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Some Open Problems in the Theory

of Subnormal Operators

JOHN B. CONWAY AND LIMING YANG

Abstract. Subnormal operators arise naturally in complex function the-

ory, differential geometry, potential theory, and approximation theory, and

their study has rich applications in many areas of applied sciences as well

as in pure mathematics. We discuss here some research problems concern-

ing the structure of such operators: subnormal operators with finite-rank

self-commutator, connections with quadrature domains, invariant subspace

structure, and some approximation problems related to the theory. We also

present some possible approaches for the solution of these problems.

Introduction

A bounded linear operator S on a separable Hilbert space H is called subnor-

mal if there exists a normal operator N on a Hilbert space K containing H such

that NH ⊂ H and N |H = S. The operator S is called cyclic if there exists an

x in H such that

H = clos{p(S)x : p is a polynomial},

and is called rationally cyclic if there exists an x such that

H = clos{r(S)x : r is a rational function with poles off σ(S)}.

The operator S is pure if S has no normal summand and is irreducible if S is

not unitarily equivalent to a direct sum of two nonzero operators.

The theory of subnormal operators provides rich applications in many areas,

since many natural operators that arise in complex function theory, differential

geometry, potential theory, and approximation theory are subnormal operators.

Many deep results have been obtained since Halmos introduced the concept of

a subnormal operator. In particular, Thomson’s solution of the long-standing

problem on the existence of bounded point evaluations reveals a structure theory

of cyclic subnormal operators. Thomson’s work answers many questions that had
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been open for a long time and promises to enable researchers to answer many

more; see [Thomson 1991] or [Conway 1991]. The latter is a general reference

for the theory of subnormal operators.

Here we will present some research problems on subnormal operators and

discuss some possibilities for their solution.

1. Subnormal Operators with Finite-Rank Self-Commutator

Let A denote area measure in the complex plane C. A bounded domain G

is a quadrature domain if there exist points z1, . . . , zN in G and constants am,n

such that ∫

G

f(z) dA =

N∑

n=1

Nn∑

m=0

am,nf (m)(zn)

for every function f analytic in G that is area-integrable. The theory of quad-

rature domains has been successfully studied by the techniques of compact Rie-

mann surfaces, complex analysis and potential theory [Aharonov and Shapiro

1976; Gustafsson 1983; Sakai 1988].

The self-commutator of S is the operator [S∗, S] = S∗S−SS∗. The structure

of subnormal operators with finite-rank self-commutator has been studied by

many authors. Morrel [1973/74] showed that every subnormal operator with

rank one self-commutator is a linear combination of the unilateral shift and

the identity. Olin et al. [≥ 1997] classified all cyclic subnormal operators with

finite-rank self-commutator. D. Xia [1987a; 1987b] attempted to classify all

subnormal operators with finite-rank self-commutator. His results, however, are

incomplete. In [McCarthy and Yang 1997; 1995] a connection between a class of

subnormal operators with finite-rank self-commutator and quadrature domains

was established. However, the following problem still remains open.

Problem 1.1. Classify all subnormal operators whose self-commutator has

finite rank.

One can show that, if S is a pure subnormal operator with a finite rank self-

commutator, the spectrum of the minimal normal extension N is contained in an

algebraic curve. This is a modification of a result in [Xia 1987a]. If one assumes

some additional conditions—for example, that the index of S − λ is constant—

then it turns out that S is unitarily equivalent to the direct sum of the bundle

shifts over quadrature domains introduced in [Abrahamse and Douglas 1976].

(The argument is similar to that in [Putinar 1996], and uses the fact that the

principle function is a constant on the spectrum minus the essential spectrum).

For the general case, where the index of the subnormal operator S − λ may

change from one component to another, difficulties remain.

Example 1.2. Set r(z) = z(2z − 1)/(z + 2) and let Ω = r(D), where D is

the open unit disk. If Γ1 = ∂Ω and Γ2 = clos
(
r(∂D) \ ∂Ω

)
, then Γ2 is a closed
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simple curve. Let Ω0 denote the region bounded by Γ2 and let Tr be the Toeplitz

operator on H2 with symbol r. It is easy to show that Tr is a subnormal operator

with a finite-rank self-commutator and that ind(Tr − λ) = −2 for λ ∈ Ω0 and

ind(Tr − λ) = −1 for λ ∈ Ω \ Ω̄0. Obviously, neither Ω nor Ω0 is a quadrature

domain. The techniques in [McCarthy and Yang 1997] do not work for regions

that have inner curves like Γ2.

In [McCarthy and Yang 1997] one sees that the spectral pictures of rationally

cyclic subnormal operators determine their structure. Therefore, in general, the

difficulty consists of using the spectral picture of a subnormal operator with

finite-rank self-commutator to obtain its structure.

Example 1.3. Use the notation of Example 1.2. Let S be an irreducible sub-

normal operator satisfying these properties:

(1) σ(S) = Ω̄.

(2) σe(S) = Γ1 ∪ Γ2.

(3) ind(S − λ) = −1 for λ ∈ Ω \ Ω̄0 and ind(S − λ) = −3 for λ ∈ Ω0.

The existence of such an irreducible subnormal operator is established by a

method in [Thomson and Yang 1995]. Such an operator should not have a finite-

rank self-commutator. However, how can one prove it? Understanding these

examples will give some ideas on how to solve the problem.

Recently M. Putinar [1996] found another connection between operator theory

and the theory of quadrature domains, by studying hyponormal operators with

rank one self-commutator. It is of interest to see how operator-theoretical meth-

ods can be applied to the theory of quadrature domains.

Let G be a quadrature domain and let ω be the harmonic measure of G with

respect to a fixed point in G. Let Hω be the operator of multiplication by z on

the Hardy space H2(G). It is easy to see that Hω is irreducible with a finite-rank

self-commutator and that the spectrum of the minimal normal extension Nω is

∂G. Therefore, one sees that ∂G is a subset of an irreducible algebraic curve

(the spectrum of Nω is a subset of an algebraic curve). This was proved by A.

Aharanov and H. Shapiro [1976] using function theory in 1976. B. Gustafsson

[1983] obtained even better results: he showed that, except for possibly finitely

many points, the boundary of a quadrature domain is an irreducible algebraic

curve. In order to prove Gustafsson’s theorem by using operator theory, one

needs to prove the following operator-theoretical conjecture.

Conjecture 1.4. If S is an irreducible subnormal operator with finite-rank self-

commutator, then except for possibly a finite number of points, the spectrum of

the minimal normal extension N of S is equal to an irreducible algebraic curve.

A solution to this should indicate some ideas for obtaining the structure of sub-

normal operators with finite rank self-commutator.
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Let G be a quadrature domain of connectivity t + 1 and order n. Let W

be a plane domain bounded by finitely many smooth curves and conformally

equivalent to G. Let φ : W → G be a conformal map. Define

C =
{
z ∈ ∂G : z = φ(w) for some w ∈ ∂W with φ′(w) = 0

}
,

D =
{
z ∈ ∂G : z = φ(w1) = φ(w2) for two different wj ∈ ∂W

}
.

It was shown in [Aharonov and Shapiro 1976; Gustafsson 1983] that, if G is a

quadrature domain, there is a meromorphic function S(z) on G that is continuous

on Ḡ except at its poles and such that S(z) = z̄ on ∂G; moreover the equation

S(z) = z̄ has at most finitely many solutions in G. Let E denote the set of the

solutions in G. Let c, d, e denote the cardinalities of C, D, E.

Theorem 1.5 [Gustafsson 1988]. t + c + 2d + e ≤ (n − 1)2.

Theorem 1.6 [Sakai 1988]. c + e ≥ t + n − 1.

Using the model for rationally cyclic subnormal operators with finite rank self-

commutator, it has only been possible to show that t + e ≤ (n − 1)2 [McCarthy

and Yang 1997].

Problem 1.7. Use operator-theoretical methods to prove Gustafsson’s theorem

and Sakai’s theorem.

In order to solve the problem, one has to understand deeply the operator-

theoretical meanings of the numbers t, n, c, d, e. Discovering such methods

may improve the results in the theory of quadrature domains and will help us

understand the connections between these two areas better.

2. Invariant Subspaces of Subnormal Operators

Let S be a cyclic subnormal operator. A standard result [Conway 1991, p. 52]

says that S is unitarily equivalent to the operator Sµ of multiplication by z on

the space P 2(µ), the closure of the polynomials in L2(µ).

A point λ ∈ C is a bounded point evaluation for P 2(µ) if there exists C > 0

such that |p(λ)| ≤ C‖p‖ for every polynomial p. In this section, we will assume

that Sµ is an irreducible operator and that the set of bounded point evaluations

for P 2(µ) is the open unit disk.

Apostol, Bercovici, Foiaş, and Pearcy showed in [Apostol et al. 1985] that,

if the measure restricted to the unit circle is zero, there exists for each integer

1 ≤ n ≤ ∞ an invariant subspace M of Sµ such that dim(M 	 zM) = n. It

seems that the following problem has an affirmative answer.

Question 2.1. Suppose that the measure µ restricted to the unit circle is non-

zero. Does every invariant subspace M of Sµ have the codimension-one property

(which means that dim(M 	 zM) = 1)?
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Partial answers are known. Miller [1989] showed that, if µ is area measure

on the unit disk plus the Lebesgue measure on an arc, the question has an

affirmative answer. In [Yang 1995] it is shown that, if µ is the area measure on

the unit disk and Lebesgue measure restricted to a compact subset of the unit

circle having positive Lebesgue measure, then each invariant subspace has the

codimension-one property. The following is an analogous problem.

Problem 2.2. Characterize all subnormal operators Sµ such that the restriction

of S to any invariant subspace M is cyclic.

It seems that, if the measure µ restricted to the unit circle is nonzero, then Sµ

restricted to each invariant subspace is cyclic. However, Problem 2.2 is harder

than 2.1.

Say that an invariant subspace M of Sµ has finite codimension if the dimension

of P 2(µ) 	 M is finite. Here is an interesting problem concerning invariant

subspaces of Sµ.

Problem 2.3. Characterize the cyclic subnormal operators Sµ that have the

property that every invariant subspace is an intersection of invariant subspaces

having finite codimension.

This property implies that every invariant subspace is hyperinvariant (because

every invariant subspace having finite codimension is hyperinvariant), and there-

fore that P∞(Sµ) = {Sµ}
′, where P∞(Sµ) is the w∗-closure of

{
p(Sµ) : p is a polynomial} and {Sµ}

′ = {A : ASµ = SµA}.

3. Mean and Uniform Approximation

Let Sµ be irreducible and let G be the set of bounded point evaluations for

P t(µ). In [Olin and Yang 1995], it was shown that the algebra P 2(µ)∩C(sptµ)

equals A(G), the algebra of continuous functions on Ḡ that are also analytic

inside G. By a modification of the proof, one can actually show that P t(µ) ∩

C(sptµ) = A(G) for 1 < t < ∞. However, for mean rational approximation,

the situation is more complicated, since the closure of the set of bounded point

evaluations may be strictly smaller than K; see [Conway 1991], for example.

Let Ω be the interior of the bounded point evaluations for Rt(K,µ) and let

A(K,Ω) be the set of continuous functions on K that are also analytic on Ω.

Using a result in [Conway and Elias 1993], it is easy to construct a space Rt(K,µ)

with the set of bounded point evaluations Ω such that Rt(K,µ) does not contain

A(K,Ω). Therefore, the correct question about the analogous property would

be the following.

Question 3.1. If f ∈ Rt(K,µ) ∩ C(sptµ), is the function f continuous on K?

The answer is affirmative if we assume that the boundary of K contains no

bounded point evaluations. The proof is similar to that in [Olin and Yang 1995].
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Therefore, it only needs to be shown that the function f is continuous at each

bounded point evaluation on the boundary.

Let R(K) be the uniform closure of the rational functions with poles off K.

It is well known that a smooth function f is in R(K) if and only if ∂̄ f = 0 on

the set of nonpeak points for R(K); see [Browder 1969, p. 166, Theorem 3.2.9].

The situation for the mean rational approximation is different. For example, in

[McCarthy and Yang 1997] it is shown that there are a lot of nontrivial Rt(K,µ)

spaces such that z̄p(z) ∈ Rt(K,µ), where p is a polynomial. Notice that ∂̄ z̄p(z) =

p(z) 6= 0 except for finitely many points. Therefore, it is interesting to consider

the following question.

Question 3.2. Let Rt(K,µ) be an irreducible space and let f be a smooth

function on C. If f ∈ Rt(K,µ), what is the relation between f , K, and µ?

If f = z̄p(z), where p is a polynomial, the relation is well understood by the

theorem in [McCarthy and Yang 1997]. That is, K = clos(K̊), the set K̊ is a

quadrature domain, and sptµ is the union of the boundary of K with finitely

many points in K̊. For an arbitrary smooth function f , one may guess that the

support of µ inside the set {z : ∂̄ f 6= 0} should not be big. On the other hand,

the boundary of K should not be arbitrary. The boundary should have some

“generalized quadrature domain” properties. This investigation may raise some

interesting function-theoretical problems. Further study of those problems may

have rich applications in complex analysis and potential theory.

Next we give a problem concerning uniform polynomial approximation. For a

compact subset K of C, let P (K) be the uniform closures in C(K) of polynomials.

Example 3.3. Set

K = {z : |z| = 1 and Im z ≥ 0} ∪ {z : Im z = 0 and − 1 ≤ Re z ≤ 1}.

Then z̄P (K) + P (K) is dense in C(K), since 1 − |z|2 is in z̄P (K) + P (K); but

P (K) 6= C(K). On the other hand, if K is the unit circle, it is easy to show that

z̄P (K) + P (K) is not dense in C(K).

Naturally, we have the following problem.

Problem 3.4. Characterize the compact subsets K of the complex plane such

that z̄P (K) + P (K) is dense in C(K).

Example 3.3 indicates the hard part of the problem. That is, there are two

toplogically equivalent compact subsets K1 and K2, for which z̄P (K1) + P (K1)

is dense in C(K1) but z̄P (K2) + P (K2) is not dense in C(K2). However, there

might be a geometric solution to the problem.

4. The Existence of Bounded Point Evaluations

Thomson’s proof of the existence of bounded point evaluations for P t(µ)

uses Davie’s deep estimation of analytic capacity, S. Brown’s technique, and
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Vitushkin’s localization for uniform rational approximation. The proof is excel-

lent but complicated. We believe that a simpler proof may exist. In this section,

we will present one approach and point out the difficult part that is left unsolved.

Theorem 4.1 [Luecking 1981]. Let D be an open disk and let G be a subset

of D. Then ∫

D

|p|t dA ≤ C

∫

G

|p|t dA

for all polynomials p if and only if there are positive numbers ε, δ > 0 such that ,

for each disk O centered on the boundary of D with radius less than δ, we have

Area(O ∩ G) ≥ εArea(O ∩ D). (4–1)

Equation (4–1) is called Luecking’s condition.

Let ν be a complex Borel finite measure with
∫

p dν = 0 for each polynomial

p. Let ν̂ be the Cauchy transform of ν, that is

ν̂(λ) =

∫
1

z − λ
dν.

We say a point λ ∈ C is heavy if there exists a disk D centered at λ and there

exists α > 0 such that the set Gλ = {z : |ν̂(z)| ≥ α} ∩ D satisfies Luecking’s

condition.

Proposition 4.2. Suppose that λ is a heavy point . Then λ is a bounded point

evaluation for P 1(|ν|).

Proof. From Luecking’s theorem, we see that
∫

D

|p| dA ≤ C

∫

Gλ

|p| dA ≤
C

α

∫

Gλ

|pν̂| dA =
C

α

∫

Gλ

|p̂ν| dA ≤ C ′

∫
|p| d|ν|.

Since |p(λ)| ≤ C
∫

D
|p| dA, we see that λ is a bounded point evaluation for

P 1(|ν|). ˜

Therefore, in order to prove the existence of bounded point evaluations, for each

non-heavy point we need to construct some kind of “peak functions”. Those

“peak functions” enable us to show that the measure µ is zero on the complement

of the closure of heavy points. Hence, the set of heavy points will not be empty

since µ is a nonzero measure. It is possible to construct such functions because for

each non-heavy point every disk centered at the point doesn’t satisfy Luecking’s

condition. That means that the Cauchy transform will be small in some sense

near the point.
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