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Function Theory and Operator Theory

on the Dirichlet Space

ZHIJIAN WU

Abstract. We discuss some recent achievements in function theory and

operator theory on the Dirichlet space, paying particular attention to in-

variant subspaces, interpolation and Hankel operators.

Introduction

In recent years the Dirichlet space has received a lot of attention from math-

ematicians in the areas of modern analysis, probability and statistical analysis.

We intend to discuss some recent achievements in function theory and opera-

tor theory on the Dirichlet space. The key references are [Richter and Shields

1988; Richter and Sundberg 1992; Aleman 1992; Marshall and Sundberg 1993;

Rochberg and Wu 1993; Wu 1993]. In this introductory section we state the

basic results. Proofs will be discussed in the succeeding sections.

Denote by D the unit disk of the complex plane. For α ∈ R, the space Dα

consists of all analytic functions f(z) =
∑∞

0 anz
n defined on D with the norm

‖f‖α =

(

∞
∑

0

(n+ 1)α|an|
2

)1/2

.

For α = −1 one has D−1 = B, the Bergman space; for α = 0, D0 = H2, the

Hardy space; and for α = 1, D1 = D, the Dirichlet space. The space Dα is

referred to as a weighted Dirichlet space if α > 0, and a weighted Bergman space

if α < 0. It is trivial that Dα ⊂ Dβ if α > β. In particular, the Dirichlet space

is contained in the Hardy space.

For any w ∈ D, the point evaluation at w is a bounded linear functional on

D. Therefore there is a corresponding reproducing kernel. It is given by

kw(z) = k(z, w) =
1

wz
log

1

1 − wz
.
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Let

D(f) =

∫

D

|f ′(z)|
2
dA(z) =

∞
∑

n=1

n |an|
2,

where dA(z) = (1/π) dx dy is normalized Lebesgue measure on D. The square

of the norm of a function f in D can be also expressed as

‖f‖
2

= ‖f‖
2
1 = ‖f‖

2
0 +D(f).

Arazy, Fisher and Peetre proved in [Arazy et al. 1988] that the number
√

D(f) is the Hilbert–Schmidt norm of the big Hankel operator on the Bergman

space (introduced first in [Axler 1986]) with the analytic symbol f . Arazy and

Fisher [1985] proved that the Dirichlet space D with the norm ‖ · ‖ =
√

D( · )

is the unique Möbius invariant Hilbert space on D. A more general result in

[Arazy et al. 1990] implies that for any Bergman type space B(ν) = L2(D, ν) ∩

{analytic functions on D}, which has a reproducing kernel kν(z, w), one has the

formula
∫

D

∫

D

|f(z) − f(w)|2|kν(z, w)|2 dν(z) dν(w) = D(f) for all f ∈ D.

The operator Mz of multiplication by z on the Dirichlet space, denoted some-

times by (Mz ,D), is a bounded linear operator. Moreover it is an analytic

2-isometry; that is,

∥

∥M2
z f

∥

∥

2
− 2 ‖Mzf‖

2
+ ‖f‖

2
= 0 for all f ∈ D, and

∞
⋂

n=0

Mn
z D = {0}.

Richter [1991] proved that every cyclic analytic 2-isometry can be represented as

multiplication by z on a Dirichlet-type space D(µ) with the norm ‖ · ‖µ defined

by

‖f‖
2
µ = ‖f‖

2
0 +Dµ(f).

Here µ is a nonnegative finite Borel measure on the unit circle ∂D; the number

Dµ(f) is defined by

Dµ(f) =

∫

D

|f ′(z)|2hµ(z) dA(z),

where hµ(z) is the harmonic extension of the measure µ to D, defined as the

integral of the Poisson kernel Pz(e
iθ) = (1 − |z|2)/|eiθ − z|2 against dµ:

hµ(z) =
1

2π

∫ 2π

0

Pz(e
iθ) dµ(θ).

It is not hard to see that Dµ(f) < ∞ implies f ∈ H2. Therefore D(µ) ⊆ H2.

Deep results involving D(µ) can be found in [Richter and Sundberg 1991].

A closed subspace N of D is called invariant if Mz maps N into itself. We

shall discuss the following two theorems for invariant subspaces.
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Theorem 0.1. Let N 6= {0} be an invariant subspace for (Mz ,D). Then

dim(N 	 zN) = 1,

that is, zN is a closed subspace of N of codimension one.

For f ∈ D, denote by [f ] the smallest invariant subspace of D containing f . An

analytic function ϕ defined on D is called a multiplier of D if ϕD ⊆ D. The

multiplier norm of ϕ is defined by

‖ϕ‖
M

= sup{‖ϕf‖ : f ∈ D, ‖f‖ = 1}.

Theorem 0.2. Every nonzero invariant subspace N of (Mz ,D) has the form

N = [ϕ] = ϕD(mϕ),

where ϕ ∈ N 	 zN is a multiplier of D, and dmϕ = |ϕ(eiθ)|2 dθ/2π.

The codimension-one property for invariant subspaces of the Dirichlet space was

first proved in [Richter and Shields 1988]. Another proof that works for the

more general operators (Mz ,D(µ)) and gives more information can be found

in [Richter and Sundberg 1992]. Aleman [1992] generalized the argument in

[Richter and Sundberg 1992] so that it works for the weighted Dirichlet spaces

Dα for 0 < α ≤ 1 (α > 1 is trivial). Recently, Aleman, Richter, and Ross

provided another approach to the codimension-one property which is good for

a large class of weighted Dirichlet spaces and certain Banach spaces. Part of

Theorem 0.2 was proved in [Richter 1991]. That the generator ϕ is a multiplier

of D was proved in [Richter and Sundberg 1992]. (The result there is for the

operator (Mz,D(µ))).

Carleson [1958] proved that, for a disjoint sequence {zn} ⊂ D, the interpola-

tion problem

ϕ(zn) = wn, for n = 1, 2, 3, . . . (0–1)

has a solution ϕ ∈ H∞ for every given {wn} ∈ `∞ if and only if there are a δ > 0

and a C <∞ such that
∣

∣

∣

∣

zn − zm

1 − z̄nzm

∣

∣

∣

∣

≥ δ for all n 6= m

and
∑

zn∈S(I)

(1 − |zn|
2) ≤ C |I| for all arcs I ⊂ ∂D.

Here |I| is the arc length of I and S(I) is the Carleson square based on I, defined

as

S(I) =
{

z ∈ D : z/|z| ∈ I and |z| > 1 − |I|/2π
}

.

Let MD denote the space of multipliers of D. It is clear that MD is an algebra

and MD ⊂ H∞. We remark that H∞ is in fact the space of all multipliers of

H2.
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A sequence {zn} ⊂ D is called an interpolating sequence for MD if, for each

bounded sequence of complex numbers {wn}, the interpolation problem (0–1)

has a solution ϕ in MD. By the closed graph theorem, we know that if {zn} is an

interpolating sequence for MD then there is a constant C <∞ so that the inter-

polation can be done with a function ϕ ∈ MD satisfying ‖ϕ‖
M

≤ C ‖{wn}‖`∞ .

Axler [1992] proved that any sequence {zn} ⊂ D with |zn| → 1 contains a

subsequence that is an interpolating sequence for MD. Marshall and Sundberg

[1993] gave the following necessary and sufficient conditions for an interpolating

sequence for MD.

Theorem 0.3. A sequence {zn} is an interpolating sequence for MD if and only

if there exist a γ > 0 and a C0 <∞ such that

1 −

∣

∣

∣

∣

zn − zm

1 − z̄nzm

∣

∣

∣

∣

2

≤ (1 − |zn|
2)

γ
for all n 6= m (0–2)

and
∑

zn∈∪S(Ij)

(

log
1

1 − |zn|2

)−1

≤ C
(

log
1

Cap
(
⋃

Ij
)

)−1

. (0–3)

Here {Ij} is any finite collection of disjoint arcs on ∂D.

Bishop also proved this theorem independently. Sundberg told me that a similar

result for MDα
with 0 < α < 1 is also true.

Condition (0–3) is a geometric condition for a Carleson measure for D. Car-

leson measures for Dα were first characterized by Stegenga [1980]. His result

says that a nonnegative measure µ on D satisfies
∫

D

|g(z)|2 dµ(z) ≤ C ‖g‖
2
α for all g ∈ Dα

(in other words, is a Carleson measure for Dα) if and only if

µ
(

⋃

S(Ij)
)

≤ C Capα

(

⋃

Ij

)

for any finite collection of disjoint arcs {Ij} on ∂D. Here Capα( · ) denotes an

appropriate Bessel capacity depending on α. When α = 1, the usual logarithmic

capacity may be used for Cap1( · ). Using Stegenga’s theorem, condition (0–3)

can be replaced by

∑

(

log
1

1 − |zn|2

)−1

δzn
is a Carleson measure for D. (0–4)

Hankel operators (small and big) on the Hardy and the Bergman spaces have

been studied intensively in the past fifteen years. We refer the reader to [Luecking

1992; Peller 1982; Rochberg 1985; Zhu 1990] and references therein for more in-

formation. Denote by PH2 the orthogonal projection from L2(∂D) onto H2. On

the Hardy space, the Hankel operator with symbol b ∈ L2(∂D) can be written as

(I − PH2)(b̄g) for g ∈ H
∞.
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Another existing definition is

PH2(bḡ) for g ∈ H
∞.

In fact, if {b̄n} is the sequence of Fourier coefficients of b, the two operators

above correspond to the Hankel matrices {b1, b2, b3, . . .} and {b0, b1, b2, . . .},

respectively. In more general spaces, these expressions define two different op-

erators, called big Hankel and small Hankel, respectively. One basic question in

the study of Hankel operators is that of understanding the “size” of the oper-

ators (for example boundedness or compactness) via the “smoothness” of their

symbols.

We can view the Dirichlet space as a subspace of the Sobolev space L2,1(D),

defined as the completion of C1(D) under the norm

‖f‖ =

{

∣

∣

∣

∫

D

f dA

∣

∣

∣

2

+

∫

D

(

|∂ zf |
2

+ |∂ z̄f |
2)
dA

}1/2

.

Note that the restriction of this norm to D, which yields ‖f‖
2

= |f(0)|2+D(f) if

f ∈ D, is different from but equivalent to the norm of D introduced previously.

Denote by P the set of all polynomials in z on D. Clearly, P is dense in Dα. Let

PD be the orthogonal projection from L2,1(D) onto D. On the Dirichlet space,

the small Hankel operator with symbol b is defined densely by

Hb(g) = PD(bḡ) for g ∈ P.

It turns out that the big Hankel operator on the Dirichlet space with an

analytic symbol is easy to study; this is opposite to the situation on the Bergman

space. Therefore we discuss here only the small Hankel operator. The following

two theorems can be found in [Rochberg and Wu 1993; Wu 1993], where they

are proved for weighted Dirichlet and Bergman spaces.

Theorem 0.4. Suppose b is analytic on D.

(a) The Hankel operator Hb is bounded on D if and only if |b′(z)|2 dA(z) is a

Carleson measure for D.

(b) The Hankel operator Hb is compact on D if and only if |b′(z)|2 dA(z) is a

Carleson measure for D and satisfies

∫

S

S(Ij)

|b′(z)|2 dA(z) = o

({

log
1

Cap
(
⋃

Ij
)

}−1)

. (0–5)

Denote by WD and wD, respectively, the sets of all analytic functions b that

satisfy conditions (a) and (b) in Theorem 0.4. Let XD be the set of all analytic

functions f on D that can be expressed as f =
∑

gjh
′
j , where gj , hj ∈ D with

∑

‖gj‖ ‖hj‖ <∞. Define the norm of f in XD as

‖f‖
XD

= inf
{

∑

‖gj‖ ‖hj‖ : f =
∑

gjh
′
j with gj , hj ∈ D

}

.
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Theorem 0.5. The dual of XD is WD, realized by the pairing

〈

f , b
〉∗

=

∫

D

f(z)b′(z) dA(z), with f ∈ XD and b ∈ WD;

The dual of wD is XD, realized by the pairing

∗〈

b, f
〉

=

∫

D

b′(z)f(z) dA(z), with b ∈ wD and f ∈ XD.

The form of the definition of XD is natural. For example, a result in [Coifman

et al. 1976] suggests that the right way to look at a function f in the Hardy

space H1 (on the unit ball) is as f =
∑

fjgj , where fj , gj ∈ H2, and

‖f‖
H1 = inf

{
∑

‖fj‖H2 ‖gj‖H2

}

.

Corresponding to the weighted Dirichlet spaces, one can define

WDα
= {b ∈ Dα : g 7→ b′g is bounded from Dα to Dα−2}

and

wDα
= {b ∈ Dα : g 7→ b′g is compact from Dα to Dα−2}.

It is not hard to see that WH2 = BMOA and wH2 = VMOA. Therefore Theo-

rem 0.5 is similar to the analytic versions of Fefferman’s and Sarason’s well-known

theorems, saying that (H1)∗ = BMOA and (VMOA)∗ = H1.

Notation. In the rest of the paper the letter C denotes a positive constant

that many vary at each occurrence but is independent of the essential variables

or quantities.

1. Invariant Subspaces

The codimension-one property for invariant subspaces of the Dirichlet space

is related to the cellular indecomposibility of the operator (Mz,D). This con-

cept was first introduced and studied by Olin and Thomson [1984] for more

general Hilbert spaces. Later Bourdon [1986] proved in that if the operator Mz

is cellular indecomposable on a Hilbert space H of analytic functions on D with

certain properties, then every nonzero invariant subspace for (Mz ,H) has the

codimension-one property. The required properties for H in Bourdon’s paper

are: the polynomials are dense in H; the operator Mz is a bounded linear op-

erator on H; if zg ∈ H and g is analytic on D then g ∈ H; and for each point

w ∈ D the point evaluation at w is a bounded linear functional on H. Clearly

our spaces satisfy these requirements. The operator (Mz ,H) is said to be cellular

indecomposable if N∩Q 6= {0} for any two nonzero invariant subspaces N and Q

of (Mz ,H). We note that (Mz ,H
2) clearly is cellular indecomposable by Beurl-

ing’s Theorem. However, from an example constructed by Horowitz [1974], we

know that (Mz ,B) is not cellular indecomposable. We also know that (Mz ,B)
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does not have the codimension-one property; see, for example, [Bercovici et al.

1985] or [Seip 1993].

To prove Theorem 0.1, we show that the operator (Mz ,D) is cellular inde-

composable. This is a consequence of the following result.

Theorem 1.1. If f ∈ D, then f = ϕ/ψ, where ϕ and ψ are in D ∩ H∞.

This was proved in [Richter and Shields 1988] for the Dirichlet spaces on con-

nected domains, in [Richter and Sundberg 1992] for D(µ), and in [Aleman 1992]

for weighted Dirichlet spaces. We discuss the proof later.

Let N 6= {0} be an invariant subspace for (Mz ,D) and f ∈ N \ {0}. By

Theorem 1.1, there are functions ϕ,ψ ∈ D ∩ H∞ such that f = ϕ/ψ. We claim

that ϕ = ψf is in [f ] ⊆ N. Let ψr(z) = ψ(rz), for 0 < r < 1. It is clear that we

only need to show ψrf → ϕ in D. Straightforward estimates show that

‖ψrf − ϕ‖ ≤ ‖ψr(f − fr)‖ + ‖ϕr − ϕ‖

≤ ‖ψ′
r(f − fr)‖B

+ ‖ψ‖
H∞ ‖f − fr‖ + ‖ϕr − ϕ‖ .

It suffices to show the first term on the right goes to zero as r → 1−. Recall

that D is contained in the little Bloch space, which consists of all the analytic

functions g on D such that (1−|z|2)|g′(z)| = o(1) as |z| → 1−. We have therefore

(1 − |rz|2)|ψ′
r(z)| ≤ C for all |rz| < 1.

Write f(z) =
∑∞

0 anz
n. Then

∥

∥

∥

∥

f − fr

1 − |rz|2

∥

∥

∥

∥

2

B

≤

∞
∑

0

|an|
2

∫ 1

0

t2n − (rt)2n

(1 − r2t2)2
tdt ≤ C

∞
∑

0

n |an|
2.

This is enough for the claim. The discussion proves in fact the following result.

Lemma 1.2. Suppose ψ ∈ D ∩ H∞ and f ∈ D. If ψf ∈ D, then ψf ∈ [f ].

From Theorem 1.1, we see that there is always a nonzero bounded function ϕ ∈ N

if N is a nonzero invariant subspace for (Mz ,D). If N and Q are two nonzero

invariant subspaces for (Mz ,D), there are nonzero bounded functions ϕ ∈ N and

ψ ∈ Q. Clearly ϕψ is also nonzero, bounded and in D, therefore in both N and

Q by Lemma 1.2. Thus N∩Q 6= {0}; that is, (Mz ,D) is cellular indecomposable.

To prove Theorem 1.1, we need several lemmas.

Lemma 1.3. Suppose an, bn ≥ 0, for n = 0, 1, 2, . . .. If

∑

bn(1 − rn) ≤
∑

an(1 − rn)

for every r in the interval (1−δ, 1) with some δ ∈ (0, 1), then

∑

nbn ≤
∑

nan.
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Proof. Without loss of generality, we assume
∑

nan <∞. Clearly we have

N
∑

n=1

nbn = lim
r→1−

1

1 − r

N
∑

n=1

bn(1 − rn) ≤ lim
r→1−

1

1 − r

∞
∑

n=1

an(1 − rn) ≤
∞
∑

n=1

nan.

This is enough. ˜

Recall the inner-outer factorization for a nonzero function f ∈ H2: f(z) =

I(z)F (z), where the inner and outer factors I(z) and F (z) satisfy |I(eiθ)| = 1

a.e. on ∂D and

F (z) = exp

(

1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |f(eiθ)|dθ

)

for all z ∈ D.

One application of Lemma 1.3 is the following.

Corollary 1.4. Let f ∈ D and let F be an analytic function on D with

|F (z)| ≥ |f(z)| in D and |F (eiθ)| = |f(eiθ)| a.e. on ∂D. Then F ∈ D and

‖F‖ ≤ ‖f‖. In particular this estimate is true if F is the outer factor of f ∈ D.

Proof. Write f =
∑

fnz
n and F =

∑

Fnz
n. We have clearly

∑

|fn|
2 = ‖f‖

2
0 = ‖F‖

2
0 =

∑

|Fn|
2 and

∑

|fn|
2r2n = ‖f(r · )‖

2
0 ≤ ‖F (r · )‖

2
0 =

∑

|Fn|
2r2n for all r ∈ (0, 1).

Since D(f) =
∑

n |fn|
2 <∞, applying Lemma 1.3 to the inequality

∑

|Fn|
2(1 − r2n) = ‖F‖

2
0 − ‖F (r · )‖

2
0 ≤ ‖f‖

2
0 − ‖f(r · )‖

2
0 =

∑

|fn|
2(1 − r2n),

we get D(F ) ≤ D(f) <∞. This yields F ∈ D and ‖F‖ ≤ ‖f‖. ˜

Let (X,µ) be a probability space and let g ∈ L1(X,µ) be positive µ-a.e. on X

and satisfy log g ∈ L1(X,µ). Jensen’s inequality says that exp
(∫

X
log g dµ

)

≤
∫

X
g dµ. Set E(g) =

∫

X
g dµ− exp

(∫

X
log g dµ

)

.

Applying Jensen’s inequality, Aleman [1992] proved the following inequality.

Lemma 1.5. Suppose that g is positive µ-a.e. and that log g ∈ L1(X,µ). Then

E(min{g, 1}) ≤ E(g) and E(max{g, 1}) ≤ E(g).

Let F ∈ H2 be a outer function. Define the outer functions F− and F+ by

F−(z) = exp
( 1

2π

∫ 2π

0

eiθ + z

eiθ − z
log

(

min{|F (eiθ)|, 1}
)

dθ

)

F+(z) = exp

(

1

2π

∫ 2π

0

eiθ + z

eiθ − z
log

(

max{|F (eiθ)|, 1}
)

dθ

)

.

It is clear that F− and 1/F+ are in H∞, with norms bounded by 1, and that

F−(z)F+(z) = F (z), |F−(z)| ≤ |F (z)|.
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Theorem 1.6. Let f ∈ H2 and let f = IF be the inner-outer factorization. If

f ∈ D, then D(F+) ≤ D(f) and D(IF−) ≤ D(f). Moreover F+, IF−, and 1/F+

are in D, with

‖F+‖ ≤ 1 + ‖f‖ , ‖1/F+‖ ≤ 1 + ‖f‖ , ‖IF−‖ ≤ ‖f‖ .

Proof. We note first that ‖IF−‖0 ≤ ‖f‖0. Using the fact |1/F+(z)| ≤ 1, we

get

|(1/F+(z))′| =
∣

∣F ′
+(z)

∣

∣ / |F+(z)|
2
≤

∣

∣F ′
+(z)

∣

∣ .

This implies D(1/F+) ≤ D(F+). Therefore we only need to show D(F+) ≤ D(f)

and D(IF−).

Applying Lemma 1.5 with X = [0, 2π], dµ = 1/(2π)Pz(e
iθ) dθ, and g(θ) =

|F (eiθ)|2, we have

∫ 2π

0

Pz(e
iθ)

∣

∣F±(eiθ)
∣

∣

2 dθ

2π
−

∣

∣F±(z)
∣

∣

2
≤

∫ 2π

0

Pz(e
iθ)

∣

∣F (eiθ)
∣

∣

2 dθ

2π
−

∣

∣F (z)
∣

∣

2
.

(1–1)

Integrating both sides of the inequality for F+ over |z| = r ∈ (0, 1) with respect

to the measure dθ/2π, we obtain

‖F+‖
2
0 −

∥

∥F+(r · )
∥

∥

2

0
≤ ‖F‖

2
0 −

∥

∥F (r · )
∥

∥

2

0
.

Applying Lemma 1.3 (as in the proof of Corollary 1.4), we obtainD(F+) ≤ D(F ).

Corollary 1.4 yields therefore D(F+) ≤ D(f).

Since |F−(z)| ≤ |F (z)|, we have

(

1 − |I(z)|2
) ∣

∣F−(z)
∣

∣

2
≤

∣

∣F (z)
∣

∣

2
−

∣

∣f(z)
∣

∣

2
.

Adding this inequality to (1–1) for F−, we get

∫ 2π

0

Pz(e
iθ)

∣

∣I(eiθ)F−(eiθ)
∣

∣

2 dθ

2π
−

∣

∣I(z)F−(z)
∣

∣

2

≤

∫ 2π

0

Pz(e
iθ)

∣

∣f(eiθ)
∣

∣

2 dθ

2π
−

∣

∣f(z)
∣

∣

2
.

Reasoning as above, we obtain D(IF−) ≤ D(f). ˜

Remark 1.7. By Theorem 1.6, together with Lemma 1.2 and the identity

(1/F+)f = IF−, we have IF− ∈ [f ] if f ∈ D.

Proof. Proof of Theorem 1.1 Assume f 6= 0 and f ∈ D. Let f = IF be the

inner-outer factorization. Since F−F+ = F , we have

f =
IF−

1/F+
.

Since IF−, 1/F+ ∈ H∞ and IF−, 1/F+ ∈ D by Theorem 1.6, we obtain the

desired decomposition by letting ϕ = IF− and ψ = 1/F+. ˜
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Proof of Theorem 0.2. Let ϕ ∈ N 	 zN and ‖ϕ‖ = 1. Note that the

polynomials are dense in D(mϕ). By the codimension-one property, the poly-

nomial multiples of ϕ are dense in N (see also [Richter 1988]). Thus, to see

why N = [ϕ] = ϕD(mϕ), it is enough to show that ‖ϕp‖ = ‖p‖mϕ
for every

polynomial p. One can compute this directly by using the fact that (Mz ,D)

is an analytic 2-isometry; see [Richter 1991] for details. To see why the func-

tion ϕ is a multiplier of D, note that D ⊆ D(mϕ) if ϕ is bounded. Hence

ϕD ⊆ ϕD(mϕ) = N ⊆ D, and

‖ϕf‖ = ‖f‖mϕ
=

(

‖f‖
2
0 +Dmϕ

(f)
)1/2

≤
(

‖f‖0 + ‖ϕ‖
2
H∞ D(f)

)1/2
≤ max{1, ‖ϕ‖

H∞} ‖f‖ .

We show now ϕ is bounded. Let k be the order of the zero of ϕ at the origin;

thus ϕ = zkψ with ψ ∈ D and ψ(0) 6= 0. It is well known that ϕ = zkψ is a

solution of the extremal problem

inf

{
∥

∥zkf
∥

∥

|f(0)|
: zkf ∈ N

}

. (1–2)

We shall show that any unbounded function zkf ∈ N with f(0) 6= 0 is not

a solution of (1–2); that is, we can construct a bounded function fN so that

zkfN ∈ N and
∥

∥zkfN

∥

∥ /|fN (0)| <
∥

∥zkf
∥

∥ /|f(0)|, or, equivalently,

∥

∥zkf
∥

∥

2

(

1 −
|fN (0)|2

|f(0)|2

)

<
∥

∥zkf
∥

∥

2
−

∥

∥zkfN

∥

∥

2
. (1–3)

Let f = IF be the inner-outer factorization of f . Consider FN = N (F/N)−,

the outer function defined by

FN (z) = exp

(

1

2π

∫ 2π

0

eiθ + z

eiθ − z
log

(

min{|F (eiθ)|, N}
)

dθ

)

.

Let fN = IFN . Then |fN (z)| ≤ N for every z ∈ D and ‖fN‖ ≤ ‖f‖ by

Theorem 1.6; and zkfN = (zkf)N ∈ [zkf ] ⊆ N by Remark 1.7. Straightforward

computation yields

1 −

∣

∣fN (0)
∣

∣

2

∣

∣f(0)
∣

∣

2 = 1 −

∣

∣FN (0)
∣

∣

2

∣

∣F (0)
∣

∣

2 = 1 − exp

(

−
1

π

∫ 2π

0

log
max{|f(eiθ)|, N}

N
dθ

)

.

Using the inequalities log(1 + x) ≤ x and 1 − e−x ≤ x for x ≥ 0, we obtain

1 −
|fN (0)|2

|f(0)|2
≤ 1 − exp

(

−
1

π

∫ 2π

0

max{|f(eiθ)|, N} −N

N
dθ

)

≤
1

Nπ

∫ 2π

0

(

max{|f(eiθ)|, N} −N
)

dθ.
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Since D(zkfN ) = D((zkf)N ) ≤ D(zkf) by Theorem 1.6, we have

∥

∥zkf
∥

∥

2
−

∥

∥zkfN

∥

∥

2
= ‖f‖

2
0 − ‖fN‖

2
0 +D(zkf) −D(zkfN ) ≥ ‖F‖

2
0 − ‖FN‖

2
0

=
1

2π

∫ 2π

0

(

|F (eiθ)|2 − min{|F (eiθ)|2, N2}
)

dθ

=
1

2π

∫ 2π

0

(

max{|f(eiθ)|2, N2} −N2
)

dθ

≥
N

2π

∫ 2π

0

(

max{|f(eiθ)|, N} −N
)

dθ.

These estimates show that, if f is unbounded, inequality (1–3) holds for large

enough N . ˜

A set Z ⊂ D is a zero set of a space H of functions on D if Z = {z ∈ D : f(z) = 0}

for some f ∈ H. Theorem 0.2 implies the following result [Marshall and Sundberg

1993].

Theorem 1.8. A set Z ⊂ D is a zero set of D if and only if it is a zero set of

MD.

Proof. It is trivial that a zero set of MD is a zero set of D. Assume Z is a

zero set of D. Consider the set of functions Z = {f ∈ D : f(Z) = 0}. It is clear

that Z is a nonzero invariant subspace for (Mz,D). By Theorem 0.2, we have a

function ϕ ∈ Z 	 zZ so that Z = [ϕ] and ϕ is a multiplier of D. Clearly this ϕ

has zero set Z. ˜

2. Interpolation

The connection between reproducing kernels and interpolation can be ex-

plained in terms of the adjoints of multiplication operators. If ϕ ∈ MD then for

f ∈ D and ζ ∈ D, we have

M∗
ϕ(kζ)(z) =

〈

M∗
ϕ(kζ), kz

〉

=
〈

ϕkz , kζ

〉

= ϕ(ζ) kζ(z).

Suppose {zj}
n
1 is a finite sequence of distinct points in D. Let ϕ ∈ MD satisfy

‖ϕ‖
M

≤ 1 and

ϕ(zj) = wj , j = 1, 2, . . . , n. (2–1)

Then for any finite sequence {aj}
n
1 of complex numbers we have, by straightfor-

ward computation,

0 ≤
∥

∥

∥

∑

ajkzj

∥

∥

∥

2

−

∥

∥

∥

∥

M∗
ϕ

(

∑

ajkzj

)

∥

∥

∥

∥

2

=
∑

(1 − wjwk)k(zj , zk)akāj . (2–2)

This shows that the positive semidefiniteness of the n× n matrix

{

(1 − wjwk)k(zj , zk)
}
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is a necessary condition for the interpolation problem (2–1) to have a solution

in MD. This argument in fact works in any reproducing kernel Hilbert space.

Agler [1986] proved that for the Dirichlet space the necessary condition is also

sufficient.

Theorem 2.1. If {zj}
n
1 ⊂ D and {wj}

n
1 ⊂ C satisfy

{(1 − wjwk)k(zj , zk)} ≥ 0,

there exists ϕ ∈ MD with ‖ϕ‖
M

≤ 1 and ϕ(zi) = wi for i = 1, 2, . . . , n.

One says that the Dirichlet space has the Pick property, because Pick first estab-

lished such a theorem for interpolation in H∞. Note that, if the Pick property

holds, it also applies to countable sequences.

Remark 2.2. For n = 2, inequality (2–2) becomes

|k(z1, z2)|
2

‖kz1
‖
2
‖kz2

‖
2 ≤

(1 − |w1|
2)(1 − |w2|

2)

|1 − w1w2|2
. (2–3)

A sequence of vectors {xn} in a Hilbert space H is called independent if xn /∈

Span{xk : k 6= n} for all n. A sequence of unit vectors {un} in a Hilbert space H

is called an interpolating sequence for H if the map x 7→
{

〈x, un〉
}

maps H onto

`2. We cite the Köthe–Toeplitz theorem here, which can be found in [Nikolskii

1986].

Theorem 2.3. Let {un} be a sequence of unit vectors contained in a Hilbert

space H. Let K be the smallest closed subspace of H containing {un}. Then the

following statements are equivalent .

(1) The sequence {un} is an interpolating sequence for H.

(2) For all x ∈ K satisfying ‖x‖
2
�

∑

‖〈x, un〉‖, and {un} is independent .

(3)
∥

∥

∑

anun

∥

∥

2
�

∑

|an|
2 for all sequences {an}.

(4)
∥

∥

∑

bnun

∥

∥ ≤ C
∥

∥

∑

anun

∥

∥ for all sequences {an} and {bn} such that |bn| ≤

|an| for all n.

A unit vector sequence {un} with property (3) above is called a Riesz sequence

in H, and one with property (4) is called an unconditional basic sequence in H.

The following result ties the Pick property and Köthe–Toeplitz theorem together.

Theorem 2.4. Let {zn} ⊂ D and let k̃n = kzn
/ ‖kzn

‖. The following statements

are equivalent :

(1) {zn} is an interpolating sequence for MD.

(2) {k̃n} is an interpolating sequence for D.

(3) {k̃n} is an unconditional basic sequence in D.

(4) {k̃n} is a Riesz sequence in D.
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Proof. Theorem 2.3 implies the equivalence of (2), (3), and (4). To prove that

(1) implies (3), suppose {zn} is an interpolating sequence for MD. Let {an} and

{bn} be sequences such that |bn| ≤ |an| for all n. Then there is a ϕ ∈ MD with

ϕ(zn) = bn/an for n = 1, 2, . . .. Let C = ‖ϕ‖
M

. We have

0 ≤
∑

(

C2 − ϕ(zj)ϕ(zk)
)

k(zj , zk)
āj

‖kzj
‖

ak

‖kzk
‖

= C2
∥

∥

∥

∑

aj k̃j

∥

∥

∥

2

−

∥

∥

∥

∥

M∗
ϕ

(

∑

aj k̃j

)

∥

∥

∥

∥

2

= C2
∥

∥

∥

∑

aj k̃j

∥

∥

∥

2

−
∥

∥

∥

∑

bj k̃j

∥

∥

∥

2

.

This proves that {k̃n} is an unconditional basic sequence in D.

Conversely, suppose (3) holds. To prove (1), by weak convergence of opera-

tors of the form Mϕ, it suffices to show that each finite subsequence of {zn} is

an interpolating sequence with the solutions in MD having uniformly bounded

norms. This follows from the Pick property and the following inequality, which

is equivalent to (3):

∑

(

C2 −
b̄j
āj

bk
ak

)

k(zj , zk)
āj

‖kzj
‖

ak

‖kzk
‖

= C2
∥

∥

∥

∑

aj k̃j

∥

∥

∥

2

−
∥

∥

∥

∑

bj k̃j

∥

∥

∥

2

≥ 0,

where |bj | ≤ |aj | for all j. ˜

Sketch of proof of Theorem 0.3. The proof is found in [Marshall and

Sundberg 1993]. Suppose {zn} is an interpolating sequence for MD; then {k̃n}

is an interpolating sequence for D, by Theorem 2.4. This is equivalent to

∑

|f(zn)|
2
(

log
1

1 − |zn|2

)−1

=
∑

∣

∣

〈

f , k̃n

〉∣

∣

2
≤ C ‖f‖

2
for all f ∈ D.

Thus (0–4) holds, and hence so does (0–3).

Since {zn} is an interpolating sequence for MD, we can find, for any distinctm

and n, a ϕ ∈ MD so that ϕ(zn) = 1, ϕ(zm) = 0, and ‖ϕ‖
M

≤ C. By Remark 2.2

we have
∣

∣

∣

∣

log
1

1 − z̄mzn

∣

∣

∣

∣

2

log
1

1 − |zn|2
log

1

1 − |zm|2

=
|k(zn, zm)|2

‖kzn
‖
2
‖kzm

‖
2 ≤ 1 −

1

C2
.

Marshall and Sundberg [1993] proved that this condition is equivalent to (0–2).

Now suppose that (0–2) and (0–3) hold. To show that {zn} is an interpolating

sequence, we use the Pick property of the Dirichlet space, which allows us to

convert the interpolation problem to an “L2” problem. That is, we prove that

{k̃n} is a Riesz sequence in D, then use Theorem 2.4. It can be shown that

the sequence {k̃n} will be a Riesz sequence if the sequence {Kn = Re(k̃n)}

is a Riesz sequence in the harmonic Dirichlet space Dh, which consists of all
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harmonic functions in D with finite Dirichlet integral, the norm being given by

‖u‖
2

= ‖u‖
2
L2(∂D) + ‖∇u‖

2
L2(D). By Theorem 2.3, the last condition holds if

{Kn} is an unconditional basic sequence in Dh.

Suppose |bn| ≤ |an| and set tn = an/bn for all n. Then |tn| ≤ 1. To show that

{Kn} is an unconditional basic sequence in Dh, we must show that

∥

∥

∥

∑

tnanKn

∥

∥

∥
=

∥

∥

∥

∑

bnKn

∥

∥

∥
≤ C

∥

∥

∥

∑

anKn

∥

∥

∥
.

Set T (Kn) = tnKn. It suffices to show that T can be extended to a bounded

linear operator on the harmonic Dirichlet space Dh. Note that

T ∗(u)(zn) =
〈

T ∗(u), Re(kzn
)
〉

= ‖kzn
‖
〈

u, T (Kn)
〉

= t̄nu(zn).

Therefore it suffices to find a bounded linear map u 7→ v on Dh such that

v(zn) = t̄nu(zn) and ‖v‖ ≤ C ‖u‖ .

The construction of the desired linear map in [Marshall and Sundberg 1993]

requires deep and elegant estimates involving Stegenga’s capacity condition for

Carleson measures for D. We shall sketch the idea. First, one uses conditions

(0–2) and (0–3) to construct a bounded function ϕ on the disk D so that ϕ(zn) =

tn for n = 1, 2, . . . and such that

|∇ϕ(z)|2 dA(z)

is a Carleson measure for D. This implies, by the Dirichlet principle,

∫

D

∣

∣∇P (ϕ∗u∗)
∣

∣

2
dA ≤

∫

D

∣

∣∇(ϕu)
∣

∣

2
dA ≤ C ‖u‖

2
for all u ∈ Dh,

where P (ψ∗) is the Poisson integral of the boundary function ψ∗ of ψ. The

desired linear map comes from correcting the function P (ϕ∗u∗) by setting

v = P (ϕ∗u∗) +
∑

(

tnu(zn) − P (ϕ∗u∗)(zn)
)

fn,

where fn is a harmonic function in Dh with fn(zm) = δn,m. The existence of

such functions, which can even be chosen to be analytic, follows from a result

proved in [Shapiro and Shields 1962], which requires the condition

∑

(

log
1

1 − |zn|2

)−1

≤M.

It is obvious that this condition follows from (0–3). Of course one needs to show

that
∑

∣

∣P (ϕ∗u∗)(zn) − tnu(zn)
∣

∣ ≤ C ‖u‖ for all u ∈ Dh.

This again requires deep estimates related to capacity. ˜
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As noted in [Marshall and Sundberg 1993], the idea above provides also an easy

proof of Carleson’s interpolation theorem.

To end this section, we turn to another result proved in [Marshall and Sund-

berg 1993], which shows a different application of the Pick property.

Let Z ⊂ D be a zero set of D (or MD), and take z0 /∈ Z. Consider the

extremal problems

CD = inf{‖f‖ : f(z0) = 1 and f(Z) = 0} (2–4)

and

CMD
= inf{‖ϕ‖

M
: ϕ(z0) = 1 and ϕ(Z) = 0}. (2–5)

Theorem 2.5. The problems (2–4) and (2–5) have unique solutions f0 and ϕ0,

and they satisfy

‖f0‖ =
‖ϕ0‖M

‖kz0
‖

and f0 = ϕ0
kz0

‖kz0
‖
2 .

Proof. Standard reasoning shows that solutions exist. A little elementary

work shows that the solution of (2–4) is unique. Indeed, if f and g are distinct

solutions to (2–4), then ‖f‖ = ‖g‖, f(z0) = g(z0), and f(Z) = g(Z) = 0, where

we have set Z = {zj : j = 1, 2, . . .}. We claim that Re
〈

f , g
〉

= ‖f‖
2
, and

therefore that

‖f − g‖
2

= ‖f‖
2

+ ‖g‖
2
− 2Re

〈

f , g
〉

= 0.

If this is not the case, then h = 1
2 (f + g) satisfies h(z0) = 1, h(Z) = 0, and

‖h‖
2

= 1
4

(

‖f‖ + ‖g‖
2

+ 2Re
〈

f , g
〉)

< ‖f‖
2
.

This is impossible.

Let f0 be the unique solution of (2–4) and let ϕ be any solution of (2–5). We

show that

f0 = ϕ
kz0

‖kz0
‖
2 ,

so ϕ is unique. It is easy to see that

0 ≤
∥

∥

∥

∑

ajkzj

∥

∥

∥

2

−
1

‖f0‖
2

∣

∣

〈
∑

ajkzj
, f0

〉∣

∣

2
=

∑

(

1−
f0(zj)f0(zk)

‖f0‖
2
‖kz0

‖
2

)

k(zj , zk) ājak.

By the Pick property, there is a ψ ∈ MD with ‖ψ‖
M

≤ 1, and

ψ(z0) =
1

‖f0‖ ‖kz0
‖
, and ψ(zj) = 0 for j = 1, 2, . . . .

Since ϕ is an extremal solution, we have

‖ϕ‖
M

≤ ‖‖f0‖ ‖kz0
‖ψ‖

M
≤ ‖f0‖ ‖kz0

‖ .

On the other hand, the function

g = ϕ
kz0

‖kz0
‖
2
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satisfies g(z0) = 1, g(Z) = 0, and

‖g‖ ≤ ‖ϕ‖
M
/ ‖kz0

‖ ≤ ‖f0‖ .

Therefore f0 = g, as we wished to show. ˜

It is not hard to show that f0 and ϕ0 in Theorem 2.5 have zero set exactly Z

(counting multiplicities!).

3. Hankel Operators on the Dirichlet Space

In this section, we use the norm ‖f‖ =
(

|f(0)|2 +D(f)
)1/2

for the Dirichlet

space. In this case the reproducing kernel of D is

kD(z, w) = 1 + log
(

1

1 − wz

)

.

We note that

kB(z, w) = ∂ z∂wkD(z, w) =
1

(1 − wz)2

is the reproducing kernel for the Bergman space B.

Assume that the Hankel operator Hb is bounded on D. For g in P, we have

Hb(g)(z) =
〈

bḡ, kD(· , z)
〉

=

∫

D

b̄g dA+
〈

b′ḡ , ∂wkD(· , z)
〉

L2(D)
.

For simplicity, we remove the rank-one operator g 7→
∫

D
b̄g dA, and take

Hb(g)(z) =
〈

b′ḡ , ∂wkD(· , z)
〉

L2(D)
for all g ∈ P, (3–1)

as the definition for our Hankel operator on D. It is easy to compute that

∂zHb(g)(z) =
〈

b′ḡ , kB(· , z)
〉

L2(D)
= PB(b′ḡ)(z),

where PB is the orthogonal projection from L2 = L2(D) onto B. We have then
〈

h,Hb(g)
〉

=
〈

h′ , PB(b′ḡ)
〉

L2
=

〈

h′g, b′
〉

L2
for all h, g ∈ P. (3–2)

We see that b ∈ D is a necessary condition for the Hankel operator Hb to be

bounded on D. From (3–2), we get also that the boundedness or compactness

of Hb on D are equivalent, respectively, to the boundedness or compactness of

the operator

g 7→ PB(b′ḡ) (3–3)

from D = {ḡ : g ∈ D} to B.

The following result is standard; see [Arazy et al. 1990], for example.

Lemma 3.1. Suppose ϕ is a C1 function on a neighborhood of D. Then

ϕ(z) = PB(ϕ)(z) +

∫

D

∂wϕ(w)(1 − |w|2)

(z − w)(1 − wz)
dA(w) for all z ∈ D.
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Lemma 3.2. The linear operator

f(z) 7→

∫

D

f(w)(1 − |w|2)

|z − w||1 − wz|
dA(w)

is bounded on L2(D).

Lemma 3.2 can be proved easily by using Schur’s test with the test function

u(z) = (1 − |z|2)−1/4.

Proof of Theorem 0.4. Suppose the measure |b′(z)|2 dA(z) is a Carleson

measure for D. Then b′ḡ is in L2. This implies the map (3–3) is bounded.

Now suppose the Hankel operator Hb or, equivalently, the map (3–3) is

bounded. We shall show that b′ ḡ is in L2, for every g ∈ D, with norm bounded

by C ‖g‖. We note that PB(b′ ḡ) is the best approximation to b′ ḡ in B. Therefore

by Lemmas 3.1 and 3.2, we have the following formula for the difference between

b′ḡ and PB(b′ ḡ):

b′(z)g(z) − PB(b′ḡ)(z) =

∫

D

b′(w)g′(w)(1 − |w|2)

(z − w)(1 − wz)
dA(w) for all g ∈ P. (3–4)

Since b ∈ D and D is contained in the little Bloch space, we have

(1 − |w|2)
∣

∣b′(w)
∣

∣ ≤ C ‖b‖ .

Thus by Lemma 3.2 and the assumption, we obtain

‖b′ḡ‖
2
L2 =

∥

∥PB(b′ḡ)
∥

∥

2

L2
+

∥

∥b′ḡ − PB(b′ḡ)
∥

∥

2

L2
≤ C ‖b‖

2
‖g‖

2
for all g ∈ P.

This proves part (a) of the theorem.

The operator defined by (3–4) is in fact compact from D to L2, because D is

a subset of the little Bloch space. Therefore the compactness of Hb is equivalent

to the compactness of the multiplier Mb′ : D → B. A result in [Rochberg and

Wu 1992] implies therefore that condition (0–5) is necessary and sufficient for

the compactness of Hb. ˜

The proof of Theorem 0.5 requires a general result about pairing of operators.

Suppose H and K are Hilbert spaces. The trace class of linear operators from

H to K, denoted by S1 = S1(H,K), is the set of all compact operators T from

H to K for which the sequence of singular numbers

{

sk(T ) = inf{‖T −R‖ : rank(R) < k}
}∞

1

belongs to `1. The S1 norm of T is defined by

‖T‖
S1

= ‖{sk(T )}∞1 ‖`1 .

We will use S0 = S0(H,K) and S∞ = S∞(H,K) for the sets of compact operators

and bounded operators from H to K, respectively. Let T and S be bounded linear
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operators from H to K and from K to H, respectively. The pairing of T and S

is given by
〈

T, S
〉

= trace(TS).

The following standard theorem can be found in [Zhu 1990], for example.

Theorem 3.3. (a) (S0)
∗ = S1 and (S1)

∗ = S∞.

(b) (Schmidt decomposition) Φ is a compact operator from H to K if and only

if Φ can be written as

Φ =
∑

λj

〈

· , fj

〉

H
ej ,

where {λj}
∞
1 is a sequence of numbers tending to 0, and {fj}

∞
1 and {ej}

∞
1

are orthonormal sequences in H and K, respectively . Moreover , if {λj}
∞
1 is

in `1, then

‖Φ‖S1
=

∑

|λj | .

Proof of Theorem 0.5. It is easy to check that WD ⊆ (XD)∗ and XD ⊆ (wD)∗

by using formula (3–2). We prove (XD)∗ ⊆ WD next.

Suppose T ∈ (XD)∗. For any g, h ∈ D, it is clear that gh′ ∈ XD and

‖gh′‖XD
≤ ‖g‖‖h‖. Hence if in addition h(0) = 0, then

|T (gh′)| ≤ ‖T‖‖gh′‖XD
≤ ‖T‖‖g‖‖h‖ = ‖T‖‖g‖‖h′‖B.

This inequality shows that for fixed g ∈ D the linear functional h′ 7→ T (gh′) on

B is bounded. Hence by the Riesz–Fischer Theorem there is a Tg ∈ B such that

T (gh′) =
〈

h′ , Tg

〉

L2
for all h′ ∈ B.

Clearly Tg is uniquely determined by g and the linear map g 7→ Tg from D to B

is bounded with ‖Tg‖B ≤ ‖T‖‖g‖.

Let b(z) = bT (z) =
∫ z

0
T1(ζ) dζ ∈ D. For any g ∈ D we have

Tg(w) =
〈

Tg , kB(· , w)
〉

L2
= T (gkB(· , w)).

Since for fixed w ∈ D, gkB(· , w) is always in B, we have

T (gkB(· , w)) =
〈

gkB(· , w), T1

〉

L2
=

〈

gkB(· , w), b′
〉

L2
= ∂w

〈

g∂zkD(· , w), b′
〉

L2
.

This implies that Tg(w) = ∂wHbT
(g)(w), for any g ∈ P. We conclude therefore

‖Hb(g)‖ = ‖Tg‖B ≤ ‖T‖‖g‖,

and hence ‖Hb‖ ≤ ‖T‖. By Theorem 0.4, we have b ∈ WD and then

Tg(w) = ∂wHbT
(g)(w) for all g ∈ D. (3–5)

This discussion also yields (since b ∈ WD)

T (gh′) =
〈

gh′, T1

〉

L2
for all g, h ∈ D.
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This implies that the map T 7→ bT from (XD)∗ to WD is bounded and one-to-one.

To complete the proof, it remains to verify that

T (f) =
〈

f , bT
〉

∗ for all f ∈ XD.

This is easy to check by using (3–5) and (3–2).

To prove that (wD)∗ ⊆ XD, we consider the map b 7→ ∂Hb from wD to

S0(D,B). This map is clearly one-to-one and maps wD onto a closed subspace

of S0. Take L ∈ (wD)∗. Extend L to a bounded linear functional L̃ on S0 so that

‖L̃‖ = ‖L‖. By Theorem3.3(a), there is a Φ in S1(B,D) such that ‖Φ‖S1
= ‖L̃‖

and L̃(T ) =
〈

T, Φ
〉

, for any T ∈ S0. Suppose the Schmidt decomposition of Φ

given by Theorem3.3(b) is

Φ =
∑

sj

〈

· , fj

〉

L2
ḡj ,

where {sj}
∞
1 is the sequence of singular numbers of Φ, and {fj}

∞
1 and {ḡj}

∞
1

are orthonormal sequences in B and D, respectively.

It is clear that
{

hj(z) =
∫ z

0
fj(ζ) dζ

}∞

0
is an orthonormal sequence in D. Set

f = fL =
∑

sjgjfj =
∑

sjgjh
′
j . (3–6)

Then clearly f is in XD, and

‖f‖XD
≤

∑

|sj | = ‖Φ‖S1
= ‖L‖.

For any b ∈ wD, we have

L(b) = L̃
(

∂Hb

)

=
〈

∂Hb , Φ
〉

= trace
(

∂HbΦ
)

= trace
(

Φ∂Hb

)

=
∑

〈

Φ∂Hb(ḡj), ḡj

〉

=
∑

sj

〈

∂Hb(gj), fj

〉

L2
=

∑

sj

〈

b′, gjh
′
j

〉

L2

=
〈

b′, f
〉

L2
;

thus

L(b) = ∗
〈

b, f
〉

for all b ∈ wD. (3–7)

This implies ‖L‖ ≤ ‖f‖XD
, and hence ‖L‖ = ‖f‖XD

.

To complete the proof it remains to show that the map L 7→ fL defined by

(3–6) is well defined and one-to-one.

In fact for any ζ ∈ D, let bζ(z) = ∂ ζ̄kD(z, ζ). By formula (3–1) and the

equality b′ζ(z) = kB(z, ζ), we get

Hbζ
(g)(w) =

〈

g∂zkD(· , w) , b′ζ
〉

L2
= ∂ ζkD(ζ, w)g(ζ) for all g ∈ P.

This shows that Hbζ
is a compact operator (of rank one!). Thus bζ ∈ wD and

L(bζ) = ∗
〈

bζ , fL

〉

=
〈

b′ζ , fL

〉

L2
= fL(ζ).

The “one-to-one” part is then an immediate consequence of the identity (3–7). ˜
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