Convex Geometric Analysis MSRI Publications Volume **34**, 1998

Integrals of Smooth and Analytic Functions over Minkowski's Sums of Convex Sets

SEMYON ALESKER

1. Introduction and Statement of Main Results

Let $\overline{K} = (K_1, K_2, \dots, K_s)$ be an s-tuple of compact convex subsets of \mathbb{R}^n . For any continuous function $F : \mathbb{R}^n \longrightarrow \mathbb{C}$, consider the function

$$M_{\bar{K}}F: \mathbb{R}^s_+ \longrightarrow \mathbb{C}$$
, where $\mathbb{R}^s_+ = \{(\lambda_1, \dots, \lambda_s) \mid \lambda_j \ge 0\}$,

defined by

$$(M_{\bar{K}}F)(\lambda_1,\ldots,\lambda_s) = \int_{\sum_{i=1}^s \lambda_i K_i} F(x) \, dx. \tag{*}$$

This defines an operator $M_{\bar{K}}$, which we will call a Minkowski operator. Denote by $\mathcal{A}(\mathbb{C}^n)$ the Frechet space of entire functions in n variables with the usual topology of the uniform convergence on compact sets in \mathbb{C}^n , and $C^r(\mathbb{R}^n)$ the Frechet space of r times differentiable functions on \mathbb{R}^n with the topology of the uniform convergence on compact sets in \mathbb{R}^n of all partial derivatives up to the order r ($1 \le r \le \infty$).

The main results of this work are Theorems 1 and 3 below.

Theorem 1.

(i) If $F \in \mathcal{A}(\mathbb{C}^n)$, then $M_{\bar{K}}F$ has a (unique) extension to an entire function on \mathbb{C}^s and defines a continuous operator from $\mathcal{A}(\mathbb{C}^n)$ to $\mathcal{A}(\mathbb{C}^s)$ (see Theorem 3 below).

(*u*) If $F \in C^r(\mathbb{R}^n)$, then $M_{\bar{K}}F \in C^r(\mathbb{R}^s_+)$ (it is smooth up to the boundary) and again $M_{\bar{K}}$ defines a continuous operator from $C^r(\mathbb{R}^n)$ to $C^r(\mathbb{R}^s_+)$.

COROLLARY 2. If F is a polynomial of degree d, then $M_{\bar{K}}F$ is a polynomial of degree at most d + n.

Indeed, we can assume F to be homogeneous of degree d. Then $M_{\bar{K}}$ is an entire function, which is homogeneous of degree d + n, hence it is a polynomial.

In fact, this corollary is well known and it is a particular case of the Pukhlikov– Khovanskii Theorem ([P-Kh]; see another proof below). THEOREM 3. Assume that a sequence $F^{(m)} \in \mathcal{A}(\mathbb{C}^n)$ (or $C^r(\mathbb{R}^n)$, respectively), $m \in \mathbb{N}$ is such that

$$F^{(m)} \longrightarrow F \text{ in } \mathcal{A}(\mathbb{C}^n) \text{ (or } C^r(\mathbb{R}^n)).$$

Let $K_i^{(m)}$, K_i , i = 1, 2, ..., s, $m \in \mathbb{N}$ be convex compact sets in \mathbb{R}^n , and suppose $K_i^{(m)} \longrightarrow K_i$ in the Hausdorff metric for every i = 1, ..., s. Then

$$M_{\bar{K}(m)}F^{(m)} \longrightarrow M_{\bar{K}}F$$

in $\mathcal{A}(\mathbb{C}^s)$ (or $C^r(\mathbb{R}^s_+)$).

REMARKS. 1. It follows from Theorem 1 that, if K is a compact convex set, D is the standard Euclidean ball and γ_n is the standard Gaussian measure in \mathbb{R}^n , then $\gamma_n(K + \varepsilon \cdot D)$ is an entire function of ε and the coefficients of the corresponding power expansion are rotation invariant continuous valuations on the family of compact convex sets (see the related definitions in Section 4).

2. There is a different simpler proof of Theorem 1 in the case when all the K_i are convex polytopes. However, the standard approximation argument cannot be applied automatically, since Theorem 3 on the continuity does not follow from that simpler construction even for polytopes.

In Section 4 we present another proof of the Pukhlikov-Khovanskii Theorem.

2. Preliminaries

Before proving these theorems, let us recall some facts, which are probably quite classical, but we will follow Gromov's work [G] (see also [R]).

A function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is called convex if for all $x, y \in \mathbb{R}^n$ and $\mu \in [0, 1]$,

$$f(\mu x + (1 - \mu)y) \le \mu f(x) + (1 - \mu)f(y);$$

f is called strictly convex if

$$f(\mu x + (1 - \mu)y) < \mu f(x) + (1 - \mu)f(y)$$

whenever $x \neq y$ and $\mu \in (0, 1)$. Define a Legendre transform of the convex function f (which is also called a conjugate function of f)

$$Lf(y) := \sup_{x \in \mathbb{R}^n} ((y, x) - f(x)).$$

Then Lf is a convex function and $-\infty < Lf \leq +\infty$. A set $K_f := \{y \in \mathbb{R}^n \mid Lf(y) < +\infty\}$ is called the effective domain of Lf. Obviously, K_f is a convex set. For any convex set K, we will denote the relative interior of K by Int K.

Lemma 4.

(i) Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a strictly convex C^2 -function. Then K_f is a convex set and the gradient map $\nabla f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a one-to-one map of \mathbb{R}^n onto $\operatorname{Int} K_f$. (ii) If f_1, f_2 are as in (i), then for all $\lambda_1, \lambda_2 > 0$,

$$\operatorname{Im}(\nabla(\lambda_1 f_1 + \lambda_2 f_2)) = \lambda_1 \operatorname{Im}(\nabla f_1) + \lambda_2 \operatorname{Im}(\nabla f_2).$$

PROOF. (i) The injectivity of ∇f immediately follows from the strict convexity of f.

For any $x_0, x \in \mathbb{R}^n$,

$$f(x) \ge f(x_0) + (\nabla f(x_0), x - x_0).$$

Hence $Lf(\nabla f(x_0)) = (\nabla f(x_0), x_0) - f(x_0) < \infty$ and $\operatorname{Im}(\nabla f) \subset K_f$. In order to check that $\operatorname{Im}(\nabla f) \subset \operatorname{Int} K_f$, let us choose any $a \in \partial K_f$ and assume that there exists $b \in \mathbb{R}^n$ such that $\nabla f(b) = a$. Without loss of generality, one may assume that a = 0 = b and f(0) = 0. Then $f(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Since K_f is convex and $0 \in \partial K_f$, one can find a unit vector $u \in \mathbb{R}^n$ such that $\lambda u \notin K_f$ for all $\lambda > 0$. Consider a new convex function on \mathbb{R}^1

$$\phi(t) := \inf \{ f(y + tu) \mid y \perp u \}.$$

Clearly, $\phi(t) \ge 0$ everywhere and $\phi(0) = 0$.

Case 1. Assume that there exists $t_0 > 0$ such that $\phi(t_0) > 0$. Then, by the convexity of ϕ , $\phi(t) \ge \frac{\phi(t_0)}{t_0}t$ for $t \ge t_0$ and for $t \le 0$. Hence

$$L\phi\left(\frac{\phi(t_0)}{t_0}\right) \le \sup\left\{\frac{\phi(t_0)}{t_0}t - \phi(t) \mid t \in [0, t_0]\right\} < \infty.$$

But for the Legendre transform of f, one has

$$Lf\left(\frac{\phi(t_0)}{t_0}u\right) = \sup_{x \in \mathbb{R}^n} \left(\left(\frac{\phi(t_0)}{t_0}u, x\right) - f(x)\right)$$
$$= \sup_{s \in \mathbb{R}, y \perp u} \left(\left(\frac{\phi(t_0)}{t_0}u, su + y\right) - f(su + y)\right)$$
$$= \sup_{s \in \mathbb{R}} \left(\frac{\phi(t_0)}{t_0}s - \phi(s)\right) = L\phi\left(\frac{\phi(t_0)}{t_0}\right) < \infty.$$

Thus $\frac{\phi(t_0)}{t_0} u \in K_f$, and this contradicts the choice of u.

Case 2. Assume that $\phi(t) = 0$ for all $t \ge 0$. Let us show that this case is impossible (this will finish the proof of part (i) of Lemma 4). It would follow from the fact that $f(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

If the last statement is false, then there exists a sequence of vectors $x_k \longrightarrow \infty$ such that $|f(x_k)| \leq C$ (where C is some constant). Passing to a subsequence, we may assume that

$$\frac{x_k}{|x_k|} \longrightarrow u \in \mathbb{R}^n,$$

where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^n . Since f is strictly convex, f(0) = 0 and $\nabla f(0) = 0$ by assumption, then f(u) > 0. Also, for all $x \in \mathbb{R}^n$,

$$f(x) \ge f(u) + (\nabla f(u), x - u).$$

Substituting x = 0 or $x = x_k$, we obtain

$$(\nabla f(u), u) \ge f(u) > 0,$$

$$f(x_k) \ge f(u) + (\nabla f(u), x_k - u).$$

The last inequality can be rewritten

$$f(x_k) \ge f(u) - \left(\nabla f(u), u\right) + |x_k| \left(\nabla f(u), \frac{x_k}{|x_k|}\right).$$

But $(\nabla f(u), \frac{x_k}{|x_k|}) \longrightarrow (\nabla f(u), u) > 0$, hence $f(x_k) \longrightarrow \infty$, which contradicts our assumptions.

(*ii*) Under conditions of the lemma $\lambda_1 f_1 + \lambda_2 f_2$ is also a strictly convex function. By the part (*i*),

$$\operatorname{Im}(\nabla f_i) = \operatorname{Int} K_{f_i} \text{ for } i = 1, 2.$$

Then easily

$$\operatorname{Im}(\lambda_1 \nabla f_1 + \lambda_2 \nabla f_2) \subset \lambda_1 \operatorname{Int} K_{f_1} + \lambda_2 \operatorname{Int} K_{f_2} \subset$$
$$\operatorname{Int}(\lambda_1 K_{f_1} + \lambda_2 K_{f_2}) \subset \operatorname{Int}(K_{\lambda_1 f_1 + \lambda_2 f_2}) = \operatorname{Im}(\nabla(\lambda_1 f_1 + \lambda_2 f_2)).$$

Hence all the sets in the above sequence of inclusions coincide.

LEMMA 5. [G] Let $K \subset \mathbb{R}^n$ be an open bounded convex set, let μ be the Lebesgue measure in \mathbb{R}^n . Define

$$f(x) := \log \int_{K} \exp(x, y) \, d\mu(y). \tag{1}$$

Then f is a strictly convex C^{∞} -function and $\operatorname{Im}(\nabla f) = K$.

Now let K_i , $1 \le i \le s$ be compact convex subsets of \mathbb{R}^n . For every *i*, fix a point $a_i \in K_i$. Let μ_i denote (dim K_i)-dimensional Lebesgue measure supported on span $(K_i - a_i)$. Define

$$f_i(x) := (x, a_i) + \int_{K_i - a_i} \exp(x, y) \, d\mu_i(y).$$

For every i, $f_i(x)$ depends only on the orthogonal projection of x on span $(K_i - a_i)$. Moreover, f_i is a convex function on \mathbb{R}^n and strictly convex on span $(K_i - a_i)$. Then it is easy to see that $K_{f_i} \subset a_i + \operatorname{span}(K_i - a_i)$. Thus, by Lemmas 5 and 4,

$$\operatorname{Im} \nabla f_i = \operatorname{Int} K_i = \operatorname{Int} K_{f_i}.$$

COROLLARY 6. Let K_i , f_i , $1 \le i \le s$ be as above, $\lambda_i > 0$. Then

$$\operatorname{Im}\left(\nabla\left(\sum_{i=1}^{s}\lambda_{i}f_{i}\right)\right) = \sum_{i=1}^{s}\lambda_{i}\operatorname{Int}K_{i}.$$

PROOF. It is sufficient to consider all $\lambda_i = 1$. Set $L := \operatorname{span}\left(\sum_i (K_i - a_i)\right)$. Without loss of generality, we may assume that $L = \mathbb{R}^n$. Then obviously the function $f := \sum f_i$ is strictly convex on \mathbb{R}^n , and by Lemma 4, $\operatorname{Im} \nabla f = \operatorname{Int} K_f$ is an open and convex set. Clearly,

$$\operatorname{Im} \nabla f \subset \sum \operatorname{Im} \nabla f_i = \sum \operatorname{Int} K_i = \sum \operatorname{Int} K_{f_i} = \operatorname{Int} \left(\sum K_{f_i} \right)$$

(the last equality holds for general convex bounded subsets of \mathbb{R}^n). One can easily see that $\sum K_{f_i} \subset K_f$, hence

$$\operatorname{Im} \nabla f \subset \sum \operatorname{Int} K_i \subset \operatorname{Int} K_f = \operatorname{Im} \nabla f.$$

,

3. Proofs of Theorems 1 and 3

PROOF OF THEOREM 1. For every K_i , choose $f_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ as above. Then $\nabla f_i = (\frac{\partial f_i}{\partial y_1}, \ldots, \frac{\partial f_i}{\partial y_n})$, and the Jacobian of the gradient map equals the Hessian of f_i ,

$$H(f_i) = \left(\frac{\partial^2 f_i}{\partial y_p \partial y_q}\right)_{p,q=1}^n$$

which is a non-negative definite matrix, since f_i is convex.

We have for $\lambda_i > 0$,

$$\int_{\sum \lambda_i K_i} F(x) \, dx = \int_{\mathbb{R}^n} F\left(\sum \lambda_i \nabla f_i(y)\right) \det\left(H\left(\sum \lambda_i f_i(y)\right)\right) \, dy.$$
(2)

Write for simplicity $H_i(y) = H(f_i(y))$, so that the last expression is

$$\int_{\mathbb{R}^n} F\left(\sum \lambda_i \nabla f_i(y)\right) \det\left(\sum \lambda_i H_i(y)\right) dy$$
$$= \sum_{j_1, \dots, j_n} \lambda_{j_1} \dots \lambda_{j_n} \int_{\mathbb{R}^n} F\left(\sum \lambda_i \nabla f_i(y)\right) D(H_{j_1}(y), \dots, H_{j_n}(y)) dy, \quad (3)$$

where $D(H_{j_1}(y), \ldots, H_{j_n}(y))$ denotes the mixed discriminant of non-negative definite symmetric matrices $H_{j_1}(y), \ldots, H_{j_n}(y)$. But it is well known that the mixed discriminant of such matrices is nonnegative (see, e.g., [Al]).

Let us substitute $F \equiv 1$ into (2). We obtain

$$\operatorname{vol}\left(\sum \lambda_i K_i\right) = \sum_{j_1, \dots, j_n} \lambda_{j_1} \dots \lambda_{j_n} \int_{\mathbb{R}^n} D(H_{j_1}(y), \dots, H_{j_n}(y)) \, dy.$$

Hence $\int_{\mathbb{R}^n} D(H_{j_1}(y), \ldots, H_{j_n}(y)) dy = V(K_{j_1}, \ldots, K_{j_n})$ (the right hand side denotes the mixed volume of K_{j_1}, \ldots, K_{j_n} ; see, e.g., [B-Z], [Sch]).

SEMYON ALESKER

Observe that the integrand in (3) makes sense also for $\lambda_i < 0$, if $F \in C^r(\mathbb{R}^n)$ and for all complex λ_i , if $F \in \mathcal{A}(\mathbb{C}^n)$. We only have to check the convergence of the integral for such λ_i and its convergence after taking partial derivatives with respect to λ_i . Then Theorem 1 (i) and(ii) will be proved.

Let us show that for the integral in (3), and the same proof works for the partial derivatives with respect to the λ_i .

Since $\operatorname{Im}(\nabla f_i) \subset K_i$, there exists a constant C, such that $\left\|\sum \lambda_i \nabla f_i(y)\right\| \leq C \cdot \sum |\lambda_i|$ for all $y \in \mathbb{R}^n$, where $\|\cdot\|$ is some norm in \mathbb{C}^n (or in \mathbb{R}^n). By the continuity of F, $F(\sum \lambda_i \nabla f_i)$ is bounded by some constant K(R) if $\sum |\lambda_i| \leq R$ and $y \in \mathbb{R}^n$. Hence

$$\int \left| F\left(\sum \lambda_i \nabla f_i(y)\right) D\left(H_{j_1}(y), \dots, H_{j_n}(y)\right) \right| dy$$

$$\leq K(R) \int_{\mathbb{R}^n} D(H_{j_1}(y), \dots, H_{j_n}(y)) dy$$

$$= K(R) V(K_{j_1}, \dots, K_{j_n}) < \infty. \qquad \Box$$

REMARK. We have actually shown that, if $F \in C^r(\mathbb{R}^n)$, then the equality (2) gives us a smooth extension of $M_{\bar{K}}F(\lambda_1...,\lambda_n)$ from \mathbb{R}^s_+ to \mathbb{R}^s . It turns out that this extension is natural in some sense, i.e. it does not depend on the choice of the functions f_i . Indeed, assume that we have two such extensions $M_{\bar{K}}F$ and $M'_{\bar{K}}F$ corresponding to f_i and f'_i . Choose a sequence of polynomials $\{P_m\}$ approximating F uniformly on compact sets in \mathbb{R}^n . Then for corresponding extensions, we have $M_{\bar{K}}P_m \longrightarrow M_{\bar{K}}F$ and $M'_{\bar{K}}P_m \longrightarrow M'_{\bar{K}}F$ uniformly on compact sets in \mathbb{R}^s . By Corollary 2, $M_{\bar{K}}P_m$ and $M'_{\bar{K}}P_m$ are polynomials and since they coincide on \mathbb{R}^s_+ , they coincide everywhere on \mathbb{R}^s . Hence $M_{\bar{K}}P_m \equiv M'_{\bar{K}}P_m$ on \mathbb{R}^s and $M_{\bar{K}}F \equiv M'_{\bar{K}}F$.

PROOF OF THEOREM 3. Step 1. It is sufficient to prove the continuity of $M_{\bar{K}}F$ separately with respect to F and $\bar{K} = (K_1, \ldots, K_s)$, because $M_{\bar{K}}F = M(F; K_1, \ldots, K_s)$ can be considered as a map $M : L_1 \times \mathcal{K}^s \longrightarrow L_2$, where L_1 and L_2 are Frechet spaces, $L_1 = \mathcal{A}(\mathbb{C}^n)$ or $C^r(\mathbb{R}^n)$, $L_2 = \mathcal{A}(\mathbb{C}^s)$ or $C^r(\mathbb{R}^s)$, and \mathcal{K} is the space of compact convex subsets of \mathbb{R}^n with the Hausdorff metric. Since M is linear with respect to the first argument $F \in L_1$, and \mathcal{K}^s is locally compact (by the Blaschke's selection theorem), then M is continuous as a function of two arguments (it is an easy and well known consequence of the Banach–Steinhaus theorem, which says that if L_1, L_2 are Frechet spaces, T is a locally compact topological space and $M : L_1 \times T \longrightarrow L_2$ is linear with respect to the first argument separately, then M is continuous as a function of two variables).

Step 2. Let K_1, \ldots, K_s be fixed, $F^{(m)} \longrightarrow F$. Using formula (2) and simple estimates as in the proof of Theorem 1, one can easily see that $M_{\bar{K}}F^{(m)} \longrightarrow M_{\bar{K}}F$.

6

Step 3. Now suppose $F \in \mathcal{A}(\mathbb{C}^n)$ (respectively, $C^r(\mathbb{R}^n)$) is fixed, $K_i^{(m)} \longrightarrow K_i$ as $m \longrightarrow \infty$ for all $i = 1, \ldots, s$. Let us choose $a_i^{(m)} \in K_i^{(m)}$, $a_i \in K_i$. Define

$$f_i(y) = (a_i, x) + \log \int_{K_i - a_i} \exp(x, y) \, d\mu_i(x),$$

$$f_i^{(m)}(y) = (a_i^{(m)}, x) + \log \int_{K_i^{(m)} - a_i^{(m)}} \exp(x, y) d\mu_i^{(m)}(x),$$

where μ_i , $\mu_i^{(m)}$ are measures as in the discussion after Lemma 5 with K_i , $K_i^{(m)}$ instead of K. By (3), $M_{\bar{K}^{(m)}}F(\lambda_1,\ldots,\lambda_s) =$

$$\sum_{j_1,\dots,j_n} \lambda_{j_1}\dots\lambda_{j_n} \int_{\mathbb{R}^n} F\left(\sum \lambda_i \nabla f_i^{(m)}(y)\right) D(H_{j_1}^{(m)}(y),\dots,H_{j_n}^{(m)}(y)) \, dy$$

and $M_{\bar{K}}F(\lambda_1,\ldots,\lambda_s) =$

$$\sum_{j_1,\dots,j_n} \lambda_{j_1}\dots\lambda_{j_n} \int_{\mathbb{R}^n} F\left(\sum \lambda_i \nabla f_i(y)\right) D(H_{j_1}(y),\dots,H_{j_n}(y)) \, dy$$

Since all K_i , $K_i^{(m)}$ are uniformly bounded, there exists a large Euclidean ball U containing all these sets. As in the proof of Theorem 1, if $\sum |\lambda_i| \leq R$, then

$$|M_{\bar{K}^{(m)}}F(\lambda_1,\ldots,\lambda_s)| \leq \sum_{j_1,\ldots,j_n} R^n \max_{x \in R \cdot U} |F(x)| \cdot V(K_{j_1}^{(m)},\ldots,K_{j_n}^{(m)})$$
$$\leq \left(\max_{x \in R \cdot U} |F(x)|\right) \cdot \left(\sum_{j_1,\ldots,j_n} R^n \operatorname{vol}(U)\right)$$
$$\leq K(R) \cdot \max_{x \in R \cdot U} |F(x)|,$$

where K(R) is some constant depending on R.

The same estimate holds for $M_{\bar{K}}F$. Hence, for every $\varepsilon > 0$, one can choose a polynomial P_{ε} approximating F on the set $R \cdot U$, such that for all i, m, λ_i with $\sum |\lambda_i| \leq R$ we have

$$|M_{\bar{K}^{(m)}}(F - P_{\varepsilon})(\lambda_1, \dots, \lambda_s)| < \varepsilon,$$
(5)

$$|M_{\bar{K}}(F - P_{\varepsilon})(\lambda_1, \dots, \lambda_s)| < \varepsilon.$$
(6)

But by Corollary 2, the degrees of $M_{\bar{K}^{(m)}}P_{\varepsilon}$ and $M_{\bar{K}}P_{\varepsilon}$ are independent of m. Obviously, by the definition (*) in the Introduction, $M_{\bar{K}^{(m)}}P_{\varepsilon}$ converges to $M_{\bar{K}}P_{\varepsilon}$ uniformly on compact sets in the non-negative orthant \mathbb{R}^{s}_{+} . Hence because of the boundedness of their degrees, $M_{\bar{K}^{(m)}}P_{\varepsilon} \longrightarrow M_{\bar{K}}P_{\varepsilon}$ in \mathbb{R}^{s} (respectively, \mathbb{C}^{s}). This and (5) and (6) imply that, for large m,

$$|M_{\bar{K}^{(m)}}F(\lambda_1,\ldots,\lambda_s) - M_{\bar{K}}F(\lambda_1,\ldots,\lambda_s)| < 3\varepsilon$$

whenever $\sum |\lambda_i| \leq R$.

A similar argument can be applied to prove uniform convergence of partial derivatives of $M_{\bar{K}^{(m)}}F$ on compact sets.

SEMYON ALESKER

4. Polynomial Valuations

We are now going to present another proof of the Pukhlikov–Khovanskii Theorem. They introduced in [P-Kh] the notion of the polynomial valuation, generalizing the classical translation invariant and translation covariant valuations.

Let Λ be an additive subgroup of \mathbb{R}^n . Denote by $\mathcal{P}(\Lambda)$ the set of all polytopes with vertices in Λ . We will assume that span $\Lambda = \mathbb{R}^n$.

DEFINITION. (a) A function $\phi : \mathcal{P}(\Lambda) \longrightarrow \mathbb{R}$ is called a valuation, if for all $P_1, P_2 \in \mathcal{P}(\Lambda)$, such that $P_1 \cup P_2$ and $P_1 \cap P_2$ belong to $\mathcal{P}(\Lambda)$ we have

$$\phi(P_1 \cup P_2) + \phi(P_1 \cap P_2) = \phi(P_1) + \phi(P_2). \tag{7}$$

(b) The valuation ϕ is called fully additive if, for every finite family of polytopes P_1, \ldots, P_k in $\mathcal{P}(\Lambda)$ such that the intersection $\bigcap_{i \in \sigma} P_i$ over every nonempty subset $\sigma \subset \{1 \ldots k\}$ and their union $\bigcup_{i=1}^k P_i$ lie in $\mathcal{P}(\Lambda)$, the following equation holds:

$$\phi\left(\bigcup_{i=1}^{k} P_i\right) = \sum_{\sigma \subset \{1,\dots,k\}, \ \sigma \neq \emptyset} (-1)^{|\sigma|+1} \phi\left(\bigcap_{i \in \sigma} P_i\right),\tag{8}$$

where $|\sigma|$ is the cardinality of σ .

Obviously, for k = 2, (8) is equivalent to (7). We will consider only fully additive valuations; however it is true that, if $\Lambda = \mathbb{R}^n$, then every valuation on $\mathcal{P}(\Lambda)$ is fully additive (see [V], [P-S]). But it is not known to the author whether this holds in the general case. In the definitions (a) and (b) one can replace $\mathcal{P}(\Lambda)$ by the set of all convex compact sets \mathcal{K} . If ϕ is continuous with respect to the Hausdorff metric on \mathcal{K} , then (a) implies (b) [Gr].

(c) The valuation $\phi : \mathcal{P}(\Lambda) \longrightarrow \mathbb{R}$ is called polynomial of degree at most d, if for every fixed $K \in \mathcal{P}(\Lambda)$, $\phi(K + x)$ is a polynomial of degree at most d with respect to $x \in \Lambda$.

EXAMPLES. 1. Let μ be any signed locally finite measure on \mathbb{R}^n . Then $\phi(K) := \mu(K)$ is a fully additive valuation.

2. The mixed volume

$$\phi(K) = V(K[j], A_1, \dots, A_{n-j}),$$

where K[j] means that K occurs j times, and A_l are fixed convex compact sets, is known to be a fully additive translation invariant continuous valuation.

3. Let $\Lambda = \mathbb{Z}^n \subset \mathbb{R}^n$ be an integer lattice, and let f be a polynomial of degree d. Then for $K \in \mathcal{P}(\Lambda)$,

$$\phi(K) := \sum_{x \in K \cap \mathbb{Z}^n} f(x)$$

is a fully additive polynomial valuation of degree d.

4. Let $\Lambda = \mathbb{Z}^n$, let Ω be a subset of \mathbb{R}^n , which is invariant with respect to translations to vectors in \mathbb{Z}^n , and let K and f be as in example 3. Then $\phi(K) := \int_{K \cap \Omega} f(x) dx$ is also a fully additive polynomial valuation of degree d.

For more information about valuations, especially those which are translation invariant and translation covariant, see the surveys [Mc-Sch] and [Mc2].

THEOREM 6. [P-Kh] Let $\phi : \mathcal{P}(\Lambda) \longrightarrow \mathbb{R}$ be a fully additive polynomial valuation of degree d. Fix $K_1, \ldots, K_s \in \mathcal{P}(\Lambda)$. Then $\phi(\sum_i \lambda_i K_i)$ is a polynomial in $\lambda_i \in \mathbb{Z}_+$ of degree at most d + n. Moreover, if $\mathbb{Q} \cdot \mathcal{P}(\Lambda) = \mathcal{P}(\Lambda)$, then it is a polynomial in $\lambda_i \in \mathbb{Q}_+$.

REMARK. For translation invariant valuations this theorem was proved in [Mc1], and our proof uses some constructions of that work.

LEMMA 7. (Well known; see, e.g., [GKZ, p. 215].) Let $P \subset \mathbb{R}^n$ be a polytope. Then there exists a family of k-simplices $\{S_\alpha\}_{\alpha \in I}$, $0 \le k \le n$, such that $(i) P = \bigcup_{\alpha \in I} S_\alpha$;

(ii) each vertex of each S_{α} is a vertex of P;

(iii) every two S_{β} and S_{γ} intersect in a common face;

(*iv*) for all β and γ , $S_{\beta} \bigcap S_{\gamma} \in \{S_{\alpha}\}_{\alpha \in I}$.

LEMMA 8. Let K_1, \ldots, K_s be polytopes in \mathbb{R}^n . Then for all $\lambda_i \ge 0, 1 \le i \le s$, the set $K(\bar{\lambda}) := \sum_i \lambda_i K_i$ has a decomposition

$$K(\bar{\lambda}) = \bigcup_{\alpha \in I} S_{\alpha}(\bar{\lambda}),$$

where $S_{\alpha}(\bar{\lambda})$ are polytopes (not necessarily simplices) such that (i) they satisfy (i) - (iv) in Lemma 7; (ii) if for some $\bar{\lambda}^0$, $\lambda_i^0 > 0$, and $\alpha, \beta, \gamma \in I$, $S_{\alpha}(\bar{\lambda}^0) \cap S_{\beta}(\bar{\lambda}^0) = S_{\gamma}(\bar{\lambda}^0)$, then for all $\bar{\lambda} = (\lambda_i)$, $\lambda_i \ge 0$ we have $S_{\alpha}(\bar{\lambda}) \cap S_{\beta}(\bar{\lambda}) = S_{\gamma}(\bar{\lambda})$; (iii) each $S_{\alpha}(\bar{\lambda})$ has the form

$$S_{\alpha}(\bar{\lambda}) = \sum_{i} \lambda_{i} S_{i,\alpha}$$

where $S_{i,\alpha}$ are simplices with vertices in K_i , independent of $\bar{\lambda}$ and $\dim S_{\alpha}(\bar{\lambda}) = \sum_i \dim(\lambda_i S_{i,\alpha})$ (note that $\dim(\lambda_i S_{i,\alpha}) = \dim S_{i,\alpha}$ for $\lambda_i > 0$).

PROOF. Because of the homogeneity it is sufficient to prove the lemma only for $\lambda_i \geq 0$, $\sum \lambda_i = 1$. Consider in $\mathbb{R}^s \oplus \mathbb{R}^n$ a convex polytope

$$P := \left\{ (\mu_1, \dots, \mu_s; x) \mid \mu_i \ge 0, \sum_{i=1}^s \mu_i = 1, \, x \in \sum_i \mu_i K_i \right\}$$

Now apply Lemma 7 to $P = \bigcup_{\alpha} S_{\alpha}$. Set

$$S_{\alpha}(\bar{\lambda}) := S_{\alpha} \cap \{(\mu_1, \dots, \mu_s; x) \mid \mu_i = \lambda_i \text{ for all } i\}$$

One can easily check that $S_{\alpha}(\bar{\lambda})$ satisfy all the properties in Lemma 8.

LEMMA 9. Let $P \in \mathfrak{P}(\Lambda)$. Then $\phi(N \cdot P)$ is a polynomial in $N \in \mathbb{Z}_+$ of degree at most d + n.

PROOF. By Lemma 7, $P = \bigcup_{\alpha \in I} S_{\alpha}$, where the S_{α} are simplices. Hence

$$\phi(N \cdot P) = \sum_{\sigma \subset I, \, \sigma \neq \varnothing} (-1)^{|\sigma| - 1} \phi\left(N \cdot \left(\bigcap_{\alpha \in \sigma} S_{\alpha}\right)\right)$$

But for fixed σ , there exists $\gamma \in I$ such that $\bigcap_{\alpha \in \sigma} S_{\alpha} = S_{\gamma}$. So we have to show that for every simplex $\Delta \in \mathcal{P}(\Lambda)$, $\phi(N \cdot \Delta)$ is a polynomial of degree at most d + n.

Fix Δ and write $k = \dim \Delta$. The proof will be by induction in k. If k = 0, then $\Delta = \{v\}$ is a point and $\phi(N \cdot \{v\}) = \phi(\{0\} + Nv)$ is a polynomial of degree at most d by the definition of the polynomial valuation.

Let k > 0. For simplicity of notation we will assume that k = n. In an appropriate coordinate system Δ has the form $\Delta = a + \tilde{\Delta}$, where $a \in \mathbb{R}^n$, $\tilde{\Delta} = \{(x_1, \ldots, x_n) \mid 0 \le x_1 \le \ldots \le x_n \le 1\}$. Thus

$$N \cdot \tilde{\Delta} = \{ (x_1, \dots, x_n) \mid 0 \le x_1 \le \dots \le x_n \le N \}.$$

 $N \cdot \tilde{\Delta}$ can be represented as a disjoint union

$$N \cdot \tilde{\Delta} = \bigcup_{z \in \mathbb{Z}^n \cap ((N-1) \cdot \tilde{\Delta})} \left((z + \tilde{Q}) \cap (N \cdot \tilde{\Delta}) \right) \bigcup (N \cdot \Delta'), \tag{9}$$

where $\tilde{Q} := \{(x_1, ..., x_n) \mid 0 \le x_i < 1 \text{ for all } i\}$ and

$$\Delta' = \{ (x_1, \dots, x_n) \mid 0 \le x_1 \le \dots \le x_{n-1} \le x_n = 1 \}.$$

Of course, $(z + \tilde{Q}) \cap (N \cdot \tilde{\Delta})$ is not a compact polytope, so ϕ is not defined on it. But we can define ϕ on this set in the following natural way. First, for $\tau \subset \{1, \ldots, n\}$, denote $F_{\tau} :=$

$$\{(x_1, \ldots, x_n) \mid 0 \le x_i \le 1 \text{ for all } i \in \{1, \ldots, n\}, \text{ and } x_j = 1 \text{ for all } j \in \tau\}$$

Clearly, F_{τ} is an $(n - |\tau|)$ -dimensional face of the unit cube $[0, 1]^n$. Now define

$$\phi\left((z+\tilde{Q})\cap(N\cdot\tilde{\Delta})\right):=\sum_{\tau\subset\{1,\dots,n\}}(-1)^{|\tau|}\phi\left((z+F_{\tau})\cap(N\cdot\tilde{\Delta})\right).$$

Since in (9) we have a disjoint union,

$$\phi(N \cdot \Delta) = \phi(N \cdot a + N \cdot \Delta') + \sum_{z \in \mathbb{Z}^n \cap ((N-1) \cdot \tilde{\Delta})} \phi\left(N \cdot a + (z + \tilde{Q}) \cap N \cdot \tilde{\Delta}\right).$$
(10)

Every $z \in \mathbb{Z}^n \cap ((N-1) \cdot \tilde{\Delta})$ has the form $z = (z_i)_{i=1}^n$, where

$$z_1 = \dots = z_{j_1} < z_{j_1+1} = \dots = z_{j_2} < \dots < z_{j_{l-1}+1} = \dots = z_{j_l} \le N-1, \quad (11)$$

and $j_l = n$.

Set for $1 \leq i \leq j \leq n$, $T_{i,j} :=$

 $\{(x_1, \ldots, x_n) \mid 0 \le x_i \le x_{i+1} \le \ldots \le x_j \le 1 \text{ and } x_l = 0 \text{ for } l < i \text{ or } l > j\}.$

For a sequence $0 < j_1 < \cdots < j_{l-1} < n$, denote (as in [Mc1]) $T_{j_1...j_{l-1}} := T_{0j_1} + \cdots + T_{l-1,n}$. Now let $\tilde{T}_{j_1...j_{l-1}} := T_{j_1...j_{l-1}} \cap \tilde{Q}$. So if z belongs to $\mathbb{Z}^n \cap (N-1)\cdot \tilde{\Delta}$ and satisfies (11), then obviously $(z+\tilde{Q}) \cap N \cdot \tilde{\Delta} = z + \tilde{T}_{j_1...j_{l-1}}$. Define $S_{j_1...j_{l-1}}(N) = \{z \in \mathbb{Z}^n \mid z \text{ satisfies (11)}\}$. Then (10) can be rewritten:

 $\phi(N \cdot \Delta) = \phi(N \cdot a + N \cdot \Delta')$

$$+ \sum_{0 < j_1 < \dots < j_{j-1} < n} \left(\sum_{z \in S_{j_1 \dots j_{l-1}}(N)} \phi(N \cdot a + z + \tilde{T}_{j_1 \dots j_{l-1}}) \right).$$
(12)

By the inductive hypothesis, $\phi(N \cdot a + N \cdot \Delta')$ is a polynomial in $N \in \mathbb{Z}_+$ of degree at most d + n. Now fix $0 < j_1 < \cdots < j_{l-1} < n$. Then $\phi(x + \tilde{T}_{j_1 \dots j_{l-1}})$ is a polynomial in x of degree at most d, let us denote it q(x). It is sufficient to show that $\sum_{z \in S_{j_1 \dots j_{l-1}}(N)} q(N \cdot a + z)$ is a polynomial in $N \in \mathbb{Z}_+$ of degree at most d + n.

We can write $q(N \cdot a + z) = \sum_{t=0}^{d} N^t q_t(z)$, where $q_t(z)$ is a polynomial of degree at most d - t. Recall that for any $z \in S_{j_1...j_{l-1}}(N)$ and m = 1, ..., l - 1, $z_{j_{m-1}+1} = \ldots = z_{j_m}$. So set $w_m := z_{j_m}$. We have $0 \le w_1 < w_2 < \ldots < w_l \le N - 1$. Actually, $q_t(z)$ is a polynomial in the vector $w = (w_1, \ldots, w_l) \in \mathbb{R}^l$. We will show that

$$f(N) := \sum_{0 \le w_1 < w_2 < \dots < w_l \le N-1} q_t(w)$$

is a polynomial in $N \in \mathbb{Z}_+$ of degree at most $\deg q_t + l$ (note that, if $N \leq l-1$ the sum is extended over an empty set and for such an N, we just define f(N) := 0). This and (12) will imply that $\phi(N \cdot \Delta)$ is a polynomial of degree at most d + n.

In order to prove that f(N) is a polynomial of degree g, it is sufficient to show that f(N+1) - f(N) is a polynomial of degree g - 1.

Let us apply induction in l. If l = 1,

$$f(N+1) - f(N) = q_t(N) \text{ for } N \ge 0,$$
(13)

and the lemma follows.

Assume that l > 0. We have

$$f(N+1) - f(N) = \sum_{0 \le w_1 < \dots < w_{l-1} < w_l = N} q_t(w).$$

We may assume q_t to be a monomial $q_t(w) = w_1^{\alpha_1} \dots w_l^{\alpha_l}, \alpha_j \ge 0$. Hence

$$f(N+1) - f(N) = N^{\alpha_l} \cdot \sum_{0 \le w_1 < \dots < w_{l-1} \le N-1} w_1^{\alpha_1} \dots w_{l-1}^{\alpha_{l-1}}.$$

By the inductive hypothesis, the last sum is a polynomial of degree at most $l - 1 + \sum_{j=1}^{n-1} \alpha_j$. Hence f(N) is a polynomial of degree at most $l + \sum_{j=1}^{n} \alpha_j$. \Box

PROOF OF THEOREM 6. Using the same notation as previously, we have to show that $\phi(K(\bar{\lambda}))$ is a polynomial in $\lambda_i \in \mathbb{Z}_+$ of degree at most d + n. By Lemma 8 and the full additivity of ϕ ,

$$\phi(K(\bar{\lambda})) = \phi\bigg(\bigcup_{\alpha \in I} S_{\alpha}(\bar{\lambda})\bigg) = \sum_{\sigma \subset I, \, \sigma \neq \varnothing} (-1)^{|\sigma|+1} \phi\bigg(\bigcap_{\beta \in \sigma} S_{\beta}(\bar{\lambda})\bigg).$$

Fix some $\sigma \subset I, \sigma \neq \emptyset$. By Lemma 8 (*u*) there exists $\gamma \in I$, such that $\bigcap_{\beta \in \sigma} S_{\beta}(\bar{\lambda}) = S_{\gamma}(\bar{\lambda})$ for every vector $\bar{\lambda}$ with nonnegative coordinates.

So it is sufficient to show that for any γ , $\phi(S_{\gamma}(\bar{\lambda}))$ is a polynomial. But $S_{\gamma}(\bar{\lambda}) = \sum_{i=1}^{s} \lambda_i \cdot S_{\gamma,i}$ as in Lemma 8 (*iii*).

Suppose that for $1 \leq i \leq p$, dim $S_{\gamma,i} > 0$ and for i > p, dim $S_{\gamma,i} = 0$, i.e. $S_{\gamma,i} = \{v_i\}$ is a point for i > p.

Define $\Delta_i := S_{\gamma,i} - v_{\gamma,i}$, where $v_{\gamma,i}$ is some vertex of $S_{\gamma,i}$. So $S_{\gamma}(\bar{\lambda}) = \sum_{i=1}^{p} \lambda_i \Delta_i + \sum_{i=1}^{p} \lambda_i v_{\gamma,i} + \sum_{i>p} \lambda_i u_i$. By Lemma 8 (*iii*),

$$\dim S_{\gamma}(\bar{\lambda}) = \sum_{i} \dim(\lambda_{i} \Delta_{i}).$$

This implies that $\sum \lambda_i \Delta_i$ is, in fact, a direct sum of the $\lambda_i \Delta_i$. So we have to check that

$$\phi\left(\bigoplus_{i=1}^{s} (\lambda_i \Delta_i) + \sum_{j=1}^{l} \mu_j u_j\right)$$

is a polynomial in $\lambda_i, \mu_j \in \mathbb{Z}_+$ of degree at most d + n, where the u_j are fixed integer vectors.

Let $L_1 = \bigoplus_{j=1}^{s-1} \operatorname{span} \Delta_j$, $L_2 = \operatorname{span} \Delta_s$. For any polytopes $K_1, K_2, K_i \subset L_i$, i = 1, 2, consider the polynomial $\phi(K_1 \oplus K_2 + x)$, which we will denote by $W_{K_1 \oplus K_2}(x)$. Obviously, all the previous definitions of the valuation and the polynomial valuation can be formulated not only for the real valued functions on $\mathcal{P}(\Lambda)$, but also for the vector valued functions with values in a linear space (and even in an abelian semigroup). The proofs of all the previous lemmas of Section 4 will work without any change.

Then obviously $W_{K_1\oplus K_2}(x)$ is a fully additive polynomial valuation with respect to each argument K_1 and K_2 , with values in the linear space of polynomials in x (here we use the fact that the sum of K_1 and K_2 is direct). Hence by Lemma 9 (applied in the vector valued case), $W_{K_1\oplus N\cdot K_2}(x)$ is a polynomial in N (at the moment we are not interested in its degree). In particular, this implies that $\phi(K_1 \oplus N \cdot K_2 + x)$ is a polynomial in N and x, where $N \in \mathbb{Z}_+, x \in \Lambda$. Then obviously if we decompose $W_{K_1\oplus N\cdot K_2}$ with respect to the powers in N, then its coefficients will be polynomial valued fully additive polynomial valuations with respect to K_1 (now K_2 is fixed). Applying an inductive argument in s, we see that

$$\phi\left(\bigoplus_{i=1}^{s} (\lambda_i \Delta_i) + \sum_{j=1}^{l} \mu_j u_j\right) \tag{14}$$

is a polynomial in $\lambda_i, \mu_j \in \mathbb{Z}_+$.

Let us estimate its degree. If λ_i and μ_j are fixed,

$$\phi\left(\bigoplus_{i=1}^{s}(t\cdot\lambda_i\Delta_i)+\sum_{j=1}^{l}t\cdot\mu_ju_j\right)$$

is a polynomial in $t \in \mathbb{Z}_+$ of degree at most d+n by Lemma 9. Hence the degree of (14) cannot be bigger than d+n.

Now consider the case $\mathbb{Q} \cdot \mathcal{P}(\Lambda) = \mathcal{P}(\Lambda)$. Let $K_1, \ldots, K_s \in \mathcal{P}(\Lambda)$. For any natural number m, $\phi(\sum_{i=1}^s \lambda_i(\frac{1}{m}K_i))$ is a polynomial in $\lambda_i \in \mathbb{Z}_+$, hence $\phi(\sum_{i=1}^s \lambda_i K_i)$ is a polynomial in $\lambda_i \in \frac{1}{m} \cdot \mathbb{Z}_+$ for any $m \in \mathbb{N}$. Consequently, it is a polynomial in $\lambda_i \in \mathbb{Q}_+$.

REMARKS. 1. The valuation ϕ can be defined not only on polytopes, but on the family of all convex compact sets. If ϕ is continuous with respect to the Hausdorff metric, then it is called a continuous valuation (this implies its full additivity, see [Gr]). If a continuous valuation is polynomial of degree at most d, then for all convex compact sets K_1, \ldots, K_s , the function $\phi(\sum_i \lambda_i K_i)$ is a polynomial in $\lambda_i \in \mathbb{R}_+$ of degree at most d+n. This can be deduced immediately from Theorem 6 using approximation by polytopes.

2. We would like to recall here some results in the same spirit due to Khovanskii [Kh1, Kh2].

Let A and B be finite subsets of an abelian semigroup G. Denote by N * Athe sum of N copies of the set A. Let $\chi : G \longrightarrow \mathbb{C}$ be a multiplicative character, i.e. $\chi(x + y) = \chi(x) \cdot \chi(y)$. Let f(N) denote the sum of values of the character χ over all elements of the set B + N * A.

THEOREM 10. [Kh2] For sufficiently large N, the function f(N) is a quasipolynomial in N, i.e. for large N, the function $f(N) = \sum q_i^N P_i(N)$, where q_i are values of the character χ on the set A, and P_i are polynomials of degree strictly less than the number of points in A, in which the value of χ is equal to q_i .

Now let A and B be finite subsets of an abelian group G. Denote by G(A) the subgroup of the group G consisting of the elements of the form $\sum n_i a_i$, where $a_i \in G, n_i \in \mathbb{Z}$ and $\sum n_i = 0$. Now take $\chi \equiv 1$, then f(N) is equal to the cardinality of the set B + N * A.

THEOREM 11. [Kh1] Let G be the lattice $\mathbb{Z}^n \subset \mathbb{R}^n$ and assume that $G(A) = \mathbb{Z}^n$. Then for large N, the function f(N) is a polynomial of degree at most n and the coefficient of N^n is equal to the volume of the convex hull of A.

The methods of [Kh1] and [Kh2] in fact imply the following more general versions of these theorems:

SEMYON ALESKER

THEOREM 10'. Let G and χ be as in Theorem 10, and let B, A_1, \ldots, A_s be finite subsets of G. Let $f(N_1, \ldots, N_s)$ be the sum of values of the character χ over all the elements of the set $B + N_1 * A_1 + \cdots + N_s * A_s$. Then if all the N_i , $1 \leq i \leq s$, are sufficiently large, $f(N_1, \ldots, N_s)$ is a quasi-polynomial.

THEOREM 11'. Let $B, A_i, 1 \leq i \leq s$ be finite subsets of the lattice $\mathbb{Z}^n \subset \mathbb{R}^n$ and $G(\bigcup A_i) = \mathbb{Z}^n$. Then, if all the $N_i, 1 \leq i \leq s$ are sufficiently large, the cardinality of $\sum N_i * A_i$ is a polynomial of degree at most n, whose homogeneous component of degree n is equal to the polynomial vol $(N_1 \cdot \operatorname{conv} A_1 + \cdots + N_s \cdot \operatorname{conv} A_s)$.

As we were informed by Prof. Khovanskii, these facts were known to him (unpublished).

Acknowledgements

I am grateful to Prof. V. D. Milman for his guidance in this work and to the referee for very important remarks. I would also like to thank S. Dar, through whose talk on GAFA Seminar I became familiar with Gromov's work used in the paper.

References

- [Al] Alexandrov, A. D.; Die gemischte Diskriminanten und die gemischte Volumina, Math. Sbornik 3 (1938), 227–251.
- [B-Z] Burago, Yu. D.; Zalgaller, V. A.; Geometric inequalities. Translated from the Russian by A. B. Sosinskiĭ. Grundlehren der Mathematischen Wissenschaften, 285. Springer Series in Soviet Mathematics. Springer, Berlin and New York, 1988.
- [GKZ] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V.; Discriminants, resultants and multidimensional determinants. Birkhäuser, Boston, 1994.
- [Gr] Groemer, H. On the extension of additive functionals on classes of convex sets. Pacific J. Math. 75:2 (1978), 397–410.
- [G] Gromov, M; Convex sets and Kähler manifolds. Advances in differential geometry and topology, 1–38, World Sci. Publishing, Teaneck, NJ, 1990.
- [Kh1] Khovanskii, A. G.; The Newton polytope, the Hilbert polynomial and sums of finite sets. Funct. Anal. Appl., 26:4 (1992), 276–281.
- [Kh2] Khovanskii, A. G.; Sums of finite sets, orbits of commutative semigroups and Hilbert functions. Funct. Anal. Appl., 29:2 (1995), 102–112.
- [Mc1] McMullen, P.; Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc. (3) 35:1 (1977), 113–135.
- [Mc2] McMullen, P.; Valuations and dissections; Handbook of convex geometry, edited by P. M. Gruber and J. M. Wills, 1993.
- [Mc-Sch] McMullen, P.; Schneider, R.; Valuations on convex bodies. In: Convexity and its Applications, 170–247, Birkhäuser, Basel and Boston, 1983.
- [P-S] Perles, M. A.; Sallee, G. T.; Cell complexes, valuations, and the Euler relation. Canad. J. Math. 22 (1970), 235–241.

14

- [P-Kh] Pukhlikov, A. V.; Khovanskii, A. G.; Finitely additive measures of virtual polyhedra (in Russian). Algebra i Analiz 4:2 (1992), 161–185; translation in St. Petersburg Math. J. 4:2 (1993), 337–356.
- [R] Rockafellar R. T.; Convex Analysis. Princeton University Press, 1970.
- [Sch] Schneider, R.; Convex Bodies: the Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications 44. Cambridge University Press, Cambridge, 1993.
- [V] Volland, W.; Ein Fortsetzungssatz f
 ür additive Eipolyederfunktionale im euklidischen Raum. (German) Arch. Math. 8 (1957), 144–149.

Semyon Alesker Department of Mathematics Tel-Aviv University Ramat-Aviv Israel semyon@math.tau.ac.il