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Random Points in Isotropic Convex Sets

JEAN BOURGAIN

Abstract. Let K be a symmetric convex body of volume 1 whose inertia
tensor is isotropic, i.e., for some constant L we have

R
K〈x, y〉2 dx = L2|y|2

for all y. It is shown that if m is about n(log n)3 then with high probability,
this tensor can be approximately realised by an average over m independent
random points chosen in K,

1

m

mX
i=1

〈xi, y〉2.

Our aim is to prove the following fact:

Proposition. Let K ⊂ Rn be a convex centrally symmetric body of volume 1,
in isotropic position, i .e.,

∫

K

〈x, ei〉〈x, ej〉 dx = L2δij where L = LK(& 1). (1)

Fix δ > 0 and choose m random points x1, . . . , xm ∈ K, where

m > C(δ)n (log n)3. (2)

Then, with probability > 1− δ,

(1− δ)L2 <
1
m

m∑

i=1

∣∣〈xi, y〉
∣∣2 < (1 + δ)L2 (3)

for all y ∈ Sn−1 = [|y| = 1].

We first use the following probabilistic estimate:

Lemma 1. Let f1, . . . , fm be independent copies of a random variable f satisfying
∫

f2 = 1, (4)

‖f‖ψ1 < C (where ψ1(t) = et), (5)

‖f‖∞ < B. (6)
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(Here and in the sequel we use c and C to denote positive constants, not neces-
sarily the same each time.) Let ε > 0 and assume B > 1/ε say . Then

mes

[
(1− ε)m <

m∑

i=1

f2
i < (1 + ε)m

]
> 1− e−c ε

B m. (7)

Proof (standard). For real λ (to be specified),
∫

eλ(
Pm

i=1(f
2
i −1)) =

(∫
eλ(f2−1)

)m

. (8)

By (4) ∫
eλ(f2−1) = 1 +

∑

j≥2

1
j!

λj

∫
(f2 − 1)j . (9)

From (5) and (6),
∫

(1 + |f |)2j < min
(
(Cj)2j , (1 + B)j(Cj)j

)
. (10)

for each j. Hence, substituting (10) in (9),
∫

eλ(f2−1) < 1 +
∑

j≥2

(Cλ)j(j ∧B)j < 1 + Cλ2 (11)

provided
λ <

c

B
. (12)

for an appropriate c. Thus (8) < (1 + Cλ2)m < eCλ2m and from this fact and
Tchebychev’s inequality

mes

[∣∣∣∣
1
m

m∑

i=1

(f2
i − 1)

∣∣∣∣ > ε

]
< e−λmεeCλ2m < e−c ε

B m (13)

for appropriate λ satisfying (12) (and since 1/ε < B). ¤

Recall the important fact (following from the Brunn–Minkowski inequality) that,
for K convex with VolK = 1, there is equivalence

‖〈y, x〉‖Lψ1 (K,dx) ∼ ‖〈y, x〉‖L2(K,dx) (14)

(with an absolute constant). Hence, in our situation

‖〈y, x〉‖Lψ1 (K,dx) < CL if |y| = ‖y‖2 ≤ 1. (15)

It follows that

mes
[
x ∈ K

∣∣ |x| > λL
√

n
]

< e−Cλ for λ > 1. (16)

The next estimate may be refined significantly in terms of an estimate on the
`2-operator norm (see remark at the end) but for our purposes the following
cruder form is sufficient.
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Lemma 2. Let K be as above and x1, . . . , xm random points in K. Then, with
probability > 1− δ,

∣∣∣∣
∑

i∈E

xi

∣∣∣∣ < C(δ)L log n
(|E|1/2 n1/2 + |E|) (17)

holds for all subsets E ⊂ {1, . . . , m}.
Proof. Write ∣∣∣∣

∑

i∈E

xi

∣∣∣∣
2

=
∑

i∈E

|xi|2 + 2
∑

i 6=j
i,j∈E

〈xi, xj〉. (18)

From (15), we may clearly assume

|xi| < CL log n
√

n for all i = 1, . . . , m.

Hence the first term of (18) may be assumed bounded by C L2(log n)2n |E|.
To estimate the second term of (18), we use a standard decoupling trick.
We can find subsets E1, E2 of E satisfying E1 ∩ E2 = ∅, |E1| ≥ |E2|, and

∑

i6=j,i,j∈E

〈xi, xj〉 ≤ 4
∑

i∈E1

∣∣∣∣
〈

xi,
∑

j∈E2

xj

〉∣∣∣∣. (19)

Hence we are reduced to bounding expressions of the form (19).
Rewrite

∑

i∈E1

∣∣∣∣
〈

xi,
∑

j∈E2

xj

〉∣∣∣∣ =

∣∣∣∣
∑

j∈E2

xj

∣∣∣∣
∑

i∈E1

∣∣〈xi, yE2
(x)〉

∣∣ (20)

where

y
E2

(x) =

∑
j∈E2

xj

∣∣∣
∑

j∈E2

xj

∣∣∣
; thus |y

E2
| = 1. (21)

Observe that the system (xi)i∈E1 is independent of y
E2

, since E1 ∩E2 = ∅. Fix
size scales |E1| ∼ m1, |E2| ∼ m2, m ≥ m1 ≥ m2 ≥ 1.

Thus for fixed m1 > m2, (E1, E2) run over at most mCm1 pairs of subsets of
{1, . . . , m}. For given y, |y| = 1, (15) easily implies that

∫
e

C
L

P
i∈E1

|〈xi,y〉| ∏

i∈E1

dxi < 2|E1|; (22)

hence, for µ > C,

mes

[
(xi)1≤i≤m ∈ Km

∣∣∣∣
∑

i∈E1

|〈xi, yE2
(x)〉| > µ L |E1|

]
< e−cµ|E1|. (23)
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Consequently, from (20) and the preceding, we may write

∑

i∈E1

∣∣∣∣
〈

xi,
∑

j∈E2

xj

〉∣∣∣∣ <

∣∣∣∣
∑

j∈E2

xj

∣∣∣∣ µL |E1| (24)

for all |E1| ∼ m1, |E2| ∼ m2, E1 ∩ E2 = ∅ provided

mCm1 e−µm1 < 2−m1 ; thus µ ∼ log m ∼ log n. (25)

Thus, letting µ ∼ log n, (24) may be assumed valid for all E1, E2 ⊂ {1, . . . , m}
with E1 ∩ E2 = ∅.

Substituting (19), (24) in (18) thus yields, for all E ⊂ {1, . . . , m},
∣∣∣∣
∑

i∈E

xi

∣∣∣∣
2

≤ CL2(log n)2 n |E|+ CL(log n)|E| max
E2⊂E

∣∣∣∣
∑

j∈E2

xj

∣∣∣∣ (26)

and (17) immediately follows. ¤

Proposition. Fix δ > 0 and choose random points x1, . . . , xm ∈ K, with
m > C(δ)n(log n)3. Then with probability > 1− δ

(1− δ)L2 <
1
m

m∑

i=1

|〈xi, y〉|2 < (1 + δ)L2 for all y ∈ Sn−1. (27)

Proof. Restrict y to a δ
10 -dense set Fδ in the unit sphere Sn−1, #Fδ <

(
C
δ

)n.
Fix y ∈ F and define

f = fy(x) =
{

1
L |〈x, y〉| if |〈x, y〉| < C1(log n)L,

0 otherwise
(28)

(with C1 to be specified).
Thus

1−
∫

f2 =
1
L2

∫

K∩|〈x,y〉|>C1 (log n) L]

|〈x, y〉|2dx < e−c1 log n. (29)

Applying Lemma 1 with B = C1 log n, ε = δ
10 , it follows that for a random choice

x1, . . . , xm of points in K, with probability > 1− e−c(ε/log n)m,
∫

f2 − ε <
1
m

m∑

i=1

fy(xi)2 <

(∫
f2 + ε

)
; (30)

hence, by (28) and (29),
∣∣∣∣1−

1
L2m

∑{〈xi, y〉2 | |〈xi, y〉| < C1L log n
}∣∣∣∣ < ε +

(
1−

∫
f2

)
< 2ε. (31)

Letting
(

C
δ

)n
e−c(ε/log n)m ¿ 1, i.e., m & 1

ε
log

1
δ
(log n)n, (32)

we may then assume (31) for all y ∈ Fδ.
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On the other hand, from Lemma 2, a random choice {xi | i = 1, . . . ,m} of m

points in K will also with probability > 1− δ satisfy (17) for all E ⊂ {1, . . . , m}.
This permits to estimate #Eβ , where for given y satisfying |y| = 1,

Eβ = Eβ(y) =
{
i = 1, . . . , m | |〈xi, y〉| > β

}
, β > C1 (log n)L. (33)

Indeed, it follows from (17) that

1
2β|Eβ | < C L log n

(|Eβ |1/2n1/2 + |Eβ |
)

(34)

hence

|Eβ | < C
L2(log n)2n

β2
(35)

from the choice of β. Consequently

1
L2m

∑{〈xi, y〉2
∣∣ |〈xi, y〉| ≥ C1 L log n

}
<

1
L2m

∑

n>β>C1 L log n
β dyadic

β2|Eβ |

< C(δ) (log n)3
n

m
<

δ

10
(36)

by the choice of m.
Finally, combining (36) and (31), it follows that for all y ∈ Fδ

∣∣∣∣1−
1

L2m

m∑

i=1

〈xi, y〉2
∣∣∣∣ < 2ε +

δ

10
<

δ

3
(37)

and therefore also (27). ¤

Remark. By refining a bit the method of proof of Lemma 2, one may obtain
the following result: Let x1, . . . , xn be a choice of n independent vectors in Rn

according to a probability measure µ on Rn satisfying

‖〈x, y〉‖
Lψ1

(
µ(dx)

) <
1√
n

for all y ∈ Sn−1. (38)

Then, with probability > 1− δ, one gets for the matrix (x1, . . . , xn) the bound

‖(x1, . . . , xn)‖B(`2n) < C(δ)

(∫ (
max

1≤i≤n
|xi|

)
dµ + 1

)
. (39)

This is the same estimate as one would get assuming an Lψ2 -bound

‖〈x, y〉‖
Lψ2

(
µ(dx)

) <
1√
n

for y ∈ Sn−1 (40)

instead of (38).
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