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Differential Geometric Aspects

of Alexandrov Spaces

YUKIO OTSU

Abstract. We summarize the results on the differential geometric struc-
ture of Alexandrov spaces developed in [Otsu and Shioya 1994; Otsu 1995;
Otsu and Tanoue a]. We discuss Riemannian and second differentiable
structure and Jacobi fields on Alexandrov spaces of curvature bounded be-
low or above.

1. Introduction

Let f : Rn → R be a convex function, B := {(u, t) ∈ Rn ×R : t > f(u)},
and Γ = Γf := {(u, f(u)) ∈ Rn×R} = ∂B. Then B is an open convex set. A
hyperplane L in Rn+1 is a support at x ∈ Γ if x ∈ L and L ∩ B = ?. We say
that x ∈ Γ is a singular point if supports at x are not unique. Let SΓ be the set
of singular points in Γ, and Sf := {u ∈ Rn : (u, f(u)) ∈ SΓ}. If u /∈ Sf , then f

is differentiable and the differential is continuous at u.

Theorem 1.1 [Reidemeister 1921]. Let f : Rn → R be a convex function.
Then f is a.e. differentiable: more precisely , f is C1 on Rn \ Sf ⊂ Rn, and the
Hausdorff dimension dimH Sf = dimH SΓ is at most n− 1.

If n = 1, the map R → R given by u 7→ dfu is monotone by convexity
and, therefore, dfu is a.e. differentiable, that is, f is a.e. twice differentiable. In
general, we have [Busemann and Feller 1935; Alexandrov 1939]:

Theorem 1.2 (Alexandrov’s theorem). Let f : Rn→ R be a convex func-
tion. Then f is a.e. twice differentiable in the sense of Stolz , that is, for a.a.
x ∈ Rn there exist A ∈ Rn and an n × n symmetric matrix B ∈ Sym(n) such
that

f(u + h) = f(u) +Ah + 1
2
thBh + o

(|h|2)
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for h ∈ Rn.
Consider the inner geometry of Γ. The length of a path c : [a, b]→ Γ is

|c| := sup
a=a0<...<al=b

l∑
i=1

∣∣c(ai−1)c(ai)
∣∣,

where | | on the right denotes the Euclidean metric. The intrinsic distance d on
Γ is defined by

d(p, q) = |pq| = inf
c
|c|,

where c is a path from p to q. Then Γ is a geodesic space, that is, for any p,
q ∈ Γ there is a path from p to q whose length is equal to |pq|; this is called a
minimal segment or minimal geodesic (from p to q), and denoted by pq. Any
convex function can be written as a limit of a sequence of C∞ convex functions
{fi}∞i=1; equivalently,

dpH((Γ, p), (Γi, pi)) → 0 as i→∞, (1.1)

where dpH denotes the pointed Hausdorff distance, Γi = Γfi , p = (0, f(0)), and
pi = (0, fi(0)). Note that Γi is a Riemannian manifold with sectional curvature
≥ 0.

Let X be a geodesic space. For p, q, r ∈ X the triangle 4pqr is a triad of
segments pq, qr, rp. A comparison triangle for 4pqr is a triangle 4̃pqr = 4p̃q̃r̃
in R2 with |p̃q̃| = |pq|, |r̃p̃| = |rp|, |r̃q̃| = |qr|. If X is a Riemannian manifold
with sectional curvature ≥ 0, it has the following property:

Property 1.3 (Alexandrov convexity). Given a triangle 4pqr in X, there
is a comparison triangle 4̃pqr such that , for s ∈ qr, we have

|ps| ≥ |p̃s̃|,

where s̃ ∈ q̃r̃ with |s̃q̃| = |sq|.
This property is equivalent to Toponogov’s comparison theorem. Since (1.1)
implies that any segment on Γ is approximated by segments on Γi, Alexandrov
convexity is also valid on Γ.

For k ≤ 0 a metric space X is an Alexandrov space of curvature ≥ k if X is a
locally compact, complete length space of dimension dimH X <∞, satisfying the
Alexandrov convexity property withR2 replaced by H2(k), the simply connected
space form of curvature k. Then the dimension of X is an integer, say n, and
the n-dimensional Hausdorff measure V nH satisfies

0 < V nH(B(p, r)) <∞

for any B(p, r) := {x ∈ X : |px| < r}.
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Examples. (1) A complete Riemannian manifold of sectional curvature ≥ k is
an Alexandrov space of curvature ≥ k.

(2) It follows from the preceding discussion that the graph Γ of a convex
function is an Alexandrov space of curvature ≥ 0 and has a natural a.e. twice
differentiable structure.

(3) As the above argument illustrates, the Hausdorff limit of a sequence of
Riemannian manifolds {Mi} of curvature ≥ k is an Alexandrov space of curva-
ture ≥ k. Gromov’s convergence theorem states that if, for each Mi, the absolute
value of the sectional curvature is bounded above by a constant and the injectiv-
ity radius is bounded below by a positive constant, then X is a C1,α Riemannian
manifold for 0 < α < 1, that is, X has a C2,α differentiable structure and a C1,α

Riemannian metric.

(4) Let X be an n-dimensional Alexandrov space and let p ∈ X. Then there
exists a pointed Hausdorff limit of (iX, p), as i→∞; it is called a tangent cone
at p, and is denoted by Kp. (In Section 2 we will give another definition of a
tangent cone.) The point p is called singular if Kp is not isometric to Rn. The
tangent cone Kp is an Alexandrov space of curvature ≥ 0.

In some of these examples we find that there exists a second differentiable struc-
ture. In general Reidemeister’s and Alexandrov’s theorems are generalized as
follows:

Theorem 1.4 [Otsu and Shioya 1994; Otsu 1995]. Let X be an n-dimensional
Alexandrov space of curvature bounded below , and let SX be the set of singular
points on X.

(i) The complement X \SX ⊂ X has a C1 differentiable and Riemannian struc-
ture, and dimH SX ≤ n− 1. The induced metric from the Riemannian struc-
ture coincides with the original metric on X.

(ii) There is a set X0 ⊂ X \ SX of full measure with respect to V nH such that
X0 ⊂ X \SX has an approximately second differentiable structure in the sense
of Stolz .

In this paper we do not give precise definitions for the various structures men-
tioned in this theorem. Instead, we give in Section 2 a rough sketch of the proof
of the theorem, and show how to develop differential geometry on Alexandrov
spaces of curvature bounded below. In Section 3 we discuss differential geometry
on Alexandrov space of curvature bounded above.

2. Elements of Differential Geometry on Alexandrov Spaces of
Curvature Bounded Below

The exponential map. For simplicity we assume that X is an n-dimensional
Alexandrov space of curvature ≥ 0. Note that no segment on X branches, by
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Alexandrov convexity. For p, q, r ∈ X and segments pq = γ : [0, a] → X and
pr = σ : [0, b]→ X, put

ω(t, s) = \γ̃(t)p̃σ̃(s)

for 0 < t ≤ a and 0 < s ≤ b. Then, by Alexandrov convexity, (t, s) 7→ ω(t, s) is
a monotone nonincreasing function; thus the angle between γ and σ,

\qpr := lim
(t,s)↘(0,0)

ω(t, s),

is well-defined. It follows easily that X has the following property:

Property 2.1 (Toponogov convexity). For any triangle 4pqr there is a
comparison triangle 4p̃q̃r̃ such that

\rpq ≥ \r̃p̃q̃, \qrp ≥ \q̃r̃p̃, \pqr ≥ \p̃q̃r̃.
Set W̃p = {pq : q ∈ X} and Σ̃p = (W̃p \ op)/ ∼, where op is the trivial segment
pp and pq ∼ pr implies pq ⊂ pr or pr ⊂ pq. Denote by vpq the equivalence class
of pq. The space of directions Σp is the completion of (Σ̃p,\), and is a compact
Alexandrov space of curvature ≥ 1 [Burago et al. 1992]. The tangent cone Kp is
obtained from [0,∞)×Σp by identifying together all elements of the form (0, u0),
and its elements are denoted by tu0 for t ≥ 0 and u0 ∈ Σp, or simply by u. We
introduce a distance on Kp by setting

|tu0 sv0 | :=
√
t2 + s2 − 2st cos\u0v0

for tu0, sv0 ∈ Kp. Then (Kp, | |) is an Alexandrov space of curvature ≥ 0. By
considering W̃p ⊂ Kp, we define the exponential map Expp : W̃p → X by

Expp|pq|vpq = q.

Toponogov convexity implies

|ExppuExppv| ≤ |uv|. (2.1)

For δ > 0, let W δ
p be the set of x ∈ X for which there exists y ∈ X such that

x ∈ py and |py| = (1 + δ)|px|. In this case y is unique, and we define a map
Eδp : W δ

p → X by setting
Eδp(x) = y.

By Alexandrov convexity we have

|Eδp(x)Eδp(y)| ≤ (1 + δ)|xy|, (2.2)

and clearly
Eδp ◦ Exppu = Expp(1 + δ)u. (2.3)

Define the cut locus of p by Cutp = X \⋃
δ>0W

δ
p . If x ∈ Cutp, then x is not

an interior point of any segment from p, so this definition coincides with that of
Riemannian manifold.

Proposition 2.2. We have V nH (Cutp) = 0.
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Proof. Because the map Eδp : W δ
p ∩ B(p, R) → B(p, (1 + δ)R) is surjective for

R > 0, we have

V nH(B(p, (1 + δ)R)) ≤ (1 + δ)nV nH(W δ
p ∩B(p, R))

by (2.2). As δ ↘ 0 we have

V nH(B(p, R)) ≤ V nH((X \ Cutp) ∩B(p, R)). �

Then, since X is separable, V nH(SX) = 0 by Toponogov’s splitting theorem. A
more careful argument will give us dimH(SX) ≤ n− 1.

The first variation formula. Suppose given a Riemannian manifold M , a
point p ∈M , and a segment σ : [0, a]→M . Applying the first variation formula
for s 7→ |pσ(s)|, we have

d

ds

∣∣∣∣
s=0

|pσ(s)| = − cos min
pσ(0)

\pσ(0)σ(a).

In the case of a point p in an Alexandrov space X of curvature ≥ 0, we also have

dp(y) = dp(x)− |xy| cosmin
px
\pxy + o(|xy|) (2.4)

by the Lipschitz continuity of x 7→ dp(x) = |px| and the compactness of Σx.
For p1, . . . , pn ∈ X we define a map ψ : X → Rn by

ψ(x) = (|p1x|, . . . , |pnx|)
and gψ : X \⋃n

i=1 Cutpi → Sym(n) by

gψ(x) = (cos\pixpj).

If x0 ∈ X \SX , we can choose points p1, . . . , pn ∈ X so that gψ(x0) > 0. Because
the angle is continuous at a nonsingular point, as the differential is continuous
at regular points of Γ, there is a neighborhood Uψ of x0 such that gψ(x) > 0 on
Uψ and ψ : Uψ → Rn is a homeomorphism onto an open set in Rn. Since

ψ(y) = ψ(x) + |xy|(− cos\pixy) + o(|xy|)
by (2.4), the set {(ψ, Uψ, gψ)} gives us an a.e. C1 structure and Riemannian
structure on X \ SX ⊂ X.

Jacobi fields. For simplicity we choose p ∈ X \ SX , that is, Kp = Rn. Since
Expp : W̃p → X is a Lipschitz map by (2.1), using the differentiable and Rie-
mannian structure onX we conclude that Expp is differentiable a.e. by extending
Rademacher’s theorem, which states that a Lipschitz map between Euclidean
spaces is differentiable a.e. Let x ∈ X \ SX be such that Expp is a.e. differen-
tiable on [0, |px|]vpx. For a segment σ : [0, a] → X starting at x we want to
construct a Jacobi field J(t) from α(s, t) = γs(t), where γs is a segment from
p to σ(s) whose parameter is scaled for [0, |px|]. Let α̃ be a lift of α by Expp



140 YUKIO OTSU

and let w ∈ K|px|vpx
Kp = Rn be such that dExpp||px|vpx

w = σ̇(0). Then α̃ is
differentiable at s = 0 and

d

ds

∣∣∣∣
s=0

α̃(s, t) = tw,

which we denote by J̃w(t). For a.a. t ∈ (0, |px|] there exists

d

ds

∣∣∣∣
s=0

α(s, t) = dExpp|tvpxJ̃w(t).

This is the desired Jacobi field Jw(t), that is,

Jw(t) = dExpp|tvpx J̃w(t). (2.5)

Then w 7→ Jw(t) is a well-defined linear map on K|px|vpx
Kp = Rn.

Second differential of the distance function. As mentioned on the pre-
ceding page, the first differentiable structure is deduced from the first variation
formula. Similarly, the second differentiable structure is determined by the sec-
ond variation of the distance function. First we examine the second variation of
the distance function on a Riemannian manifold M . For p ∈ M and a segment
σ : [0, a]→M with σ(0) /∈ Cutp, we have

d2

ds2

∣∣∣∣
s=0

|pσ(s)| =
〈
J,

d

ds
∇dp

〉
=

〈
J,∇t=|pσ(0)|J⊥w (t)

〉
, (2.6)

where ∇dp denotes the gradient vector of dp and J⊥ the orthogonal component
of J with respect to ∇dp. Therefore

|py| = |px|+ |xy|〈vxy,∇dp〉+ 1
2 |xy|2

〈
J⊥vxy

(t), ∇J⊥vxy
(t)

〉
+ o(|xy|2). (2.7)

Here we present facts that assure us that (2.7) is valid. Let p ∈ X and let
σ : [0, a]→ X be a segment.

Proposition 2.3. The function s 7→ \pσ(s)σ(a) is of bounded variation; in
particular , it is a.e. differentiable. For any s0 where it is differentiable, we have

|pσ(s)| = |pσ(s0)| − (s− s0) cos\pσ(s0)σ(a)

+
1
2
(s− s0)2 sin\pσ(s)σ(a)

d

ds

∣∣∣∣
s=s0

\pσ(s)σ(a) + o(|s− s0|2)

and
d

ds

∣∣∣∣
s=s0

\pσ(s)σ(a) ≤ 1
|pσ(s0)| sin\pσ(s)σ(a).

Proof. By Toponogov convexity,

\pσ(s′)σ(a) = π − \pσ(s′)σ(s) ≤ π −\p̃]σ(s′)σ̃(s) = \p̃σ̃(s)σ̃(a) +\σ̃(s)p̃σ̃(a)

< \pσ(s)σ(a) + (s′ − s)
1

|pσ(s)| sin\pσ(s)σ(a) +O(|s− s0|2)

for s < s′. (See Figure 1.) �
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p

σ(s)

σ(s′)

X

p̃

gσ(s)

gσ(s′)

R
2

Figure 1. Comparison triangles in the proof of Proposition 2.3.

It is difficult to deduce an expansion like (2.7) from Proposition 2.3, since the
above argument is restricted to segments; the estimation is not uniform on the
direction; it is not clear that the second differential is a quadratic form, etc. We
show here that the last term of (2.6) exists a.e. and that it is a quadratic form.

Proposition 2.4. The function t 7→ |J(t)| has bounded variation. In particular ,
for a.a. t there is a first differential for |J(t)|, satisfying

d

dt
|J(t)| ≤ 1

t
|J(t)|,

and the map

w 7→ d

dt
|Jw(t)|2

on K|px|vpx
Kp is a quadratic form.

Proof. As in Section 2.3, we consider a family of segments γs(t) as a variation.
By (2.2), we have

|γ0((1 + δ)t)γs((1 + δ)t)| ≤ (1 + δ)|γ0(t)γs(t)|.

By taking s ↘ 0 we have |J((1 + δ)t)| ≤ (1 + δ)|J(t)| for a.a. t and δ, that is,
t 7→ |J(t)| has bounded variation. Then

1
δt

(|J((1 + δ)t)| − |J(t)|) ≤ |J(t)|
t

. �

Although it is quite interesting to show the second differential of the distance
function coincides with d|J(t)⊥|/dt, we omit this proof because it is compli-
cated. Then we have twice differentiability of dp a.e., and a second differentiable
structure on X a.e.
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3. Elements of Differential Geometry on
Alexandrov Spaces of Curvature Bounded Above

Alexandrov spaces of curvature bounded above. We say thatX is a metric
space of curvature ≤ K if X is a complete geodesic space with the following
property:

Property 3.1 (Alexandrov convexity). For any point p ∈ X there is a
convex neighborhood U of p such that , for any triangle 4xyz in U , there is a
comparison triangle 4̃xyz such that if s ∈ yz, then

|xs| ≤ |x̃s̃|
for s̃ ∈ ỹz̃ with |s̃ỹ| = |sy|. Here the comparison triangle 4x̃ỹz̃ is taken in the
space form H2(K); if K > 0, we assume that |xy|+ |yz|+ |zx| ≤ 2π/

√
K.

Notice that the comparison inequality is valid only on U ; the situation is com-
pletely different from the case of curvature bounded below. If x ∈ U , then x is
not a cut point of p ∈ U .

Examples. (1) A complete Riemannian manifold of sectional curvature ≤ K.

(2) A finite graph.

(3) Let Xi be a binary tree where each edge has
length 2−i. Then Xi can be isometrically embed-
ded in Xi+1; the figure on the right shows in thick
lines a finite approximation to Xi, embedded in a
finite approximation to Xi+1. From the sequence
X1 ⊂ X2 ⊂ . . . we can construct an inductive limit
X∞, which is also a metric space of curvature ≤ 0.
This is not locally compact.

(4) Next we consider another binary tree X such that the length of each edge
at height i is 2−i, as in the figure below. Then X is locally compact but not
geodesically complete. Notice that the Hausdorff dimension of its boundary is 1.

(5) A two-dimensional cone at whose vertex the total angle is greater than
2π.
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(6) A simplicial complex which branches, as
in the figure on the right.

(7) For (s, t) and (s′, t′) ∈ R2, define the
distance between them as |s−s′| if t = t′, s+s′+
|t− t′| if s, s′ ≥ 0 and t 6= t′, s+

√
s′2 + |t− t′|2

if s ≥ 0 and s′ ≤ 0, and as the Euclidean metric
if s, s′ ≤ 0. This makes R2 into a metric space
of curvature ≤ 0 that is not locally compact.

Angles and related concepts are defined in a similar way as for Alexandrov spaces
of curvature bounded below. In the absence of additional restrictions, it is diffi-
cult to deduce for metric spaces of curvature bounded above a topological struc-
ture and a result similar to Theorem 1.4, as the examples illustrate. We therefore
make the following definition: A geodesic space X is an Alexandrov space of cur-
vature bounded above if X is a locally compact, geodesically complete metric
space of curvature bounded above.

Theorem 3.2 [Otsu and Tanoue a]. Let X be an Alexandrov space of curvature
bounded above. Then, for any p ∈ X and r > 0, there is an integer n such that
0 < V nH(B(p, r)) < ∞. Let SnX be the set of x ∈ B(p, r) such that Kx is not
isometric to Rn.

(i) There exists a C1 differentiable and a C0 Riemannian structure for B(p, r)\
SnX ⊂ B(p, r), and SnX is a set of V nH null measure.

(ii) There exists an a.e. second differentiable structure in the sense of Stolz on
B(p, r).

We now give a description of differential geometric properties in the absence
of the above restriction.

The Jacobi norm. As we know from the examples given earlier, we cannot
define an exponential map. Thus we define the Jacobi norm from variation. For
simplicity we assume that X is a metric space of curvature ≤ 0 and U = X.
Let σ : [0, a] → X be a segment and let α(s, t) = γs(t) be a family of normal
segments from p to σ(s). It follows from Alexandrov convexity that

(1 + δ) |α(0, t)α(s, t)| ≤ |α(0, (1 + δ)t)α(s, (1 + δ)t)|.

Hence for a.a. t there is

|J |(t) = |J |α(t) := lim sup
h→0

1
h
|α(0, t)α(h, t)|.

As in Proposition 2.4, for a.a. t there is a first differential of |J | at t, and

d

dt
|J |(t) ≥ |J |(t)× 1

t
.
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x1

x2

x3

x4

s

tX

x̃1

x̃2

x̃3

x̃4

s̃

t̃ R
2

Figure 2. For a space with the Wald convexity property, |st| ≤ |s̃t̃|.

Here we examine again the Riemannian case: Let J(t) be a Jacobi field on M
along a segment γ. Then

d2

dt2
|J(t)|= d

dt

1
|J | 〈J(t),∇tJ(t)〉

=
1
|J |

(
|∇tJ(t)|2− 1

|J |2 〈J(t),∇tJ(t)〉2
)

+

〈
1
|J |J(t), R(γ̇(t), J(t))γ̇(t)

〉

=
1
|J |

(
|∇tJ(t)|2−

(
d

dt
|J(t)|

)2
)
−K〈γ̇(t),J(t)〉|γ̇(t)∧J(t)|, (3.1)

where K〈γ̇(t),J(t)〉 denotes the sectional curvature of the section spanned by γ̇(t)
and J(t), and ∧ denotes the exterior product of vectors. If the sectional curvature
of M is nonpositive, we have

d2

dt2
|J(t)| ≥ 1

|J |

(
|∇tJ(t)|2 −

〈 1
|J |J(t),∇tJ(t)

〉2
)
≥ 0. (3.2)

This argument does not hold for the case of curvature bounded below, and this is
one reason why the treatment of Alexandrov spaces of curvature bounded below
is difficult.

The Jacobi equation. The geometric expression of (3.2) is the following (see
Figure 2):

Theorem 3.3 (Wald convexity [Reshetnyak 1968]). Let X be a metric space
of curvature ≤ 0. For any x1, . . . , x4 ∈ X there exist x̃1, . . . , x̃4 ∈ R2 such that

|x1x2| = |x̃1x̃2|, |x2x3| = |x̃2x̃3|, |x3x4| = |x̃3x̃4|, |x4x1| = |x̃4x̃1|,

and that for s ∈ xixj and t ∈ xi′xj′ we have

|st| ≤ |s̃t̃|,

where s̃ ∈ x̃ix̃j and t̃ ∈ x̃i′ x̃j′ satisfy |sxi| = |s̃x̃i| and |txi′| = |t̃x̃i′ |.



DIFFERENTIAL GEOMETRIC ASPECTSF ALEXANDROV SPACES 145

Applying this to α(0, t), α(0, t′), α(h, t′), α(h, t), we conclude that t 7→ |J |(t) is
a convex function; in particular, it is continuous on [0, |px|) and for a.a. t there
is a second differential of |J | at t, satisfying

d2

dt2
|J |(t) ≥ 0.

Proposition 3.4. Set ϕ = \α(h, t)α(0, t)σ(0), ψ = \α(0, t)α(h, t)σ(h), ϕ′ =
\α(0, t+k)α(h, t+k)p, and ψ′ = \α(h, t+k)α(0, t+k)p (see Figure 3). Then |J |
has a first and second differentials a.e., and

d

dt
|J |(t) = lim

h→0

−1
h

(cosϕ + cosψ),

d2

dt2
|J |(t) = lim

k→0
lim
h→0

1
hk

(cosϕ+ cosψ + cosϕ′ + cosψ′).

In the case of a Riemannian manifold, the covariant derivative of J is written as

∇J(t) = lim
h,k→0

1
hk

(c− b− a),

where
a =

∣∣α(h, t)α(0, t)
∣∣vα(0,t)α(h,t),

b =
∣∣α(h, t+k)α(0, t)

∣∣vα(0,t)α(h,t+k),

c =
∣∣α(0, t+k)α(0, t)

∣∣vα(0,t)α(h,t+k);

its existence is not clear in our case. If we set

|∇J |(t) = lim
k→0

lim
h→0

1
hk
|c− b− a|,

then we have
lim
k→0

lim
h→0

1
hk

(θ + η − ϕ) =
1

2|J ||∇J |
2,

where θ = \α(h, t+k)α(0, t)α(0, t+k) and η = \α(h, t+k)α(0, t)α(h, t).

α(0, t)

α(0, t+k)

α(h, t+k)

α(h, t)

ψ

η

θ

ψ′

θ′
η′

p

σ(0)

σ(h)

Figure 3. Angles in Proposition 3.4. In addition, ϕ = \α(h, t)α(0, t)σ(0) and

ϕ′ = \α(0, t+k)α(h, t+k)p.
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Next we consider the sectional curvature of M . If dimM = 2, Gauss–Bonnet’s
theorem implies

\pqr +\qrp+ \qrp− π =
∫
4pqr

GdA,

where G denotes Gaussian curvature and dA the area element. Thus

Gx = lim
4pqr→x

1
area of 4p̃q̃r̃ (\pqr + \qrp+\rpq − π). (3.3)

In higher dimensions we have a similar result.
In the case of metric spaces of curvature bounded above we define the con-

nection norm of |J | as

|∇tJ |(t) =

(
|J | lim sup

k→0
lim sup
h→0

1
hk

(θ + η − ϕ + θ′ + η′ − ϕ′)

)1
2

,

and the sectional curvature by

Kα(t) = lim sup
k→0

lim sup
h→0

1
h̃k

(ψ + η + θ′ − π + ψ′ + η′ + θ− π),

where θ′ = \α(0, t)α(h, t+k)α(h, t), η′ = \α(0, t)α(h, t+k)α(0, t+k), and h̃ =
|α(0, t)α(h, t)|.

Then:

Theorem 3.5 [Otsu and Tanoue a]. The second differential of the norm of
Jacobi field , the sectional curvature, and |∇tJ |(t) are well defined on α a.e. If
they are well defined at (0, t), then

d2

dt2
|J |(t) =

1
|J | |∇tJ |(t)2 −Kα(t)× |J |(t).

Consider a C∞ hypersurface determined by f : Rn→ R. The first fundamen-
tal form is

gij = δij + ∂if∂jf,

and the curvature tensor is written by its second differentials, that is, the third
differentials of f . However, the Theorema Egregium of Gauss states the cur-
vature is determined by the eigenvalues of the second fundamental form, which
is determined by the second differentials of f . Thus the third differentials kill
each other and the sectional curvature is determined by the second differential
structure of the graph. This observation explains why we can treat the above
quantities without invoking higher differentiable structures.

Remarks. (1) The case of two-dimensional Alexandrov spaces of curvature
bounded below is studied in [Machigashira 1995], where in particular the sec-
tional curvature and a generalization of Gauss–Bonnet theorem are given. Note
that here parallel translation along a segment is trivially determined.
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We also mention Petrunin’s work on parallel translation in Alexandrov spaces
of curvature bounded below [Petrunin a; Berestvskii and Nikolaev 1993].

(2) Recently there have been several studies on harmonic maps on simply
connected Alexandrov spaces of curvature ≤ 0 [Gromov and Schoen 1992; Jost a;
Korevaar and Schoen 1993]. These results would seem to have close connections
with ours.
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