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Geometric Inequalities in Option Pricing

CHRISTER BORELL

Abstract. This paper discusses various geometric inequalities in option
pricing assuming that the underlying stock prices are governed by a joint
geometric Brownian motion. In particular, inequalities of isoperimetric
type are proved for different classes of derivative securities. Moreover, the
paper discusses the option on the minimum of several assets and, among
other things, proves a log-concavity property of its price.

1. Introduction

The purpose of this paper is to prove various geometric inequalities in option
pricing using familiar inequalities of the Brunn-Minkowski type in Gauss space.

To begin with, recall that a European (American) call [put] option is defined
as the right to buy [sell] one share of stock at a specified price on (or before)
a specified date. The specified price is referred to as the exercise price and the
terminal date of the contract is called the expiration date or maturity date.
In fact, already the early paper [20] by Merton treats a variety of convexity
properties of puts and calls, sometimes without any distributional assumptions
on the underlying stock prices. Here, however, it will always be assumed that
the price process X(t) = (X1(t), . . . , Xm(t)), t ≥ 0, of the underlying risky
assets X1, . . . ,Xm is governed by a so called joint geometric Brownian motion.
Furthermore, all options will be of European type and so, from now on, option
will always mean option of European type.

Now suppose f : Rm
+ → [0, +∞[ is a continuous function such that

f(x) ≤ A

(
1 +

m∑

i=1

|xi|
)a

for x = (x1, ..., xm) ∈ Rm
+ ,
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for appropriate constants a,A ≥ 0, and suppose a certain derivative security
UT

f pays f(X(T )) at the maturity time T . Here f is termed a payoff function.
If t is a time point prior to T , set τ = T − t, and denote by uf (τ, X(t)) the
(theoretic) price of UT

f at time t. If uf (τ, x) = uf (τ, x1, . . . , xm) is positive and
i ∈ {1, . . . , m} is fixed, the quantity

ψi
f (τ, x) =

xi

uf (τ, x)
∂uf (τ, x)

∂xi

is called the elasticity of the price uf (τ, x) relative to the price xi. The quantities
ψ1

f (τ, x), . . . , ψm
f (τ, x) enter quite naturally in option pricing in connection with

so called hedging against the contingent claim UT
f . Actually, we will below

occasionally consider a slightly larger class of payoff functions than stated here.
Now let the function f(x), x ∈ Rm

+ , be a log-concave function of the log-price
vector ln x = (ln x1, . . . , ln xm). In Section 3, we prove, among other things, that
the function τm/2uf (τ, x) is a log-concave function of (τ, ln x). In particular, if
f is not identically equal to zero, then for any fixed i ∈ {1, . . . , m} and τ > 0
the elasticity function ψi

f (τ, x) is a non-increasing function of xi when the other
prices x1, . . . , xi−1, xi+1, . . . , xm are held fixed. Note that these results apply to
the payoff function

f(x) = min
i=1,...,m

xi (1)

which is of interest in connection with the cheapest to deliver option. The deriv-
ative security corresponding to the payoff function in (1) is sometimes referred
to as the quality option (see e.g. Boyle [11]).

The main concern in this paper is to prove certain inequalities of isoperimetric
type. More explicitly, consider the same risky assets as above and suppose a > 0
is given. We shall write f ∈ Ca if f : Rm

+ → [0, +∞[ is a locally Lipschitz
continuous function such that

m∑

i=1

xi

∣∣∣∣
∂f

∂xi

∣∣∣∣ ≤ a + f(x) a.e.

with respect to Lebesgue measure in Rm. The class Ca is convex and contains
the zero payoff function. Moreover, the class Ca contains the payoff functions
of all puts and calls on the Xi, i = 1, . . . , m, with exercise prices less than or
equal to a. In addition, if f, g ∈ Ca, then max(f, g) ∈ Ca and min(f, g) ∈ Ca. In
particular, the function in (1) as well as the function

f(x) = max
i=1,...,m

xi (2)

belong to the class Ca for all a > 0.
In Section 4 we discuss, among other things, the Monte Carlo method for

computing the option price uf (τ, x) when f is as in (2). Let Xm be the most
volatile asset of the risky assets X1, . . . ,Xm and let σm be the volatility of Xm.
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The (crude) Monte Carlo method then gives us a certain unbiased estimator ZN

of the option price uf (τ, x) and we prove that

P
[∣∣∣∣

ZN − uf (τ, x)
uf (τ, x)

∣∣∣∣ ≥ ε

]
≤ eσ2

mτ − 1
ε2N

, ε > 0. (3)

Note that the right-hand side of (3) is independent of the option price uf (τ, x).
In Section 4 we also prove the following property of the class Ca for fixed a > 0.

Suppose v is the expected exercise value of a call on Xm with the maturity date
T and exercise price a. Then, amongst all derivative securities UT

f with f ∈ Ca

and with the expected payoff v at time T , the payoff at time T has maximal
variance for the call on Xm with the exercise price a.

Finally, in Section 5 we discuss inequalities of isoperimetric type for other
classes of payoff functions than those considered above.

2. Notation and Basic Results

Throughout this paper Xi, i = 1, . . . , m, stand for m risky assets with a joint
price process X(t) = (X1(t), . . . , Xm(t)), t ≥ 0, governed by an m-dimensional
geometric Brownian motion. Stated more explicitly, there are linearly indepen-
dent unit vectors ci, i = 1, . . . ,m, in Rn and a normalized Brownian motion
(W (t)) in Rn such that

dXi(t)
Xi(t)

= (µi + σ2
i /2)dt + σidWi(t), i = 1, . . . , m

for suitable µ1, . . . , µm ∈ R and σ1 > 0, . . . , σm > 0, where

Wi(t) = 〈ci,W (t)〉, i = 1, . . . , m.

Here, 〈 · , · 〉 = 〈 · , · 〉Rn denotes the standard scalar product in Rn.
In what follows, t < T and we set

MWi
σi

(τ) = e−
σ2

i
2 τ+σiWi(τ) for i = 1, . . . , m

and
MW

σ (τ) = (MW1
σ1

(τ), . . . , MWm
σm

(τ)),

where τ = T − t. Moreover, if ξ = (ξ1, . . . , ξm), η = (η1, . . . , ηm) ∈ Rm, we will
make frequent use of the following notation:

|ξ| = (|ξ1|, . . . , |ξm|)

‖ξ‖1 =
m∑
1

|ξi|

‖ξ‖2 =
√
〈ξ, ξ〉Rm

‖ξ‖∞ = max
i=1,...,m

|ξi|
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eξ = (eξ1 , . . . , eξm)

ln eξ = ξ

and

ξη = (ξ1η1, . . . , ξmηm).

Now consider a derivative security UT
f with the payoff f(X(T )) at time T .

Below, for technical reasons, it will be assumed that f : Rm
+ → R is a continuous

function such that

E[|f(xMW
σ (τ))|p] < +∞

for all x ∈ Rm
+ , τ > 0, and p > 0 and a function f satisfying these assumptions

will be called a payoff function. If r denotes the risk-free interest rate and if
uf (τ, X(t)) denotes the value of the derivative security UT

f at time t ∈ [0, T [, we
have

uf (τ, x) = E[e−rτf(xerτMW
σ (τ))]. (4)

A proof this equation is given e.g. in Duffie’s book [14] or in the basic paper [16]
by Harrison and Pliska. If f is a payoff function it is readily seen that uf (τ, x)
is a payoff function as a function of x for fixed τ . We now define uf (τ, x) for all
τ > 0 by the equation (4) and set (Sτf)(x) = uf (τ, x) if τ > 0. Then the family
(Sτ )τ>0 becomes a semi-group, the so called option semi-group of the underlying
risky assets X1, . . . ,Xm.

Throughout this paper, if ξ ∈ R, we let ξ+ = max(0, ξ) and ξ− = (−ξ)+.
Moreover, given a > 0 and i ∈ {1, . . . , m}, let

ca,i(x) = (xi − a)+

and

pa,i(x) = (xi − a)− = (a− xi)+.

Here the derivative security UT
ca,i

is called a call on Xi with exercise price a and
maturity time T and the derivative security UT

pa,i
is called a put on Xi with

exercise price a and maturity time T . From (4) we have the following famous
formula by Black and Scholes, viz.

uca,i(x, τ) = xΦ

(
ln xi

a +
(
r + σ2

i

2

)
τ

σi
√

τ

)
− ae−rτΦ

(
ln xi

a +
(
r − σ2

i

2

)
τ

σi
√

τ

)

where

Φ(ξ) =
∫ ξ

−∞
e−

η2

2
dη√
2π

is the distribution function of a real-valued Gaussian random variable with unit
variance and expectation zero. Moreover, by the put-call parity relation we have

upa,i(τ, x) = ae−rτ + uca,i(τ, x)− xi.
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In the following X0 denotes a bond with the value X0(t) = e−rτ at time t.
Furthermore, we set

φi
f (τ, x) =

∂uf

∂xi
(τ, x) , i = 1, . . . ,m (5)

and

φ0
f (τ, x) = erτ (uf (τ, x)−

m∑
1

xiφ
i
f (τ, x)).

A portfolio consisting of φj
f (T − s,X(s)) units of Xj for all j = 0, . . . ,m at any

time s ∈ [t, T [ has the value uf (τ,X(t)) at time t and

f(X(T )) = uf (τ, X(t)) +
m∑

j=0

∫ T

t

φj
f (T − s,Xj(s)) dXj(s).

This so called self-financing trading strategy in the Xj , j = 0, . . . , m, is basic
to the theory of option pricing and much more details may be found in [14] and
[16]. The portfolio φf = (φ0

f , φ1
f , . . . , φm

f ) is often called a hedge against the
contingent claim UT

f . If uf (τ, x) is positive for all x, the corresponding relative
portfolio ψf = (ψ0

f , ψ1
f , . . . , ψm

f ) is defined by

ψi
f (τ, x) = xiφ

i
f (τ, x)/uf (τ, x) , i = 1, . . . ,m

and

ψ0
f = 1−

m∑

i=1

ψi
f .

Given i ∈ {1, . . . , m} the quantity ψi
f (τ, x) is called the elasticity of the price

uf (τ, x) relative to the price xi.
A payoff function f is said to be homogeneous if

f(αx) = αf(x), α > 0, x ∈ Rm
+

and for such functions, φ0
f = 0 and uf is independent of r. Typical examples of

homogeneous payoff functions are

fmin(x) = min
i=1,...,m

xi

and

fmax(x) = max
i=1,...,m

xi.

Finally, for future reference recall that a real-valued random variable is said
to have a N(0; 1)-distribution if its distribution function equals Φ.
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3. Derivative Securities with Log-Concave Payoff Functions

Recall that a non-negative function h defined on a convex subset D of a vector
space is log-concave if

h(θξ + (1− θ)η) ≥ h(ξ)θh(η)1−θ (6)

for all ξ, η ∈ D and all θ ∈ ]0, 1[. If the inequality in (6) is reversed, then h

is said to be log-convex. It is well known and simple to prove that the class of
all log-convex functions on a convex set is closed under addition. However, the
class of all log-concave functions defined on a convex set containing more than
one point is not closed under addition.

The options on the minimum and maximum of several assets have been treated
by Stulz [22], Johnson [18], Boyle and Tse [12] and others. The important
cheapest to deliver option involves the consideration of options on the minimum
of several assets i.e., the so called quality option (for more details see e.g. Boyle
[11]). In fact, options on the minimum and maximum of two assets already
appear implicitly in the Margrabe paper [19], which considers the option to
exchange one asset for another. We will comment more on the Margrabe option
below. Note that the payoff function fmin(x) is a log-concave function of the
asset price vector x = (x1, . . . , xm) as well as of the asset log-price vector ln x =
(ln x1, . . . , ln xm). Moreover, the payoff function fmax(x) is a log-convex function
of the asset log-price vector ln x. If a payoff function f is concave (convex), then
the security price uf (τ, x) is a concave (convex) function of x for fixed τ as is
readily seen from equation (4) (cf. [20]). If the payoff function f(x) is a log-
convex function of the log-price vector ln x and f is not identically equal to zero,
then it follows from the equation (4) that the option price uf (τ, x) is a log-convex
and positive function of ln x for fixed τ . In particular, for any fixed i = 1, . . . , m,
the function

xi → ψi
f (τ, x1, . . . , xi−1, xi, xi+1, . . . , xm) (7)

is non-decreasing since

ψi
f (τ, x) =

∂ ln uf (τ, eξ)
∂ξi

, x = eξ. (8)

The main purpose of this section is to prove that the function in (7) is non-
increasing if the payoff function f(x) is a log-concave function of the log-price
vector ln x and f is not identically equal to zero. To this end we will make use
of a very nice property of log-concave functions, first proved in a general setting
by Prékopa [21] and which reads as follows:

If the function f(ξ, η1, . . . , ηn) is a log-concave function of (ξ, η1, . . . , ηn) ∈
D × Rn, where D is convex, then the integral

∫

Rn

f(ξ, η1, . . . , ηn) dη1 . . . dηn
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is a log-concave function of ξ ∈ D.

Below, this result will be referred to as Prékopa’s theorem. Note that the
Davidovič, Korenbljum, and Hacet early paper [13] treats an important special
case of Prékopa’s theorem.

Theorem 3.1. (a) If the payoff function f(x) is a log-concave function of the
log-price vector ln x, then the function τm/2uf (τ, x) is a log-concave function
of (τ, ln x). In particular , if f is not identically equal to zero, then for any
i = 1, . . . ,m and τ > 0, the function in (7) is non-increasing .

(b) If the payoff function f(x) is homogeneous and a log-concave function of
the log-price vector ln x, then the function τ (m−1)/2uf (τ, x) is a log-concave
function of (τ, ln x).

To prove Theorem 3.1, we need the following result:

Lemma 3.1. If g : Rm
+ → R is a homogeneous payoff function and m ≥ 2, then

E[g(MW
σ (τ))] = E[g(MW∗

1
σ∗1

(τ), . . . ,M
W∗

m−1
σ∗m−1

(τ), 1)]

where
σ∗i =

√
σ2

i − 2〈ci, cj〉σiσm + σ2
m

and
W ∗

i = (σiWi − σmWm)/σ∗i
for i = 1, . . . , m− 1.

In the special case m = 2, Lemma 3.1 is implicit in [20] (with a proof different
from the one below).

Proof. We have that

E[g(MW
σ (τ))] = E[g(ea1+σ∗1W∗

1 (τ), . . . , eam−1+σ∗m−1W∗
m−1(τ), 1)eam+σmWm(τ)]

for appropriate constants a1, . . . , am independent of g. By conditioning on
W ∗(τ) = (W ∗

1 (τ), . . . , W ∗
m−1(τ)) the right-hand side equals

E[g(ea1+σ∗1W∗
1 (τ), . . . , eam−1+σ∗m−1W∗

m−1(τ), 1)ea′m+〈b′,W∗(τ)〉]

for appropriate a′m ∈ R and b′ ∈ Rm−1. Therefore, by translating the probability
law of W ∗(τ), we get

E[g(MW
σ (τ))] = E[g(MW∗

1
σ∗1

(τ), . . . ,M
W∗

m−1
σ∗m−1

(τ), 1)ea+〈b,W∗(τ)〉] (9)

for suitable a ∈ R and b ∈ Rm−1. Now let C denote the covariance matrix of
W ∗(1) and let e1, . . . , em−1 be the standard basis in Rm−1. Then by choosing
g(x) = xi for i = 1, . . . , m, we have

{
〈b + σ∗i ei, C(b + σ∗i ei)〉+ 2a− σ∗i

2 = 0 for i = 1, . . . ,m− 1,

〈b, Cb〉+ 2a = 0.
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From this we get 〈ei, Cb〉 = 0 for i = 1, . . . , m − 1, and it follows that b = 0
since C is invertible. Hence also a = 0. In view of (9), Lemma 3.1 is thereby
completely proved. ¤

Proof of Theorem 3.1. We first prove Part (b). However, for the sake of
simplicity we restrict ourselves to the special case m = 2; the general case is
proved in a similar way. To prove Part (b) with m = 2 note that Lemma 3.1
yields

uf (τ, x) =
∫

R
f(x1e

−σ∗12

2 τ+σ∗1
√

τζ , x2)e−
ζ2

2
dζ√
2π

and hence
√

τuf (τ, x) =
∫

R
f(x1e

−σ∗12

2 τ+σ∗1ζ , x2)e−
ζ2

2τ
dζ√
2π

.

We next introduce the new vector variable ξ = ln x and have

√
τuf (τ, x) =

∫

R
g(τ, ξ, ζ) dζ

where

g(τ, ξ, ζ) = f(eξ1−σ∗12

2 τ+σ∗1ζ , eξ2)
e−

ζ2

2τ√
2π

.

Since the function
ζ2

τ
, ζ ∈ R, τ > 0

is convex we conclude that the function g(τ, ξ, ζ) is a log-concave function of
(τ, ξ, ζ). The Prékopa theorem now implies that the integral

∫

R
g(τ, ξ, ζ) dζ

is a log-concave function of (τ, ξ). This proves Part (b) of Theorem 3.1. The
first statement in Part (a) of Theorem 3.1 is proved in a similar way as Part (b)
of Theorem 3.1. Moreover, the last statement in Part (a) of Theorem 3.1 now
follows from (8). This concludes our proof of Theorem 3.1. ¤

Example 3.1. Set f0(x) = min(x1, x2) and suppose α ∈ ]0,+∞[. Then, in view
of Theorem 3.1, the function ταuf0(τ, x) is a log-concave function of (τ, ln x) if
α ≥ 1

2 . We now claim that the condition α ≥ 1
2 is necessary for this conclusion.

To see this first note the equation

uf0(τ, x) = x1Φ

(
ln x2

x1
− σ∗1

2τ
2

σ∗1
√

τ

)
+ x2Φ

(
ln x1

x2
− σ∗1

2τ
2

σ∗1
√

τ

)
(10)

which is implicit in the Margrabe paper [19] (here σ∗1 is as in Lemma 3.1 with
m = 2). In fact, Margrabe determines uf1 when f1(x) = max(0, x2 − x1) and,
since uf0(τ, x) = x2 − uf1(τ, x), equation (10) is an immediate consequence of
his paper. A direct derivation of (10) is also simple using Lemma 3.1. To see
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this, set a = σ∗1
√

τ and let G be a real-valued centered Gaussian random variable
with unit variance. Now using Lemma 3.1 it follows that

uf0(τ, x) = E[min(x1e
− a2

2 +aG, x2)]

so that

uf0 (τ, x) = x1E
[
e−

a2
2 +aG; G ≤ 1

a

(
ln

x2

x1
+

a2

2

)]
+x2P

[
G >

1
a

(
ln

x2

x1
+

a2

2

)]
.

By applying the translation formula of Gaussian measures, we get

uf0 (τ, x) = x1P
[
G ≤ 1

a

(
ln

x2

x1
− a2

2

)]
+ x2P

[
−G <

1
a

(
ln

x1

x2
− a2

2

)]

and (10) follows. In particular, we have

uf0(τ, (x1, x1)) = 2x1Φ(−σ∗1
2
√

τ).

Now set
g(τ) = α ln τ + ln(Φ(−√τ)), τ > 0.

The claim above follows if we prove that g is not concave for any α ∈ ]
0, 1

2

[
. To

this end, set ϕ = Φ′ so that

g′(τ) =
α

τ
− ϕ(−√τ)

2
√

τΦ(−√τ)
.

The function g′ is non-increasing if and only if the function

h(s) =
α

s2
− ϕ(s)

2sΦ(−s)
, s > 0

is non-increasing. Now

h′(s) = −2α

s3
+

ϕ(s)
2Φ(−s)

(
1 +

1
s2
− ϕ(s)

sΦ(−s)

)

and, by using the Laplace-Feller inequality (see e.g. Tong [24]),

Φ(−s) = ϕ(s)

(
1
s
− 1

s3
+

3
s5

+ O
( 1

s7

))
, as s → +∞.

From this
ϕ(s)

Φ(−s)
=

s

1− (
1
s2 − 3

s4 + O( 1
s6 )

) , as s → +∞,

and we get

h′(s) = −2α

s3
+

ϕ(s)
2Φ(−s)

[
1 +

1
s2
−

(
1 +

1
s2
− 3

s4
+

( 1
s2
− 3

s4

)2

+ O
( 1

s6

))]
,

as s → +∞. Thus

h′(s) = −2α

s3
+

ϕ(s)
2Φ(−s)

2
s4

(
1 + O

( 1
s2

))
, as s → +∞,
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and, finally,

h′(s) = −2α

s3
+

1
1 + O

(
1
s2

) 1
s3

(
1 + O

( 1
s2

))
, as s → +∞.

Therefore, if h′(s) ≤ 0 for all s > 0, then necessarily α ≥ 1
2 . This proves that

the function g is not concave for any α ∈ ]
0, 1

2

[
and, hence, that the function

ταuf0(τ, x) is not a log-concave function of (τ, ln x) for any α ∈ ]
0, 1

2

[
. ¤

Theorem 3.2. If f0 = fmin, then the functions τ (m−1)/2φi
f0

(τ, x) , i = 1, . . . , m,
are log-concave functions of (τ, ln x).

Proof. Using (5) with f = f0, we have from Lemma 3.1 that

φm
f0

(τ, x) = E[h(x1M
W∗

1
σ∗1

(τ), . . . , xm−1M
W∗

m−1
σ∗m−1

(τ), xm)]

where

h(x) =
{

1 if xm < f0(x1, . . . , xm−1, 1),

0 if xm ≥ f0(x1, . . . , xm−1, 1).
Since h is a log-concave function of ln x, as in the proof of Theorem 3.1, the
Prékopa theorem implies that the function τ (m−1)/2φm

f0
(τ, x) is a log-concave

function of (τ, ln x). In a similar way we conclude that the functions

τ (m−1)/2φi
f0

(τ, x) , i = 1, . . . , m− 1,

are log-concave functions of (τ, ln x). This completes the proof of Theorem 3.2.
¤

4. Extremal Properties of Calls

In this section we are going to prove an inequality of the so called Berwald’s
type (cf. [3]) for a certain class of option prices. To begin with we therefore
review the Berwald inequality as well as some other closely related results due
to the author [6], [8].

A real-valued function ψ is said to be convex with respect to another real-
valued function ϕ if there exists a convex continuous function κ such that ψ =
κ ◦ ϕ. We shall write ψ ∈ V0(ϕ) if the function ψ : [0, +∞[ → R is convex with
respect to the non-decreasing continuous function ϕ : [0,+∞[ → R.

Now let K be a convex body in Rn with volume |K| and suppose f : K →
]0, +∞[ is a given concave function. Moreover, suppose ψ ∈ V0(ϕ) and

1
|K|

∫

K

ϕ(f(x)) dx = n

∫ 1

0

ϕ(ξt)(1− t)n−1 dt

where ξ is a suitable positive number. Under these premises Berwald [3] proves
that

1
|K|

∫

K

ψ(f(x)) dx ≤ n

∫ 1

0

ψ(ξt)(1− t)n−1 dt.
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In [6] the same inequality is established for so called dome functions on K ( i.e.
functions on K which are possible to represent as the supremum of a suitable
family of uniformly bounded and positive concave functions on K). Clearly,
the Berwald inequality then also remains true for all functions on K which are
equimeasurable with appropriate dome functions on K, a class of functions,
which is optimal in connection with the Berwald inequality [6]. All these results
depend on the standard Brunn-Minkowski inequality for volume measure in Rn.
In our paper [8] we proved an inequality of the Berwald type for certain sublinear
functions using the so called isoperimetric inequality in Gauss space. Here, again,
we will apply the isoperimetric inequality in Gauss space but this time to a class
of functions different from the one in [8].

Throughout the remaining part of this paper we assume that G = (G1, . . . , Gn)
is the standard Gaussian random vector in Rn with stochastically independent
and N(0; 1)-distributed components. The isoperimetric inequality for the ran-
dom vector G = (G1, . . . , Gn), independently discovered by Sudakov and Tsyrel-
son [23] and the author [7], reads as follows:

If A ⊆ Rn is a Borel set and P[G ∈ A] = P[Gn ≤ α] for an appropriate
α ∈ [−∞, +∞], then P[G ∈ A + B̄(0; ε)] ≥ P[Gn ≤ α + ε] for ε > 0, where
B̄(0; ε) = {ξ ∈ Rn; ‖ξ‖2 ≤ ε}.

For new proofs of the isoperimetric inequality in Gauss space, see Bakry and
Ledoux [1] and Bobkov [5]. Before we apply isoperimetry in Gauss space to
option pricing we have to discuss some properties of so called Lipschitz functions.

A real-valued function g defined on an open subset V of Rm belongs to the
Lipschitz class Lip∞(V ;C), if C > 0 and

|g(ξ)− g(η)| ≤ C‖ξ − η‖∞, ξ, η ∈ V.

By a theorem of Rademacher (see e.g. Federer [15]), any function g of Lipschitz
class Lip∞(V ; C) is differentiable a.e. with respect to Lebesgue measure and

‖∇g(ξ)‖1 ≤ C a.e.

Furthermore, if 0 < C0 ≤ C and

‖∇g(ξ)‖1 ≤ C0 a.e.

then g ∈ Lip∞(V ; C0). Given an open set U ⊆ Rm, we will write g ∈ Liploc(U),
if to any relatively compact open subset V of U , the restriction of g to V belongs
to the class Lip∞(V ; C) for an appropriate C > 0.

A function f ∈ Liploc(Rm
+ ) is said to belong to the class C if f > 0, that is,

f(x) > 0, x ∈ Rm
+ , and

〈x, |∇f(x)|〉 ≤ f(x) a.e. (11)

Given a > 0, we define
Ca = (C − a)+.
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Stated more explicitly, a function f belongs to the class Ca if and only if f ∈
Liploc(Rm

+ ), f is non-negative, and

〈x, |∇f(x)|〉 ≤ a + f(x) a.e.

Theorem 4.1. Suppose f : Rm
+ → [0, +∞[ and let a > 0. Then f ∈ C if and

only if f > 0 and

f(xeξ) ≤ f(x)e‖ξ‖∞ , x ∈ Rm
+ , ξ ∈ Rm. (12)

Moreover , f ∈ Ca if and only if

a + f(xeξ) ≤ (a + f(x))e‖ξ‖∞ , x ∈ Rm
+ , ξ ∈ Rm.

In particular , any f ∈ Ca is a payoff function.

Proof. Suppose first that f > 0 and set

g(ξ) = ln f(eξ), ξ ∈ Rm.

Clearly, the inequality (12) just means that g ∈ Lip∞(Rm; 1).
Now let f ∈ C. Then g ∈ Liploc(Rm) and

∇g(ξ) =
eξ∇f(eξ)

f(eξ)
a.e. (13)

Moreover, ‖∇g(ξ)‖1 ≤ 1, a.e. and, hence, g ∈ Lip∞(Rm; 1).
Conversely, suppose g ∈ Lip∞(Rm; 1). Then f ∈ Liploc(Rm

+ ) and (13) holds.
Accordingly, the inequality (11) must be true. Summing up, we have proved
that f ∈ C if and only if (12) is true. The remaining part of Theorem 4.1 is
now obvious from the very definition of the class Ca. This concludes our proof
of Theorem 4.1. ¤

In general, the following properties are immediate consequences of either Theo-
rem 4.1 or the very definition of the class Ca:

(a) Ca is convex.
(b) Ca ⊆ Cb if a ≤ b.
(c) c ∈ Ca if c ≥ 0.
(d) λCa = Cλa, λ > 0.
(e) θCa ⊆ Ca, 0 < θ < 1.
(f) Ca + Cb ⊆ Ca+b.
(g) f, g ∈ Ca ⇒ max(f, g) ∈ Ca.
(h) f, g ∈ Ca ⇒ min(f, g) ∈ Ca.
(i) If T is an n by n permutation matrix or an n by n diagonal matrix with

positive entries, then f(x) ∈ Ca ⇒ f(Tx) ∈ Ca.
(j) For any i = 1, . . . ,m, cb,i ∈ Ca if and only if b ≤ a.
(k) For any i = 1, . . . ,m, λca,i 6∈ Ca if λ > 1.
(l) For any i = 1, . . . ,m, pb,i ∈ Ca if and only if b ≤ a.

(m) For any i = 1, . . . ,m, λpa,i 6∈ Ca if λ > 1.
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(n) f ∈ Ca if f is non-negative and concave.
(o) f ∈ Ca ⇒ erτSτf ∈ Ca.

Here, for the sake of completeness, we indicate a proof of Property (n). To
begin with it is well known that a concave function f on Rm

+ belongs to the class
Liploc(Rm

+ ) and that the convex set {(x, t) ∈ Rm
+ ×R; t ≤ f(x)} has a hyperplane

of support at each point (x, f(x)), x ∈ Rm
+ (see e.g. Hörmander [17]). Moreover,

by the Rademacher theorem referred to above, there exists a set D ⊆ Rm
+ such

that f is differentiable at each point of D and such that the complement of D

in Rm
+ is a null set. Accordingly,

f(y) ≤ f(x) + 〈∇f(x), y − x〉, x ∈ D, y ∈ Rm
+ .

Thus, given x ∈ D, we have 〈∇f(x), x〉 ≤ f(x) as f is non-negative. But here
∇f(x) ≥ 0 since the function h(s) = f(x + sy), s ≥ 0, is non-decreasing for all
x, y ∈ Rm

+ . This proves (11) so that f ∈ Ca for every a > 0.
Throughout the remaining part of this paper we assume that

max
i=1,...,m

σi = σm.

Now given a > 0 and a continuous function f : Rm
+ → [0,+∞[, set for fixed

τ > 0,

g = gτ =
1

σm
√

τ
ln(1 + f/a). (14)

We shall say that the function f belongs to the class Ca,m if the function

Φ−1(P[gτ (x1e
σ1
√

τ〈c1,G〉, . . . , xmeσm
√

τ〈cm,G〉) ≤ s])− s, s > 0

is non-decreasing for every x ∈ Rm
+ and every τ > 0. It is readily seen that

any f ∈ Ca,m is a payoff function. The class Ca,m turns out to be optimal in
connection with a certain isoperimetric inequality we prove below. However,
before stating this result we want to prove

Theorem 4.2. For any a > 0,

Ca ⊆ Ca,m.

Proof. Suppose f ∈ Ca and let g be as in (14), where τ > 0 is fixed. We now
claim that

g(zeξ) ≤ g(z) +
‖ξ‖∞
σm
√

τ

if z ∈ Rm
+ and ξ ∈ Rm. But

g(zeξ) =
1

σm
√

τ
ln((a + f(zeξ))/a)

and since f ∈ Ca, Theorem 4.1 yields

g(zeξ) ≤ 1
σm
√

τ
ln((a + f(z))e‖ξ‖∞/a)
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and the claim above follows at once.
To complete the proof of Theorem 4.2 we represent the standard Gaussian

random vector G in Rn as the identity mapping in Rn and put for any fixed
x ∈ Rn

+ and s > 0,

A(s) = [g(x1e
σ1
√

τ〈c1,G〉, . . . , xmeσm
√

τ〈cm,G〉) ≤ s].

Then, if ε > 0,
A(s) + B̄(0; ε) ⊆ A(s + ε)

and the isoperimetric inequality for G gives

Φ−1(P[A(s + ε)]) ≥ Φ−1(P[A(s)]) + ε.

Since x ∈ Rm
+ and τ > 0 are arbitrary, f ∈ Ca,m and Theorem 4.2 is proved. ¤

In what follows we shall write ψ ∈ V(ϕ) if ψ ∈ V0(ϕ) and

lims→+∞s−p(|ϕ(s)|+ |ψ(s)|) < +∞
for an appropriate p > 0.

Theorem 4.3. Suppose ψ ∈ V(ϕ). Then, if f ∈ Ca,m and

uϕ◦f (τ, x) = uϕ◦ca,m(τ, y)

where x, y ∈ Rm
+ and τ > 0 are fixed ,

uψ◦f (τ, x) ≤ uψ◦ca,m(τ, y).

Proof. In the proof, without loss of generality, we assume that ϕ(0) = ψ(0) = 0.
We have

ca,m(yerτMW
σ (τ)) = (yme(r−σ2

m/2)τ+σmWm(τ) − a)+

and hence
ca,m(yerτMW

σ (τ)) = a(eam+σmWm(τ) − 1)+

for a suitable constant am. Setting Bm = Wm(τ)/
√

τ , we get

ca,m(yerτMW
σ (τ)) = a(eσm

√
τ(Bm−bm) − 1)+

for a suitable constant bm. Thus

ca,m(yerτMW
σ (τ)) = a(eσm

√
τ(Bm−bm)+ − 1).

Now define
j(s) = a(eσm

√
τs − 1), s ≥ 0

and set ϕ0 = ϕ(j) so that

ϕ(ca,m(yerτMW
σ (τ)) = ϕ0((Bm − bm)+)

and

E[ϕ(ca,m(yerτMW
σ (τ)))] =

∫ +∞

0

P[(Bm − bm)+ > s] dϕ0(s)
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since ϕ0(0) = 0.
In the next step we introduce the function g = gτ by the equation (14) and

have f = j(g) and ϕ(f) = ϕ0(g). Thus

ϕ(f(xerτMW
σ (τ))) = ϕ0(g(xerτMW

σ (τ)))

and

E[ϕ(f(xerτMW
σ (τ)))] =

∫ +∞

0

P[g(xerτMW
σ (τ)) > s] dϕ0(s).

Further, we define

h(s) = P[g(xerτMW
σ (τ)) ≤ s], s ≥ 0

and have

h(s) = P[g(z1e
σ1
√

τ〈c1,G〉, . . . , zmeσm
√

τ〈cm,G〉) ≤ s], s ≥ 0

for appropriate z1, . . . , zm ∈ R+.
Now suppose s0 ≥ 0 and

h(s0) ≥ P[(Bm − bm)+ ≤ s0]. (15)

We then have

h(s0 + ε) ≥ P[(Bm − bm)+ ≤ s0 + ε], ε > 0

because f ∈ Ca,m and Bm is a N(0; 1)-distributed random variable. To complete
the proof of Theorem 4.3, first set ψ0 = ψ(j) so that

E[ψ(ca,m(yerτMW
σ (τ)))] =

∫ +∞

0

P[(Bm − bm)+ > s] dψ0(s)

and

E[ψ(f(xerτMW
σ (τ)))] =

∫ +∞

0

P[g(xerτMW
σ (τ)) > s] dψ0(s)

since ψ0(0) = 0. Moreover, let dψ0 = λdϕ0, where the function λ is non-
decreasing, and let s∗ denote the infimum over all s0 ≥ 0 such that (15) holds.
Here, by convention, the infimum over the empty set equals +∞. The extreme
cases s∗ = 0 and s∗ = +∞ are simple and so we concentrate on the case 0 <

s∗ < +∞. Then, for any S ∈ ]s∗, +∞[,
∫ S

0

P[g(xerτMW
σ (τ)) > s] dψ0(s)−

∫ S

0

P[(Bm − bm)+ > s] dψ0(s)

=
∫ s∗

0

(P[g(xerτMW
σ (τ)) > s]− P[(Bm − bm)+ > s])λ(s) dϕ0(s)

+
∫ S

s∗
(P[g(xerτMW

σ (τ)) > s]− P[(Bm − bm)+ > s])λ(s) dϕ0(s).
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Here the right-hand side does not exceed

λ(s∗)
∫ s∗

0

(P[g(xerτMW
σ (τ)) > s]− P[(Bm − bm)+ > s]) dϕ0(s)

+λ(s∗)
∫ S

s∗
(P[g(xerτMW

σ (τ)) > s]− P[(Bm − bm)+ > s]) dϕ0(s),

which is equal to

λ(s∗)
∫ S

0

(P[g(xerτMW
σ (τ)) > s]− P[(Bm − bm)+ > s]) dϕ0(s).

By letting S tend to plus infinity it is immediate that
∫ +∞

0

P[g(xerτMW
σ (τ)) > s] dψ0(s) ≤

∫ +∞

0

P[(Bm − bm)+ > s] dψ0(s)

and Theorem 4.3 follows at once. ¤

If X is a non-negative random variable with positive expectation, we set

Drel[X] =

√
E[X2]− (E[X])2

E[X]
.

Moreover, if f is a payoff function, we use the notation

Z(τ, x; f) = e−rτf(xerτMW
σ (τ)).

Note that
uf (τ, x) = E[Z(τ, x; f)]

by (4).

Corollary 4.1. Suppose x, y ∈ Rm
+ . If f ∈ Ca,m and

uf (τ, x) ≥ uca,m(τ, y) (16)

then
Drel[Z(τ, x; f)] ≤ Drel[Z(τ, y; ca,m)].

Proof. If there is equality in (16) the conclusion in Corollary 4.1 follows from
Theorem 4.3. To prove the general case it therefore suffices to show that the
function

F (y; a) =
E[Z2(τ, y, ca,m)]

(E[Z(τ, y, ca,m)])2

is a non-increasing function of ym. To this end, first choose 0 < b < a and note
that θcb,m ∈ Ca for all 0 < θ ≤ 1. Since cb,m ≥ ca,m there is a θ ∈]0, 1] such that

uθcb,m
(τ, y) = uca,m(τ, y).

Accordingly, in view of Theorem 4.3,

u(θcb,m)2(τ, y) ≤ uc2
a,m

(τ, y)
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and hence

F (y; b) ≤ F (y; a).

Now since

F
(

a

b
y; a

)
= F (y; b)

we are done. This completes our proof of Corollary 4.1. ¤

Example 4.1. The use of the Monte Carlo method in computing option prices
goes back to Boyle [10]. It is especially attractive for options depending on several
assets (see, for example, Barraquand [2]). To estimate the price function uf (τ, x)
in this way, let Z1, . . . , ZN be stochastically independent copies of Z(τ, x; f).
Then the arithmetic mean

Z̄N =
1
N

N∑
1

Zj

is an unbiased estimator of uf (τ, x). The variance of Z̄N equals 1/N times
the variance of Z(τ, x; f) and, assuming uf (τ, x) > 0, the Chebychev inequality
yields

P
[∣∣∣∣

Z̄N − uf (τ, x)
uf (τ, x)

∣∣∣∣ ≥ ε

]
≤ 1

ε2N
(Drel[Z(τ, x; f)])2, ε > 0.

Therefore, it is interesting to have an explicit upper bound of Drel[Z(τ, x; f)].
As an example, consider the special case f = fmax. If f = fmax, clearly f ∈ Ca

for all a > 0. Now, if a > 0, (16) is true with y = x and Corollary 4.1 yields

Drel[Z(τ, x; fmax)] ≤ lim
a→0+

Drel[Z(τ, x; ca,m)].

Thus

Drel[Z(τ, x; fmax)] ≤
√

eσ2
mτ − 1.

A completely different approximate method for computing the value of the option
on the maximum (or minimum) of several assets is treated by Boyle and Tse [12].

¤

The next theorem shows that the class Ca,m in Theorem 4.3 is the best possible.
Indeed, we have

Theorem 4.4. Let f be a payoff function in Rm
+ and suppose a > 0. Further-

more, suppose

uψ◦f (τ, x) ≤ uψ◦ca,m(τ, y)

for all x, y ∈ Rm
+ , all τ > 0, and all ψ and bounded ϕ such that ψ ∈ V(ϕ) and

uϕ◦f (τ, x) = uϕ◦ca,m(τ, y).

Then f ∈ Ca,m.
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Proof. To begin with, given 0 < b < c, define ϕα(s) = (s − α)+, α > 0, and
ϕb,c(s) = ϕb(s)− ϕc(s) so that

ϕb,c(s) = min((s− b)+, c− b).

First we assume that x ∈ Rm
+ and τ > 0 are fixed and

0 < E[ϕb,c(f(xerτMW
σ (τ)))] < c− b. (17)

Now let θ > 0 be such that

E[ϕb,c(f(xerτMW
σ (τ)))] = E[ϕb,c(ca,m(θxerτMW

σ (τ)))]. (18)

We next choose h > 0 so small that b < b + h < c and define κ(s) = −min(s, h).
Then −ϕb,b+h = κ ◦ ϕb,c and thus

E[ϕb,b+h(f(xerτMW
σ (τ)))] ≥ E[ϕb,b+h(ca,m(θxerτMW

σ (τ)))].

In the following, if A ⊆ R, the function χA defined on R equals one in A and
zero off A. Using this notation,

hχ]b,+∞[(s) ≥ ϕb,b+h (19)

and hence

hP[f(xerτMW
σ (τ)) > b] ≥ E[ϕb,b+h(ca,m(xerτMW

σ (τ)))].

Thus

hP[f(xerτMW
σ (τ)) > b]

≥ E[((θxmerτMWm
σm

(τ)−a)+−b)+]−E[((θxmerτMWm
σm

(τ)−a)+−b−h)+].

From this we get

P[f(xerτMW
σ (τ)) > b] ≥ − d

db
E[((θxmerτMWm

σm
(τ)− a)+ − b)+]

where the right-hand side equals

P[(θxmerτMWm
σm

(τ)− a)+ − b > 0] = P[θxmerτMWm
σm

(τ)− a− b > 0]

and, accordingly,

P[f(xerτMW
σ (τ)) > b] ≥ Φ

(
1

σm
√

τ
ln

θxme(r−σ2
m/2)τ

a + b

)
. (20)

Now suppose b < c−h < c and observe that ϕc−h,c = ϕc−h−b ◦ϕb,c. Remem-
bering (18), we have

E[ϕc−h,c(f(xerτMW
σ (τ)))] ≤ E[ϕc−h,c(ca,m(θxerτMW

σ (τ)))].

Furthermore, since
hχ]c,+∞[(s) ≤ ϕc−h,c(s) (21)
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it follows that

hP[f(xerτMW
σ (τ)) > c] ≤ E[ϕc−h,c(ca,m(xerτMW

σ (τ)))]

and as above we conclude that

P[f(xerτMW
σ (τ)) > c] ≤ Φ

(
1

σm
√

τ
ln

θxme(r−σ2
m/2)τ

a + c

)
. (22)

Comparing (20) and (22) it follows that

(a + b)eσm
√

τΦ−1(P[f(xerτ MW
σ (τ))>b]) ≥ (a + c)eσm

√
τΦ−1(P[f(xerτ MW

σ (τ))>c]).

Clearly, this inequality also holds if (17) is violated and we conclude that the
function

σm

√
τΦ−1(P[f(xerτMW

σ (τ)) ≤ s])− ln(a + s), s ≥ 0

is non-decreasing. Since this is true for all x ∈ Rm
+ and all τ > 0 we conclude that

the function f belongs to the class Ca,m, which completes our proof of Theorem
4.4. ¤

Suppose now that f is a general payoff function. The expectation at time t of the
value of the derivative security UT

f at the maturity date T equals vf (τ, X(t); 0),
where

vf (τ, x; 0) = E[f(xeµτ+σW (τ))].

Here we employ the vector notation µ = (µ1, . . . , µm), σ = (σ1, . . . , σm), and
W (τ) = (W1(τ), . . . , Wm(τ)). Thus

vf (τ, x; 0) = erτuf (τ, xe(µ−r+σ2/2)τ ).

Now, suppose t < t∗ ≤ T and set τ∗ = T − t∗. If τ∗ > 0, the expectation at time
t of the value of UT

f at time t∗ equals vf (τ,X(t); τ∗), where

vf (τ, x; τ∗) = E[uf (τ∗, xeµ(t∗−t)+σW 0(t∗−t))]

and where W 0 is a stochastically independent copy of W . Hence

vf (τ, x; τ∗) = E[e−rτ∗f(xeµ(t∗−t)+σW 0(t∗−t)erτ∗MW
σ (τ∗))].

Since t∗ − t = τ − τ∗, we get

vf (τ, x; τ∗) = E[e−rτ∗f(xe(µ+σ2/2)(τ−τ∗)erτ∗MW
σ (τ))].

Thus
vf (τ, x; τ∗) = er(τ−τ∗)uf (τ, xe(µ−r+σ2/2)(τ−τ∗)).

Alternatively, it is simple to derive the same formula using the semi-group prop-
erty of the family (Sτ )τ>0.

Theorem 4.3 thus has the following consequence:
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Corollary 4.2. Let ψ ∈ V(ϕ). Then, if f ∈ Ca,m and

vϕ◦f (τ, x; τ∗) = vϕ◦ca,m(τ, y; τ∗)

where x, y ∈ Rm
+ and τ ≥ τ∗ ≥ 0 are fixed ,

vψ◦f (τ, x; τ∗) ≤ vψ◦ca,m
(τ, y; τ∗).

5. Extremal Properties of Puts

Given a > 0, we define
Pa = (a− C)+.

Stated more explicitly, a function f ∈ Pa if and only if f ∈ Liploc(Rm
+ ), 0 ≤ f < a

and
〈x, |∇f(x)|〉+ f(x) ≤ a, a.e.

In view of Theorem 4.1 we now have

Theorem 5.1. Suppose a > 0 and let f :Rm
+ → [0, a[. Then f ∈ Pa if and only if

1
a− f(xeξ)

≤ e‖ξ‖∞

a− f(x)
, x ∈ Rm

+ , ξ ∈ Rm
+ .

In general, the following properties are immediate consequences of either Theo-
rem 5.1 or the very definition of the class Pa:

(a) Pa is convex.
(b) Pa ⊆ Pb if a ≤ b.
(c) c ∈ Pa if 0 ≤ c < a.
(d) λPa = Pλa, λ > 0.
(e) θPa ⊆ Pa, 0 < θ < 1.
(f) Pa + Pb ⊆ Pa+b.
(g) f, g ∈ Pa ⇒ max(f, g) ∈ Pa.
(h) f, g ∈ Pa ⇒ min(f, g) ∈ Pa.
(i) If T is an n by n permutation matrix or an n by n diagonal matrix with

positive entries, then f(x) ∈ Pa ⇒ f(Tx) ∈ Pa.
(j) For any i = 1, . . . ,m, pb,i ∈ Pa if and only if b ≤ a.
(k) For any i = 1, . . . ,m, λpa,i /∈ Pa if λ > 1.
(l) f ∈ Pa if 0 ≤ f < a is convex.

(m) f ∈ Pa ⇒ erτSτf ∈ Pa.

We are now going to introduce slightly larger classes of payoff functions than
the classes Pa, a > 0. To this end, let a > 0 be given and suppose f : Rm

+ → [0, a[
is a continuous function and set for fixed τ > 0,

g = gτ = − 1
σm
√

τ
ln(1− f/a) . (23)
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We shall say that the the function f belongs to the class Pa,m if the function

Φ−1(P[gτ (x1e
σ1
√

τ〈c1,G〉, . . . , xmeσm
√

τ〈cm,G〉) ≤ s])− s, s > 0

is non-decreasing for every x ∈ Rm
+ and τ > 0. Here, again, G = (G1, . . . , Gn)

denotes the standard Gaussian random vector in Rn with stochastically inde-
pendent N(0; 1)-distributed components.

We now set, for any f ∈ Pa,m,

Ia(f) =
af

a− f

and have
(1− f/a)(1 + Ia(f)/a) = 1.

Theorem 5.2. (a) The map Ia is a bijection of Pa,m onto Ca,m.
(b) The restriction map of Ia to Pa is a bijection of Pa onto Ca.

Proof. Part (a) follows at once from the equations (14) and (23). Moreover
Part (b) is an immediate consequence of Theorems 4.1 and 5.1. ¤

Theorem 5.3. Suppose ψ ∈ V(ϕ). Then, if f ∈ Pa,m and

uϕ◦f (τ, x) = uϕ◦pa,m(τ, y)

where x, y ∈ Rm
+ and τ > 0 are fixed ,

uψ◦f (τ, x) ≤ uψ◦pa,m(τ, y).

Proof. Set f∗ = Ia(f) and p∗a,m = Ia(pa,m). Then

f =
af∗

a + f∗

and

pa,m =
ap∗a,m

a + p∗a,m

.

Moreover, we define

ϕ∗(s) = ϕ
(

as

a + s

)
, s ≥ 0.

Then
uϕ◦f (τ, x) = uϕ∗◦f∗(τ, x)

and
uϕ◦pa,m(τ, y) = uϕ∗◦p∗a,m

(τ, y).

From the definition of the map Ia it follows that

p∗a,m(v) =
(

a2

vm
− a

)+

, v ∈ Rm
+

and using (4) we conclude that

uϕ∗◦p∗a,m
(τ, y) = uϕ∗◦ca,m(τ, z)
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where z ∈ Rm
+ and

zm =
a2e−2rτ+σ2

mτ

ym
.

The result is now an immediate consequence of Theorem 4.3. This completes
our proof of Theorem 5.3. ¤

Theorem 5.4. Suppose a > 0 and let f : Rm
+ → [0, a[ be a payoff function.

Furthermore, suppose
uψ◦f (τ, x) ≤ uψ◦pa,m

(τ, y)

for all x, y ∈ Rm
+ , all τ > 0, and all ψ and bounded ϕ such that ψ ∈ V(ϕ) and

uϕ◦f (τ, x) = uϕ◦pa,m(τ, y).

Then f ∈ Pa,m.

Proof. By exploiting the map Ia as in the proof of Theorem 5.3 the result
follows at once from Theorem 4.4. ¤

The next result follows from Theorem 5.3 in the same way as Corollary 4.2
follows from Theorem 4.3.

Corollary 5.1. Let ψ ∈ V(ϕ). Then, if f ∈ Pa,m and

vϕ◦f (τ, x; τ∗) = vϕ◦pa,m(τ, y; τ∗),

where x, y ∈ Rm
+ and τ > τ∗ ≥ 0 are fixed ,

vψ◦f (τ, x; τ∗) ≤ vψ◦pa,m(τ, y; τ∗).
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