.1, for any
δ < δ0 there exists C∞ function φδ so that

|φδ ∗ hK∗ − hK∗ | < δ, ‖φδ ∗ hK∗‖C2 < δ−m−3,

where m = dim SO(n) = 1
2 (n2 − n). The number δ0 depends on the dimension

and the Lipschitz constant of hK∗ . Since the Lipschitz constant of hK∗ depends
only on the dimension and the diameter of K∗, the number δ0 only depends on
the dimension and the diameter of K∗.

Define a centered convex body Kδ by

ρ−1
Kδ

= hK∗
δ

= φδ ∗ hK∗ .

Therefore, ρKδ
is C∞ and satisfies the inequalities

|ρ−1
Kδ
− ρ−1

K | < δ, ‖ρ−1
Kδ
‖C2 < δ−m−3.

By using the fact that the function ρKδ
and its first order derivative are bounded

by a constant depending on the diameter of K, we conclude (2.4) from the last
two inequalities. ¤
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We will use the symbol . which means that the expression on the left-hand side
of the symbol is less than the expression on the right-hand side by a constant
factor depending only on the dimension.

Lemma 2.3. Let F be a uniform Lipschitz function on Sn−1. If , for 0 < δ < 1,

‖R2F‖2 < δ, (2.5)

then
‖F‖∞ . δ

1
n+3 . (2.6)

Proof. Consider the spherical harmonic expansion of F , F =
∑

Yk. Then

‖R2F‖2 ∼
(∑

k−1‖Yk‖22
) 1

2
, (2.7)

where ∼ means that the quantities on both sides of it are bounded by each other
with constant factors depending only on the dimension. See [St].

For 0 < r < 1, let
PrF =

∑
rkYk.

Since the Lipschitz constant of F is uniformly bounded on Sn−1, we have

‖PrF − F‖∞ . (1− r)
1
2 . (2.8)

See [BL].
From (2.7) and (2.5), we obtain

‖PrF‖∞ <
∑

rk‖Yk‖∞ .
∑

rkk
n−1

2 ‖Yk‖2
.

(∑
rkk

n−1
2 k

1
2

)
‖R2F‖2 . (1− r)−

n
2−1δ. (2.9)

Thus by (2.8), (2.9) and choosing r = 1− δ
2

n+3 , we have

‖F‖∞ . (1− r)
1
2 + (1− r)−

n
2−1δ ≤ δ

1
n+3 .

This completes the proof. ¤

Proof of Theorem 1.1. Consider the ratio

V̄n(K) =
voln(K)
voln(Bn)

.

Choose the invariant probability measures on the sphere Sn−1 and on the Grass-
mannian G2,n. From (1.4), we have

V̄n(K) =
∫

ρn
K =

∫
[R2(Rt

2R2)−1ρn−2
K ](R2ρ

2
K). (2.10)

The implication in Theorem 1.1 becomes

V̄2(K ∩ ξ) ≤ 1, ξ ∈ G2,n =⇒ V̄n(K) ≤ 1. (2.11)
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Assume that {
V̄n(K) > 1,

V̄2(K ∩ ξ) ≤ 1, ξ ∈ G2,n,
(2.12)

and
dist(K, Bn) = δ0 > 0. (2.13)

From Lemma 2.2, there exists K1 such that

|ρK1 − ρK | < δ, ‖ρK1‖C2 < δ−n2
, (2.14)

where δ = δN
0 , and N is a constant to be chosen which only depends on the

dimension.
Apply (2.10) to K1. Then by (2.12) and (2.14) we have

V̄n(K) + o(δ) =
∫

[R2(Rt
2R2)−1ρn−2

K1
](R2ρ

2
K1

), (2.15)

and
∫

R2(Rt
2R2)−1ρn−2

K1
=

∫
ρn−2

K1
≤

(∫
ρn

K1

)n−2
n

= V̄n(K1)
n−2

n + o(δ) ≤ V̄n(K) + o(δ). (2.16)

From (2.15) and (2.16), we obtain

o(δ) ≤
∫

[R2(Rt
2R2)−1ρn−2

K1
](R2ρ

2
K1
− 1). (2.17)

The assumption (2.13) gives

|ρK − 1| ≤ δ0, (2.18)

|ρK1 − 1| ≤ 2δ0. (2.19)

Hence
‖∇ρK1‖ . δ

1
2
0 . (2.20)

A proof of the last inequality can be found in [Bo]. From (2.20), one has
∥∥∥∥∇

(
ρn−2

K1
−

∫
ρn−2

K1

)∥∥∥∥ . δ
1
2
0 .

If E2−n extends a function on Sn−1 to a homogeneous function of degree 2− n

in Rn, and S restricts a function in Rn to Sn−1, then,∥∥∥∥S(−∆Rn)
1
2 E2−n

(
ρn−2

K1
−

∫
ρn−2

K1

)∥∥∥∥
BMO

. δ
1
2
0 . (2.21)

Use here the fact that L∞-control on the tangential derivative yields BMO-
control on the normal derivative.

By (2.14), the inequality (2.21) implies
∥∥∥∥S(−∆Rn)

1
2 E2−n

(
ρn−2

K1
−

∫
ρn−2

K1

)∥∥∥∥
∞

. δ
1
2
0 log(δ−n2

/δ
1
2
0 ) < δ

1
3
0 .
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The last inequality used the fact that the constant N only depends on the di-
mension. Since S(−∆Rn)

1
2 E2−n = (Rt

2R2)−1 (see [St]), it follows that

‖(Rt
2R2)−1(ρn−2

K1
−

∫
ρn−2

K1
)‖∞ < δ

1
3
0 . (2.22)

From (2.18) and (2.22), we have

‖(Rt
2R2)−1ρn−2

K1
− 1‖∞ = ‖(Rt

2R2)−1ρn−2
K1

−
∫

ρn−2
K1

‖∞ + o(δ0) . δ
1
3
0 . (2.23)

It follows in particular from (2.23) that

1
2

< R2(Rt
2R2)−1ρn−2

K1
< 2. (2.24)

Assumption (2.12) means that

R2ρ
2
K ≤ 1. (2.25)

It follows from (2.17), (2.24) and (2.25) that
∫

[R2(Rt
2R2)−1ρn−2

K1
](1− R2ρ

2
K) ≤ o(δ), (2.26)

∫
|1− R2ρ

2
K | ≤ o(δ). (2.27)

By Lemma 2.3, this yields for small δ0

δ0 ∼ ‖1− ρ2
K‖∞ < δ

N
n+3
0 , (2.28)

Hence, for N large enough, a contradiction follows. Therefore, the assumption
(2.12) is impossible, and the implication (2.11) is true. This completes the proof.

¤

3. High-Dimensional Sections

In this section we give a proof for Theorem 1.3. The following lemma gives
the the Radon transforms of functions which are SO(n− 1) invariant.

Lemma 3.1. Let g be a continuous function on Sn−1 which is SO(n− 1) invari-
ant . Then

Rig(u) =
c1

cosφ

∫ π
2

φ

g(v)
(

1− cos2 ψ

cos2 φ

) i−3
2

sin ψ dψ (3.1)

∫

Sn−1
g dv = c2

∫ π
2

0

g(v) sinn−2 ψ dψ, (3.2)

where φ and ψ are the angles of the unit vectors u and v with the xn-axis,
respectively .

Proof. The proof of formula (3.1) is similar to that of Lemma 2.1 in [Z1]. See
also Lemma 8 in [Z2]. (3.2) follows from the spherical coordinates. ¤
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Lemma 3.2. There exist a convex body K and a C∞ function g so that

Ri

(
ρi−4

K g
)

< 0, 〈ρn−4
K , g〉 > 0, (3.3)

for all integers 3 < i < n.

Proof. Consider a convex body of revolution K. From (3.1) and (3.2), the
inequalities in (3.3) become

∫ π
2

φ

ρK(ψ)i−4g(ψ)
(

1− cos2 ψ

cos2 φ

) i−3
2

sin ψ dψ < 0, (3.4)

∫ π
2

0

ρn−4
K (ψ)g(ψ) sinn−2 ψ dψ > 0. (3.5)

We need to choose K and g so that the last two inequalities are satisfied.
Let K be a cylinder. Then

ρK(ψ) =
1

sin ψ
, ψ1 ≤ ψ ≤ π

2
,

for some ψ1 > 0. Choose g so that g(ψ) = 0 when 0 ≤ ψ ≤ ψ1. Then (3.4) and
(3.5) can be written as

∫ π
2

φ

g(ψ)
(

1− cos2 ψ

cos2 φ

) i−3
2

sin5−i ψ dψ < 0, (3.6)

∫ π
2

ψ1

g(ψ) sin2 ψ dψ > 0, ψ1 ≤ φ ≤ π

2
. (3.7)

Let cos ψ = t. Then (3.6) and (3.7) become

∫ x

0

g(ψ(t))
(

1− t2

x2

) i−3
2

(1− t2)
4−i
2 dt < 0 (3.8)

and ∫ x1

0

g(ψ(t))(1− t2)
1
2 dt > 0, 0 ≤ x ≤ x1, (3.9)

where x1 = cos ψ1.
Let f(t) = g(ψ(t))(1− t2)

1
2 . We write (3.8) and (3.9) as

∫ x

0

f(t)
(

x2 − t2

1− t2

) i−3
2

dt < 0 (3.10)

and ∫ x1

0

f(t) dt > 0, 0 ≤ x ≤ x1. (3.11)

Let

g(t, x) =
(

x2 − t2

1− t2

) i−3
2

.
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When i > 3, g(t, x) is strictly decreasing for t ∈ [0, x]. Choose f(t) such that

f(t) < 0 if 0 < t < x0,

f(t) > 0 if x0 < t < x1

f(t) = 0 if x1 < t < 1,

and ∫ x1

0

f(t) dt = 0.

It follows that
∫ x

0

f(t)g(t, x) dt =
∫ x0

0

f(t)g(t, x) dt +
∫ x

x0

f(t)g(t, x) dt

<

∫ x0

0

f(t)g(x0, x) dt +
∫ x

x0

f(t)g(x0, x) dt

= g(x0, x)
∫ x

0

f(t) dt ≤ 0.

By a small perturbation of f , there is
∫ x

0

f(t)g(t, x) dt < 0

and ∫ x1

0

f(t) dt > 0, 0 < x < x1.

Therefore, one can choose f so that (3.10) and (3.11) are true. This proves the
lemma. ¤

Proof of Theorem 1.3. By the Lemma 3.2, there is a C∞ convex body K of
positive curvature and a C∞ function g on Sn−1 so that for all 3 < i < n,

Ri

(
ρi−4

K g
)

< 0, 〈ρn−4
K , g〉 > 0.

Define a centered convex body of revolution Kε by

ρ4
Kε

= ρ4
K + εg,

for ε > 0 small. We have

V (Kε)− V (K) =
n

4
〈ρn−4

K , g〉ε + o(ε),

voli(Kε ∩ ξ)− voli(K ∩ ξ) =
i

4
Ri(ρi−4

K g)(ξ)ε + o(ε).

Therefore, when ε is small enough, we have V (Kε) > V (K) and

voli(Kε ∩ ξ) < voli(K ∩ ξ), ∀ξ ∈ Gi,n, 3 < i < n. ¤
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Ungleichheitsaussagen Busemannscher Art”, Math. Scand. 23 (1968), 193–200.

[He] S. Helgason, Groups and geometric analysis, Academic Press, 1984.

[LR] D. G. Larman and C. A. Rogers, “The existence of a centrally symmetric convex
body with central cross-sections that are unexpectedly small”, Mathematika 22
(1975), 164–175.

[Lu] E. Lutwak, “Intersection bodies and dual mixed volumes”, Adv. Math. 71 (1988),
232–261.

[Pa] M. Papadimitrakis, “On the Busemann–Petty problem about convex, centrally
symmetric bodies in Rn”, Mathematika (1994).

[Sc] R. Schneider, “Convex bodies: The Brunn–Minkowski theory”, Cambridge
University Press, 1993.

[St] R. Strichartz, “Lp estimates for Radon transforms in Euclidean and non-Euclidean
spaces”, Duke Math. J. 48 (1981), 699–727.

[Z1] G. Zhang, “Centered bodies and dual mixed volumes”, Trans. Amer. Math. Soc.
345 (1994), 777–801.



76 JEAN BOURGAIN AND GAOYONG ZHANG

[Z2] G. Zhang, “Intersection bodies and Busemann–Petty inequalities in R4”, Annals
of Math. 140 (1994), 331–346.

[Z3] G. Zhang, “Sections of convex bodies”, Amer. Jour. Math. 118 (1996), 319–340.

[Z4] G. Zhang, “A positive answer to the Busemann–Petty problem in four
dimensions”, preprint.

Jean Bourgain
School of Mathematics
Olden Lane
Institute for Advanced Study
Princeton, NJ 08540
United States of America

bourgain@math.ias.edu

Gaoyong Zhang
Department of Mathematics
Polytechnic University
6 MetroTech Center
Brooklyn, NY 11201
United States of America

gzhang@math.poly.edu


