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Reproducing Kernel Pontryagin Spaces

DANIEL ALPAY, AAD DIJKSMA, JAMES ROVNYAK,

AND HENDRIK S. V. DE SNOO

Abstract. The theory of reproducing kernel Pontryagin spaces is sur-
veyed. A new proof is given of an abstract theorem that constructs contrac-
tion operators on Pontryagin spaces from densely defined relations. The
theory is illustrated with examples from the theory of generalized Schur
functions.

1. Introduction

We present here the main results of the theory of reproducing kernel Pontrya-

gin spaces [Schwartz 1964; Sorjonen 1975] including some recent improvements

[Alpay et al. 1997]. The paper is expository and is intended for nonspecialists in

the indefinite theory. We presume knowledge of the Hilbert space case, that is,

Aronszajn’s theory [1950] of reproducing kernel Hilbert spaces. The main point

is that much of the experience with the Hilbert space theory is transferable to

Pontryagin spaces.

Section 2 presents background from operator theory. A key result here is a

theorem to construct contraction operators by specifying their action on dense

sets; we give a new proof that reduces the result to the isometric case. The main

results on reproducing kernels are in Section 3. Examples in Section 4 illustrate

the theory with kernels of the form
(

1− S(z)S(w)
)

/(1− zw̄) where S(z) is a

generalized Schur function.

Scalar-valued functions are assumed throughout. See [Alpay et al. 1997] for

the extension to vector-valued functions and a detailed account of the theory of

generalized Schur functions and associated colligations and reproducing kernel

Pontryagin spaces.
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2. Contraction operators on Pontryagin spaces

Inner products are assumed to be linear and symmetric and defined on a

complex vector space. Orthogonality and direct sum are defined for any inner

product space as in the Hilbert space case. The antispace of an inner product

space (H, 〈 · , · 〉H) is (H,−〈 · , · 〉H). We write H for (H, 〈 · , · 〉H) when the inner

product is understood.

Linear and symmetric inner product spaces are too general, and strong results

can only be proved in special cases. A Pontryagin space is an inner product space

H which can be written as the orthogonal direct sum

H = H+ ⊕H− (2–1)

of a Hilbert space H+ and the antispace H− of a finite-dimensional Hilbert space.

In a natural way, H becomes a Hilbert space when H− is replaced by its antispace

in (2–1). Such decompositions are not unique, but any two norms obtained in

this way turn out to be equivalent. Every Pontryagin space thus has a unique

strong topology. We write L(H, K) for the space of continuous operators from H

into K and L(H) = L(H, H). The dimensions of H± in (2–1) are independent of

the choice of decomposition and called the positive and negative indices of H.

The negative index κ of H is the maximum dimension of a subspace H− which

is the antispace of a Hilbert space in the inner product of H, and every such

κ-dimensional subspace occurs in a decomposition (2–1).

Lemma 2.1 (Gram Matrices). Let g1, . . . , gn be vectors in a complex vector

space H with a linear and symmetric inner product 〈 · , · 〉H. Then the number of

negative eigenvalues of the Gram matrix G =
(

〈gj , gi〉H

)n

i,j=1
is equal to the max-

imum dimension of a subspace N of the span of g1, . . . , gn which is the antispace

of a Hilbert space in the inner product of H.

A proof is given in [Alpay et al. 1997, Lemma 1.1.1′].

The adjoint of an operator A ∈ L(H, K) is the unique A∗ ∈ L(K, H) such

that 〈Ah, k〉
K

= 〈h,A∗k〉
H

for all h ∈ H and k ∈ K. An operator in L(H) is

selfadjoint if it is equal to its adjoint and a projection if it is selfadjoint and

idempotent. As in the Hilbert space case, the set of selfadjoint operators is

partially ordered by writing A ≤ B to mean that 〈Af, f〉
H

≤ 〈Bf, f〉
H

for all

f ∈ H whenever A,B ∈ L(H) are selfadjoint operators. Closed subspaces M of a

Pontryagin space H which are themselves Pontryagin spaces in the inner product

of H behave much like closed subspaces of Hilbert spaces. They coincide with

ranges of projections, and the projection theorem holds: H = M ⊕ M⊥. Such

subspaces are called regular.

Identity operators are written as 1. We call A ∈ L(H, K) an isometry if A∗A =

1 and unitary if both A and A∗ are isometric. More generally, A ∈ L(H, K) is

a partial isometry if AA∗A = A. The properties of partial isometries are given

in [Dritschel and Rovnyak 1996, Theorems 1.7, 1.8]. If A ∈ L(H, K) is a partial



REPRODUCING KERNEL PONTRYAGIN SPACES 427

isometry, there exist regular subspaces M of H and N of K such that A maps

M isometrically onto N and M⊥ to the zero subspace. Conversely, any such

operator A ∈ L(H, K) is a partial isometry, and A∗A and AA∗ are projections

onto M and N. Unitary operators are isomorphisms and make the domain and

range spaces abstractly indistinguishable.

We say that A ∈ L(H, K) is a contraction if

〈Ah,Ah〉
K
≤ 〈h, h〉

H

for all h ∈ H. If both A and A∗ are contractions, A is called a bicontraction. If H

and K are Pontryagin spaces having the same negative index, every contraction

A ∈ L(H, K) is a bicontraction [Dritschel and Rovnyak 1996, Corollary 2.5].

Without the index condition, this is not true (consider the identity operator

acting on a Hilbert space to its antispace). See also [Azizov and Iokhvidov 1986;

Bognár 1974; Iohvidov et al. 1982] for the basic properties of these notions.

In concrete situations, we define contraction operators by specifying their

graphs. Typically, to start we have only partial information and have to deal

with sets that are perhaps not graphs, that is, they may contain elements of the

form (0, k) with nontrivial k ∈ K. A linear relation from H to K is a subspace

R of H×K. Its domain is the set of first members of pairs in R, and the range

is the set of second members. We call R contractive if 〈k, k〉
K
≤ 〈h, h〉

H
for all

(h, k) in R, and isometric if equality holds in this inequality for all pairs.

The following result appears in [Alpay et al. 1997] with a proof based on a

method of T. Ya. Azizov. An alternative proof is given below.

Theorem 2.2. Let H and K be Pontryagin spaces having the same negative

index . Let R be a densely defined and contractive linear relation in H×K. Then

the closure of R is the graph of a contraction T ∈ L(H, K).

The result is often applied when R is isometric, and then T is an isometry.

Proof. Step 1: Reduction to the isometric case. Assume the result is known

for densely defined isometric linear relations. Let R be any contractive linear

relation from H to K having dense domain. Define A0 to be R as a vector space

but considered in the inner product

〈u1, u2〉A0
= 〈f1, f2〉H

−〈g1, g2〉K

for any u1 = (f1, g1) and u2 = (f2, g2) in R. The inner product is nonnegative

since R is contractive. Let N be the set of elements u in A0 such that 〈u, v〉
A0

= 0

for all v in A0. A strictly positive inner product is induced in A0/N, and this

space can be completed to a Hilbert space A. If u ∈ A0, let [u] = u + N be the

corresponding coset in A. Define an isometric linear relation from H to K⊕A by

V =

{(

f,

(

g

[(f, g)]

))

: (f, g) ∈ R

}

.
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We verify the isometric property: for any (f, g) ∈ R,

〈(

g

[(f, g)]

)

,

(

g

[(f, g)]

)〉

K⊕A

= 〈g, g〉
K

+ 〈f, f〉
H
−〈g, g〉

K
= 〈f, f〉

H
.

If the result is known in the isometric case, V is the graph of an isometry

V =

(

T

A

)

∈ L(H, K⊕A).

We show that R is the graph of T . If (f, g) ∈ R, then (fn, gn) → (f, g) for some

sequence {(fn, gn)}∞1 in R. By the continuity of V ,

(

gn

[(fn, gn)]

)

= V fn → V f =

(

Tf

Af

)

;

hence gn → Tf and so (f, g) = (f, Tf) is in the graph of T . Conversely, if

(f, g) = (f, Tf) is in the graph of T , then (f, V f) is in V. Hence there is a

sequence {(fn, gn)}∞1 in R such that

(

fn,

(

gn

[(fn, gn)]

))

→
(

f,

(

Tf

Af

))

.

Then fn → f and gn → Tf , so (f, g) = (f, Tf) is in R. Thus the result holds in

general if it is true in the isometric case.

Step 2: Proof in the isometric case. The argument uses Pontryagin’s Theorem

[Dritschel and Rovnyak 1996, Theorem 2.9]: For any dense subspace H0 of a

Pontryagin space H, there is a decomposition (2–1) such that H− ⊆ H0.

Assume that R is an isometric linear relation from H to K with dense domain.

Let H and K have negative index κ. By the polarization identity,

〈f1, f2〉H
= 〈g1, g2〉K

for (f1, g1), (f2, g2) ∈ R. (2–2)

By Pontryagin’s theorem, we can choose a fundamental decomposition (2–1)

such that H− is contained in the domain of R. Choose f1, . . . , fκ ∈ H− such that

〈fj , fi〉H
= −δij for i, j = 1, . . . , κ, and let (f1, g1), . . . , (fκ, gκ) be corresponding

elements of R. By (2–2), 〈gj , gi〉K
= −δij for i, j = 1, . . . , κ. Hence g1, . . . , gκ

span a κ-dimensional subspace K− which is the antispace of a Hilbert space and

part of a fundamental decomposition K = K+ ⊕K−.

We show that R is a graph. If (0, g) belongs to R, then by (2–2), 〈g, v〉
K

= 0

for all v in the range of R and hence for all v in K−. Thus g ∈ K+. Since g itself

is in the range of R, we have 〈g, g〉
K

= 0 and so g = 0. It follows that R is the

graph of a densely defined operator T0 from H into K.

The restriction of T0 to H− maps H− isometrically onto K−. The restriction

of T0 to H+ is a densely defined isometry from H+ to K+. Since these are Hilbert

spaces, T0 has an extension by continuity to an isometry T ∈ L(H, K). Then R

is the graph of T . ˜
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The hypothesis in Theorem 2.2 that H and K have the same negative index is

essential. Examples show what can go wrong when this condition is not met.

Example 2.3. Let H = C be the complex numbers in the Euclidean norm. Let

K be C
3 in the inner product

〈a, b〉
K

= a1b̄1 + a2b̄2 − a3b̄3,

where a = (a1, a2, a3) and b = (b1, b2, b3). Let R be the set of pairs (a, (a, c, c))

with a, c ∈ C. Then R is an isometric linear relation with domain H, but R

contains elements (0, g) with g 6= 0 and hence is not the graph of an operator.

Example 2.4. Let K be an infinite-dimensional Pontryagin space of negative

index 1. Choose a nonclosed subspace H of K which is a Hilbert space in the

inner product of K, that is, 〈f, g〉
H

= 〈f, g〉
K

for f, g ∈ H. Such subspaces exist

[Azizov and Iokhvidov 1986, Example 4.12, p. 27; Bognár 1974, Example 6.5,

p. 111; Dritschel and Rovnyak 1996, Supplement]. The inclusion mapping V

from H into K is thus an everywhere defined linear operator which preserves

inner products, that is,

〈V f, V g〉
K

= 〈f, g〉
H

for f, g ∈ H,

but V is not continuous relative to the strong topologies of H and K (if it were

continuous, its range would be closed; see [Dritschel and Rovnyak 1996, p. 127]).

3. Reproducing Kernel Pontryagin Spaces

Let Ω be a nonempty set. By a kernel we mean a (complex-valued) function

K(s, t) on Ω×Ω. Such a function is said to be Hermitian if K(t, s) = K(s, t)

for s, t ∈ Ω. In this case,

(K(sk, sj))
n

j,k=1 =













K(s1, s1) K(s2, s1) . . . K(sn, s1)

K(s1, s2) K(s2, s2) . . . K(sn, s2)

· · ·
K(s1, sn) K(s2, sn) . . . K(sn, sn)













is a selfadjoint matrix for any points s1, . . . , sn in Ω (n = 1, 2, 3, . . .). We say that

K(s, t) has κ negative squares, κ a nonnegative integer, if every matrix of this

form has at most κ negative eigenvalues and at least one such matrix has exactly

κ negative eigenvalues (counted according to multiplicity). If this condition is

satisfied with κ = 0, we call the kernel nonnegative. We remark that changing

the matrix to (K(sk, sj)ck c̄j)
n

j,k=1 for any complex numbers c1, . . . , cn cannot

increase the number of negative eigenvalues, and so the definition of κ negative

squares used here is equivalent to that of [Alpay et al. 1997] in the scalar case.

Let H be a Pontryagin space whose elements are functions on Ω. Linear

operations are understood to be defined pointwise, hence all evaluation mappings

E(s) : f → f(s), for s ∈ Ω, are linear functionals on H. By a reproducing kernel
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for H we mean a function K(s, t) on Ω×Ω such that for each s ∈ Ω the function

K(s, · ) belongs to H, and

〈f( · ),K(s, · )〉
H

= f(s)

for every function f in H. As in the Hilbert space case, it is an easy fact that a

reproducing kernel exists if and only if all evaluation mappings are continuous.

In this case, E(s) ∈ L(H, C) for every s ∈ Ω. The reproducing kernel is unique

and given by

K(s, t) = E(t)E(s)∗ for s, t ∈ Ω,

where E(s)∗ ∈ L(C, H) is the adjoint of the evaluation mapping E(s) ∈ L(H, C)

for any fixed s ∈ Ω. (In this equation, the right side is an operator on C to C

and hence identified with a complex number. The equation can also be read to

say that K(s, · ) is the element of H obtained from the element 1 of C under the

action of E(s)∗.) Clearly, a reproducing kernel K(s, t) is Hermitian. Applying

Lemma 2.1 to the matrices

(

〈K(sk, · ),K(sj , · )〉H

)n

j,k=1
= (K(sk, sj))

n

j,k=1 , (3–1)

we see that K(s, t) has at most κ negative squares, where κ is the negative index

of H. A little further argument, using Pontryagin’s Theorem on dense sets cited

in the proof of Theorem 2.2, shows that K(s, t) has exactly κ negative squares.

Summarizing these properties, we have:

Theorem 3.1. A Pontryagin space H of functions on Ω admits a reproducing

kernel K(s, t) if and only if all evaluation mappings are continuous. In this case,

K(s, t) is unique, and it is a Hermitian kernel having κ negative squares, where

κ is the negative index of H.

A converse result holds.

Theorem 3.2. If K(s, t) is a Hermitian kernel on Ω×Ω having κ negative

squares, there is a unique Pontryagin space H of functions on Ω having K(s, t)

as reproducing kernel .

Proof. Let H0 be the span of functions K(s, · ) with s ∈ Ω. By adding zero

terms if necessary, any two functions f, g in H0 can be represented in the form

f( · ) =

n
∑

k=1

akK(sk, · ), g( · ) =

n
∑

j=1

bjK(sj , · ), (3–2)

using the same points s1, . . . , sn in Ω. Define an inner product by setting

〈f, g〉
H0

=

n
∑

j,k=1

akb̄jK(sk, sj).
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Since 〈f, g〉
H0

=
∑n

j=1 b̄jf(sj) =
∑n

k=1 akg(sk), the inner product is well de-

fined, linear, and symmetric. The identity 〈f( · ),K(s, · )〉
H0

= f(s) holds for all

s ∈ Ω and all f in H0.

Lemma 2.1, applied to the inner product space H0 and the Gram matrices

(3–1), implies that H0 contains a subspace H− which is the antispace of a Hilbert

space, and no subspace of higher dimension has this property. A reproducing

kernel for H− can be exhibited in terms of any functions u1, . . . , uκ in H− such

that

〈uk, uj〉H0

= −δjk for j, k = 1, . . . , κ,

namely, K−(s, t) = −
∑κ

l=1 ul(t)ul(s). Define

K+(s, t) = K(s, t)−K−(s, t)

on Ω×Ω, and let H0+ be the span of all functions K+(s, · ) with s ∈ Ω. For any

s ∈ Ω and j = 1, . . . , κ,

〈K+(s, · ), uj( · )〉H0

= 〈K(s, · ), uj( · )〉H0

+

κ
∑

l=1

〈ul( · )ul(s), uj( · )〉H0

= uj(s)−uj(s) = 0,

and hence H0+ ⊥ H− in the inner product of H0. Next consider two functions f, g

in H0+. Representing f, g in the form (3–2) with K(s, t) replaced by K+(s, t),

we obtain

〈f, g〉
H0

=

〈 n
∑

k=1

akK(sk, · )−
n
∑

k=1

akK−(sk, · ),
n
∑

j=1

bjK(sj , · )−
n
∑

j=1

bjK−(sj , · )
〉

H0

=
n
∑

j,k=1

akb̄j

{

K(sk, sj)−K−(sk, sj)−K−(sk, sj)+K−(sk, sj)
}

=

n
∑

j,k=1

akb̄jK+(sk, sj).

It follows that K+(s, t) is nonnegative, since otherwise we can find a (κ +

1)-dimensional subspace of H0 which is the antispace of a Hilbert space in

the inner product of H0. For if K+(s, t) is not nonnegative, another appli-

cation of Lemma 2.1 implies that H0+ contains an element uκ+1 such that

〈uκ+1, uκ+1〉H0
< 0, and then the span of u1, . . . , uκ, uκ+1 has the stated prop-

erties.

The proof is completed using the known Hilbert space case [Aronszajn 1950].

Complete H0+ to a functional Hilbert space H+ with reproducing kernel K+(s, t).

Define a Pontryagin space H of functions on Ω by (2–1) with H± as above. We

easily verify that H has reproducing kernel K(s, t). This establishes existence.

To prove uniqueness, consider a second Pontryagin space H′ of functions on

Ω with reproducing kernel K(s, t). Then H′ contains H0 and H− isometrically,
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and so H0+ is contained isometrically in H′ 	 H−. Since H′ 	 H− and H+ are

two Hilbert space with reproducing kernel K+(s, t), they are equal isometrically

by the Hilbert space version of the uniqueness result. Hence H and H′ are equal

isometrically. ˜

Theorem 3.3. Let K(s, t) = K+(s, t) + K−(s, t) on Ω × Ω, where K+(s, t)

is nonnegative and K−(s, t) = −
∑m

l=1 ul(t)ul(s) for some linearly independent

functions u1, . . . , um on Ω. Then K(s, t) has κ negative squares where κ ≤ m,

and κ = m if no nonzero function in the span of u1, . . . , um belongs to the Hilbert

space with reproducing kernel K+(s, t).

Proof. Consider points s1, . . . , sn in Ω. Write C = A+B, where

C = (K(sk, sj))
n

j,k=1 , A = (K+(sk, sj))
n

j,k=1 .

Then B = −FF ∗ where F = (uk(sj))n×m has rank at most m, and so B

has at most m negative eigenvalues. Now B and C are Gram matrices for the

standard basis of C
n relative to the inner products 〈a, b〉C = 〈Ca, b〉

Cn and

〈a, b〉B = 〈Ba, b〉
Cn . Since C = A + B ≥ B, 〈u, u〉C ≥ 〈u, u〉B for all u ∈ C

n.

Hence, by Lemma 2.1, C has at most m negative eigenvalues. Thus K(s, t) has

κ ≤ m negative squares.

Suppose that no nonzero function in the span H− of u1, . . . , um belongs to the

Hilbert space H+ with reproducing kernel K+(s, t). Then a Pontryagin space

having reproducing kernel K(s, t) = K+(s, t) + K−(s, t) is defined by forming a

direct sum (2–1) with the given spaces H− and H+. Since H has negative index

m by construction, K(s, t) has m negative squares by Theorem 3.1. ˜

Theorem 3.4. Let H be a Pontryagin space of functions on Ω with reproducing

kernel K(s, t). If G is a closed subspace which is a Pontryagin space in the inner

product of H, then G has a reproducing kernel KG(s, t) such that , for each s ∈ Ω,

KG(s, · ) is the projection of K(s, · ) into G.

The proof is the same as in the Hilbert space case and omitted. We remark

that a subspace G as in Theorem 3.4 is the range of a projection [Dritschel and

Rovnyak 1996, Theorem 1.3].

Recall the result on restrictions of reproducing kernels from the Hilbert space

theory [Aronszajn 1950, p. 351]. Let K(s, t) be the reproducing kernel for a

Hilbert space H of functions on Ω. Let K1(s, t) be the restriction of K(s, t) to

Ω1×Ω1 for some subset Ω1 of Ω. Then K1(s, t) is the reproducing kernel for the

Hilbert space H1 whose elements consist of all restrictions h1 of functions h in

H with

‖h1‖H1
= inf

{

‖h‖
H

: h ∈ H, h1 = h|Ω1

}

.

In general, this fails for Pontryagin spaces.

Example 3.5. The kernel K(w, z) = 1− zw̄ has one negative square on C ×C

by Theorem 3.3. By Theorem 3.2 it is the reproducing kernel for the two-

dimensional Pontryagin space H spanned by the functions h0(z) = 1 and h1(z) =
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z, with

〈h0, h0〉H
= 1, 〈h1, h1〉H

= −1, 〈h0, h1〉H
= 0.

If Ω1 = {1}, the restriction of K(w, z) to Ω1×Ω1 is K1(w, z) ≡ 0. The set H1 of

restrictions of functions in H to Ω1 is a one-dimensional vector space, so there is

no way to make H1 a Pontryagin space with reproducing kernel K1(w, z). Note

the decrease in number of negative squares: K(w, z) has κ = 1 negative square,

and K1(w, z) has κ = 0 negative squares.

Theorem 3.6. Let H be a Pontryagin space of functions on Ω with reproducing

kernel K(s, t). If Ω1 is a subset of Ω, the following conditions are equivalent :

(a) The set of functions in H that vanish on Ω1 forms a Hilbert space in the

inner product of H.

(b) The restriction K1(s, t) of K(s, t) to Ω1×Ω1 has the same number of negative

squares as K(s, t).

In this case, K1(s, t) is the reproducing kernel for the Pontryagin space H1 of

functions on Ω1 such that the restriction mapping h → h|Ω1
is a partial isometry

from H onto H1.

Condition (a) is trivially satisfied if the only function in H which vanishes on Ω1

is the function identically zero.

Proof. (b) ⇒ (a) Let H1 be the Pontryagin space with reproducing kernel

K1(s, t). Our hypotheses imply (by Theorem 3.1) that H1 and H have the same

negative index. Define a linear relation R in H1 ×H as the span of all pairs

(K1(s, · ),K(s, · )) for s ∈ Ω1.

For any s1, . . . , sn ∈ Ω1 and numbers a1, . . . , an and b1, . . . , bn,

n
∑

j,k=1

akb̄jK1(sk, sj) =

n
∑

j,k=1

akb̄jK(sk, sj).

Thus R is isometric. By Theorem 2.2, the closure of R is the graph of an

isometry V ∈ L(H1, H). Then H = K ⊕ N, where K = ranV is a Pontryagin

space having the same negative index as H. Hence N = ker V ∗ is a Hilbert space

in the inner product of H. For any s ∈ Ω1 and h ∈ H,

(V ∗h)(s) = 〈(V ∗h)( · ),K1(s, · )〉H1
= 〈h( · ),K(s, · )〉

H
= h(s),

so N = kerV ∗ = {h : h ∈ H, h|Ω1
≡ 0}, and (a) follows.

(a) ⇒ (b) Assume that N = {h : h ∈ H, h|Ω1
≡ 0} is a Hilbert subspace of H.

Then H = K ⊕ N, where K is a Pontryagin subspace of H having the same

negative index as H. Let H1 be the Pontryagin space of all restrictions h1 = h|Ω1

of functions h in K in the inner product such that the mapping U : h → h|Ω1

is an isometry from K onto H1. Then H1 has the same negative index as H. If
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s ∈ Ω1, then K(s, · ) is orthogonal to N and U : K(s, · ) → K1(s, · ). Hence

K1(s, · ) is in H1, and for any h1 of the form Uh, with h ∈ K, we have

〈h1( · ),K1(s, · )〉H1
= 〈h( · ),K(s, · )〉

H
= h(s) = h1(s).

Thus H1 has reproducing kernel K1(s, t). Since H1 and K have the same neg-

ative index, K1(s, t) and K(s, t) have the same number of negative squares by

Theorem 3.1. This proves both (b) and the last statement in the theorem. ˜

In the case of holomorphic kernels, the number of negative squares is propagated

to arbitrarily large domains. Let Ω be a region in the complex plane. A kernel

K(w, z) on Ω×Ω is called holomorphic if it is holomorphic in z for each fixed w

and holomorphic in w̄ for each fixed z. As in the Hilbert space case, a reproducing

kernel K(w, z) for a Pontryagin space H of functions on Ω is holomorphic if and

only if the elements of H are holomorphic functions on Ω.

Theorem 3.7. Let K(w, z) be a holomorphic Hermitian kernel on Ω×Ω for

some region Ω in the complex plane. Let Ω1 be a subregion of Ω, and assume

that the restriction K1(w, z) of K(w, z) to Ω1×Ω1 has κ negative squares. Then

K(w, z) has κ negative squares on Ω×Ω.

This is proved in [Alpay et al. 1997, Theorem 1.1.4], in a version for operator-

valued functions, and we omit the argument here.

The Hilbert space theorem on sums of reproducing kernels is given in [Aron-

szajn 1950, p. 353]. Let K(s, t) = K1(s, t)+K2(s, t), where K(s, t), K1(s, t), and

K2(s, t) are reproducing kernels for Hilbert spaces H, H1, and H2. Then H1 and

H2 are vector subspaces of H. Every element h of H is of the form h = h1 + h2

with h1 ∈ H1 and h2 ∈ H2, and

‖h‖2
H

= min
(

‖h1‖2
H1

+ ‖h2‖2
H2

)

,

where the minimum is over all such representations. The minimum is uniquely

attained. These assertions fail in general for Pontryagin spaces.

Example 3.8. Let L(s, t) 6≡ 0 be the reproducing kernel for a finite-dimensional

Hilbert space of functions on Ω. Put

K1(s, t) = L(s, t), K2(s, t) = −L(s, t).

Then K(s, t) = K1(s, t) + K2(s, t) vanishes identically and is the reproducing

kernel for H = {0}. Thus the reproducing kernel Pontryagin spaces H1 and H2

corresponding to K1(s, t) and K2(s, t) are not contained in H.

Nevertheless, there are indefinite extensions of the Hilbert space results in this

area. They are related to the complementation theory of de Branges [1988] for

contractively contained spaces. A Pontryagin space H1 is contained contractively

in a Pontryagin space H if H1 is a vector subspace of H and the inclusion mapping

is a continuous and contractive operator from H1 into H. If H1 and H2 are
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two Pontryagin spaces which are contained contractively in H, they are called

complementary if

(a) (h1, h2) → h1 +h2 is a partial isometry from H1 ×H2 onto H, and

(b) the kernel of the partial isometry is a Hilbert space.

In this case, every h ∈ H is of the form h = h1 +h2 with h1 ∈ H1, h2 ∈ H2, and

〈h, h〉
H

= min
(

〈h1, h1〉H1
+ 〈h2, h2〉H2

)

,

where the minimum is over all such representations and uniquely attained, and

κ = κ1 +κ2 where κ, κ1, κ2 are the negative indices of H, H1, H2.

Theorem 3.9. Suppose that K1(s, t),K2(s, t) are reproducing kernels for Pon-

tryagin spaces H1, H2 of functions on Ω with negative indices κ1, κ2. Then

K(s, t) = K1(s, t)+K2(s, t) (3–3)

is the reproducing kernel for a Pontryagin space H having negative index κ ≤
κ1 +κ2. Equality holds if and only if R = H1∩H2 is a Hilbert space in the inner

product

〈h, k〉
R

= 〈h, k〉
H1

+ 〈h, k〉
H2

for h, k ∈ R. (3–4)

If κ = κ1+κ2, then H1 and H2 are contained contractively in H as complementary

spaces.

A bit more is true. For example, the converse to the last statement holds:

if H1 and H2 are contained contractively in H as complementary spaces, then

κ = κ1 +κ2. See [Alpay et al. 1997, Chapter 1].

Proof. We obtain the first assertion from Lemma 2.1 as in the proof of The-

orem 3.3. (Hint. First write Kj(s, t) = Kj+(s, t) + Kj−(s, t) for j = 1, 2, as in

Theorem 3.3.)

Assume κ = κ1 + κ2. Let R be the linear relation in H× (H1 ×H2) spanned

by all pairs
(

K(s, · ), (K1(s, · ),K2(s, · ))
)

with s ∈ Ω. Apply Theorem 2.2 to

construct an isometry W ∗ from H into H1 ×H2 such that

W ∗ : K(s, · ) → (K1(s, · ),K2(s, · )) for s ∈ Ω.

Then W is a partial isometry whose initial set is a Pontryagin subspace of H1×H2

having the negative index κ = κ1 + κ2, and whose kernel therefore is a Hilbert

space. A short calculation shows that W : (h1, h2) → h1 + h2. In fact, if

(h1, h2) ∈ H1 ×H2 and W : (h1, h2) → h, then

h(s) = 〈h( · ),K(s, · )〉
H

= 〈(h1( · ), h2( · )), (K1(s, · ),K2(s, · ))〉H1×H2

= h1(s)+h2(s)

for all s ∈ Ω. The kernel of W is naturally isomorphic with R = H1 ∩H2 in the

inner product (3–4). Thus R is a Hilbert space in the inner product (3–4). We

have also proved the last assertion of the theorem.
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Conversely, assume R = H1∩H2 is a Hilbert space in the inner product (3–4).

Then the elements (h,−h) in H1 ×H2 with h ∈ R form a Hilbert space in the

inner product of H1 ×H2. Hence there is a Pontryagin space H′ such that the

mapping

W : (h1, h2) → h1 +h2

is a partial isometry from H1 × H2 onto H′. We easily check that (3–3) is a

reproducing kernel for H′, hence H′ = H isometrically. Since kerW is a Hilbert

space, H1 ×H2 and H have the same negative index, namely, κ = κ1 +κ2. ˜

Theorem 3.10. Suppose that K(s, t),K1(s, t) are reproducing kernels for Pon-

tryagin spaces H, H1 of functions on Ω having negative indices κ, κ1. If H1 is

contained contractively in H, then κ ≥ κ1 and

K2(s, t) = K(s, t)−K1(s, t)

has κ2 = κ−κ1 negative squares and is the reproducing kernel for a Pontryagin

space H2 which is contained contractively in H such that H1 and H2 are comple-

mentary .

Proof. By a theorem of de Branges [1988] (see also [Dritschel and Rovnyak

1991]), there is a unique Pontryagin space H2 which is contained contractively

in H such that H1 and H2 are complementary. Evaluation mappings on H2

are compositions of continuous mappings and thus continuous. Hence H2 has

a reproducing kernel K2(s, t). By the definition of complementary spaces, the

mapping W : (h1, h2) → h1 +h2 is a partial isometry from H1 ×H2 onto H, and

kerW is a Hilbert space. Thus H2 has negative index κ− κ1. In particular,

κ ≥ κ1.

For fixed s ∈ Ω, K1(s, · )+K2(s, · ) belongs to H and is the image under W of

(K1(s, · ),K2(s, · )), where the kernel function pair is in H1 ×H2 and orthogonal

to kerW . Every h in H is the image under W of some pair (h1, h2) in H1 ×H2,

and hence

〈h( · ),K1(s, · )+K2(s, · )〉H
= 〈(h1( · ), h2( · )), (K1(s, · ),K2(s, · ))〉H1×H2

= h1(s)+h2(s) = h(s).

Therefore K1(s, t) + K2(s, t) is a reproducing kernel for H. Since a reproducing

kernel is unique, K1(s, t)+K2(s, t) = K(s, t), and so K2(s, t) = K(s, t)−K1(s, t)

is the reproducing kernel for H2. The result follows. ˜

One more result may be mentioned.

Theorem 3.11. Let K1(s, t) be the reproducing kernel for a Pontryagin space

H1 of functions on Ω having negative index κ1. Define

K2(s, t) = A(t)K1(s, t)A(s) for s, t ∈ Ω,

where A(t) is a fixed function on Ω. Then K2(s, t) is the reproducing kernel for

a Pontryagin space H2 of functions on Ω having negative index κ2 ≤ κ1, and
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κ1 = κ2 if and only if the set of functions h(t) in H1 such that A(t)h(t) ≡ 0 is a

Hilbert space in the inner product of H1. In this case, multiplication by A(t) is

a partial isometry from H1 onto H2 whose kernel is a Hilbert space.

The proof is another application of Theorem 2.2 and omitted (when κ1 = κ2,

set up a linear relation R to define the adjoint of multiplication by A(t)).

We have presented the theory of reproducing kernel spaces in the context of

Pontryagin spaces. The main definitions can be adapted to Krĕın spaces, and

some of the constructions carry over. However, new phenomena arise in this

generality. A reproducing kernel is uniquely determined by the associated Krĕın

space, but, in contrast with Theorem 3.2, essentially different Krĕın spaces can

have the same reproducing kernel. For example, see [Alpay 1991; Schwartz 1964].

4. Examples Involving Generalized Schur Functions

The Schur class is the set of holomorphic functions S(z) which are defined

and satisfy |S(z)| ≤ 1 on the unit disk D in the complex plane C. For any such

function, the associated kernel

KS(w, z) =
1−S(z)S(w)

1− zw̄
(4–1)

is nonnegative and therefore the reproducing kernel for a Hilbert space H(S) of

holomorphic functions on D. These spaces have been extensively studied, and

many properties are known. For example, the transformation

T : h(z) → h(z)−h(0)

z
(4–2)

maps H(S) into itself and satisfies the difference quotient inequality
∥

∥

(

h(z)−h(0)
)

/z
∥

∥

2

H(S)
≤ ‖h(z)‖2

H(S) − |h(0)|2 (4–3)

for all elements h(z) of the space. There are operators






















F : c → S(z)−S(0)

z
c on C to H(S),

G : h(z) → h(0) on H(S) to C,

H : c → S(0)c on C to C,

(4–4)

such that the colligation

V =

(

T F

G H

)

∈ L(H(S)⊕C) (4–5)

is coisometric, that is, V V ∗ = 1. The characteristic function of the colligation is

the given Schur function S(z):

S(z)c = Hc+ zG(1− zT )−1Fc for c ∈ C. (4–6)
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The colligation is unitary if and only if equality always holds in (4–3) and S(z) 6≡
0. An equivalent condition that V is unitary is that the function S(z) itself does

not belong to H(S). If S(z) = S1(z)S2(z) where S1(z) and S2(z) are Schur

functions, then H(S1) is contained contractively in H(S). If H(S1)∩S1H(S2) =

{0}, the inclusion is isometric, and H(S) = H(S1)⊕S1H(S2). The scalar case is

treated in [de Branges and Rovnyak 1966; Sarason 1994].

We derive the preceding scalar results in a Pontryagin space setting by the

methods of [Alpay et al. 1997].

Definition 4.1. Let Ω be a region satisfying 0 ∈ Ω ⊆ D. The generalized Schur

class Sκ is the set of holomorphic functions S(z) defined on Ω and such that the

kernel (4–1) has κ negative squares on Ω×Ω. For such a function, let H(S) be

the Pontryagin space of holomorphic functions with reproducing kernel (4–1).

The domain of a function S(z) ∈ Sκ will be denoted Ω = Ω(S). By Theorem 3.7,

this can be any region in D containing the origin on which S(z) is holomorphic.

Technically the spaces H(S) are different for different regions, but any two such

spaces can be identified in a natural way.

Theorem 4.2. For every S(z) in Sκ, the transformation (4–2) is everywhere

defined on H(S) and a bicontraction. The difference-quotient inequality

〈

h(z)−h(0)

z
,

h(z)−h(0)

z

〉

H(S)

≤ 〈h(z), h(z)〉
H(S) −h(0)h(0) (4–7)

holds for every h(z) in H(S). There exist operators (4–4) such that (4–5) is a

coisometry . The identity (4–6) holds in a neighborhood of the origin.

It is interesting to ask for a converse to Theorem 4.2, that is, to say when a Pon-

tryagin space of holomorphic functions is of the form H(S) for some function S(z)

in Sκ. When κ = 0, such characterizations are known [Guyker 1991; Leech 1969],

but it is an open problem to obtain a similar result in the general case. When

more general spaces involving operator-valued functions are allowed, a complete

characterization is possible and given in [Alpay et al. 1997, Theorem 3.1.2].

Proof. Let the domain of S(z) be Ω. Theorem 2.2 will be used to construct an

isometry which turns out to be the adjoint of the operator V that we seek. The

construction is based on knowing how V ∗ must act on special elements. This

motivates the definition of a linear relation R in
(

H(S)⊕C
)

×
(

H(S)⊕C
)

as the

span of all pairs















KS(α, · )a1

a2



 ,











KS(α, · )−KS(0, · )
ᾱ

a1 +KS(0, · )a2

S(α)−S(0)

ᾱ
a1 +S(0)a2




















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with 0 6= α ∈ Ω and a1, a2 ∈ C. The inner product of the right members of any

two such pairs with nonzero α, β ∈ Ω and a1, a2, b1, b2 ∈ C is

KS(α, β)−KS(0, β)−KS(α, 0)+KS(0, 0)

ᾱ β
a1b̄1 +

KS(0, β)−KS(0, 0)

β
a2b̄1

+
KS(α, 0)−KS(0, 0)

ᾱβ
a1b̄2 +KS(0, 0)a2b̄2

+
S(β)−S(0)

β

S(α)−S(0)

ᾱβ
a1b̄1 +

S(β)−S(0)

β
S(0) a2b̄1

+ S(0)
S(α)−S(0)

ᾱβ
a1b̄2 +S(0)S(0) a2b̄2

= KS(α, β)a1b̄1 + a2b̄2

=

〈(

KS(α, · )a1

a2

)

,

(

KS(β, · )b1

b2

)〉

H(S)⊕C

.

Therefore R is isometric, hence R is the graph of an isometry

V ∗ =

(

T ∗ G∗

F ∗ H∗

)

∈ L(H(S)⊕C).

The definition of R is made so that T, F,G,H are given by (4–2) and (4–4).

On solving the equation (1−wT )−1h = g, we see that

(1−wT )−1 : h(z) → zh(z)−wh(w)

z−w

for any h(z) in H(S) and w in a neighborhood of the origin. Therefore

(

H +wG(1−wT )−1F
)

c = S(0)c+w











z
S(z)−S(0)

z
c−w

S(w)−S(0)

w
c

z −w











z=0

= S(0)c+w
S(w)−S(0)

w
c = S(w)c,

for w in a neighborhood of the origin and c ∈ C, yielding (4–6).

Since V ∗ is an isometry and hence a contraction acting on a Pontryagin space

into itself, it is a bicontraction. Hence V ∗V ≤ 1 and T ∗T + G∗G ≤ 1, which

implies (4–7). By (4–7), T is a contraction. Since T maps a Pontryagin space

into itself, it is a bicontraction. ˜

Theorem 4.3. In Theorem 4.2, the following conditions are equivalent :

(a) Equality always holds in (4–7) and S(z) 6≡ 0.

(b) S(z) does not belong to H(S).

(c) V is unitary .
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Proof. (a) ⇒ (b) Assume (a). Then T ∗T +G∗G = 1 and so

1−V ∗V =

(

0 −T ∗F −G∗H

−F ∗T −H∗G 1−F ∗F −H∗H

)

.

Since V ∗ is an isometry and hence a bicontraction, V is a contraction. Hence

1−V ∗V ≥ 0. In view of the zero in the upper left entry of the operator matrix,

this implies T ∗F +G∗H = 0 by properties of nonnegative quadratic forms. The

action of G∗ is computed from the uniqueness of a reproducing kernel: G∗c =

KS(0, · )c for every c ∈ C. Therefore the identity T ∗F +G∗H = 0 yields

T ∗ :
S(z)−S(0)

z
→ −KS(0, z)S(0).

If S(z) belongs to H(S), the last relation yields

(1−G∗G)S( · ) = T ∗TS( · ) = −KS(0, · )S(0).

Then S(z)−KS(0, z)S(0) ≡ −KS(0, z)S(0) and S(z) ≡ 0, which is excluded

in (a). Therefore S(z) does not belong to H(S).

(b) ⇒ (c) Assume (b). Since V ∗ is an isometry, to prove that V is unitary we

need only show that kerV = {0}. If

V

(

f

c

)

= 0,

then
f(z)− f(0)

z
+

S(z)−S(0)

z
c = 0,

f(0)+S(0)c = 0,

identically. Therefore f(z) = −S(z)c belongs to H(S). By (b), c = 0. Thus

kerV = {0} and so V is unitary.

(c) ⇒ (a) The unitarity of V implies V ∗V = 1. Hence T ∗T + G∗G = 1, and

therefore equality always holds in (4–7). If S(z) ≡ 0, then F = 0 and H = 0 by

(4–4), contradicting the assumption that V is unitary. Therefore S(z) 6≡ 0. ˜

In the case κ = 0, condition (b) in Theorem 4.3 has been much studied; see

[de Branges and Rovnyak 1966; Sarason 1994]. The condition can also be pursued

using Leech’s theorem on the factorization of operator-valued functions. The

result obtained in this way states that S(z) belongs to H(S) and ‖S(z)‖
H(S) ≤ m

if and only if

S(z) =
mC1(z)√

m2 +1− zC2(z)

where C1(z) and C2(z) are holomorphic and satisfy |C1(z)|2+ |C2(z)|2 ≤ 1 on D.

See [Alpay et al. 1997] for details and some of the results that are known in the

indefinite case.
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Theorem 4.4. Suppose

S = S1S2,

where S1 ∈ Sκ1
, S2 ∈ Sκ2

. Then S ∈ Sκ for some κ ≤ κ1 +κ2. Equality holds if

and only if the set N of elements (h1, h2) ∈ H(S1)×H(S2) such that h1+S1h2 ≡ 0

form a Hilbert space in the inner product of H(S1)×H(S2).

The proof of the theorem and general results on reproducing kernels in § 3 yield

additional conclusions. Let S1H(S2) be the Pontryagin space with reproducing

kernel S1(z)KS2
(w, z)S1(w) (notice that when S1 6≡ 0, multiplication by S1

maps H(S2) isometrically onto S1H(S2) by Theorem 3.11). Then, for example,

when κ = κ1 + κ2, H(S1) and S1H(S2) are contractively contained in H(S) as

complementary spaces.

Proof. We may suppose that the functions S1 ∈ Sκ1
, S2 ∈ Sκ2

, and S = S1S2

are defined on a common region Ω with 0 ∈ Ω ⊆ D. The result is easily checked

when S1 ≡ 0, so let us exclude this degenerate case. Then

KS(w, z) = KS1
(w, z)+S1(z)KS2

(w, z)S1(w),

where KS1
(w, z) has κ1 negative squares and S1(z)KS2

(w, z)S1(w) has κ2 neg-

ative squares. By Theorem 3.9, KS(w, z) has κ ≤ κ1 + κ2 negative squares.

Define S1H(S2) as in the remarks preceding the proof. Theorem 3.9 also says

that κ = κ1 + κ2 if and only if R = H(S1)∩S1H(S2) is a Hilbert space in the

inner product defined by

〈h, k〉
R

= 〈h, k〉
H(S1)

+ 〈h, k〉S1H(S2)
for h, k ∈ R.

We show that R is in one-to-one isometric correspondence with N in the inner

product of H(S1) × H(S2). In fact, the mapping (h1, h2) → h1 from N onto

R is such a correspondence. For if (h1, h2) ∈ N, then h1 + S1h2 ≡ 0 and so

h1 ∈ H(S1)∩S1H(S2) = R. Clearly every element of R arises in this way from a

unique element of N, because as noted above multiplication by S1 maps H(S2)

isometrically onto S1H(S2). Suppose (k1, k2) → k1 for a second pair in N. Then

〈(h1, h2), (k1, k2)〉H(S1)×H(S2)
= 〈h1, k1〉H(S1)

+ 〈h2, k2〉H(S2)

= 〈h1, k1〉H(S1)
+ 〈S1h2, S1k2〉S1H(S2)

= 〈h1, k1〉H(S1)
+ 〈h1, k1〉S1H(S2)

= 〈h1, k1〉R
.

Thus κ = κ1 + κ2 if and only if N is a Hilbert space in the inner product of

H(S1)×H(S2). ˜

We conclude with the answer to a question that will no doubt have occurred

to the reader: what are the analytic continuation properties of functions in Sκ?

For the case κ = 0, it is well known that positivity of the kernel (4–1) for

w, z in a neighborhood of the origin implies that S(z) has an extension to a

holomorphic function which is bounded by one on the unit disk, and so S0 is
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naturally identified with the usual Schur class of complex analysis. The general

result is a well-known theorem of Krĕın and Langer [1972].

Theorem 4.5. Every function S(z) in Sκ has a factorization

S(z) = B(z)−1S0(z),

where B(z) is a Blaschke product having κ factors and S0(z) belongs to the

classical Schur class S0 and is nonvanishing at the zeros of B(z). Conversely ,

every function of this form belongs to Sκ.

To say that B(z) is a Blaschke product of κ factors means that it has the form

B(z) = C

κ
∏

j=1

z −αj

1− ᾱjz
,

where α1, . . . , ακ are (not necessarily distinct) points of the unit disk and C is a

constant of unit modulus. The case κ = 0 is included by interpreting an empty

product as one. See [Alpay et al. 1997, § 4.2], for a proof of Theorem 4.5 in a

version for operator-valued functions.

The generalized Schur class Sκ has deep connections with interpolation and

operator theory. It has been studied by Krĕın and Langer in a series of papers

including [Krĕın and Langer 1981]. However, a more complete account is beyond

the scope of the present introductory survey. We refer the reader to [Alpay et al.

1997] for additional results and literature notes.
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