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Geometry in Curvature Theory

NICOLAAS H. KUIPER

Abstract. This article is based on the Roever Lectures in Geometry given
by Kuiper at Washington University, St. Louis, in January 1986. Although
incomplete, it is an excellent exposition of the topics it does cover, starting
with elementary versions of the notion of tightness and going through the
analysis of topsets, the classification in low dimensions, the notions of total
curvature for curves and surfaces in space, homological notions of tightness,
the Morse inequalities, and Poincaré polynomials. It contains a detailed
proof of Kuiper’s remarkable result that a tight two-dimensional surface
substantially immersed in R5 must be a Veronese surface.

Editors’ Note. At the time of Kuiper’s death in December, 1994, this paper
existed in the form of an unfinished typescript. For inclusion in this volume,
it was edited by Thomas Banchoff, Thomas Cecil, Wolfgang Kühnel, and Silvio
Levy. A few Editors’ Notes such as this one were included, mostly pointing to
additional references. Several minor typos were corrected and the numbering
was normalized for ease of reference; thus Sections 5 and 6 of the manuscript
were renumbered 4 and 5, since there was no Section 4. The present illustrations
were made by Christine Heinitz and by Levy, based on Kuiper’s hand drawings.

1. Banchoff’s two-piece property. Zero-tightness

Prerequisites and Notation. Euclidean space E = EN of dimension N is the
real vector space RN with norm ‖u‖ =

√
ΣN

1 (ui)2 for u = (u1, . . . , uN) ∈ RN

and distance ‖v − u‖ for u, v ∈ RN. The identification κ : RN → EN can be
replaced by any other preferred Euclidean coordinate system κ ◦ g : RN → EN ,
where g is an isometry:

g(u) = u0 + u · g0, for u0 ∈ RN and g0 ∈ O(N) an orthogonal matrix.

We use EN to emphasize Euclidean space aspects and RN for vector space as-
pects. A set X ⊂ E is called convex if

u+ λ(v − u) ∈ X for all u, v ∈ X and 0 ≤ λ ≤ 1.

1
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The smallest convex set containing X ⊂ E is its convex hull, denoted HX. The
smallest affine subspace (also a Euclidean space) that contains X is its span,
denoted span(X). If span(X) = E, then X is called substantial in E. The
boundary of HX in span(X) is called the convex envelope ∂HX of X ⊂ E. If
X is one point then HX = X and ∂HX = ?.

The subspaces {u : ‖u‖ < r} and {u : ‖u‖ = r}, for r > 0, are called the
N -ball BN and the (N−1)-sphere SN−1, respectively. As metric spaces they are
called the round ball and the round sphere. Let z : RN → Rbe a linear function,
z(u) =

∑
i ζiu

i for ζi ∈ R, with ‖z‖2 =
∑
ζ2
i > 0. The subspaces {u : z(u) ≥ c},

{u : z(u) > c} and {u : z(u) = c} of E are called the half-space h, its interior
the open half-space h̊, and its boundary the hyperplane ∂h, respectively. The
function z is often called a height function.

A metrizable topological space X is called separated if it is the disjoint union
of two nonempty open and closed subsets, say X1 and X2. If U ⊂ X contains
points x1 ∈ X1 and x2 ∈ X2, then U ∩X1 and U ∩ X2 are disjoint open and
closed in U , and so U is also separated. The space X is called connected if it is
not separated. A connected nonempty open closed subset of a metrizable space
X is called a topological component of X.

Example. The plane set

{(ξ, η) : ξ = 0 or η = sin(ξ−1)}

is connected (but not pathwise connected).

Consequence. If Y is a metrizable space and for any two points y1, y2 ∈ Y
there is a connected space W (y1, y2) ⊂ Y containing y1 and y2 (in other words,
if “any two points y1, y2 ∈ Y can be connected in Y ′′), then Y is connected.
Indeed Y separated would show an immediate contradiction.

Definitions and General Theorems. For given compact spaces X, either
embedded in E = EN or given independently, we are interested in embeddings
or other continuous maps in E with nice properties that generalize convexity.
We introduce the important notion and tool called a topset:

Definition. Suppose the half-space

h = hz = {u ∈ E : z(u) ≥ c}

for some linear function z : E → R supports (“leans against”) the compact set
X, without containing it completely:

X 6= h ∩X = ∂h ∩X 6= ?.

Then Xz = h ∩X is called a (proper) topset of the set X ⊂ E. It is the set of
points in X for which the function z : X → R attains its maximal (top) value.
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Note that h̊ ∩X = ?. More generally, if f : X → E is a continuous map of the
compact space X into E, and h ∩ f(X) is a topset of f(X) ⊂ E, then

f−1(h) = {x ∈ X : f(x) ∈ h} = f−1(∂h) ⊂ X
is called a topset of the map f . A topset of a topset is called a top2set. A topjset
for some j ≥ 1 is called a top∗set. If the span of a top∗set X′ of X has dimension
k, then X′ is called an Ek-top∗set.

Remark. Let X be a substantial set of N + 1 points e0, . . . , eN in EN . Then
HX, the convex hull, is an N -simplex σN . Any proper nonempty subset of X is
a topset.

Exercise. Determine all topsets of a standard torus in E3, obtained by rotating
a circle around a disjoint line in its plane.

Exercise. Determine the topsets of the map f : w → w3 of the unit circle
{w : |w| = 1} ⊂ C into C = R⊕R= E2.

Theorem 1.1. The convex envelope of a compact set X ⊂ E is the union of the
convex hulls of its topsets:

∂HX =
⋃
z

HXz.

The union may be taken only over all linear functions z : E → R with norm
‖z‖ = 1. If X consists of one point , both sides are the empty set .

Proof. We need to show the implications in both directions:

x ∈
⋃
z

HXz ⇐⇒ x ∈ ∂HX.

Assume that the span of X is span(X) = E = EN . For a topset Xz = h∩X, let
x ∈ HXz. Since h supports X, it supports also HX. Then x ∈ h∩HX ⊂ ∂HX.
Conversely if x ∈ ∂HX, then there is a HX-supporting half-space hz containing
x, and

x ∈ hz ∩ ∂HX = hz ∩HX = hz ∩HXz =HXz. �

Now we propose a preliminary generalization of convexity:

Definition (for compact sets). A connected compact set X ⊂ E is said to have
the two-piece property, or TPP [Banchoff 1971b], and is called 0-tight, in case
any of the following equivalent conditions hold:

(a) h ∩X is connected for every half-space h.
(b) h̊ ∩X is connected for every h.
(c) The set difference X \ ∂h has at most two components for every h (this is

the two-piece property).
(d) In terms of Čech homology and any coefficient ring, the homomorphism
H0(h ∩X)→ H0(X) is injective for every h.
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We mention this last condition now for the sake of completeness, but defer the
relevant discussion till later (page 35).

Proof of equivalence. (a) ⇒ (b). If (a) holds then any two points in h̊∩X
are contained for some half-space hi in hi∩X ⊂ h̊∩X, and they can be connected
in hi ∩X. Then h̊ ∩X is connected.

(b) ⇒ (a). Suppose h ∩X is not connected for some h = {u ∈ E : z(u) ≥ c},
let and Y1 and Y2 be disjoint nonempty open closed subsets with union Y1∪Y2 =
h ∩ X. Let U1 and U2 ⊂ X be disjoint nonempty open neighborhoods of the
compact subsets Y1 and Y2. If c − 2ε is the maximum of z on the compact set
X \ (U1 ∪ U2) and h̊0 = {u ∈ E : z(u) > c − ε}, then h̊0 ∩X is not connected.
This contradicts (b).

The equivalence (b) ⇔ (c) is tautological. �

The same proof works for the equivalences in the following more general situation.

Definition (for maps). A continuous map f : X → E of a connected compact
space X in E has the two-piece-property (TPP) and is called 0-tight if any of the
following equivalent conditions hold:

(a) f−1(h) is connected for any half-space h.
(b) f−1 (̊h) is connected for any h.
(c) f−1(E \ ∂h) has at most two components for any h (two-piece-property).
(d) H0(f−1(h))→ H0(X) is injective for any h.

Examples. The following are 0-tight sets:

(1) a convex body X = HX ⊂ EN , for N ≥ 0;
(2) a convex hypersurface X = ∂HX substantial in EN , for N ≥ 2 (convex

curve for N = 2);
(3) a hemisphere, {u ∈ R3 : ‖u‖ = 1, z(u) ≤ 0};
(4) the standard round torus in E3 (see the first exercise on page 3);
(5) the solid round ring (solid torus) bounded by the standard torus;
(6) the 1-skeleton Sk1(σN ) of the N -simplex σN ⊂ EN ; this is by definition the

union of all edges of σN , and as a topological space it is a complete graph on
N + 1 vertices.

Remark. These are corollaries of the definition:

(1) 0-tightness is invariant under linear embeddings i : RM → R
N and projections

p : RN → R
M, where M < N . Indeed, if f : X → R

M and g : Y → R
N are

0-tight, then so are i ◦ f : X → EN and p ◦ g = Y → EM .
An example of a 0-tight map (immersion) is the projection of the 1-skeleton

Sk1(σ3) in E3 onto the union of edges and diagonals of a convex 4-gon in a plane
in E3. Note that f : X → point ∈ EN is 0-tight for any connected compact X.

(2) 0-tightness is an affine and even a projective property in the following sense.
Let PN be a real projective N -space and PN−1 a hyperplane. Then PN \PN−1



GEOMETRY IN CURVATURE THEORY 5

can be identified with EN , and this identification is natural up to affine trans-
formations u 7→ u0 + gu, where u0 ∈ RN, g ∈ GL(n,R). Given X ⊂ EN , let
η : PN → PN be a projective transformation such that η(X) ⊂ EN ⊂ PN . Sup-
pose f : X → EN is 0-tight. Then also η ◦ f : X → EN is 0-tight by condition
(c), which is expressed in terms of hyperplane sections.

Theorem 1.2. Any topset Xz of a 0-tight set X ⊂ E or of a 0-tight map
f : X → E is itself 0-tight . So is any top∗set .

Proof. We deal with the case of a set; the proof for a map is the same.
Suppose X ⊂ E has a topset that is not 0-tight, say Xz = hz ∩ X, where
hz = {u ∈ E : z(u) ≥ c1}. See Figure 1. Then there exists a half-space
h0 = {u ∈ E : w(u) ≥ c2} such that

? 6= h0 ∩Xz 6= Xz ,

X

∂h0

∂hz

∂hε

Xz

Figure 1. If a topset Xz of X is not 0-tight, some hyperplane ∂h0 cuts Xz

into more than two pieces. By tilting slightly the support hyperplane ∂hz of Xz

around the hinge ∂hz ∩ ∂h0, one can obtain a hyperplane that cuts X into more
than two pieces, so X is not 0-tight. (In the figure, the half-space h0 is to the

right of, and the half-spaces hz and hε are above, their bounding planes.)
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and h0 ∩Xz = h0 ∩ hz ∩X = X1 ∪X2 is separated with X1 and X2 open and
closed in the relative topology, compact, and disjoint. There is a (small) open
neighborhood U in X of X1 ∪X2 that is also separated:

U = U1 ∪ U2, U1 ∩ U2 = ?, U1 ⊃ X1, U2 ⊃ X2.

For small ε, the half-space

hε = {u ∈ E : (z(u)−c1) + ε(w(u)−c2) ≥ 0}
meets X in hε ∩X ⊃ h0 ∩ hz ∩X and

hε ∩X ⊂ U = U1 ∪ U2.

Therefore hε ∩X is not connected, so X is not 0-tight. �

Theorem 1.3 (classification of plane 0-tight sets). Any plane compact
0-tight substantial set X ⊂ E2 can be obtained from its convex hull HX by
deleting a countable family of disjoint open convex subsets from the interior :

X = HX \
r⋃

i=0

Ui, where 0 ≤ r ≤ ∞.

Proof. Let X be substantial and 0-tight in E2. Every topset Xz of X is 0-tight
and lies in a supporting line ∂hz, so it is either a point or a line segment, and in
any case convex. By Theorem 1.1 we have

⋃
z Xz =

⋃
z HXz = ∂HX, and ∂HX

is contained inX. The set X is then obtained fromHX by deleting disjoint open
connected sets (holes) U . Any embedded circle in a hole U does not separate X,
and can be contracted inside U to a point. So each hole U is contractible and
homeomorphic to an open disc.

Now suppose U is not convex, so there are distinct u1, u2 ∈ U and 0 < λ < 1
such that u1 + λ(u2 − u1) /∈ U . The smallest such value λ for given u1 and u2

yields a point x = u1 + λ(u2 − u1) in X. Let h and h− be the two half-planes
having as common boundary the line u1u2 = ∂h = ∂h−. Connect u1 and u2

by an embedded polygonal arc β ⊂ U that meets the line ∂h transversally in
every intersection point (see Figure 2). Since X is 0-tight, h∩X and h−∩X are
connected. Then x and h ∩ ∂HX can be connected in h ∩X and (even better)
in the component of (h ∩HX) \ β, which contains h ∩X. In h ∩X, the points
x and h∩ ∂HX can be connected by a polygonal arc α, which meets ∂h only in
the point x.

There is another such polygonal arc α− in (h− ∩HX) \ β connecting x with
h−∩ ∂HX. The union α∪α− lies in HX \ β and divides the segment ∂h∩HX,
as well as HX, into two parts, one containing u1 and the other containing u2.
This contradicts the existence of the arc β from u1 to u2. So all holes U are
open convex discs.

Any collection of disjoint open sets in the plane is countable. �
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u1 u2x

β

U

∂HX

α

α−

h

h−

Figure 2. The holes in a 0-tight plane set must be convex (see the proof of

Theorem 1.3).

Example. For later reference we mention a curious example of 0-tight plane set,
the limit Swiss cheese. A Swiss cheese is a round 2-ball (disc) in E2 from which
a union of disjoint open round discs is deleted; see Figure 3. Touching of discs
in their boundaries is permitted. If the union of the open discs is everywhere
dense, the resulting 0-tight set is called a limit Swiss cheese.

Figure 3. A Swiss cheese has the TPP.

Definition. The subspace Y ⊂ X ⊂ EN is a local topset of X if Y has an open
neighborhood U in X such that Y is a topset of Ū ⊂ E (here as elsewhere the
bar indicates closure). That means

X 6= Y = h ∩ Ū = ∂h ∩ Ū 6= ?

for some half-space h. Note that Y is then open and closed in ∂h ∩X.
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Theorem 1.4 (topsets). The connected compact set X ⊂ E is 0-tight if and
only if every local topset of X is a connected topset of X; equivalently , if and
only if every height function z has one (connected) maximum on X.

The generalization for maps is as follows:

Definition. The subset Y ⊂ X is a local topset of the map f : X → E if
Y has an open neighborhood U in X such that Y is a topset of the restriction
f |Ū : Ū → E, that is

X 6= Y = (f |Ū )−1h = (f |Ū )−1(∂h) 6= ?,
for some half-space h.

Theorem 1.4 (maps). Let X be connected and compact . The map f : X → E

is 0-tight if and only if every local topset Y of f is a connected topset of f ; that
is, if and only if every z has one connected maximum on X.

Remarks. If the continuous function f : X → R has exactly one local topset,
and so does the function −f , then f is 0-tight. The map z 7→ z3 for |z| = 1 (see
the second exercise on page 3) is not 0-tight.

Proof of Theorem 1.4 for sets. If X is not 0-tight, there is a half-space
h′ = {u ∈ E : z(u) ≥ c′} for which h′∩X is separated and is the disjoint union of
two open closed subsets X1 and X2. Let c ≥ c′ be the maximal value for which
h ∩X1 and h ∩X2 are both nonempty, where h = {u ∈ E : z(u) ≥ c}. One at
least of h ∩X1 and h ∩X2 is then a local topset and not a connected topset.

Conversely, if Y ⊂ X is a local topset in ∂h∩X and ∂h∩X is not a connected
topset, then ∂h ∩X = Y ∪ Z is the disjoint union of Y and Z and h ∩X is the
disjoint union of Y and h ∩ X \ Y ⊃ Z, both open and closed. So h ∩ X is
separated and X is not 0-tight. �

Exercise. Prove Theorem 1.4 for maps.

Example. Let σ4 = H({e1, . . . , e5}) ⊂ E4 be a four-simplex, and let M be the
union of five triangles H({ei, ei+1, ei+2}), for i = 1, . . . , 5 (indices being taken
modulo 5). Then M is a 0-tight Möbius band, substantial in E4. Observe that
M contains the 1-skeleton Sk1(σ4). Figure 4 shows a projection in E3 (a 0-
tight embedding), as well as a projection in E2 (a 0-tight map) with folds along
the edges e1e2, e2e3, e3e4, e4e5, and e5e1. The boundary of M is the polygon
e1e3e5e4e2e1. To prove that M ⊂ E4 is 0-tight, we observe that any local topset
Y of M contains at least one vertex and cannot cut any opposite edge in σN

transversally. Then Y lies in a supporting half-space h and Y = h∩M = ∂h∩M .

Remark. For the same reason any union X of Sk1(σN) ⊂ EN with some of
the simplices of σN of various dimensions is 0-tight. In particular, Ski(σN) is
0-tight, for 1 ≤ i ≤ N .
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1
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3

Figure 4. A Möbius band made from five of 2-faces of a tetrahedron. The

embedded in E3 is 0-tight, as is the projection onto the plane of the paper.

Zero-Tight Balls and Spheres of Dimension 1 and 2. We now prove some
classification theorems with the help of our tool, the topsets.

A 0-tight embedded arc (1-ball) X ⊂ EN in EN is necessarily a straight line
segment. If not, there is a point y ∈ X not on the line connecting the endpoints
x0 and x1, and a half-space h containing x0 and x1 but not y. So h ∩ X is
separated and X is not 0-tight.

Theorem 1.5 (0-tight circles, spheres, balls).

(i) A 0-tight embedded closed curve in EN is a plane convex curve.
(ii) A 0-tight substantial 2-sphere in EN is a convex surface X = ∂HX in 3-

space E3.
(iii) [Lastufka 1981] A 0-tight substantial 2-ball (disc) in EN is either

(a) a convex plane disc in E2, or
(b) X = ∂HX \ U in E3, where the deleted set U is an open disc of a plane

convex topset (∂HX)z = HXz (see Figure 5).

Figure 5. Zero-tight disc in E3.

Proof. If X ⊂ E is 0-tight, then by Theorem 1.2 so are any of its top∗sets.
An E0-top∗set of X is a point; an E1-top∗set of X is a line segment; possible
E2-top∗sets of X are described in Theorem 1.3.
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(i) If X is a 0-tight closed curve, or “circle” for short, in E2, then

∂HX =
⋃
z

HXz =
⋃
z

Xz

is a circle embedded in X, hence equal to X, and X is a plane convex curve.
Now let X be a 0-tight substantial circle X in EN , where N ≥ 3. Choose

a nonplanar 4-gon with vertices u1, u2, u3, u4 on X, cyclically ordered on this
circle. Let h be a half-space whose boundary ∂h passes through the midpoints
of u1u2, u2u3, u3u4, and u4u1, and such that h does not contain u1. Then h

contains u2 and u4 and not u1 and u3; thus h∩X is separated and X cannot be
0-tight.

(ii) Let X be a 0-tight 2-sphere in EN . First let N = 3. Any topset of X is a
point, a line segment, or an E2-topset Y = Xz. We show that in the latter case
Y has to be convex. Indeed, X contains the convex envelope ∂HY ⊂ Y ⊂ X. If
Y is not convex then HY \Y contains at least one hole U as component and the
open half-space h̊ = E3 \ hz intersects X in X \ Y , which has nonempty open
pieces in X, separated by Y , also separated by the circle ∂U ⊂ X = S2 . This
contradicts 0-tightness. So all topsets Xz of X are convex and the “convex”
surface ∂HX is contained in the 2-sphere X. Then X is equal to this convex
surface ∂HX.

Next suppose X is a 0-tight substantial 2-sphere in EN for N > 3. Let Y
be as before a nonconvex E2-top∗set. Then ∂HY ⊂ Y ⊂ E2 ⊂ EN . Choose x1

and x2 in X \ Y ⊂ X \ ∂HY in different components of X \ Y . There exists a
half-space h such that x1, x2 ∈ h, but h ∩ Y = ?. Then h ∩X = h ∩ (X \ Y ) is
separated, contradicting 0-tightness of X. So all E2-top*sets are convex. If Y is
an E3-top*set, then all topsets of Y are convex and the 2-sphere ∂HY ⊂ Y ⊂ X
must be equal to X. It cannot be substantial in EN , for N > 3. So there is no
E3-top*set. Let k be either N or the smallest number k < N with k > 3 for
which there is an Ek-top*set Y . Then all topsets of X and of Y , are convex. So
∂HX ⊂ X and ∂HY ⊂ Y ⊂ X. But the dimension of ∂HY is k − 1 > 2. This
is absurd for dimension reasons. The desired result follows.

(iii) A 0-tight 2-disc in E2 is a convex disc by Theorem 1.2. We can therefore
assume the 0-tight disc X embedded in EN , where N ≥ 3. First let N = 3. A
0-tight nonconvex top∗set Xz is necessarily an E2-topset Xz , obtained from the
convex disc HXz by deleting one or more open sets U . If U is one of them and
∂U is not the boundary ∂X of the disc X, then X \Xz = X \ hz contains at
least two points x1 and x2, which are separated by ∂U . As X \hz = (E \hz)∩X
is then separated and E \ hz is an open half-space, this contradicts 0-tightness.
There is only one boundary ∂X for X, so that only one topset of X is nonconvex
and it has only one convex hole U . This is the conclusion of the theorem for
N = 3.
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Finally let X be a 0-tight substantial 2-disc in EN , where N > 3. Let Y
be a nonconvex E2-top∗set. As before, HY \ Y contains at least one hole U as
component. If ∂U is not the boundary ∂X of X, then X \ Y has at least two
points x1 and x2 that are separated in X \ Y ⊂ X \ ∂U . As in (ii) we find a
contradiction. Also there can be at most one hole U . Since ∂U must be the
boundary of X, we can fill in U to obtain U ∪X, a 0-tight embedded S2 in EN ,
for N > 3. This led to a contradiction in (ii), and part (iii) of Theorem 1.5 is
proved. �

Problem. Let Y be a plane 2-disc from which a number of disjoint open 2-discs
are deleted. Determine all continuous 0-tight embeddings of Y in EN . Lastufka
[1981] found that all 0-tight immersions are embeddings.

Background: Manifolds and the Topological Classification of Surfaces.
Although we are mainly interested in surfaces, we make some general remarks
on higher-dimensional manifolds.

A compact n-dimensional topological manifold (or simply n-manifold) is a
metrizable topological space M such that each point x ∈ M can be assigned a
homeomorphism or chart

κx : Ux → κx(Ux) ⊂ hn = {u ∈ Rn : un ≥ 0} ⊂ Rn

of some open neighborhood Ux onto κx(Ux), an open set in hn. The maps

κyx = κyκ
−1
x : κx(Ux ∩Uy)→ κy(Ux ∩ Uy),

for x, y ∈M , are local homeomorphisms in hn. The pieces κ−1
x (∂hn) constitute

the boundary ∂M of M . If ∂M = ?, we say that M is a closed manifold, that
is, compact without boundary. If ∂M 6= ?, it is easy to see that ∂M is a closed
(n− 1)-manifold.

If choices for κx are given such that every change-of-coordinate map κyx is
smooth (by which we mean C∞, that is, such that all derivatives exist), we
can consider the set of all functions locally generated from functions ui ◦ κx :
Ux → R, i = 1, . . . , n by smooth compositions ψ (smooth functions of n variables
u1, . . . , un): ψ(u1 ◦κx, . . . , u

n ◦κx). This set of functions is called a smoothing of
M , and M with this smoothing is called a smooth manifold. Any smooth closed
manifold determines a topological manifold by forgetting the smoothness. It is
known that for n ≤ 3 every closed topological n-manifold can so be obtained
from some smooth n-manifold, which smooth n-manifold is moreover unique but
for differentiable equivalence. For n ≥ 4 there are topological closed manifolds
for which existence fails, and others for which existence holds but not uniqueness.
(The result for n = 4 is due to deep work of M. Freedman [1982] and S. Donaldson
[1983; 1986].)

A finite simplicial complex W can be defined as a union of affine subsimplices
H(ei0, . . . , eir ) of various dimensions r ≥ 0 of an N -simplex σN = H(e0, . . . , eN)
in EN for some N . A homeomorphism λ : W → X of W onto a given topological
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space X is called a triangulation of X. If ν : W1 → W is a triangulation of W
that is affine on each simplex of W1 and restricts to a triangulation onto each
simplex of W , then the triangulation λ ◦ ν : W1 → X is called a subdivision of
λ : W → X.

A triangulation of a closed n-manifold is called Brouwer if the union of all
n-simplices with a common vertex, admits a homeomorphic embedding into En

for which the image of each n-simplex is an affine n-simplex in En. One can
prove that every smooth n-manifoldM has a Brouwer triangulation with smooth
embeddings for each simplex, which is unique modulo subdivision and modulo
diffeomorphisms of M .

A topological n-manifold has, for n ≤ 3, a unique Brouwer triangulation
[Moise 1952]. This is not so for n ≥ 4. Some subdivision of a Brouwer triangu-
lation of a closed n-manifold has in any case a compatible smoothing for n ≤ 7,
which is unique for n ≤ 6, but not so for larger dimensions. The n-sphere has a
few-vertex triangulation as the boundary of the n-simplex σn ⊂ En. This is a
Brouwer triangulation. A few-vertex triangulation of the Möbius band was seen
in Figure 4. In these examples the number of vertices is minimal.

An orientation of a manifold M at a point x ∈ M is a choice of one of the
two generators of the homology group H0(M, M\x; Z) ≈ Z. For an embedded
arc I ⊂ M with end points x0 and x1, the axioms of homology [Spanier 1966,
p. 294 ff.] give natural isomorphisms by inclusions of spaces

Z≈ H0(M, M\x0; Z)← H0(M, M\I; Z)→ H0(M, M\x1; Z),

which permit unique transport of an orientation from x0 to x1. Transport along
homotopic paths gives the same result. If the result is the same for any paths
connecting two points x0 and x1 then it defines a global orientation on M , now
assumed connected, and M is called orientable and oriented by this choice. The
local orientations determine a two-point bundle (double covering of M) and M
is orientable if and only if this bundle is a product bundle. The Möbius band is
not orientable.

Let Bx be an embedded n-ball around x ∈ M , with boundary the embedded
(n−1)-sphere ∂Bx = Sx. Then there are natural isomorphisms (by excision and
exactness)

H0(M, M\x; Z) = H0(Bx, Sx;Z)→ H0(Sx;Z)≈Z.

Thus an orientation of M at x determines a generator of H0(Sx;Z) = Z.
Given connected closed topological n-manifolds M1 and M2, one constructs

a new n-manifold M1 #M2 called the connected sum as follows (Figure 6). For
i = 1, 2, delete from Mi, a small open ball Ui interior of an n-ball Bi ⊂Mi with
boundary an (n− 1)-sphere Si = ∂Bi, and glue M1 \U1 to M2 \U2 by a homeo-
morphism λ : ∂U1 → ∂U2. IfM1 andM2 are orientable and oriented, one chooses
λ moreover in such a way that for x1 ∈ (M1 \B1) and x2 ∈ (M2 \B2), there is
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Figure 6. The connected sum of two closed surfaces.

an orientation on M1 # M2 such that local generators that define orientations
correspond in the sequence of isomorphisms:

Z←→ H0(M1, M1\x1; Z)←→ H0(M1 #M2, M1 #M2\x1; Z)

←→ H0(M1 #M2, M1 #M2\x2; Z)←→ H0(M2, M2\x2; Z2).

It is known (only recently for n = 4) that the connected sum for topological
closed manifolds so defined is unique up to equivalence. If at least one of M1

and M2 is nonorientable, then we get always the same (unique) connected sum.
For closed oriented n-manifolds M1 and M2 and n ≥ 3, the orientations may
give two nonhomeomorphic results. For any two closed surfaces (n = 2) the
connected sum is however a unique closed surface.

Remark. A continuous map f : X → Y is called an embedding if f : X → f(X)
is a homeomorphism. It is called an immersion if f |Ux : Ux → Y is an embedding
for some neighborhood Ux of any x ∈ X. If X and Y are manifolds of dimension
n and N ≥ n, the immersion f is called tame in case for any x ∈ X there is a
commutative diagram concerning neighborhoods Ux ⊂ X and Uy ⊂ Y , y = f(x),
charts κx and κy, and a linear embedding i :

Ux Uy

Rn RN .

-f

-i
? ?

κx κy

These definitions for topological manifolds have natural counterparts in the
smooth context. Most of these facts were known for dimension n 6= 4 around
1971. For n = 4 the breakthrough came since 1982 with the work of Casson
[1986], Freedman [1982] and Donaldson [Donaldson 1983; 1986].

Every orientable closed surface is the (repeated) connected sum of a two-sphere
S2 and some number g ≥ 0 of tori T :

Mg = T # T · · ·# T, M0 = S2.

We say Mg has genus g and has Euler characteristic χ = 2− 2g. Every nonori-
entable closed surface is a connected sum of the form

P #Mg , for some g ≥ 0,
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S2 Mg P # Mg K # Mg

Figure 7. The classification of closed surfaces.

or of the form

P # P #Mg = K #Mg, for some g ≥ 0,

where P is the real projective plane and K = P #P is the Klein bottle. Surfaces
of these types have Euler characteristic χ = 1 − 2g and χ = −2g, respectively.
See Figure 7.

Any compact surface with boundary is obtained from a unique closed sur-
face by deleting the interiors of a finite number r ≥ 1 of disjoint embedded
2-balls (discs). The same classifications for surfaces hold in the smooth as in the
triangulated (modulo subdivision) context.

The Möbius band is a projective plane from which the interior of one open
2-ball is deleted, and the projective plane is obtained from the Möbius band by
closing it with a disc.

Zero-Tight Immersions of Surfaces in the Plane. If a compact surface
(M, ∂M) admits an immersion f : M → E2 in the plane, it is orientable (because
it gets, by virtue of the immersion, a unique orientation from an orientation of
E2) and has at least one boundary component (embedded circle), because any
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point on the boundary of f(M) must be an image of boundary points of M
by definition of immersion. For any such surface M (r)

g of genus g, with r ≥ 1
interiors of disjoint discs deleted, there is an immersion in the plane, as seen in
the examples in Figure 8.

Figure 8. Left: The surface with boundary obtained by removing an open disk

from the torus T 2 = M1 is denoted M
(1)
1 . Middle: Immersion of M

(1)
1 in E2.

Right: Immersion of M
(1)
2 (genus-two surface minus a disk) in E2.

Next let f : X = M
(r)
g → E2 be a 0-tight immersion. By Theorem 1.2 any

topset Xz = f−1(∂hz) is connected and immersed in the line ∂hz . So it is
embedded as a convex set (a point or a segment). The union of these topsets,
f−1∂Hf(X), is then a topological circle in X embedded into the convex curve
∂Hf(X), and this circle is one boundary component ∂1X of X = M

(r)
g . If there

are no other boundary components (r = 1), then f : X → E is an immersion
onto the convex disc Hf(X), and every image-point Y ∈ Hf(X) is covered by
the same finite number of points by the immersion f . This number is 1 because
that’s what it is on the boundary. Then f is an embedding onto HfX and X is
a disc: X = M

(r)
g = M

(1)
0 . In particular, g = 0. For g ≥ 1, the 0-tight immersed

surface must have at least two boundary circles, ∂X = ∂1X ∪ · · ·∪ ∂rX, and the
first f∂1X = ∂HfX is embedded and convex.

Next consider a boundary point x on another component ∂iX, where i ≥ 2.
Let

κx : Ux → h2 = {(u1, u2) ∈ R2 : u2 ≥ 0}
be a chart for a connected neighborhood Ux of x inX, so small that the restriction
f |Ux is an embedding into E. (See Figure 9.) We can assume that f

(
κ−1

x (∂h2)
)

and κ−1
x (∂h2) are connected. The first of these sets is an open arc (1-manifold).

By 0-tightness of f , no straight line segment [y1, y2] ⊂ E with end-points y1 and
y2 in f

(
κ−1

x (∂h2)
)

can divide f(Ux). That is,
(
f(Ux)\[y1, y2]

)
must be connected.

Components of Ux \ [y1, y2] that touch [y1, y2] in interior points must then be
convex. Therefore f

(
κ−1

x (∂h2)
)

is nonconvex (call it concave) with respect to
the interior of f(Ux). We conclude that f immerses each boundary circle ∂i(X)
for i ≥ 2 in a locally concave manner.
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u1

u2

κx

x

Ux

y1

y2

x

Figure 9. A 0-tight immersion of a surface with boundary in E2 maps all but
one boundary component in a concave manner.

Figure 10 shows 0-tight immersions of M (2)
1 and M (2)

2 . Following the pattern
of this figure we can conclude (and summarize):

Theorem 1.6. There are 0-tight immersions of the compact surfaces X = M
(r)
g

(genus g, r ≥ 1 holes) in the plane if g = 0, r ≥ 1 and if g ≥ 1, r ≥ 2, but not
if g ≥ 1, r = 1. The boundary components of ∂X = ∂1X ∪ · · · ∪ ∂rX have one
convex image f(∂1X) and further locally concave immersions f : ∂iX → E for
i ≥ 2.

Exercise. In Figure 10, left, the 0-tight immersion of Sk1(σ3) “embeds in” the
0-tight immersion of M (2)

1 .

Zero-Tight Immersions of Closed Surfaces in Space. In Figure 11 we
show examples of 0-tight immersed surfaces in E3. Every height function z is
seen to have, and must have, exactly one local top set, a maximum, and one local
minimum (maximum of −z). This characterizes 0-tightness by Theorem 1.4. We
now prove for smooth immersions:

Theorem 1.7 (smooth version). If f : M → E3 is a 0-tight smooth immersion
of a closed surface M 6= S2 , there is a decomposition of M as a union of surfaces
with boundary M = M+ ∪M−, where M+ is connected , M− =

⋃r
j=1M

−
j , and

Figure 10. Zero-tight immersions of M
(2)
1 and M

(2)
2 .
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Figure 11. A 0-tightly smoothly immersed closed surface in E3 splits into

one component M+ of positive curvature and one or more components M−
j

of negative curvature. These pieces join along plane curves Xi, called windows.

the boundary ∂M+ = M+ ∩M− =
⋃r

i=1Xi is a union of r ≥ 2 closed curves
with the following properties:

(i) M+ → fM+ ⊂ E3 is embedded into the convex surface ∂HfM as the com-
plement of the union of the interiors of r disjoint plane convex discs, called
windows. The Gauss curvature K(p) is nonnegative for p ∈M+ and nonpos-
itive for p ∈M−.

(ii) No local topset A ⊂M is contained completely in M̊−.
(iii) Each closed curve Xi carries an essential cycle of H1(M,Z2).
(iv) χ(M) = χ(M+) +

∑r
j=1 χ(M−

j ), χ(M+) ≤ 0, and χ(M−
j ) ≤ 0.

(v) MK>0 = ∂H(M)K>0.

(For convenience we will write M+ for fM+ and Xi for fXi.)

Proof. The 0-tight restriction of f to an Ek-top∗set X is a 0-tight immersion
of a connected set onto one point for k = 0, and onto a straight segment for
k = 1. So for k = 0 and k = 1, it is an embedding onto a convex set. An
E2-topset X = Mz ⊂ M immerses 0-tightly into a subset of the plane convex
set HfX and restricts to an embedding on (each of the points of) the circle
X′ = f−1∂HfX ⊂ X ⊂M . Suppose the circle X′ bounds in M , that is M \X′

has two components. If both components have image points under the topset
level of z, then z ◦ f has two minima on M , and f is not 0-tight. So one of
the components immerses into HfX and its boundary into ∂HfX. Such an
immersion is a topological covering of HfX. As it covers each boundary point
once, it is an embedding onto HfX, and X = f−1HfX is an E2-topset disc
X ⊂ M . The union of all convex topsets X = fX ⊂ M so far discussed is, by
definition, the set M+ = fM+ ⊂ ∂HfM . It is bounded by plane convex curves
X′ = fX′ = ∂HfX, for which X′ ⊂ M is not bounding in M . The circle X′

then carries a generator of H1(M,Z2) and is called an (essential) top cycle. This
proves (iii). As (ii) is obvious, there remains the proof of the last part of (iv).
Suppose M+ or M−

j has only one boundary component. Then this boundary
component bounds in M and is a top cycle, a contradiction. �
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Figure 12. A 0-tight smooth immersion of the nonorientable surface of Euler

characteristic −2 (K # T ). There are three windows (front, back, and top)
and one curve of self-intersections, where the central column goes through the

“ceiling”.

Corollary. There is no smooth tight immersion of the projective plane P into
E3.

Proof. By (iv) χ(M) ≤ 0, but χ(P ) = 1. Another proof: Every closed
embedded curve in P which is nonbounding has a Möbius band as neighborhood.
Every top cycle for a smooth 0-tight surface in E3 can have only a (trivial) band
as neighborhood. “The M -normal bundle is trivial along the top cycle.” �

For topological immersions, we mention without proof a more subtle result:

Theorem 1.8 (topological version). If f : M → E3 is a 0-tight C0-immersion
of a closed surface M , there is a decomposition of M as M = M+ ∪ M̊−,
M+ ∩ M̊− = ?, M̊− = ∪M̊−

j , M− an open surface, satisfying furthermore
the following properties:

(i) M+ = fM+ ⊂ E3 is an embedded subset of M , embedded in the convex
surface ∂HfM = ∂HfM+, as the complement of the union of r disjoint
interiors of plane convex sets HfXj . Here Xj ⊂ M+ ⊂ M is an embedded
circle.

(ii) No local topset A ⊂M is completely contained in the open set M̊−.
(iii) Each closed curve Xj compactifies one end of M̊− as a boundary .
(iv) χ(M) = χ(M+) +

∑r
j=1 χ(M−

j ), χ(M+) ≤ 0, χ(M−
j ) ≤ 0.

See Figure 13 for an example, a 0-tight torus.
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X1

X2

X1 ∩X2

Figure 13. A 0-tightly embedded PL torus, showing that windows can intersect

(Theorem 1.8).

2. Curvature and Knots

Definitions of Curvature. A closed curve γ : S1 → RN in Euclidean space is
a continuous immersion of the circle

S1 = {(cos 2πt, sin 2πt) : t ∈ R}.
It can be parametrized and oriented by tmod 1. For convenience, we only discuss
the case N = 3.

A polygon P (n-gon γn) is a closed curve γn with vertices ui = γn(ti) ∈ R3,
i mod n, for 0 ≤ t1 < t2 < . . . < tn < 1, connected by straight line segments
γn(t), ti−1 ≤ t ≤ ti.

The curvature on a curve is a measure. For a polygon the measure is concen-
trated in the vertices. Let αi ∈ [0, π) be the angle between two successive edges
meeting at ui, that is the angle between the unit vectors vi−1 and vi, where

vj =
uj − uj−1

‖uj − uj−1‖ ∈ S
2 , j taken mod n.

Choose an open interval Ui on γn between ui−1 and ui+1 that covers ui. Then
the normalized curvature on Ui is τ (γn , Ui) = αi/π. The (normalized) total
curvature of γn is τ (γn) =

∑
i(αi/π). We connect the points vi and vi+1 in S2

by a geodesic segment of length αi in S2 and obtain a “tangential image”, a
continuous image of an oriented circle. This leads to the following equivalent
definition:

Definition 2.1. The (normalized) total absolute curvature τ (γn) is 1/π times
the length L(tan γn) of the tangential image tan γn : S1 → S2 in S2 .

Next we consider the normal unit vectors along the open edge from ui−1 to ui. At
each point they form a unit circle, which we carry over by parallel displacement
to 0 ∈ R3 to obtain a great circle S1(vi) in S2 orthogonal to vi ∈ S2 . We rotate
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v1

v2

v3

A1

A2

S1(v1)

S1(v2)
S1(v3)

Figure 14. At a vertex of a polygonal line the direction changes from vi to

vi+1. The smaller pair of segments bounded by the circles of normals S1(vi) and

S1(vi+1) is denoted Ai.

S1(vi) into S1(vi+1) through circles S1(v), orthogonal to v, moving along the
geodesic arc with ends vi and vi+1 in S2. The point set swept by the circles is
denoted Ai. It consists of two congruent diametrical sectors (see Figure 14). Let
|Ai| be the area of Ai and |S2| the area of S2. Clearly |Ai|/|S2| = αi/π. So we
have the following equivalent definition:

Definition 2.2. Let τ (γn, Ui) = |Ai|/|S2| be the swept-out area of the unit
normal bundle on the interval Ui. The total absolute curvature is

τ (γn) =
∑

i

τ (γn, Ui).

Critical Points. Let z : R3→ R be a linear function

z = 0

z = 1

z∗
satisfying ‖z‖ = 1, and denote the gradient of z by
z∗ ∈ S2 (see right). The restriction z|Ui may or may
not have a maximum or minimum on Ui. We assign to z
(and to z∗) the number µz(γn, Ui) of such maxima and
minima. Clearly µz(Ui) = 1 if z∗ ∈ Åi, the interior
of Ai, and µz(Ui) = 0 if z∗ /∈ Ai. Functions z that
have a constant value on an edge of γn are called degenerate; the set of z∗ ∈ S2

for which this occurs has measure zero and can be neglected. Let Ez denote the
expectation or mean value with respect to the standard SO(3)-invariant measure
for z∗ on S2. If |Ai| and |S2| denote the area of Ai and S2 , respectively, then
clearly

Ez(µz(γn , Ui)) = |Ai|/|S2| = αi/π.

Therefore we have another equivalent definition:

Definition 2.3. The total absolute curvature is the mean number of critical
points of z∗ on γ, with respect to the standard measure on S2 .

τ (γn , Ui) = Ezµz(γn, Ui), τ (γn) = Ezµz(γn).
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Total Curvature for General Closed Curves. Let γ : S1 → R
N be a closed

continuous immersed curve. A polygon P with vertices ui = γ(ti), i mod n,
0 ≤ t1 ≤ . . . ≤ tn < 1 is called an inscribed polygon; we denote this by P ≺ γ.
We propose:

Definition 2.4. The total curvature of a continuous closed immersed curve
γ : S1 → RN is the least upper bound of τ (P ) for inscribed polygons

τ (γ) = sup
P≺γ

τ (P ) ≤ ∞.

In this section we will recover the important Definition 2.3 for general closed
curves thanks to the following result:

Theorem 2.5. If the total curvature τ (γ) of a continuous immersed curve
γ : S1 → RN is finite, it equals the mean number of maxima and minima:

τ (γ) = Ezµz(γ).

To begin the proof, we first prepare the definition of µz(γ) and again elaborate
only the case N = 3. The function z|γ is called degenerate if it is constant on
some maximal arc on γ. If this arc is on a straight line in R3, it “belongs to”
at most a great circle of points z∗ ∈ S2 . Such arcs can be counted by their
nonincreasing lengths in the parameter t. The corresponding circles on S2 are
countable in number, and their union has measure zero in S2 . Any nonlinear
planar arc “belongs to” two points z∗ and −z∗ in S2. Such arcs can be counted
as well. It follows that the points z∗ that belong to degenerate z|γ have a union
of measure zero in S2.

Definition. One maximum of z|γ is a point or a maximal arc σ on γ in which z
is constant, and such that some open neighborhood of σ gives no greater values
for z|γ . One maximum of −z|γ is called one minimum of z|γ . If z|γ is constant
we count one maximum and one minimum.

The total number of maxima and minima of z|γ is denoted µz(γ) ≤ ∞. It
is twice the number bz(γ) of maxima. Note that bz(γ) can be infinite for a
nondegenerate function, when the isolated (maximal) points have one or more
accumulation points.

For the proof of Theorem 2.5 we need some lemmas.

Lemma 2.6. If P ≺ γ is an inscribed polygon of γ, then µz(γ) ≥ µz(P ) for all z.

Proof. Suppose z|P attains a maximum on P in one point, the vertex ui =
γ(ti). Then

z(γ(ti−1)) < z(γ(ti)), z(γ(ti+1)) < z(γ(ti)).

Therefore z has a maximum on the open interval {γ(t) : ti−1 < t < ti+1}. If z|P
attains a maximum at the maximal segment from ui to ui+l of P , then

z(γ(ti−1)) < z(γ(ti)) = . . . = z(γ(ti+l)) > z(γ(ti+l+1)),
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and z has a maximum on the open interval {γ(t) : ti−1 < t < ti+l+1}.
If z is constant on P the conclusion is obvious. The same applies to minima

of z and the lemma follows. �

Corollary 2.7. If P ≺ P ′ is an inscribed polygon in the polygon P ′ (obtained ,
for example, by deleting one vertex of P ′), then Ezµz(P ′) ≥ Ezµz(P ), and so
τ (P ′) ≥ τ (P ).

Corollary 2.8. µz(γ) ≥ supP≺γ µz(P ).

Let {ti : i = 1, 2, . . .}, with 0 ≤ ti < 1 and tj 6= th for j 6= h, be a countable
dense subset of [0, 1), and let Pj ≺ γ be the inscribed polygon with vertices
γ(t1), . . . , γ(tj). Then Pj is said to converge to limj→∞Pj = γ. From the defini-
tion of τ (γ) and Corollary 2.7, follows another equivalent definition of curvature:

Definition 2.9. τ (γ) = limP→γ τ (P ) ≤∞.

Corollary 2.10. µz(γ) ≥ limP→γ µz(P ).

Next suppose z|γ is nondegenerate. Then z|Pj has a maximum (minimum) as
near as we please to any finite number of isolated maxima (minima) of z|γ , for
j sufficiently large. Therefore:

Lemma 2.11. If z|γ is nondegenerate, then µz(γ) ≤ limP→γ µz(P ) ≤ ∞.

Theorem 2.5 follows from Corollary 2.10 and Lemma 2.11.

Exercise. Define suitably the total curvature of an immersed closed curve in
RN and an immersed arc γ : {t : 0 ≤ t ≤ 1} → RN, so that Theorem 2.5 applies
also to arcs. Hint: Use µz(interior of arc γ) instead of µz(γ) to avoid curvature
at the end points.

Exercise. Consider the arc γ ⊂R2 defined by

u = (u1, u2) =
{

(t, 0) for −1 ≤ t ≤ 0,
(tα, sin 2πt−1) for 0 < t ≤ 1.

Prove that:

(a) γ(t) has a tangent for all t if and only if α > 1.
(b) The tangent depends continuously on t if and only if α > 2.
(c) τ (γ) <∞ if and only if α > 3.
(d) γ has continuous second derivatives if and only if α > 4.

Hint: Consider by way of comparison the inscribed polygons Pj, j → ∞, with
vertices for t = 0, t = −1, t−1 = 1, and for t−1 = (1 + 2i)/4 for i = 4, 5, . . . , j.

As a corollary of Theorem 2.5 we have Fenchel’s Theorem:

Theorem 2.12 [Fenchel 1929]. The total curvature of a continuous closed im-
mersed curve γ : S1 → R

N is τ (γ) ≥ 2. Equality is attained if and only if γ is
plane convex .
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Fenchel proved this for smooth curves in R3, Borsuk [1947] for N ≥ 3.

Proof. Any continuous function on the circle has at least one maximum and
one minimum. So µz ≥ 2 for all z∗ ∈ S2 , therefore

τ (γ) = Ezµz(γ) ≥ Ez(2) = 2.

If τ (γ) = 2, then τ (P ) = 2 for any inscribed polygon P as well. So µz(P ) =
2 and P has Banchoff’s two-piece property, is 0-tight, hence plane convex by
Theorem 1.5. Adding vertices yields polygons, say Pj, converging to γ. All Pj

are convex in the same plane. So γ is plane convex, N = 2. �

Next we prepare the generalization of the curvature as π−1 times the length of
a tangential image, a result due to van Rooij [1965]. If u(t) ∈ R3 is an immersed
arc or a closed curve in R3 and(

u(t) − u(t0)
)
(t− t0)∥∥u(t)− u(t0)∥∥ |t− t0|

converges to a unit vector v(t0) for t → t0+, t → t0− or t → t0, then v(t0)
is called a right, left or general tangent unit vector, respectively. It is denoted
by u̇+(t0), u̇−(t0), and u̇(t0), respectively. Here the dot does not (yet) mean
differentiation! The parallel lines through u(t0) are called right, left and general
tangents, respectively. A plane convex curve has a right and left tangent at every
point.

Lemma 2.13. Let γ(t) = u(t), 0 ≤ t < 1, t mod 1, be a continuous closed curve
in R3 with τ (γ) <∞. Then:

(i) γ has a right and left tangent at every point t.
(ii) The set of points t for which u̇+(t) 6= u̇−(t) is countable.
(iii) The right (left) tangent vector is continuous on the right (left).

Proof. (i) If u(t) has no right tangent for t = 0, at say u(0) = 0 ∈ R3, there
exists a sequence t1 > t2 > . . . > 0 converging to 0 and unit vectors v and
w 6= v ∈ S2 such that

u(tj)/‖u(tj)‖ →
{
v for j = 2i− 1→∞,
w for j = 2i→∞.

We can assume moreover that

‖uj+1‖ < 1
100
‖uj‖ for j ≥ 1.

Then the inscribed polygon Pk with vertices γ(t1), . . . , γ(tk−1) and γ(0) = 0 has
curvature τ (Pk) converging to ∞ for j →∞, a contradiction.

(ii) If u̇−(t0) and u̇+(t0) form an angle α(t0) > 0, then a polygon with vertices
at γ(t0−δ), γ(t0) and γ(t0 +δ) will contribute, in the limit for δ → 0, an amount
α(t0)/π to τ (γ). The sum of such amounts is bounded by τ (γ). We can count
such vertices by their nonincreasing contributions to τ (γ). The set of values t
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for which u̇+(t0) 6= u̇−(t0) is therefore countable. All other points have a unique
tangent u̇(t) = u̇+(t) = u̇−(t).
(iii) If u̇+(t) is not continuous on the right at u(0) = 0 ∈ R3 for t = 0, then there
exist v and w 6= v ∈ S2 and tj > tj+1 > . . . > 0 converging to 0, with limits

u̇+(t2i−1)→ v, u̇+(t2i)→ w, for i→∞,
and we can assume∥∥∥∥∥

u(t2i) − u(t2i−1)∥∥u(t2i) − u(t2i−1)
∥∥ − u̇+(t2i−1)

∥∥∥∥∥ < 1
10‖v − w‖ for all i ≥ 1.

The inscribed polygons Pj with vertices u(ti), i = 1, . . . , j, and u(0) = 0 ∈ R3

have unbounded curvatures τ (Pj) for j →∞, a contradiction. �

Let γ(t) = u(t) be as before and assume τ (γ) < ∞. Let u(ti), for i = 1, . . . , h,
0 ≤ h ≤ ∞, 0 < ti < 1, be the points where u̇−(ti) and u̇+(ti) form a positive
angle. Insert an interval of length 2−i at ti in the parameter space of t ∈ R
mod 1, so as to obtain a parameter space with a new parameter t′ ∈ Rmodulo
(1+

∑h
i=1 2−i), 0 ≤ h ≤∞. We define as follows a map tan γ that generalizes the

tangential map for polygons. It has as embedded image the geodesic arc in S2

between u̇−(t) and u̇+(t) for an inserted interval at t = ti, where u̇−(t) 6= u̇+(t).
For other points, it has as image u̇(t) = u̇−(t) = u̇+(t). It is continuous in t′ and
is again called the tangential map tan γ : S1 → S2 . We recover Definition 2.1 in
this result:

Theorem 2.14 [van Rooij 1965]. If τ (γ) <∞, there is a continuous tangential
map tan γ : S1 → S2 . The length of the image L(tan γ) is bounded , and the total
curvature τ (γ) is τ (γ) = L(tan γ)/π. (Here the length L(tan γ) is defined to be
the least upper bound of the length of inscribed polygons.)

Proof. Let γ have the parameter t, 0 ≤ t ≤ 1. Consider a sequence of j-gons
Pj ≺ γ with vertices at u(t2i−1,j) for i = 1, . . . , j, with 0 < t2i−1,j < t2i+1,j < 1.
Suppose Pj converges to γ for j → ∞. For each Pj add vertices and obtain a
2j-gon P̄2j with vertices at u(ti,j) for i = 1, . . . , 2j, 0 < ti,j < ti+1,j < 1 and
such that ∥∥∥∥∥

u(t2i,j)− u(t2i−1,j)∥∥u(t2i,j)− u(t2i−1,j)
∥∥ − u̇+(t2i−1,j)

∥∥∥∥∥ < εj.

The points u̇+(t2i−1,j) are image points of tan γ. They determine an “inscribed
polygon” Tj for tanγ with length L(Tj). Note that some edges of Tj may be
degenerated to a point. Clearly L(Tj) has as limit

lim
j→∞

L(Tj) = L(tan γ).

If εj is chosen very small, half of the points of tanP2j are as near as we please
to the vertices of Tj in S2 . Therefore we can assume

(1− 2−j)L(Tj) ≤ L(tan P̄2j) = τ (P̄2j),
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and in the limit

L(tan γ) ≤ τ (γ) <∞.

To prove the reverse inequality we start by observing that the properties
(i)–(iii) in Lemma 2.11 imply that γ(t) is rectifiable: it has length L(γ) =
limP→γ L(P ) and can be parametrized by arclength s(t) such that the right-
hand derivative of u(s) exists and equals

(
du(s)/ds

)
+

= u̇+(t), s = s(t).
For convenience suppose L(γ) = 1, s ≡ t. Let Qj(t) be the unique polygonal

arc in R3 for 0 ≤ t ≤ 1, with vertices for t = i2−j for i = 0, . . . , 2j with edges of
length 2−j and such that the initial point is

Q(0) = u(0) = γ(0)

and

Qj((i+ 1)2−j) = Qj(i2−j) + 2−j u̇+(i2−j) for i = 0, 1, . . . , 2j−1.

If z|γ is nondegenerate, one can verify that

lim
j→∞

µz(Qj) ≥ µz(γ).

But Ezµz(γ) = τ (γ), and Ezµz(Qj) = τ (Qj) = L(Qj) which for j →∞ converges
to L(tan γ). Therefore

L(tan γ) ≥ τ (γ).

This completes the proof of van Rooij’s Theorem 2.14. �

Corollary. Let γ(t) = u(t) be a closed curve of class C2. The usual definition
of total curvature and our definition are equivalent:

1
π

∫ ∥∥∥∥d
2u

ds2

∥∥∥∥ ds =
1
π
L(tan γ) = τ (γ) = Ezµz(γ).

Proof. If s is the arclength on γ, then (tan γ)(s) = du/ds ∈ S2 , and the length
of the curve tan γ is

∫ ‖d2u/ds2‖ ds. �

Exercise. Use each of the definitions to calculate τ (γ) for the
plane closed curve on the right, consisting of three semicircles
(see Definition 2.4, Theorem 2.5 and Theorem 2.12).

Editors’ Note. For results on the total curvature of knots, see [Fáry 1949;
Milnor 1950; 1953]. For knotted surfaces, see [Kuiper and Meeks 1983; 1984;
1987].
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3. Smooth Submanifolds

Definitions of Curvature. In Section 1 we defined topological n-manifoldsM
with charts κx : Ux → κxUx ⊂ hn ⊂ Rn. A two-manifold is called a surface. If
the homeomorphisms

κyx = κyκ
−1
x : κx(Ux ∩ Uy)→ κy(Ux ∩ Uy)

all belong to the pseudogroup Ck (continuous k-th derivatives, for k ≤ ∞), Cω

(analytic), or CNash (the graph of κyx in Rn×Rn is a nonsingular part of a real
algebraic variety given by polynomial equations), then M has a Ck-structure, and
is called a Ck-manifold. (Here k can be a nonnegative integer, ∞, ω or Nash.)
Two Ck-manifolds M1 and M2 are Ck-equivalent if there is a homeomorphism
ϕ : M1 →M2 that is expressed in Ck-charts in a commutative diagram

x ∈ U κx(U) ⊂ Rn

y ∈ V κy(V ) ⊂Rn

-κx

-κy

? ? ?

ϕ ψ

where ψ is Ck. If l < k then M ∈ Ck determines a unique (up to equivalence)
C l-structure. Here 0 < 1 < . . . <∞ < ω < Nash.

Another pseudogroup onRn, called PL, consists of homeomorphisms ψ : U1 →
U2, with U1, U2 open subsets in Rn, that are affine on each affine simplex of a
finite triangulation of some compact part of Rn. Manifolds with such a structure
are called piecewise linear manifolds or PL-manifolds. Obviously 0 < PL.

For closed surfaces all Ck-equivalence classes for k < ω correspond one-to-one
to all C0-equivalence classes. Recall from Section 1 the classification of smooth
closed surfaces, summarized in Figure 7.

The Z2-Betti numbers βi = rankHi(M,Z2) of the surface are β0 = β2 = 1,
β1 = 2−χ. The alternating sum β0−β1 +β2 is χ, the Euler characteristic. The
sum of the Betti numbers is β = β0 + β1 + β2 = 4 − χ. Note that the height
function z on the smooth surfaces of Figure 7 has exactly β nondegenerate critical
points, the minimum possible number. Note also that the surface obtained from
M by deleting an open disc can be contracted over itself to a wedge of β1 circles
S1 ∨ S1 ∨ · · · ∨ S1 . These circles carry generators for H1(M,Z2). A Ck-map
f : Mn → RN of an n-manifold is called a Ck-immersion for k ≥ 1 if its
derivative has maximal rank n. It is then clearly a tame immersion in the
topological sense.

Remark. There is no smooth (or even topological) embedding of a closed nonori-
entable surface in R3.
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Proof. Let M ⊂ R3 be such a smooth embedding. Take a small orthogonal
vector v at a point p ∈ M . Move p along a closed embedded curve γ in M and
drag v along, so that on returning to p the vector has the opposite direction.
Move γ away from M in the direction of the transported vectors v. The end
points at p of the curve γ′ so obtained are connected by a straight segment
orthogonal to M . Now you have a closed curve in R3 that meets M in one (odd
number) point. Make it a smooth curve and move it far away into space R3, but
in such a way that the number of intersection points changes each time by two
(“transversal move”). The final curve γ′′ meets M in an odd number of points,
but also in no point, a contradiction. �

If f : M → R
3 is a smooth immersion, there is a choice of charts near p ∈ M

and orthogonal Euclidean coordinates z, x, y for E3 = R
3 so that the surface has

near P an equation

z = 1
2 (k1x

2 + k2y
2) + O(x2 + y2)3/2.

The numbers k1 and k2 are the principal curvatures and their product is the
Gaussian curvature (a density) K = k1k2. It can be positive, zero or negative.

The normalized absolute curvature of an open set U ⊂M is defined by

τ (U) =
∫

U

|K dσ|
2π

where dσ is the volume element (a two-form) induced by the immersion in R3.
It differs from the classical curvature by a normalization factor.

Consider all unit vectors (p, z∗) at points p ∈ U orthogonal at f(p) to f(U) ⊂
R3, for some small U for which f : U → f(U) is an embedding. These vectors,
displaced parallel to (p, 0), form a surface N(U) ⊂M × S2 ⊂M ×R3 consisting
of two parts, one for each side of f(U) in R3. There is a natural projection

γ : N(U)→ S2 .

The surface N(U) is called the unit normal bundle of M on U . If K > 0 on U
(or K < 0 on U) then γ sweeps out a set A ⊂ S2 consisting of two diametrically
opposite parts. See Figure 15. Each is called a Gauss-map image of U . It is well

U A

A

M

Figure 15. The Gauss map.
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known that its total area |A| determines the curvature:

τ (U) =
∫

U

|K dσ|
2π

= |A|/4π = |A|/|S2|.

Another expression for the measure τ is

τ (U) = c−1

∫
N(U)

|ν∗(ω)|,

where c = |S2| = 4π, and ν∗(ω) is the pull-back of the volume form ω on S2 .
The unit normal bundle space N of f over M ,

N = N(f) = {(p, z∗) : z∗ orthogonal to f(M) at f(p)} ⊂M ×R3

is a double covering of the surface M . It is connected if and only if M is
nonorientable. We thus derive an equivalent definition of the total absolute
curvature, in terms of the swept-out area of unit normal bundle:

Definition 3.1. The total absolute curvature of a smooth immersion f : M →
R3 is

τ (f) = c−1

∫
N

|ν∗(ω)| =
∫

M

|K dσ|/2π.

Remark. A smooth C∞-map ν such as our ν : N → S2 is called critical at a
point q ∈ N if its derivative dν does not have maximal rank. An image of such a
point q is called a critical value. The theorem of Sard says that the set of critical
values (here in S2) has measure zero. A generalization by A. P. Morse [1939] says
more, namely that the same conclusion holds if ν is a C1-map between manifolds
of the same dimension.

Morse’s Lemma and Inequalities. A smooth function ϕ : M → R is non-
degenerate at a critical point p ∈ M(dϕ(p) = 0) if d2ϕ(p) has maximal rank.
(Recall that d2ϕ(p) is expressed in coordinates by the matrix {∂2ϕ/∂xi∂xj}.)
By linear algebra one has for some coordinate chart near p:

ϕ = ϕ(p) −
i∑

j=1

(xj)2 +
n∑

k=i+1

(xk)2 + O(‖x‖2).

The number i is called the index of the critical point. We can do even better
with the various results knows as Morse’s Lemma, after M. Morse:

Lemma 3.2 (C∞ version [Milnor 1963, p. 6]). In suitable C∞-coordinates, ϕ
is expressed near a nondegenerate critical point p ∈M of index i by

ϕ = ϕ(p) −
i∑

j=1

(xj)2 +
n∑

k=i+1

(xk)2.
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Lemma 3.2 (Ch
version [Kuiper 1966]). A Ch-function (2 ≤ h ≤ ω) ϕ on Mn

can with suitable Ch−1 coordinates be expressed near a nondegenerate critical
point p ∈M of index i by

ϕ = ϕ(p) −
i∑

j=1

(xj)2 +
n∑

k=i+1

(xk)2.

So for Ch-functions (2 ≤ h <∞) one loses one class of differentiability!
The function ϕ : M → R is called nondegenerate if it is so at every critical

point.
The Ch-Morse lemma for 2 < h < ω also holds on infinite-dimensional mani-

folds modelled on Hilbert space [Palais 1963].
Let f : M2 → R3 be our smooth immersion. Consider as before linear func-

tions z : R3 → R, ‖z‖ = 1. The real function z ◦ f : M → R is the restriction
of z to M . It is clearly nondegenerate at points p ∈ M where K(p) 6= 0. Take
a small disc U on M where K(p) > 0 and count, for every point z∗ ∈ S2 , the
number of critical points µiz(U) of index i of the function z on U . See Figure 16.
The sum µz(U) =

∑
i µiz(U) is one or zero. It is one in the case where z∗ ∈ Å

and zero in the case where z∗ /∈ A. The value of the function µz(U) for z∗ ∈ S2

has therefore a mean (expectation) of

τ (U) = Ezµz(U) = c−1

∫
S2
µz(f)|ω| = |A|/4π.

In this way we get positive contributions near points p ∈ M where K > 0, or
where K < 0. These points form an open set on M . We can now state the
definition of total curvature in terms of the mean number of critical points:

Definition 3.3. The total curvature of the smooth (or C2) immersion f : M →
R3 is

τ (f) = Ezµz(f) = c−1

∫
S2
µz(f)|ω|. (3.1)

To show that this is equivalent to Definition 3.1, observe that the set z∗ ∈ S2

for which z ◦ f is a degenerate smooth (or C2) function is just the set of critical
values of the C∞ (or C1) map ν : N → S2. This set has measure zero and can

µz = 1

µz = 0

Figure 16. The number of critical points of z in a neighborhood U ⊂ M , as a
function of z∗.
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be neglected in the integral. The equality then follows from our discussion of the
parts K > 0 and K < 0 of M .

We now formulate Definitions 3.1 and 3.3 for dimension n, but leave the proof
of their equivalence to the reader.

Let f : M → RN be a smooth (or C2) immersion of a closed manifold,
N = (p, z∗) ⊂ M × SN−1 the unit normal bundle, an SN−n−1-bundle over M ,
and ν : N→ SN−1 the projection into SN−1 ⊂ RN.

Definition 3.4. The total (absolute) curvature of the smooth immersion f :
Mn → RN is

τ (f) = c−1

∫
N

|ν∗(ω)| =
∫

M

|τ (p) dσ|, c = |SN−1|.

Here τ (p) is a continuous curvature density function, and dσ is the volume el-
ement of M induced by the immersion f . τ (p) is obtained by integration over
the fibres. For hypersurfaces it corresponds to K = k1 · · ·kN−1, with principal
curvatures k1, . . . , kN−1.

Definition 3.5. The total curvature of the smooth immersion f : Mn → RN is

τ (f) = Ezµz(f) = c−1

∫
z∗∈SN−1

µz(f)|ω|.

Clearly the definition implies

τ (f) ≥ min
z
µz(f),

where the minimum is taken over all z such that z ◦ f is nondegenerate. If
γ(N) = γ(Mn,RN) is the minimum of minz µz(f) for all immersions f and γ is
the minimal number of critical points a nondegenerate function ϕ : Mn → R

can have, then minz µz(f) ≥ γ(N) ≥ γ(N+1) = γ ≥ β. Here γ(N+1) = γ because
we can introduce the optimal ϕ as the (N+1)-st coordinate for RN+1. By the
Morse inequalities (see Theorem 3.8 below) one has µz(f) ≥ β for β = β(F ) =
rankH∗(M,F ) for any coefficient field F . For surfaces in R3 we saw in Figure 7
immersions with µz(f) = β, for z pointing in the vertical direction. Thus we can
conclude part (i) of next theorem:

Theorem 3.6. (i) The total curvature of a smooth immersion f : Mn → RN is

τ ≥ γ(N) ≥ γ(N+1) = γ ≥ β.
For surfaces, γ ≥ β.

(ii) The greatest lower bound of τ (f) for all immersions f : Mn → R
N is

inff τ = γ(N) ≥ γ ≥ β.
For surfaces in RN, with N ≥ 3, this is

inff τ = β = 4− χ.
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Remark. Sharpe [1989] proved that γ(N) = γ for n > 5.

Part (ii) of Theorem 3.6 follows from the next result:

Lemma 3.7 [Kuiper 1959; Wilson 1965]. Let z◦f be nondegenerate with k critical
points for the smooth immersion f : Mn → R

N and let fε = gε ◦ f where for
ε > 0 we define gε by

gε(x, z) = g(εx, z), x = (u1, . . . , uN−1) ∈ RN−1, z = uN , (x, z) ∈ RN.

Then limε→0 τ (fε) = k.

Motivation: for ε→ 0, it seems that all curvature gets concentrated around the
critical points of z ◦ fε (which correspond, one to one, to those of z ◦ f) and they
contribute k in τ (fε).

Proof of lemma 3.7. Any unit vector in SN−1 can be written

cos θ z∗ + sin θ w∗, for some w∗ ∈ SN−2 ⊂ RN−1 ⊂ RN.

The volume element on SN−1 is

ωN−1 = ωN−2 ∧ cosN−1 θ dθ.

There exists θ0 near π/2 such that µz(f) = k for all z∗ with |θ(z∗)| > θ0 .
The mapping gε induces a map of tangent hyperplanes. A normal vector

cos θ z∗+ sin θ w∗, is replaced by a new normal vector cos θ′ z∗+ sin θ′ w∗, where
tan θ′ = ε tan θ; hence

dθ′

cos2 θ′
= ε

dθ

cos2 θ

and

cosN−1 θ′ dθ′ = ε
cosN+1 θ′

cosN+1 θ
cosN−1 θ dθ.

For |θ| < θ0 one finds for the volume element ω on SN−1:

|ω′| = ε
(cos θ′

cos θ

)N+1

|ω| < ε

(cos θ0)N+1
|ω|.

Consider the contributions of the two parts defined by |θ| > θ0 and |θ| < θ0 in
the integral τ (f) in (3.1). The first part is replaced by an integral of the constant
k over the part |θ′| > θ′0. As θ′0 converges to zero this converges, for ε→ 0, to k.
The second part is replaced by an integral which is smaller than ε/ cosN+1 θ0
times what it was. It converges to zero for ε→ 0. This proves the lemma

lim
ε→0

τ (fε) = k. �
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Theorem 3.8 (Morse inequalities). Let ϕ : Mn → R be a smooth nonde-
generate function with µk critical points of index k and with Betti numbers βk =
rank Hk(M,F ) for a field F (we mainly use Z2 = Z/2Z). Suppose the critical
points have different values . Then∑n

0 µkt
k −∑n

0 βkt
k

1 + t
=

n∑
0

Kkt
k

is a polynomial in t with nonnegative integer coefficients Kk ≥ 0. In particular ,

(i) µi ≥ βi;
(ii) µ ≥ β (µ =

∑
µi, β =

∑
βi);

(iii)
∑

(−1)iµi =
∑

(−1)iβi = χ (t = −1);
(iv)

∑n
0 (µi − βi)ti(1− t+ t2 − · · ·) =

∑
l Klt

l;
(v) (µl − βl)− (µl−1 − βl−1) + · · ·+ (−1)l(µ0 − β0) = Kl ≥ 0.

Proof. Let B ⊃ A be a pair of spaces with finite-dimensional homology groups.
Then we have the exact triangle

H∗(A) H∗(B)-i

H∗(B,A)
@
@
@I �

�
�	

∂ α

or, in detail,

Hk(A) Hk(B) Hk(B,A) Hk−1(A) Hk−1(B)- - - -
ik αk ∂k ik−1

where H∗(A) =
⊕

k Hk(A), etc. Exactness means that Im i = Kerα, etc. The
commutative groups then split into direct sums

Hk(A) ' Ker ik ⊕Kerαk,

Hk(B) ' Kerαk ⊕Ker ∂k,

Hk(B,A) ' Ker ∂k ⊕ Ker ik−1

Define Poincaré polynomials in t:

P (A) =
∑

k

dimHk(A)tk,

P (B) =
∑

k

dimHk(B)tk,

P (B,A) =
∑

k

dimHk(B,A)tk,
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P (Ker i) =
∑

k

dim(Hk(A) ∩Ker i)tk,

P (Kerα) =
∑

k

dim(Hk(B) ∩Kerα)tk,

P (Ker ∂) =
∑

k

dim(Hk(B,A) ∩Ker ∂)tk.

Note that ∂ decreases the dimension from k to k − 1. We calculate:

P (A) = P (Ker i) + P (Kerα),

P (B) = P (Kerα) + P (Ker ∂),

P (B,A) = P (Ker ∂) + tP (Ker i).

Therefore
P (B,A)− (

P (B)− P (A)
)

= (1 + t)P (Ker i). (3.2)

This shows that:

Lemma 3.9 (Preliminary Morse formula). The expression

P (B,A)− (
P (B)− P (A)

)
1 + t

= P (Ker i)

is a polynomial
∑
Kktk with integer coefficients Kk ≥ 0.

Next we discuss a smooth function ϕ : M → R on the closed n-manifold M .
Recall that the critical set is defined as Cr(ϕ) = {p ∈ M : dϕ = 0} ⊂ M .
The set of critical values ϕ(Cr(ϕ)) has measure zero on R by the Theorem of
Sard (this is also true for a Cr-function for r ≥ n). Assume, as in the case of
Theorem 3.8, that the critical values form a finite set. This is also the case when
ϕ is an algebraic function on an algebraic manifold.

We define the croissant

Mt = {p ∈M : ϕ(p) ≤ t}
and its interior

Mt− = {p ∈M : ϕ(p) < t}.
Let c1 < c2 < · · · < cL be the critical values of ϕ. Consider an arbitrary
Riemannian metric on M . Then ϕ has as differential the one-form dϕ, whose
dual with respect to the metric is the gradient grad ϕ = ∗dϕ. It vanishes at p
if and only if p is a critical point. Integral curves of the vector field grad ϕ are
transversal (not tangent) to the levels of ϕ, except at critical points. Then we
see that, if ck < a < b < ck+1, the croissant Mb is diffeomorphic to Ma and

Hk(Mb,Ma) = 0, H∗(Mb) = H∗(Ma).

In other words, the diffeomorphy type of Mt can only change at critical values.
There are at most 2L types, namely for t < c1, t = c1, c1 < t < c2, . . . , t = cL.
The first type is the empty set, the last type is that of M . The open manifolds
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Mt− have at most L+1 types, namely for t ≤ c1, c1 < t ≤ c2, . . . , cN−1 < t ≤ cN ,
t ≥ cN . They carry at most L + 1 homotopy types. Note that the real function
ϕ : u → u3 on M = R has only one type for Mt− = {p : ϕ(p) < t}. Let
t0 < c1 < t1 < · · · < cL < tL, and consider the sequence of spaces

? = Mt0

i1⊂Mt1 · · ·
iL⊂ MtL = M.

By (3.2) we have

P (Mtj ,Mtj−1) −
(
P (Mtj) − P (Mtj−1 )

)
1 + t

= P (Ker ij).

Summation for j = 1, . . . , L yields
∑L

j=1 P (Mtj ,Mtj−1)− P (M)
1 + t

=
L∑

j=1

P (Ker ij). (3.3)

We now take the assumptions of Theorem 3.8; there is exactly one nondegen-
erate critical point in {p ∈ M : tj−1 < ϕ(p) < tj}. Suppose it has index k. In
local coordinates near p the Morse lemma gives on an n-ball Bδ =

∑
x2

j < δ2

the expression

ϕ = cj −
k∑
1

x2
j +

n∑
k+1

x2
l .

Then

H∗(Mtj ,Mtj−1) = H∗(p ∪Mc−j
,Mc−j

)

= H∗(p ∪ {q ∈ Bδ : ϕ < cj}, {q ∈ Bδ : ϕ < cj})

= H∗

({
q ∈ Bδ :

n∑
k+1

x2
l = 0

}
,

{
q ∈ ∂Bδ :

n∑
k+1

x2
l = 0

})

= Hk

({
q ∈ Bδ :

n∑
k+1

x2
l = 0

}
,

{
q ∈ ∂Bδ :

n∑
k+1

x2
l = 0

})

= F.

Thus P (Mtj ,Mtj−1) = tk. Counting critical points of all indices yields

L∑
j=1

P (Mtj ,Mtj−1) =
∑

k

µkt
k.

Since P (M) =
∑

k βkt
k, (3.3) yields Theorem 3.8. �

Editors’ Note. See [Kuiper 1962; 1971] for more on Morse relations and
tightness.
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Minimal Total Curvature and Tightness. An embedding of topological
spaces f : A ⊂ B is called injective in homology over Z2, or H∗-injective, in case
the induced homomorphism in Z2-homology

f∗ : H∗(A)→ H∗(B)

is injective. It is easy to show that:

Lemma 3.10. If A ⊂ B ⊂ C, and A ⊂ C as well as B ⊂ C are H∗-injective,
then so is A ⊂ B.

Remark. Čech cohomology theory and Čech homology theory have been intro-
duced for spaces whose singular homology does not give satisfactory answers.
For manifolds and CW-complexes they give the same answer. If X is a compact
subset of a manifold or a CW-complex Y , then HČech∗ (X) is the inverse limit
of Hsing

∗ (Ui(X)) for Ui ⊃ Ui+1 ⊃ · · · ⊃ X any nested sequence of open sets of
Y converging to X. For such cases this can be used as definition. In general
it is known that if the compact space X is embedded in any space Y , then
HČech∗ (X) is the inverse limit of HČech∗ (Yi) for any nested sequence of subspaces
Y ⊃ Yi ⊃ Yi+1 ⊃ · · · ⊃ X converging to X. In our applications we will not use
more than these facts from the notion of Čech homology. We will use Z2-Čech
homology, denoted H∗. We remark also that Čech cohomology has better general
properties than Čech homology and for this reason is used more.

Exercise. If

X = {(u, v) ∈ R2 : u = sin(1/v) for v > 0 or u = 0 for v ≤ 0 or v = 0}
then HČech

0 (X) = Z2 but Hsing
0 (X) = Z2⊕Z2.

In Theorem 3.6 we saw that the total curvature of a smooth immersion f : M →
RN of a closed n-manifold M has total curvature τ (f) ≥ β(M). We now study
equality:

Theorem 3.11. The smooth immersion f : M → RN has total curvature
τ (f) = β(M) if and only if the embeddings f−1(h) ⊂ M are homology injective
for every half-space h ⊂ RN. The same statement holds if we replace half-spaces
h by open half-spaces h̊.

Proof. Let τ (f) = Ezµz(f) = β. Then µz(f) = β and µkz(f) = βk for all
indices k, of any nondegenerate height function z with ‖z‖ = 1. The croissant

Mt = {p ∈ M : zf(p) ≤ t}
equals f−1(h) for the half-spaces h = {q ∈ RN : z(q) ≤ t}. Assume that the
initial values c1, . . . , cL are all different (L = β(M)) and let noncritical values
tj be chosen such that t0 < c1 < t1 < c2 · · · < cL < tL, as in the proof
of Equation (3.3). Any given noncritical value t can be assumed to be tj for
some j. As µk = βk for all k, Kk = 0 for all k. So all the polynomials vanish
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in (3.3), Mtj−1 ⊂Mtj is H∗-injective and so is the composition Mt = Mtj ⊂M .
The space f−1(h) ⊂ M is for every half-space h the limit of a nested sequence
of spaces

M ⊃ f−1(hi) ⊃ f−1(hi+1) · · · ⊃ f−1(h)

for which f−1(hi) ⊂ M is already known to be H∗-injective. Then the same
follows for f−1(h) ⊂M . In fact the limit H∗(f−1(h)) = H∗(f−1(hi0 )) is already
attained for some integer i0, because H∗(M) = ⊕β

1Z2 is finite. For any open
half-space h̊ we find a sequence of half-spaces hj such that the nested sequence

f−1(hi) ⊂ f−1(hi+1) · · · ⊂ f−1 (̊h) ⊂M
exhausts f−1 (̊h). The limit H∗(f−1 (̊h)) = H∗(f−1(hi0)) is again already at-
tained for some integer i0. �

Definition. We call a continuous map f : X → RN of a compact connected
metrizable space X tight or perfect if f−1(h) ⊂ X is H∗-injective for every half-
space h ⊂RN. We call f k-tight if f−1(h) is Hi-injective for all i ≤ k and all h.

Exercise. A map f : X → RN into one point is tight.

For k = 0 our definition agrees with Section 1 where 0-tightness, the two-piece
property, was studied. We can now reformulate Theorem 3.11 with a slight
extension as follows:

Theorem 3.12. The smooth immersion f : M → RN of a closed n-manifold
has minimal total curvature equal to τ (f) = β(M) if and only if f is k-tight ,
where n− 2 ≤ 2k ≤ n− 1.

Proof. By Poincaré duality βi = βn−i. For any nondegenerate z one has
µn−i(z) = µi(−z). So if f is k-tight, then µi = βi for i ≤ k and for n − i ≤ k.
There only remains to show for n even the equality µk+1 = βk+1. This follows
from

∑n
0 (−1)iµi =

∑n
0 (−1)iβi = χ. �

Corollary. A smooth immersion f : M2 → RN of a closed surface M2 has
minimal total curvature τ (f) = β(M2) if and only if f is 0-tight.

Example. A 0-tight smooth embedding f : S3 →
R4 need not have have minimal total curvature (need
not be tight). For example, consider the surface
D ⊂ h ⊂ E3 ⊂ E4 with boundary ∂D ⊂ ∂h = E2

shown on the right. Assume D orthogonal to ∂h

along ∂D. Rotate (D, h) in E4 around the (fixed
point set) plane ∂h = E2 to form the three-sphere
M ⊂ E4. See [Kuiper 1970, pp. 221–224] for more
detail.

Exercise. Prove that the limit Swiss cheese in E2

(page 7) is tight.

∂D

D

∂h

h
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Open Question. Is there a 0-tight smooth S3 embedded substantially in R5?

For topological or PL embeddings (see also [Banchoff 1965]) the possibilities are
richer:

Theorem 3.13 [Banchoff 1971a]. There is for every N > n ≥ 3 a substantial
0-tight polyhedral embedding f : Sn → EN .

4. Tight Smooth Surfaces in Codimensions 3 and Higher

This section is devoted to the proof of the following result:

Theorem 4.1 [Kuiper 1962]. Let f : M → EN be a 0-tight smooth closed
embedded surface substantial in EN . Then N ≤ 5. For N = 5, M is the real
projective plane and f is an embedding onto a Veronese surface.

Tightness and “high” codimension (at least 3) therefore dramatically impose
uniqueness and rigidity up to projective transformation.

Proof. We prove the theorem in a sequence of steps.

(a) N ≤ 5.

Proof. Let f fulfill the conditions of the theorem and let z be a height function
with nondegenerate maximum at p ∈M . Then p will be called a nondegenerate
top point. Choose Euclidean coordinates u1 . . . uN−2, v1, v2 vanishing at p = 0 ∈
RN, and such that u1, . . . , uN−2 vanish on the tangent space Tp(M), and u1 is
nondegenerate maximal at p. Then v1 and v2 (or more precisely v1f and v2f)
are coordinates for M near p. The height functions that vanish at p form a
vector space

W = {w1u1 + . . .+wN−2uN−2 : (w1, . . . , wN−2) ∈ RN−2}.
Denote J2z = J2(zf) (J2 for 2-jet) the part up to degree two of the Taylor series
of zf , in terms of v1, v2. It is a quadratic function. The induced map J2 : W → Z

into the 3-space Z of quadratic functions in v1 and v2 is a homomorphism.
Suppose J2z = 0 for some height function z with ‖z‖ = 1 and z 6= ±u1. Then

J2(u1 +λz) = J2u1 is negative definite and u1 +λz has a nondegenerate isolated
maximum at p for all λ. If z(p1) 6= 0 for some p1 ∈M then the half-space

h = {q ∈ RN : u1(q) + λz(q) ≥ 0, u1(p1) + λz(p1) = 0}
meets M in an isolated point p and in another part containing p1, contradicting
tightness. So z(p1) = 0 for all p1 ∈ M , contradicting the substantiality of f . It
follows that J2 must be injective and dim W ≤ dim Z = 3, so N ≤ 5. �

Remark. The codimension of a 0-tight smooth closed n-submanifold substan-
tially in En is N − n ≤ 1

2
n(n+ 1), by the same argument [Kuiper 1970].
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From now on assume N = 5.

(b) Preferred affine coordinates at p ∈M , and the topsets

Mθ = Mθ(p) ⊂ E3
θ ⊂ E4

θ .

Since N = 5, J2 : W → Z is bijective onto Z. Choose u′1, u′2, u′3 ∈ W such
that J2(u′1) = −v2

1 − v2
2 , J2(u′2) = −v2

1 + v2
2 , J2(u′3) = 2v1v2. Denote them

by u1, u2, u3 and consider u1, u2, u3, v1, v2 as an orthonormal basis of Euclidean
space E. Let

z = w1u1 +w2u2 + w3u3 = sinϕu1 + cosϕ cos θ u2 + cosϕ sin θ u3.

Then
J2z = w1(−v2

1 − v2
2) + w2(−v2

1 + v2
2) + w32v1v2,

with determinant∣∣∣∣−w1 −w2 w3

w3 −w1 +w2

∣∣∣∣ = w2
1 − w2

2 −w2
3 = sin2 ϕ − cos2 ϕ = − cos 2ϕ.

Therefore z is nondegenerate at p and its index is

2 (maximum) if and only if π/4 < ϕ ≤ π/2,
1 if and only if −π/4 < ϕ < π/4,
0 (minimum) if and only if −π/2 < ϕ < −π/4.

The height function z has, for ϕ = π/4− ε with ε > 0 small, a critical point of
index 1 at p. Then we see that the half-space

h = h(ϕ, θ) = {q ∈ E5 : z = zϕ,θ ≥ 0}
contains in h ∩M an essential one-cycle of M , and so does the limit for ε = 0,
ϕ = π/4.

We now denote the half-space h(π/2, θ) by h(θ) and conclude that the topset
Mθ = M ∩ h(θ) carries an essential 1-cycle of M . The boundary ∂h(θ) is the
4-plane with equation u1 + cos θ u2 + sin θ u3 = 0; see Figure 17.

The half-spaces h(θ) envelop a solid cone with equations

u1 ≤ 0, u2
1 ≥ u2

2 + u2
3

with boundary the quadratic 4-dimensional cone with equation

u1 ≤ 0, u2
1 = u2

2 + u2
3. (4.1)

It contains as u1-topset the whole tangent plane Tp(M) with equation u1 = u2 =
u3 = 0. The half-space h(θ) and the 4-plane ∂h(θ) support the cone in a 3-plane
E3

θ with equation
u1+ cos θ u2 + sin θ u3 = 0,

− sin θ u2 + cos θ u3 = 0.
(4.2)

The second equation is obtained from the first by differentiation with respect
to θ.
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u1

u2
u3

E3
θ

∂h(θ)

θ

p

φ = π/4

v2

v1

p θ/2

Figure 17. Left: normal space at p. The cone has equation (4.1). The 3-plane

E3
θ has equation (4.2); dimensions v1 and v2 are not shown. E3

θ is the intersection

of the cone with E4
θ , the 4-plane generated by E3

θ and the u1-axis. Moreover
E3

θ = E4
θ ∩ ∂h(θ). Right: tangent space at p.

The 4-plane with equation − sin θ u2 +cos θ u3 = 0 is denoted E4
θ . It contains

E3
θ as well as E3

θ+π . In summary,

p ∈ Mθ ⊂ E3
θ ⊂ E4

θ .

(c) Mθ has a tangent line at p with equation

cos(θ/2) v1 − sin(θ/2) v2 = 0, u1 = u2 = u3 = 0. (4.3)

Proof. Consider the function on M

u1 + cos θ u2 + sin θ u3 = (−v2
1 − v2

2) + cos θ(−v2
1 + v2

2) + sin θ2v1v2 +O(‖v‖3).
Here O(‖v‖3) means that the remainder R(v1, v2) is such that R(v1, v2)/‖v‖3 is
bounded for small ‖v‖ =

√
v2
1 + v2

2 . As the expression vanishes on Mθ we obtain
after calculation

−(
cos(θ/2) v1 − sin(θ/2) v2

)2 +O(‖v‖3) = 0.

Hence
cos(θ/2) v1 − sin(θ/2) v2 = O

(‖v‖ 3
2
)
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and ∣∣cos(θ/2)
(
v1/‖v‖

)− sin(θ/2)
(
v2/‖v‖

)∣∣ = O
(√‖v‖).

The unit vector ‖v‖−1(v1, v2) goes in the limit to ±(sin(θ/2), cos(θ/2)), for
(v1, v2) ∈ Mθ, ‖v‖ → 0. �

(d) Mθ is a smooth curve near p.

Proof. It suffices to prove this for θ = 0. The equations (4.2) for θ = 0 are

u1 + u2 = 0, u3 = 0,

and we obtain

v1 = O(‖v‖ 3
2 ),

v1
‖v‖ = O

√
‖v‖, v2

‖v‖ → 1,

and
2v1v2 − ϕ(v1, v2) = 0. (4.4)

The function ϕ is C∞ with J2(ϕ) = 0 at (v1, v2) = (0, 0):

ϕ(v1, v2) = O(‖v‖3).
Consider for any fixed v2 the function in v1 given by

η : v1 7→ v1 − (2v2)−1ϕ(v1 , v2).

Since dη/dv1 6= 0 for small ‖v‖, the map η is a C∞-diffeomorphism for any small
value v2. Call its inverse η−1. Then the solution of (4.4) is

v1 = η−1(0).

Its dependence on v1 is expressed as

v1 = ψ(v2).

The inverse function theorem says that ψ is also C∞. �

We obtain for every tangent line (4.3) a smooth curve. The 4-planes E4
θ cut out

these curves in pairs near p, Mθ and Mθ+π , with tangent lines

cos(θ/2) v1 − sin(θ/2) v2 = 0, sin(θ/2) v1 + cos(θ/2) v2 = 0.

(e) Any component of Mθ(p) ∩ U is a plane convex curve.

Proof. If z has a nondegenerate maximum, then so has any height function z1
near to z. The nondegenerate top points therefore form an open set U in M . We
study the levels of the function θ = arctan(u3/u2) on M in a small neighborhood
U(p) ⊂ U of p (but p is excluded as θ is not defined there). By Sard’s theorem,
the critical values of θ on M \ E2,3, (E2,3 : u2 = u3 = 0) have measure zero.
For a regular value θ0 the level {q ∈ M \ E2,3 : arctan(u3(q)/u2(q) = θ0} is a
smooth curve. Its intersection with ∂h(θ0) can be completed with the point p to
obtain the top set Mθ0 , a tight connected closed curve. By Fenchel’s Theorem
(Theorem 2.12) it is a convex plane curve. As θ0 is a regular value, the function
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θ is not critical on Mθ0 , hence on some neighborhood of Mθ0 in M . Then θ is
also a regular value on that neighborhood, and Mθ is also a plane convex curve
for |θ − θ0| small. So the set of θ for which the topset Mθ is plane convex is
open and dense in Rmod 2π. But inside the small neighborhood U(p) of p in
M the limit of a set of plane curves Mθ for θ → θ1 must be a plane curve as
well. So every topset Mθ has a plane convex curve part in U(p) ⊂ U. The same
arguments apply for any p ⊂ U, hence to U. �

(f) Any component of Mθ(p) ∩ U is part of a conic.

Proof. Consider q ∈ Mθ1(p) and Mθ2(q) = γ 6= Mθ1 (p). There is an open
interval of regular values θ near to θ1 giving rise to curves Mθ(p) ∩U that meet
γ in some open interval near q. That interval lies in the intersection of the
plane of γ and the quadratic cone for p. This proves statement (f) locally, hence
globally. �

(g) The remaining part of the proof belongs to classical projective geometry. We
only indicate the main ideas. Take the above situation in some neighborhood
U(q0) of

q0 ∈Mθ1(p), Mθ2(q0) = γ 6= Mθ1(p).

Consider an interval of top conic sections Mθ(p), θ1 − δ < θ < θ1 + δ, and a
two-parameter family of top conic sections Mω(p) parametrized by q ∈ Mθ1 (p),
q near to q0, and ω, θ2 − δ < ω < θ2 + δ, such that every Mθ(p) meets every
Mω(q) in exactly one point inside U(q0) ⊂ U . We consider E5 = P 5 \ P 4 as the
complement of a projective 4-plane P 4 in real projective space P 5. We project
U(p) from the center P ∈ E5 into P 4. The point p is itself excluded from this
projection, which is denoted p̂. We see that:

(i) p̂(Tp(M) \ p) is a line L0 ⊂ P 4.
(ii) p̂(Mθ(p)) is a line Lθ ⊂ P 4, and L0 ∩ Lθ is a point.
(iii) p̂(Mω(q) is a conic γ(ω, q) ⊂ P 4 in a plane Π(ω, q).
(iv) Every line Lθ meets every conic γ(ω, q) in one point in Π(ω, q).

These are very strong conditions on the lines Lθ and planes Π(ω, q).
In P 4 the family of all 2-planes that meet 4 lines in general position is a two-

dimensional family of planes all meeting one more (fifth) line. However, if the
four lines Lθ, for θ = θ1, θ2, θ3, θ4, are in general position but for the fact that
they all meet one and the same line L0, then there is a complete one-parameter
family of such lines [Kuiper 1941] and a degenerate Veronese surface V1, that
can be described as follows.

Take three points θ1 , θ2, θ3 on a projective line L0 ⊂ P 4. Take a disjoint plane
Π and in it a conic E ⊂ Π. Let ρ : L0 → E be a birational correspondence. V1 is
the union of all lines Lθ from θ ∈ L0 to ρ(θ) ∈ E.

From our description it follows that V1 has no projective invariants. A
Veronese surface V can be found in E5 which passes through p, has the same
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tangent plane Tp(V) = Tp(M), and yields the projection p̂V = V1. As other
points p′ ∈ U(q0) also give algebraic projections p̂′(U(q0)) in a projective surface
V′1 we can succeed in finding a unique Veronese surface V which contains all of
U(p) and then by continuation all of U . By extension we also see that the set
of nondegenerate top-points U ⊂M is not only open but also closed in V. Then
f(M) = U = V, the Veronese surface. This ends the proof of Theorem 4.1. �

Details of the last part can be found in [Kuiper 1980], which contains Theorem 4.3
below.

Generalization. The conclusion of Theorem 4.1 remains true if we assume f :
M → E5 to be an immersion. We mention, without proof, a deep generalization
of Theorem 4.1:

Theorem 4.2 [Little and Pohl 1971]. Let f : Mn → RN be a 0-tight smooth
substantial immersion of a closed n-manifold n ≥ 2. Then N − n ≤ 1

2
n(n + 1).

If we assume equality , N −n = 1
2
n(n+1), then M is real projective n-space and

f(Mn) is the standard Veronese n-manifold (up to projective transformation).
Note that only 0-tightness is used .

Hard to prove is:

Theorem 4.3 [Kuiper 1980]. Let f : M2d → E3d+2 be a smooth substantial tight
embedding of a manifold M like a projective plane (that is, β0 = βd = β2d = 1,
β =

∑
βi = 3) into E3d+2, d = 1, 2, 4 or 8. Then f(M2d) is an algebraic variety .

For d = 1, we have Theorem 4.1. For d = 2, f(M4) is the standard model V(C )
of the complex projective plane, up to real projective transformation in E8.

In both theorems the assumptions lead to a high degree of rigidity of the em-
bedding.

Open Question (perhaps not difficult). It is conjectured that the conclusions
of Theorem 4.3 for obtaining the standard models for projective planes over C
also hold for quaternion planes (or even the same conclusion for 3-connected
8-manifolds) and for the Cayley-plane (or even for 7-connected 16-manifolds).

Editors’ Note. See also [Kuiper and Pohl 1977], in which it is shown that
a TPP topological embedding of the real projective plane into E5 is either a
Veronese surface or Banchoff’s piecewise linear embedding with six vertices [Ban-
choff 1974].

5. Tightness of Topsets

Theorem 5.1. If Y ⊂ RN is compact and tight , then so is every topset X of
Y , and the inclusion X ⊂ Y is homology injective. In particular , every essential
cycle in X carries an essential cycle in Y .
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h0

h

hj+1

hj

Y

X = h ∩ Y h0 ∩ Y

Figure 18. Proving that the topset X of a tight set Y is tight.

Theorem 5.2. If f : M ⊂ RN is a smooth embedding of a closed manifold M
with minimal total curvature τ (f) = β(M), then every topset X ⊂ M is tight ,
and every essential cycle in H∗(X) carries an essential cycle in H∗(M).

Note that there is no reason for X to be a manifold! This is one motivation for
our generalization. Theorem 5.1 is a special case of the next result:

Theorem 5.3. If f : Y → RN is a tight map of a compact connected metrizable
space Y and if X ⊂ Y is any topset , then f : X → RN is tight and X ⊂ Y is
homology injective. In particular every essential cycle in X carries an essential
cycle in Y .

Proof. (Compare the examples of tight spaces given so far). If the conclusion
holds for any topset of a tight map, it holds for a topset of this topset by compo-
sition. Then, it holds for any topkset for k ≥ 1 by induction. It suffices therefore
to prove the theorem for a topset X ⊂ Y , say

? 6= X = f−1(h) = f−1(∂h) 6= Y,

h a supporting half-space. Let h0 be another half-space. Say it “meets” X in
(f |X)−1 = X ∩ f−1(h0) = f−1(h ∩ h0) 6= ?. See Figure 18. There is a sequence
of half-spaces h1, h2, . . . in RN such that

f−1(h1) ⊃ f−1(h2) ⊃ · · · ⊃ f−1(hj) ⊃ · · · ⊃ f−1(h ∩ h0) =
⋂
j

f−1(hj) = X

is a nested sequence of subspaces of Y , converging to X.
The inclusions X = f−1(h) ⊂ Y and f−1(hj) ⊂ Y are H∗-injective by tight-

ness of f . The inclusion f−1(h∩ h0) ⊂ Y is H∗-injective because f−1(h ∩ h0) is
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the inverse limit of {f−1(hj)}. Then the first inclusion in the sequence

(f |X)−1(h0) = f−1(h ∩ h0) ⊂ f−1(h) = X ⊂ Y
is H∗-injective by the easy Lemma 3.10. This means that the restriction f |X is
tight. �

Our theorem is proved for topsets and holds then for top∗sets in general.

Exercise. Formulate and prove the analogous theorems concerning k-tightness.

Tight Balls and Spheres. A compact space X with H∗(X) = H0(X) = Z2 is
called a homology point space.

Theorem 5.4. If f : X ⊂ EN is a substantial and tight embedding of a homology
point space X in EN then X = f(X) is a convex set .

Proof. The conclusion is true for N = 0. Suppose it is true for all N < k.
Let f : X → Ek be substantial. All topsets X′ of X are H∗-injective in X. So
they are homology points, and convex by induction. Therefore ∂HX ⊂ X is a
(k − 1)-sphere in X. It is bounding because Hk−1(X) = 0. Then, no point of
HX can be not in X, so X = HX. By induction the theorem follows. �

We next prove the analogous theorem for maps.

Theorem 5.5. If f : X → EN is a tight substantial map of a homology point
space X, then f(X) is convex .

Proof. Assume the theorem true for all N < k. It is true for n = 0. Let
f : X → Ek be substantial tight. All topsets are homology injective in X, so
they are homology point spaces, their images are convex sets by induction. Their
union is contained in fX, i.e., ∂HfX ⊂ fX. Denote W = f−1∂HfX ⊂ X. Let
R ⊂W × Sk−1 be the compact relation

R = {(w, z∗) : max
p∈X

zf(p) = zf(w)}.

Given z we see that the set of w for which (w, z∗) ∈ R is just the topset deter-
mined by the maximal value of zf on X. It is a homology point space. Therefore
the projection pS : W ×Sk−1 → Sk−1 induces a projection pS : R → Sk−1 whose
fibers are all homology-point spaces. Then by a theorem of Vietoris and Begle
[Spanier 1966, p. 344], pS induces an isomorphism in homology:

H∗(R) ∼−→ H∗(Sk−1).

Given w ∈ W , the set of z∗ ∈ Sk−1 for which (w, z∗) ∈ R is nonempty and
convex by geometry (convexity of HfX containing f(w)). Therefore, the fibers
of the projection pW : R → W are also homology point spaces, and again the
theorem of Vietoris and Begle reads that H∗(R) → H∗(W ) is an isomorphism.
By composition, we see that

Hk−1(W ) = Hk−1(Sk−1) = Z2.



GEOMETRY IN CURVATURE THEORY 45

As W ⊂ X and H∗(X) = H0(X) = Z2, the space W is bounding in X and so is
its image ∂HfX in fX. Then fX =HfX is convex. �

Theorem 5.6 [Kuiper 1980]. Let f : Sn → EN be a substantial tight map. Then
either N = n + 1 and f(Sn) is a convex hypersurface or N ≤ n and f(Sn) is a
convex set .

Corollary [Chern and Lashof 1957]. Let f : Mn → EN be a substantial
smooth immersion of a closed n-manifold Mn with total curvature τ (f) = 2.
ThenMn is the n-sphere with standard smooth structure (not exotic), N = n+1,
and f(M) is a convex hypersurface.

Proof of Corollary. Since τ (f) = Ezµz(f) = 2, we have µz(f) = 2 and M
must be homeomorphic to a n-sphere. There is no immersion in RN for N ≤ n,
so f is a smooth immersion onto a smooth convex hypersurface in Rn+1. Then,
it is an embedding and f(Sn) has the standard smooth structure. �

Proof of Theorem 5.6. Given f one observes that every topset X ⊂ Sn

misses at least one point of Sn and it is homology injective in Sn. Therefore
H∗(X) = H∗(point). So by Theorem 5.5 every topset is a homology point space.
As in the proof of Theorem 5.5, we get an isomorphism

H∗(W ) ' H∗(∂HfSn) ' H∗(SN−1),

where ∂HfSn ⊂ fSn ,W = f−1(∂HfSn). As W ⊂ Sn, then N − 1 ≤ n. If
N − 1 < n, then W ⊂ Sn bounds in Sn , that is HN−1(W ) → HN−1(Sn) maps
into zero. Then also

0 6= HN−1(fW ) = HN−1(∂HfX) → HN−1(fX)

maps into zero. Then f(X) = Hf(X) is convex.
If N − 1 = n then W ⊂ Sn induces an isomorphism Hn(W ) → Hn(Sn) and

so W = Sn and f(W ) = ∂HfSn , a convex hypersurface in En+1. �

Application: Tight Projective Planes. A closed manifold P 2d that contains
a tame embedded d-sphere Sd so that P 2d\Sd is homeomorphic to R2d is called a
manifold like a projective plane. Such manifolds were studied in [Eells and Kuiper
1962]. P 2d is a CW-complex with three cells; β = β0 +βd +β2d. Necessarily d =
1, 2, 4, 8. Examples are the standard projective planes overR, C , H (quaternions)
and Ca (octaves or Cayley numbers), for d = 1, 2, 4, 8 respectively. The self
intersection of the essential d-cycle in P 2d is one. Here we prove:

Theorem 5.7. Let f : P ⊂ EN be a tight substantial embedding of a manifold
like a projective plane P = P 2d. Then N ≤ 3d+ 2.

Proof. Let k be the smallest number for which there exists an Ek-top∗set X
that contains an essential cycle in H∗(X). If there is no such k, let k = N .
Clearly, k > 1 because every E0- or E1-top∗set is convex.
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Every topset Y of X is homology injective in X and is therefore a homology
point space. Then Y is convex. Consequently, the (k− 1)-sphere ∂HX, a union
of such convex topsets, is in X. If k − 1 6= d or 2d, then ∂HX bounds in X

because by tightness if not, it also does not bound in P . Then every point inside
∂HX must belong to X, and X = HX, contradicting the assumption on k.

Now assume that k − 1 = d. Then ∂HX carries the d-cycle of P 2d. Now we
project EN parallel to Ek = span(X) into a Euclidean space EN−k orthogonal
to Ek. Every height function z which is constant on Ek has µz(X) = 3. There
is a minimum µ0z(X) = 1 for some z ≤ z(X), a maximum µ2dz(X) = 1 for
some z ≥ z(X) and no other critical point for z 6= z(X). This is so because any
d-cycle in {p ∈ X : z(p) < z(X)} has to meet geometrically the d-cycle in X

by nonzero self intersection in homology. The space P \X can be exhausted by
a nested sequence of half-space sections f−1(hj) ⊂ f−1(hj+1) . . . ⊂ P \X. As
they do not meet X they are (open) homology point spaces all homeomorphic to
R2d. The one point compactification P/(X = point) is then a sphere S2d with a
tight map into En−k :

P EN

P/X EN−k.

-

-
? ?

By Theorem 5.5 then N − k = N − d− 1 ≤ 2d+ 1, and N ≤ 3d+ 2.
If k − 1 6= d we are in the case k − 1 = 2d. Then ∂HX is a 2d-sphere in

X ⊂ P . This is a contradiction. �

Remarks. Equality N = 3d+ 2 is attained for the standard smooth models of
standard projective spaces. It has also been attained for polyhedral embeddings
for the real projective space, for the standard complex projective space in [Kühnel
and Banchoff 1983] and for some P 8 (perhaps HP(2)) in [Brehm and Kühnel
1992]. By projection one finds tight embeddings for N = 3d + 1. There are no
embeddings for N ≤ 3d by characteristic class obstructions.

By projections one finds tight maps for all N ≤ 3d+ 2.

Open Question. Let f : P 2d → RN be a tight substantial map. Is N ≤ 3d+2?
For N = 2d+ 1, is f(P ) a convex hypersurface in E2d+1? For N ≤ 2d, is f(P )
a convex set?

Counting Critical Points. A continuous function ϕ : M → R on a compact
space M is said to have a Poincaré polynomial in case there exists for every
value t, a number ε > 0, such that if t − ε < r < t ≤ s < t + ε, the following
conditions are satisfied:
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(a) the homomorphisms

H∗(Mt−ε)→ H∗(Mr) and H∗(Ms)→ H∗(Mt+ε)

induced by inclusions, are bijective.
(b) the group H∗(Mt+ε, Mt−ε) = H∗(Mt,Mt−) is finitely generated.

Here Mt = {p ∈M : ϕ(p) ≤ t}.
The value t is called critical in case this group is nonzero. Clearly any real

algebraic function on a compact real algebraic manifold M ⊂ EN has a Poincaré
polynomial.

Call the finitely many critical values c1 < c2 . . . < cL. Choose noncritical
values t0, . . . , tL such that

t0 < c1 < t1 < . . . < cL < tL.

Definition. The Poincaré polynomial of ϕ is

P (ϕ) =
L∑

j=1

P (Mtj ,Mtj−1) =
∑

k

µk(ϕ)tk.

It is independent of the choice of t0, . . . , tL. As in equation (3.3), it obeys the
Morse inequalities:

P (ϕ)− P (M)
1 + t

=
∑

k(µk(ϕ) − βk)tk

1 + t
=

∑
k

Kkt
k

is a polynomial with integer coefficients Kk ≥ 0.

In particular, putting µk = µk(ϕ), we deduce all the inequalities of Theorem 3.8
for this more general case.

The function ϕ is perfect or tight in case Kk = 0 for all k, because this holds if
and only if the inclusion Mt ⊂M is homology-injective for all t. This is the case
if and only if µk(ϕ) = βk(M) for all k. Equivalently Mc−ε ⊂ Mc is homology
injective for small ε > 0 and every critical value c = cj .

Lemma 5.8 (the lacunary principle). Suppose µ2l+1(ϕ) − β2l+1(M) = 0
for all l. Then ϕ is perfect . In particular ϕ is perfect in case µ2l+1 = 0 for all l.

Proof. Write µi for µi(ϕ). By the Morse inequalities (Theorem 3.8) we have

(µ2l − β2l)− (µ2l−1 − β2l−1) + . . .+ (µ0 − β0) = K2l ≥ 0

and

(µ2l+1 − β2l+1)− (µ2l− β2l) . . . = (µ2l+1 − β2l+1)−K2l = 0−K2l = K2l+1 ≥ 0.

Therefore K2l = K2l+1 = 0 for all l. �

Remark. The limit Swiss cheese M (page 7) is tight and its height functions
are tight as well but they have no Poincaré polynomials, since H1(M) has no
finite basis.
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−
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Rew3

∼ ∼ S1 ∨ S1 ∨ S1

Figure 19. There is homotopy equivalence (indicated by ∼) between the set of
(5.1) and a bouquet of r circles.

Definition. If P (Mc,Mc−) =
∑

k µkct
k, the critical value c counts for µkc

critical points of index k, with total number

P (Mc,Mc−)t=1 = Σkµkc = µc

critical points for the critical value c.

Exercise. Let the smooth function ϕ : M2 → Rhave at most one critical point
p at level ϕ−1(p) (given by dϕ(p) = 0) which in some topological chart is locally
expressed by (u, v) → Re(u + iv)r+1 . Then our count is µ1 = r for r ≥ 1. The
contribution in P (ϕ) is tr . The case r = 1 gives a nondegenerate critical point,
r = 2 a monkey saddle, r ≥ 3 an octopus saddle.

Proof. (See Figure 19, where r + 1 = 3.) Look at the set of points

{w = u+ iv : |w| ≤ 1, Rewr+1 ≤ 0 or |w| = 1} (5.1)

modulo the set {w : |w| = 1}. �

Exercise. Let ϕ be a PL-function on a PL-surface with one critical point p
in the level ϕ−1(p). The level curve of ϕ near p is then in
some chart either one point (minimum µ0 = 1 or maximum
µ2 = 1; in both cases we have µ = 1) or it is the union of
2(r + 1) ≥ 4 straight segments ending in p. In a suitable
topological chart, we obtain the figure on the right. The
contribution in P (ϕ) at level ϕ(p) is tr [Kuiper 1971].

+
+

+

−

−

−
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75–88 in Colloque Géom. Diff. Globale (Bruxelles, 1958), Centre Belge Rech. Math.,
Louvain, 1959.

[Kuiper 1962] N. H. Kuiper, “On convex maps”, Nieuw Arch. Wisk. (3) 10 (1962),
147–164.

[Kuiper 1966] N. H. Kuiper, “Cr-functions near non-degenerate critical points”,
mimeoraphed notes, Warwick Univ., Coventry, 1966.

[Kuiper 1970] N. H. Kuiper, “Minimal total absolute curvature for immersions”, Invent.
Math. 10 (1970), 209–238.

[Kuiper 1971] N. H. Kuiper, “Morse relations for curvature and tightness”, pp. 77–89
in Proceedings of Liverpool Singularities Symposium (Liverpool, 1969/1970), vol. 2,
edited by C. T. C. Wall, Lecture Notes in Math. 209, Springer, Berlin, 1971.



50 NICOLAAS H. KUIPER

[Kuiper 1980] N. H. Kuiper, “Tight embeddings and maps: Submanifolds of geometrical
class three in En”, pp. 97–145 in The Chern Symposium (Berkeley, 1979), edited by
W.-Y. Hsiang et al., Springer, New York, 1980.

[Kuiper and Meeks 1983] N. H. Kuiper and W. H. Meeks, III, “Sur la courbure des
surfaces nouées dans R3”, pp. 215–217 in Third Schnepfenried geometry conference
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