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1. Introduction and Statement of Main Results

Let K̄ = (K1,K2, . . . ,Ks) be an s-tuple of compact convex subsets of Rn.
For any continuous function F : Rn −→ C, consider the function

MK̄F : Rs
+ −→ C , where Rs

+ = {(λ1, . . . , λs) | λj ≥ 0} ,

defined by

(MK̄F )(λ1, . . . , λs) =
∫
Ps

i=1 λiKi

F (x) dx. (∗)

This defines an operator MK̄ , which we will call a Minkowski operator. Denote
by A(Cn) the Frechet space of entire functions in n variables with the usual
topology of the uniform convergence on compact sets in Cn, and Cr(Rn) the
Frechet space of r times differentiable functions on Rn with the topology of the
uniform convergence on compact sets in Rn of all partial derivatives up to the
order r (1 ≤ r ≤ ∞).

The main results of this work are Theorems 1 and 3 below.

Theorem 1.

(ı) If F ∈ A(Cn) , then MK̄F has a (unique) extension to an entire function
on Cs and defines a continuous operator from A(Cn) to A(Cs) (see Theorem 3
below).
(ıı) If F ∈ Cr(Rn), then MK̄F ∈ Cr(Rs

+) (it is smooth up to the boundary) and
again MK̄ defines a continuous operator from Cr(Rn) to Cr(Rs

+).

Corollary 2. If F is a polynomial of degree d, then MK̄F is a polynomial of
degree at most d + n.

Indeed, we can assume F to be homogeneous of degree d. Then MK̄ is an entire
function, which is homogeneous of degree d + n, hence it is a polynomial.

In fact, this corollary is well known and it is a particular case of the Pukhlikov–
Khovanskii Theorem ([P-Kh]; see another proof below).
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Theorem 3. Assume that a sequence F (m) ∈ A(Cn) (or Cr(Rn), respectively),
m ∈ N is such that

F (m) −→ F in A(Cn) (or Cr(Rn)).

Let K
(m)
i , Ki, i = 1, 2, . . . , s, m ∈ N be convex compact sets in Rn, and suppose

K
(m)
i −→ Ki in the Hausdorff metric for every i = 1, . . . , s. Then

MK̄(m)F (m) −→ MK̄F

in A(Cs) (or Cr(Rs
+)).

Remarks. 1. It follows from Theorem 1 that, if K is a compact convex set, D is
the standard Euclidean ball and γn is the standard Gaussian measure in Rn, then
γn(K + ε·D) is an entire function of ε and the coefficients of the corresponding
power expansion are rotation invariant continuous valuations on the family of
compact convex sets (see the related definitions in Section 4).

2. There is a different simpler proof of Theorem 1 in the case when all the Ki

are convex polytopes. However, the standard approximation argument cannot
be applied automatically, since Theorem 3 on the continuity does not follow from
that simpler construction even for polytopes.

In Section 4 we present another proof of the Pukhlikov–Khovanskii Theorem.

2. Preliminaries

Before proving these theorems, let us recall some facts, which are probably
quite classical, but we will follow Gromov’s work [G] (see also [R]).

A function f : Rn −→ R is called convex if for all x, y ∈ Rn and µ ∈ [0, 1],

f(µx + (1− µ)y) ≤ µf(x) + (1− µ)f(y);

f is called strictly convex if

f(µx + (1− µ)y) < µf(x) + (1− µ)f(y)

whenever x 6= y and µ ∈ (0, 1). Define a Legendre transform of the convex
function f (which is also called a conjugate function of f)

Lf(y) := sup
x∈Rn

((y, x)− f(x)).

Then Lf is a convex function and −∞ < Lf ≤ +∞ . A set Kf := {y ∈ Rn |
Lf(y) < +∞} is called the effective domain of Lf . Obviously, Kf is a convex
set. For any convex set K, we will denote the relative interior of K by IntK.
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Lemma 4.

(ı) Let f : Rn −→ R be a strictly convex C2-function. Then Kf is a convex set
and the gradient map ∇f : Rn −→ Rn is a one-to-one map of Rn onto IntKf .
(ıı) If f1, f2 are as in (ı), then for all λ1 , λ2 > 0,

Im(∇(λ1f1 + λ2f2)) = λ1 Im(∇f1) + λ2 Im(∇f2).

Proof. (ı) The injectivity of ∇f immediately follows from the strict convexity
of f .

For any x0, x ∈ Rn,

f(x) ≥ f(x0) + (∇f(x0), x− x0).

Hence Lf(∇f(x0)) = (∇f(x0), x0)− f(x0) < ∞ and Im(∇f) ⊂ Kf . In order to
check that Im(∇f) ⊂ IntKf , let us choose any a ∈ ∂Kf and assume that there
exists b ∈ Rn such that ∇f(b) = a. Without loss of generality, one may assume
that a = 0 = b and f(0) = 0. Then f(x) ≥ 0 for all x ∈ Rn.

Since Kf is convex and 0 ∈ ∂Kf , one can find a unit vector u ∈ Rn such that
λu 6∈ Kf for all λ > 0. Consider a new convex function on R1

φ(t) := inf {f(y + tu) | y ⊥ u}.
Clearly, φ(t) ≥ 0 everywhere and φ(0) = 0.

Case 1. Assume that there exists t0 > 0 such that φ(t0) > 0. Then, by the
convexity of φ, φ(t) ≥ φ(t0)

t0
t for t ≥ t0 and for t ≤ 0. Hence

Lφ
(

φ(t0)
t0

)
≤ sup

{
φ(t0)

t0
t− φ(t)

∣∣∣ t ∈ [0, t0]
}

< ∞.

But for the Legendre transform of f , one has

Lf
(

φ(t0)
t0

u
)

= sup
x∈Rn

((
φ(t0)

t0
u, x

)
− f(x)

)

= sup
s∈R, y⊥u

((
φ(t0)

t0
u, su + y

)
− f(su + y)

)

= sup
s∈R

(
φ(t0)

t0
s− φ(s)

)
= Lφ

(
φ(t0)

t0

)
< ∞.

Thus φ(t0)
t0

u ∈ Kf , and this contradicts the choice of u.

Case 2. Assume that φ(t) = 0 for all t ≥ 0. Let us show that this case is
impossible ( this will finish the proof of part (ı) of Lemma 4 ). It would follow
from the fact that f(x) −→∞ as x −→∞.

If the last statement is false, then there exists a sequence of vectors xk −→∞
such that |f(xk)| ≤ C (where C is some constant ). Passing to a subsequence,
we may assume that

xk

|xk| −→ u ∈ Rn,
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where | · | denotes the Euclidean norm in Rn. Since f is strictly convex, f(0) =
0 and ∇f(0) = 0 by assumption, then f(u) > 0. Also, for all x ∈ Rn,

f(x) ≥ f(u) + (∇f(u), x− u).

Substituting x = 0 or x = xk, we obtain

(∇f(u), u) ≥ f(u) > 0,

f(xk) ≥ f(u) + (∇f(u), xk − u).

The last inequality can be rewritten

f(xk) ≥ f(u)− (∇f(u), u) + |xk|
(
∇f(u),

xk

|xk|
)

.

But (∇f(u), xk

|xk| ) −→ (∇f(u), u) > 0, hence f(xk) −→ ∞, which contradicts
our assumptions.

(ıı) Under conditions of the lemma λ1f1 + λ2f2 is also a strictly convex func-
tion. By the part (ı),

Im(∇fi) = IntKfi for i = 1, 2.

Then easily

Im(λ1∇f1 + λ2∇f2) ⊂ λ1 IntKf1 + λ2 IntKf2 ⊂

Int(λ1Kf1 + λ2Kf2) ⊂ Int(Kλ1f1+λ2f2) = Im(∇(λ1f1 + λ2f2)).

Hence all the sets in the above sequence of inclusions coincide. ¤

Lemma 5. [G] Let K ⊂ Rn be an open bounded convex set , let µ be the Lebesgue
measure in Rn. Define

f(x) := log
∫

K

exp(x, y) dµ(y). (1)

Then f is a strictly convex C∞-function and Im(∇f) = K.

Now let Ki, 1 ≤ i ≤ s be compact convex subsets of Rn. For every i, fix a point
ai ∈ Ki. Let µi denote (dim Ki)-dimensional Lebesgue measure supported on
span(Ki − ai). Define

fi(x) := (x, ai) +
∫

Ki−ai

exp(x, y) dµi(y).

For every i, fi(x) depends only on the orthogonal projection of x on span(Ki−ai).
Moreover, fi is a convex function on Rn and strictly convex on span(Ki − ai).
Then it is easy to see that Kfi ⊂ ai + span(Ki− ai). Thus, by Lemmas 5 and 4,

Im∇fi = IntKi = IntKfi .
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Corollary 6. Let Ki, fi, 1 ≤ i ≤ s be as above, λi > 0. Then

Im

(
∇

( s∑

i=1

λifi

))
=

s∑

i=1

λi IntKi.

Proof. It is sufficient to consider all λi = 1. Set L := span
(∑

i(Ki − ai)
)
.

Without loss of generality, we may assume that L = Rn. Then obviously the
function f :=

∑
fi is strictly convex on Rn, and by Lemma 4, Im∇f = IntKf

is an open and convex set. Clearly,

Im∇f ⊂
∑

Im∇fi =
∑

IntKi =
∑

IntKfi = Int
(∑

Kfi

)

(the last equality holds for general convex bounded subsets of Rn). One can
easily see that

∑
Kfi

⊂ Kf , hence

Im∇f ⊂
∑

IntKi ⊂ IntKf = Im∇f. ¤

3. Proofs of Theorems 1 and 3

Proof of Theorem 1. For every Ki, choose fi : Rn −→ R as above. Then
∇fi = ( ∂fi

∂y1
, . . . , ∂fi

∂yn
), and the Jacobian of the gradient map equals the Hessian

of fi,

H(fi) =
(

∂2fi

∂yp∂yq

)n

p,q=1

,

which is a non-negative definite matrix, since fi is convex.
We have for λi > 0,

∫
P

λiKi

F (x) dx =
∫

Rn

F
(∑

λi∇fi(y)
)

det
(
H

(∑
λifi(y)

))
dy. (2)

Write for simplicity Hi(y) = H(fi(y)), so that the last expression is
∫

Rn

F
(∑

λi∇fi(y)
)

det
(∑

λiHi(y)
)

dy

=
∑

j1, ..., jn

λj1 . . . λjn

∫

Rn

F
(∑

λi∇fi(y)
)

D(Hj1(y), . . . , Hjn(y)) dy, (3)

where D(Hj1(y), . . . , Hjn(y)) denotes the mixed discriminant of non-negative
definite symmetric matrices Hj1(y), . . . ,Hjn(y). But it is well known that the
mixed discriminant of such matrices is nonnegative (see, e.g., [Al]).

Let us substitute F ≡ 1 into (2). We obtain

vol
(∑

λiKi

)
=

∑

j1,...,jn

λj1 . . . λjn

∫

Rn

D(Hj1(y), . . . , Hjn(y)) dy.

Hence
∫
Rn D(Hj1(y), . . . , Hjn(y)) dy = V (Kj1 , . . . , Kjn) (the right hand side de-

notes the mixed volume of Kj1 , . . . , Kjn ; see, e.g., [B-Z], [Sch]).
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Observe that the integrand in (3) makes sense also for λi < 0, if F ∈ Cr(Rn)
and for all complex λi, if F ∈ A(Cn). We only have to check the convergence of
the integral for such λi and its convergence after taking partial derivatives with
respect to λi. Then Theorem 1 (ı) and(ıı) will be proved.

Let us show that for the integral in (3), and the same proof works for the
partial derivatives with respect to the λi.

Since Im(∇fi) ⊂ Ki, there exists a constant C, such that
∥∥∑

λi∇fi(y)
∥∥ ≤

C ·∑ |λi| for all y ∈ Rn, where ‖·‖ is some norm in Cn (or in Rn). By the
continuity of F , F

(∑
λi∇fi

)
is bounded by some constant K(R) if

∑ |λi| ≤
R and y ∈ Rn. Hence
∫ ∣∣F (∑

λi∇fi(y)
)
D

(
Hj1(y), . . . ,Hjn

(y)
)∣∣ dy

≤ K(R)
∫

Rn

D(Hj1(y), . . . , Hjn
(y)) dy

= K(R)V (Kj1 , . . . , Kjn) < ∞. ¤

Remark. We have actually shown that, if F ∈ Cr(Rn), then the equality
(2) gives us a smooth extension of MK̄F (λ1 . . . , λn) from Rs

+ to Rs. It turns
out that this extension is natural in some sense, i.e. it does not depend on
the choice of the functions fi. Indeed, assume that we have two such exten-
sions MK̄F and M ′̄

K
F corresponding to fi and f ′i . Choose a sequence of poly-

nomials {Pm} approximating F uniformly on compact sets in Rn. Then for
corresponding extensions, we have MK̄Pm −→ MK̄F and M ′̄

K
Pm −→ M ′̄

K
F

uniformly on compact sets in Rs. By Corollary 2, MK̄Pm and M ′̄
K

Pm are poly-
nomials and since they coincide on Rs

+, they coincide everywhere on Rs. Hence
MK̄Pm ≡ M ′̄

K
Pm on Rs and MK̄F ≡ M ′̄

K
F .

Proof of Theorem 3. Step 1. It is sufficient to prove the continuity of
MK̄F separately with respect to F and K̄ = (K1, . . . , Ks), because MK̄F =
M(F ; K1, . . . ,Ks) can be considered as a map M : L1 ×Ks −→ L2, where L1

and L2 are Frechet spaces, L1 = A(Cn) or Cr(Rn), L2 = A(Cs) or Cr(Rs), and
K is the space of compact convex subsets of Rn with the Hausdorff metric. Since
M is linear with respect to the first argument F ∈ L1, and Ks is locally compact
(by the Blaschke’s selection theorem), then M is continuous as a function of two
arguments ( it is an easy and well known consequence of the Banach–Steinhaus
theorem, which says that if L1, L2 are Frechet spaces, T is a locally compact
topological space and M : L1 × T −→ L2 is linear with respect to the first
argument and continuous with respect to each argument separately, then M is
continuous as a function of two variables).

Step 2. Let K1, . . . , Ks be fixed, F (m) −→ F . Using formula (2) and simple
estimates as in the proof of Theorem 1, one can easily see that MK̄F (m) −→
MK̄F .
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Step 3. Now suppose F ∈ A(Cn) (respectively, Cr(Rn)) is fixed, K
(m)
i −→

Ki as m −→∞ for all i = 1, . . . , s. Let us choose a
(m)
i ∈ K

(m)
i , ai ∈ Ki. Define

fi(y) = (ai, x) + log
∫

Ki−ai

exp(x, y) dµi(x),

f
(m)
i (y) = (a(m)

i , x) + log
∫

K
(m)
i −a

(m)
i

exp(x, y)dµ
(m)
i (x),

where µi, µ
(m)
i are measures as in the discussion after Lemma 5 with Ki, K

(m)
i

instead of K. By (3), MK̄(m)F (λ1, . . . , λs) =
∑

j1,...,jn

λj1 . . . λjn

∫

Rn

F
(∑

λi∇f
(m)
i (y)

)
D(H(m)

j1
(y), . . . , H(m)

jn
(y)) dy

and MK̄F (λ1, . . . , λs) =
∑

j1,...,jn

λj1 . . . λjn

∫

Rn

F
(∑

λi∇fi(y)
)
D(Hj1(y), . . . ,Hjn(y)) dy.

Since all Ki, K
(m)
i are uniformly bounded, there exists a large Euclidean ball

U containing all these sets. As in the proof of Theorem 1, if
∑ |λi| ≤ R, then

|MK̄(m)F (λ1, . . . , λs)| ≤
∑

j1,...,jn

Rn max
x∈R·U

|F (x)|·V (K(m)
j1

, . . . , K
(m)
jn

)

≤ (
max

x∈R·U
|F (x)|)·

( ∑

j1,...,jn

Rn vol(U)
)

≤ K(R)· max
x∈R·U

|F (x)|,

where K(R) is some constant depending on R.
The same estimate holds for MK̄F . Hence, for every ε > 0, one can choose a

polynomial Pε approximating F on the set R·U , such that for all i, m, λi with∑ |λi| ≤ R we have

|MK̄(m)(F − Pε)(λ1, . . . , λs)| < ε, (5)

|MK̄(F − Pε)(λ1, . . . , λs)| < ε. (6)

But by Corollary 2, the degrees of MK̄(m)Pε and MK̄Pε are independent of m.
Obviously, by the definition (∗) in the Introduction, MK̄(m)Pε converges to MK̄Pε

uniformly on compact sets in the non-negative orthant Rs
+. Hence because of

the boundedness of their degrees, MK̄(m)Pε −→ MK̄Pε in Rs (respectively, Cs).
This and (5) and (6) imply that, for large m,

|MK̄(m)F (λ1, . . . , λs)−MK̄F (λ1, . . . , λs)| < 3ε

whenever
∑ |λi| ≤ R.

A similar argument can be applied to prove uniform convergence of partial
derivatives of MK̄(m)F on compact sets. ¤
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4. Polynomial Valuations

We are now going to present another proof of the Pukhlikov–Khovanskii The-
orem. They introduced in [P-Kh] the notion of the polynomial valuation, gener-
alizing the classical translation invariant and translation covariant valuations.

Let Λ be an additive subgroup of Rn. Denote by P(Λ) the set of all polytopes
with vertices in Λ. We will assume that span Λ = Rn.

Definition. (a) A function φ : P(Λ) −→ R is called a valuation, if for all
P1, P2 ∈ P(Λ), such that P1 ∪ P2 and P1 ∩ P2 belong to P(Λ) we have

φ(P1 ∪ P2) + φ(P1 ∩ P2) = φ(P1) + φ(P2). (7)

(b) The valuation φ is called fully additive if, for every finite family of polytopes
P1, . . . , Pk in P(Λ) such that the intersection

⋂
i∈σ Pi over every nonempty sub-

set σ ⊂ {1 . . . k} and their union
⋃k

i=1 Pi lie in P(Λ), the following equation
holds:

φ
( k⋃

i=1

Pi

)
=

∑

σ⊂{1,...,k}, σ 6=∅
(−1)|σ|+1 φ

( ⋂

i∈σ

Pi

)
, (8)

where |σ| is the cardinality of σ.
Obviously, for k = 2, (8) is equivalent to (7). We will consider only fully

additive valuations; however it is true that, if Λ = Rn, then every valuation on
P(Λ) is fully additive (see [V], [P-S] ). But it is not known to the author whether
this holds in the general case. In the definitions (a) and (b) one can replace P(Λ)
by the set of all convex compact sets K. If φ is continuous with respect to the
Hausdorff metric on K, then (a) implies (b) [Gr].

(c) The valuation φ : P(Λ) −→ R is called polynomial of degree at most d,
if for every fixed K ∈ P(Λ), φ(K + x) is a polynomial of degree at most d with
respect to x ∈ Λ.

Examples. 1. Let µ be any signed locally finite measure on Rn. Then φ(K) :=
µ(K) is a fully additive valuation.

2. The mixed volume

φ(K) = V (K[j], A1, . . . , An−j),

where K[j] means that K occurs j times, and Al are fixed convex compact sets,
is known to be a fully additive translation invariant continuous valuation.

3. Let Λ = Zn ⊂ Rn be an integer lattice, and let f be a polynomial of degree d.
Then for K ∈ P(Λ),

φ(K) :=
∑

x∈K∩Zn

f(x)

is a fully additive polynomial valuation of degree d.
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4. Let Λ = Zn, let Ω be a subset of Rn, which is invariant with respect to
translations to vectors in Zn, and let K and f be as in example 3. Then φ(K) :=∫

K∩Ω
f(x) dx is also a fully additive polynomial valuation of degree d.

For more information about valuations, especially those which are translation
invariant and translation covariant, see the surveys [Mc-Sch] and [Mc2].

Theorem 6. [P-Kh] Let φ : P(Λ) −→ R be a fully additive polynomial valuation
of degree d. Fix K1, . . . , Ks ∈ P(Λ). Then φ

(∑
i λiKi

)
is a polynomial in

λi ∈ Z+ of degree at most d + n. Moreover , if Q ·P(Λ) = P(Λ), then it is a
polynomial in λi ∈ Q+.

Remark. For translation invariant valuations this theorem was proved in [Mc1],
and our proof uses some constructions of that work.

Lemma 7. (Well known; see, e.g., [GKZ, p. 215].) Let P ⊂ Rn be a polytope.
Then there exists a family of k-simplices {Sα}α∈I , 0 ≤ k ≤ n, such that
(ı)P =

⋃
α∈I Sα;

(ıı) each vertex of each Sα is a vertex of P ;
(ııı) every two Sβ and Sγ intersect in a common face;
(ıv) for all β and γ, Sβ

⋂
Sγ ∈ {Sα}α∈I .

Lemma 8. Let K1, . . . , Ks be polytopes in Rn. Then for all λi ≥ 0, 1 ≤ i ≤ s,
the set K(λ̄) :=

∑
i λiKi has a decomposition

K(λ̄) =
⋃

α∈I

Sα(λ̄),

where Sα(λ̄) are polytopes (not necessarily simplices) such that
(ı) they satisfy (ı)− (ıv) in Lemma 7;
(ıı) if for some λ̄0, λ0

i > 0, and α, β, γ ∈ I, Sα(λ̄0) ∩ Sβ(λ̄0) = Sγ(λ̄0), then for
all λ̄ = (λi), λi ≥ 0 we have Sα(λ̄) ∩ Sβ(λ̄) = Sγ(λ̄);
(ııı) each Sα(λ̄) has the form

Sα(λ̄) =
∑

i

λiSi,α

where Si,α are simplices with vertices in Ki, independent of λ̄ and dim Sα(λ̄) =∑
i dim(λiSi,α) (note that dim(λiSi,α) = dim Si,α for λi > 0).

Proof. Because of the homogeneity it is sufficient to prove the lemma only for
λi ≥ 0,

∑
λi = 1. Consider in Rs ⊕ Rn a convex polytope

P :=

{
(µ1, . . . , µs; x) | µi ≥ 0,

s∑

i=1

µi = 1, x ∈
∑

i

µiKi

}

Now apply Lemma 7 to P =
⋃

α Sα. Set

Sα(λ̄) := Sα ∩ {(µ1, . . . , µs;x) | µi = λi for all i} .

One can easily check that Sα(λ̄) satisfy all the properties in Lemma 8. ¤
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Lemma 9. Let P ∈ P(Λ). Then φ(N ·P ) is a polynomial in N ∈ Z+ of degree
at most d + n.

Proof. By Lemma 7, P =
⋃

α∈I Sα, where the Sα are simplices. Hence

φ(N ·P ) =
∑

σ⊂I, σ 6=∅
(−1)|σ|−1φ

(
N ·

( ⋂
α∈σ

Sα

))

But for fixed σ, there exists γ ∈ I such that
⋂

α∈σ Sα = Sγ . So we have to show
that for every simplex ∆ ∈ P(Λ), φ(N ·∆) is a polynomial of degree at most
d + n.

Fix ∆ and write k = dim ∆. The proof will be by induction in k. If k = 0,
then ∆ = {v} is a point and φ(N ·{v}) = φ({0}+ Nv) is a polynomial of degree
at most d by the definition of the polynomial valuation.

Let k > 0. For simplicity of notation we will assume that k = n. In an
appropriate coordinate system ∆ has the form ∆ = a + ∆̃, where a ∈ Rn,
∆̃ = {(x1, . . . , xn) | 0 ≤ x1 ≤ . . . ≤ xn ≤ 1}. Thus

N ·∆̃ = {(x1, . . . , xn) | 0 ≤ x1 ≤ . . . ≤ xn ≤ N} .

N ·∆̃ can be represented as a disjoint union

N ·∆̃ =
⋃

z∈Zn∩((N−1)·∆̃)

(
(z + Q̃) ∩ (N ·∆̃)

) ⋃
(N ·∆′), (9)

where Q̃ := {(x1, . . . , xn) | 0 ≤ xi < 1 for all i} and

∆′ = {(x1, . . . , xn) | 0 ≤ x1 ≤ . . . ≤ xn−1 ≤ xn = 1} .

Of course, (z + Q̃) ∩ (N ·∆̃) is not a compact polytope, so φ is not defined on
it. But we can define φ on this set in the following natural way. First, for
τ ⊂ {1, . . . , n}, denote Fτ :=

{(x1, . . . , xn) | 0 ≤ xi ≤ 1 for all i ∈ {1, . . . , n}, and xj = 1 for all j ∈ τ}
Clearly, Fτ is an (n− |τ |)-dimensional face of the unit cube [0 , 1]n. Now define

φ
(
(z + Q̃) ∩ (N ·∆̃)

)
:=

∑

τ⊂{1,...,n}
(−1)|τ |φ

(
(z + Fτ ) ∩ (N ·∆̃)

)
.

Since in (9) we have a disjoint union,

φ(N ·∆) = φ(N ·a + N ·∆′) +
∑

z∈Zn∩((N−1)·∆̃)

φ
(
N ·a + (z + Q̃) ∩N ·∆̃

)
. (10)

Every z ∈ Zn ∩ (
(N − 1)·∆̃)

has the form z = (zi)n
i=1, where

z1 = · · · = zj1 < zj1+1 = · · · = zj2 < · · · < zjl−1+1 = · · · = zjl
≤ N − 1, (11)

and jl = n.
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Set for 1 ≤ i ≤ j ≤ n, Ti,j :=

{(x1, . . . , xn) | 0 ≤ xi ≤ xi+1 ≤ . . . ≤ xj ≤ 1 and xl = 0 for l < i or l > j} .

For a sequence 0 < j1 < · · · < jl−1 < n, denote (as in [Mc1] ) Tj1...jl−1 :=
T0j1 + · · · + Tl−1, n. Now let T̃j1...jl−1 := Tj1...jl−1 ∩ Q̃. So if z belongs to Zn ∩
(N − 1) ·∆̃ and satisfies (11), then obviously (z + Q̃) ∩ N ·∆̃ = z + T̃j1...jl−1 .
Define Sj1...jl−1(N) = {z ∈ Zn | z satisfies (11) }. Then (10) can be rewritten:

φ(N ·∆) = φ(N ·a + N ·∆′)

+
∑

0<j1<···<jj−1<n

( ∑

z∈Sj1...jl−1 (N)

φ(N ·a + z + T̃j1...jl−1)

)
. (12)

By the inductive hypothesis, φ(N ·a + N ·∆′) is a polynomial in N ∈ Z+ of
degree at most d + n. Now fix 0 < j1 < · · · < jl−1 < n. Then φ(x + T̃j1...jl−1)
is a polynomial in x of degree at most d, let us denote it q(x). It is sufficient to
show that

∑
z∈Sj1...jl−1 (N) q(N ·a + z) is a polynomial in N ∈ Z+ of degree at

most d + n.
We can write q(N ·a + z) =

∑d
t=0 N tqt(z), where qt(z) is a polynomial of

degree at most d − t. Recall that for any z ∈ Sj1...jl−1(N) and m = 1, . . . l − 1,
zjm−1+1 = . . . = zjm . So set wm := zjm . We have 0 ≤ w1 < w2 < . . . < wl ≤
N − 1. Actually, qt(z) is a polynomial in the vector w = (w1, . . . , wl) ∈ Rl. We
will show that

f(N) :=
∑

0≤w1<w2<···<wl≤N−1

qt(w)

is a polynomial in N ∈ Z+ of degree at most deg qt+l (note that, if N ≤ l−1 the
sum is extended over an empty set and for such an N , we just define f(N) := 0).
This and (12) will imply that φ(N ·∆) is a polynomial of degree at most d + n.

In order to prove that f(N) is a polynomial of degree g, it is sufficient to show
that f(N + 1)− f(N) is a polynomial of degree g − 1.

Let us apply induction in l. If l = 1,

f(N + 1)− f(N) = qt(N) for N ≥ 0, (13)

and the lemma follows.
Assume that l > 0. We have

f(N + 1)− f(N) =
∑

0≤w1<···<wl−1<wl=N

qt(w).

We may assume qt to be a monomial qt(w) = wα1
1 . . . wαl

l , αj ≥ 0. Hence

f(N + 1)− f(N) = Nαl ·
∑

0≤w1<···<wl−1≤N−1

wα1
1 . . . w

αl−1
l−1 .

By the inductive hypothesis, the last sum is a polynomial of degree at most
l − 1 +

∑n−1
1 αj . Hence f(N) is a polynomial of degree at most l +

∑n
1 αj . ¤
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Proof of Theorem 6. Using the same notation as previously, we have to show
that φ(K(λ̄)) is a polynomial in λi ∈ Z+ of degree at most d + n. By Lemma 8
and the full additivity of φ,

φ(K(λ̄)) = φ

( ⋃

α∈I

Sα(λ̄)

)
=

∑

σ⊂I, σ 6=∅
(−1)|σ|+1φ

( ⋂

β∈σ

Sβ(λ̄)

)
.

Fix some σ ⊂ I, σ 6= ∅. By Lemma 8 (ıı) there exists γ ∈ I, such that⋂
β∈σ Sβ(λ̄) = Sγ(λ̄) for every vector λ̄ with nonnegative coordinates.
So it is sufficient to show that for any γ, φ(Sγ(λ̄)) is a polynomial. But

Sγ(λ̄) =
∑s

i=1 λi ·Sγ,i as in Lemma 8 (ııı).
Suppose that for 1 ≤ i ≤ p, dim Sγ,i > 0 and for i > p, dim Sγ,i = 0, i.e.

Sγ,i = {vi} is a point for i > p.
Define ∆i := Sγ,i − vγ,i, where vγ,i is some vertex of Sγ,i. So Sγ(λ̄) =∑p
i=1 λi∆i +

∑p
i=1 λivγ,i +

∑
i>p λiui. By Lemma 8 (ııı),

dim Sγ(λ̄) =
∑

i

dim(λi∆i).

This implies that
∑

λi∆i is, in fact, a direct sum of the λi∆i. So we have to
check that

φ

( s⊕

i=1

(λi∆i) +
l∑

j=1

µjuj

)

is a polynomial in λi, µj ∈ Z+ of degree at most d + n, where the uj are fixed
integer vectors.

Let L1 =
⊕s−1

j=1 span∆j , L2 = span∆s. For any polytopes K1, K2, Ki ⊂
Li, i = 1, 2, consider the polynomial φ(K1 ⊕K2 + x), which we will denote by
WK1⊕K2(x). Obviously, all the previous definitions of the valuation and the
polynomial valuation can be formulated not only for the real valued functions
on P(Λ), but also for the vector valued functions with values in a linear space
(and even in an abelian semigroup). The proofs of all the previous lemmas of
Section 4 will work without any change.

Then obviously WK1⊕K2(x) is a fully additive polynomial valuation with re-
spect to each argument K1 and K2, with values in the linear space of polynomials
in x (here we use the fact that the sum of K1 and K2 is direct). Hence by Lemma
9 (applied in the vector valued case), WK1⊕N ·K2(x) is a polynomial in N (at
the moment we are not interested in its degree). In particular, this implies that
φ(K1 ⊕ N ·K2 + x) is a polynomial in N and x, where N ∈ Z+, x ∈ Λ. Then
obviously if we decompose WK1⊕N ·K2 with respect to the powers in N , then its
coefficients will be polynomial valued fully additive polynomial valuations with
respect to K1 (now K2 is fixed). Applying an inductive argument in s, we see
that

φ

( s⊕

i=1

(λi∆i) +
l∑

j=1

µjuj

)
(14)
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is a polynomial in λi, µj ∈ Z+.
Let us estimate its degree. If λi and µj are fixed,

φ

( s⊕

i=1

(t·λi∆i) +
l∑

j=1

t·µjuj

)

is a polynomial in t ∈ Z+ of degree at most d+n by Lemma 9. Hence the degree
of (14) cannot be bigger than d + n.

Now consider the case Q ·P(Λ) = P(Λ). Let K1, . . . , Ks ∈ P(Λ). For
any natural number m, φ

(∑s
i=1 λi( 1

mKi)
)

is a polynomial in λi ∈ Z+, hence
φ
(∑s

i=1 λiKi

)
is a polynomial in λi ∈ 1

m ·Z+ for any m ∈ N. Consequently, it is
a polynomial in λi ∈ Q+. ¤

Remarks. 1. The valuation φ can be defined not only on polytopes, but on
the family of all convex compact sets. If φ is continuous with respect to the
Hausdorff metric, then it is called a continuous valuation (this implies its full
additivity, see [Gr] ). If a continuous valuation is polynomial of degree at most
d, then for all convex compact sets K1, . . . , Ks, the function φ

(∑
i λiKi

)
is a

polynomial in λi ∈ R+ of degree at most d+n. This can be deduced immediately
from Theorem 6 using approximation by polytopes.

2. We would like to recall here some results in the same spirit due to Khovanskii
[Kh1, Kh2].

Let A and B be finite subsets of an abelian semigroup G. Denote by N ∗ A

the sum of N copies of the set A. Let χ : G −→ C be a multiplicative character,
i.e. χ(x + y) = χ(x)·χ(y). Let f(N) denote the sum of values of the character
χ over all elements of the set B + N ∗A.

Theorem 10. [Kh2] For sufficiently large N , the function f(N) is a quasi-
polynomial in N , i .e. for large N , the function f(N) =

∑
qN
i Pi(N), where qi

are values of the character χ on the set A, and Pi are polynomials of degree
strictly less than the number of points in A, in which the value of χ is equal
to qi.

Now let A and B be finite subsets of an abelian group G. Denote by G(A) the
subgroup of the group G consisting of the elements of the form

∑
niai, where

ai ∈ G,ni ∈ Z and
∑

ni = 0. Now take χ ≡ 1, then f(N) is equal to the
cardinality of the set B + N ∗A .

Theorem 11. [Kh1] Let G be the lattice Zn ⊂ Rn and assume that G(A) = Zn.
Then for large N , the function f(N) is a polynomial of degree at most n and the
coefficient of Nn is equal to the volume of the convex hull of A.

The methods of [Kh1] and [Kh2] in fact imply the following more general versions
of these theorems:
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Theorem 10′. Let G and χ be as in Theorem 10, and let B, A1, . . . , As be finite
subsets of G. Let f(N1, . . . , Ns) be the sum of values of the character χ over all
the elements of the set B +N1 ∗A1 + · · ·+Ns ∗As. Then if all the Ni, 1 ≤ i ≤ s,

are sufficiently large, f(N1, . . . , Ns) is a quasi-polynomial .

Theorem 11′. Let B, Ai, 1 ≤ i ≤ s be finite subsets of the lattice Zn ⊂ Rn and
G

(⋃
Ai

)
= Zn. Then, if all the Ni, 1 ≤ i ≤ s are sufficiently large, the cardinal-

ity of
∑

Ni ∗Ai is a polynomial of degree at most n, whose homogeneous compo-
nent of degree n is equal to the polynomial vol (N1 · conv A1 + · · ·+Ns · conv As).

As we were informed by Prof. Khovanskii, these facts were known to him (un-
published).
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