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The Economist’s View of Combinatorial Games

ELWYN BERLEKAMP

Abstract. We introduce two equivalent methodologies for defining and
computing a position’s mean (value of playing Black rather than White) and
temperature (value of next move). Both methodologies apply in more gen-
erality than the classical one. The first, following the notion of a free mar-
ket, relies on the transfer of a “tax” between players, determined by contin-
uous competitive auctions. The second relies on a generalized thermograph,
which reduces to the classical thermograph when the game is loop-free.

When a sum of games is played optimally according the economic rules
described, the mean (which is additive) and the temperature determine the
final score precisely.

This framework extends and refines several classical notions. Thus,
finite games that are numbers in Conway’s sense are now seen to have
negative natural temperatures. All games can now be viewed as terminating
naturally with integer scores when the temperature reaches −1.

Introduction

At every position of a game such as Go or Domineering, there are two very
important questions:

Who is ahead, and by how much?
How big is the next move?

Following Conway [1976], classical abstract combinatorial game theorists an-
swer these questions with a value and an incentive, as discussed inWinningWays
[Berlekamp et al. 1982]. These answers are precisely correct when the objective
of the game is to get the last legal move. Values and incentives are themselves
games, and can quickly become complicated.

Our ideal economist takes a different view. Following Hanner [1959] and Mil-
nor [1953], he views the game as a contest to accumulate points, which can even-
tually be converted into cash. Our modern economist monetarizes the answers to
our opening two questions into prices—real numbers that can be determined by
competitive, free-market auctions. Specifically, after two gurus have completed
their studies of a position, the economist might ask each to submit a sealed bid,
representing the amount the guru is willing to pay in order to play Black. The
bid may be any real number, including a negative one (if the position favors
White). Assuming the bids differ, the referee computes their average µ. The
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player with the higher bid plays Left (= Black), in return for which he pays µ

dollars to his opponent. The player with the lower bid plays Right (= White).
Each player is necessarily happy with this assignment, since it is no worse for
him than the bid he submitted.

For mnemonic purposes, the reader should think of µ as the market value.
Later, we shall see that it can also be interpreted as the mean value, or, in
thermography, as the mast value.

Our ideal economist also uses competitive auctions to determine the sizes of
the moves. Throughout the game, the economist requires that each move made
by either player must be accompanied by a fee or “tax”, which the mover must
pay to his opponent. At the beginning of the game, the tax rate is determined by
a competitive auction. Each player submits a sealed bid. The bids are opened,
and the higher one becomes the new tax rate. The player making this bid makes
the first play at the new tax rate. Then, at each turn, a player may elect to either

• pay the current tax (to his opponent) and play a move on the board, or
• pass at the current tax rate.

After two consecutive passes at the current tax rate, a new auction is held to
restart the game at a new and lower tax rate. Legal bids must be strictly less
than the prior tax rate. There is also a minimum legal bid, tmin. A player
unwilling to submit a bid ≥ tmin may pass the auction. The game ceases when
both players pass the auction.

If the players submit equal bids, the referee may let an arbitrator decide
who moves next. The arbitrator is disreputable: Each player suspects that the
arbitrator may be working in collusion with his opponent. Alternatively, when
there are equal bids for the tax rate, the referee may require that the next move
be made by the player who did not make the prior move. In this way, the referee,
at his sole discretion, can implement a “preference for alternating moves”.

In some traditional games, including Japanese Go, the minimum tax rate
tmin is defined as 0. When the game stops, the score is tallied according to the
position of the board, and the corresponding final payment of “score” is made.
This “score” payment is added to the tax payments that the players have paid
each other, and to the payment(s) to buy the more desirable color(s) initially.
Since all payments are zero-sum, one player’s net gain is his opponent’s net loss.
The player who realizes an overall net gain is the winner. In Economic games,
a tied outcome occurs whenever each player’s total net cumulative payment to
his opponent is zero.

For Winning Ways–style games, which include mathematical play on “num-
bers” beyond the conventional mathematical “stopping positions”, tmin is defined
to be −1. The minimum tax rate can also be defined as−1 for some non-Japanese
versions of Go rules.

When such a game ceases, no score remains on the board: the outcome de-
pends entirely on the net cumulative total of payments made between the players.
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1. A Demonstration Game

We now hold a demonstration using the Economist’s Rules. The players are
Yonghoan Kim and David Wolfe.

The referee, EB, gives each player $5 initial capital, and they get change at
the bank, in cash and chips valued as follows:

$5, $1 = US notes
Q = US quarter
G = green chip, worth 1/4 of a unit, now set at $1
Y = yellow chip, worth 1/16 of a unit

The game they will play is the sum of a Go
region and a Domineering region. The starting
position of the Domineering region is the empty
4×9 board. The starting position of the Go region
is shown on the right.

We begin by holding three concurrent auctions. Each player submits one bid
for the Vertical dominoes, another for the Black Go stones, and a third for the
first move on the sum of both games. All sealed bids are opened concurrently.
Here are the results of our demonstration auction:

YK average DW result
Go Black −2 1

4 −2 −1 3
4 DW plays Black (Left)

Domineering Vertical 1 1
2 1 1

2 DW plays Horizontal (Right)
First Move 1 1

4 1 1
2 1 3

4 DW moves first

For consistency, we decide to negate the Go board so that sides played by YK
and DW in each game match our conventional uses of Left and Right, respec-
tively. This is achieved by reversing all colors in the Go position. Here are the
auction results restated in terms of −Go:

YK average DW result
−Go Black 2 1

4 2 1 3
4 YK plays Left

Domineering Vertical 1 1
2 1 1

2 YK plays Left
First Move 1 1

4 1 1
2 1 3

4 DW moves first

The following payments are then made:

YK pays DW $2 in cash to play Left (Black) on −Go
YK pays DW $1 in cash to play Left (Vertical) on Domineering
DW pays YK $1.50 in order to make the first move.1

1In order to pay the tax for the first move, DW first gets change from YK: $1 for
1Q + 2G + 4Y. He then puts $1.50 worth of chips (4G + 8Y) onto the table for YK.
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1.1. Erdős’ Book. The mathematician Paul Erdős frequently mentions “The
Book”, a supernatural reference document that contains all mathematical truths
in their most revealing forms. To expedite the remainder of this demonstration,
we allow the participants and ourselves to peek into The Book. Figure 1 expresses
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Figure 1. Book starting values.

(albeit in perhaps unfamiliar symbols) the Book values for the two starting posi-
tions. The values also contain more information than we need to play optimally
according to the Economist’s Rules. In addition to a single good move for each
player at the current tax rate, for each position we need only its fair market
value, µ, and one of its fair tax rates, t (also called the “temperature”). These
values are shown on the bottom line of Figure 1.

The remainder of our demonstration will illustrate how players able to peek
into The Book can play optimally by following a few very simple common-sense
rules, based on two important facts:

• The value of playing Left in any region is µ.
• Although the “size of a move” in any region is not necessarily unique, it may

always safely be taken as the temperature of that region.

The Book Strategy is as follows:

0. Initially, bid µ for the privilege of playing Left.
1. At every stage of play, define the global temperature of the game as the

maximum of the temperatures of its regions. If it is your turn, proceed as
follows:

(a) If opponent’s prior move has created a region whose temperature exceeds
the current tax rate, respond by playing in the same region as the opponent’s
prior move.

(b) Otherwise, if the temperature of the game is at least as large as the current
tax rate, play in a region of maximum temperature.

(c) If the tax rate exceeds the maximum regional temperature, pass. If you
have any canonical move(s), bid the maximum regional temperature.
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The strategy is designed to answer directly this fundamental question:

Should I respond locally to my opponent’s prior move?

Restated in Go jargon, that same question becomes

Does my opponent’s prior move have sente?

Since the Book Strategy focuses on this question, it is also called Sentestrat.
After the demonstration, we will discuss how Sentestrat compares with two other
strategies, Hotstrat and Thermostrat.

Once Yonghoan Kim and David Wolfe obtain access to The Book, each of
them elects to follow the Book Strategy.

1

µ = 9
16 t = 1 1

16 µ = 3
4 t = 1 1

8

2

µ = 9
16 t = 1 1

16 µ = 1 7
8 t = 1 1

8

Figure 2. The demonstration game: moves 1 and 2 played according to The Book.

DW begins playing a White Go stone in the center of the bottom row. This
is shown as move 1 in Figure 2. The cost of this move was $1.50, as determined
by the initial auction. According to The Book, that bid was a slight error; the
true Book value of the initial temperature was 115

32 . However, White’s move 1
has lowered the temperature of the Go region to 1 1

16 . The Domineering region
has temperature 1 1

8 , which is larger. So, now that they are able to reference The
Book, after move 1, both players decline to play at a tax rate of $1.50. Instead,
they both bid $1.125.

Since the bids are tied, the play alternates, and YK is selected to play move 2
at a cost of $1.125. Since this is less than the $1.50 worth of chips he has on
the table, YK pockets $0.375 of these chips, and moves the rest of the chips
back to DW in payment of the tax on move 2. YK plays move 2 as the Vertical
domino shown. According to The Book, this $1.125 move has increased µ for
the Domineering region from 3

4 to 1 7
8 , but it has not changed the temperature,
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3

µ = 9
16 t = 1 1

16 µ = 11
16 t = 1 3

16

4

µ = 9
16 t = 1 1

16 µ = 1 7
8 t = 1 1

8

5

µ = 9
16 t = 1 1

16 µ = 3
4 t = 1

Figure 3. Book play, moves 3–5.

which remains 1 1
8 . So DW is willing to play at the current tax rate of $1.125,

even though that requires him to give all of the chips on the table back to YK.
DW plays move 3 as the Horizontal domino shown in Figure 3. According to

The Book, this move has changed µ for the Domineering region from 17
8 to 11

16 ,
a net decrease of 1 3

16 = $1.1875. As this exceeds the $1.125 that Right paid for
the move, Right may appear to have gained $0.0625 at move 3. However, this
apparent gain is ephemeral, because the move also increased the temperature
to 1 3

16 , which exceeds the current tax rate of 1 1
8 . Therefore, following move 3,

YK is eager to play move 4, because it is now possible for him to play so as to
gain 1 3

16 at a cost of only 1 1
8 . The tax on move 4 returns all of the chips on

the table to DW, changes µ to 1 7
8 , and lowers the temperature back to 1 1

8 . DW
then returns all of the chips on the table back to YK, and plays move 5. This
lowers µ back to 3

4 .
The careful observer will notice that the four-move sequence 2–5 had no net

effect on µ. And, although $1.125 worth of chips moved back and forth across
the table several times, after move 5 they all ended up back where they were
after move 1.

After move 5, The Book reveals that the Domineering temperature is 1, which
is now less than the Go temperature of 1 1

16 . So both players then elect to pass
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6

µ = 1 5
8 t = 7

8 µ = 3
4 t = 1

7

µ = 1 5
8 t = 7

8 µ = − 1
4 t = 1

8

µ = 1 5
8 t = 7

8 µ = 7
8 t = 1 1

8

Figure 4. Book play, moves 6–8.

at the tax rate of 1 1
8 . The referee holds a new auction to determine who will

move next, and both players bid 1 1
16 . Because his opponent made the last move

at the old tax rate, YK pockets chips worth 1
16 , leaving chips worth 1 1

16 on his
side of the table. Since the auction was tied, the referee adopts the alternating
move convention and assigns the next move to YK, who pays the new tax rate by
moving all of the $1.0625 worth of chips on the table to DW as he plays move 6
on the Go position, as shown in Figure 4. According to The Book, move 6
increases the local µ to 9

16 + 1 1
16 = 1 5

8 , and decreases the Go temperature to
7
8 . The Domineering region is now the hottest game, with temperature t = 1.
As the old tax rate was 1 1

16 , both players elect to pass and bid t = 1. DW
pockets chips worth 1

16 , because his opponent made the last move at the old
tax rate. The value of the chips on the table is then $1, on DW’s side. The
referee assigns the next move to DW, who pays the chips back to YK and plays
move 7, followed by YK’s move 8 and DW’s move 9 (in Figure 5). The net
effect of the three-move sequence 7–9 was a payment of $1 of chips from DW
to YK, in return for a $1 change in the value of the Domineering µ in DW’s
favor.

After move 9, both players pass and bid 7
8 . The tax rate decreases by 1

8 , which
YK pockets, leaving $0.875 worth of chips on the table. These remaining chips
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9

µ = 1 5
8 t = 7

8 µ = − 1
4 t = 3

4

10

µ = 2 1
2 t = 1

2 µ = − 1
4 t = 3

4

11

µ = 2 1
2 t = 1

2 µ = −1 t = − 1
2

12

µ = 3 t = 0 µ = −1 t = − 1
2

Figure 5. Book play, moves 9–12.

are transferred to DW as YK plays move 10. This move increases the Go value
of µ by the same amount as the tax paid, 2 1

2 − 1 5
8 = 7

8 .
After move 10, both players pass and bid 3

4 . The tax rate decreases by 1
8 ,

which DW pockets, leaving $0.75 worth of chips on the table. These remaining
chips are transferred to YK as DW plays move 11 on the Domineering board.
This move decreases the Domineering value of µ by the same amount as the tax
paid, −1− (− 1

4 ) = − 3
4 .

After move 11, both players pass and bid 1
2 . The tax rate decreases by 1

4 ,
which YK pockets, leaving $0.50 worth of chips on the table. These remaining
chips are transferred to DW as YK plays move 12 on the Go board. This move
has the effect of increasing the Go value of µ by the same amount as the tax
paid, 3− 2 1

2 = 1
2 .
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13

µ = 3 t = 0 µ = −1 t = − 1
2

14

µ = 3 t = −1 µ = −1 t = − 1
2

15

µ = 3 t = −1 µ = − 1
2 t = − 1

2

16

µ = 3 t = −1 µ = −1 t = −1

Figure 6. Book play, moves 13–16.

According to The Book, after move 12, the temperature of the Go region is
0 and the temperature of the Domineering region is − 1

2 . So both players pass
at the tax rate of 1

2 , and submit bids of 0 for the new tax rate. DW pockets all
$0.50 worth of chips on the table. The new tax rate is now 0, which equals the
value of the chips on the table.

DW plays move 13 in Figure 6, which is the first move at the tax rate of 0.
YK responds with move 14, at the same tax rate of 0.

After move 14, The Book reveals that both the Go position and the Domi-
neering position have negative temperatures. So both players would prefer not
to play. In fact, neither will play unless his opponent pays him to move! So
each player bids −$0.50. This means that neither player will move unless his
opponent pays him $0.50. The new tax rate is negative! So DW collects $0.50
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17

µ = 3 t = −1 µ = 0 t = −1

18

µ = 3 t = −1 µ = −1 t = −1

19

µ = 3 t = −1 µ = 0 t = −1

20

µ = 3 t = −1 µ = −1 t = −1

Figure 7. Book play on more integers, moves 17–20.

in cash from YK as he plays move 15. But YK responds with move 16, in return
for which he gets his $0.50 back.

After move 16, The Book reveals that both positions have temperature equal
to negative one. Both players pass at the tax rate of − 1

2 , and submit bids of −1
to set the new tax rate.

DW collects $1 cash from YK for move 17 in Figure 7, but YK collects it back
for move 18. The players continue to “cash in” their positions, at the rate of
$1/move, on moves 19 and 20 in Figure 7, then 21, 22, and 23 in Figure 8.

According to Japanese-style Go rules, the play ceases after move 23. The Go
position is scored as +3 points for Black, and White is required to play Black
$3 to settle this score.

According to the mathematized (Universalist) Go rules, the game continues
after move 23. White submits no bid. Black submits the minimum bid that the
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21

µ = 3 t = −1 µ = 0 t = −1

22

µ = 3 t = −1 µ = −1 t = −1

23

µ = 3 t = −1 µ = 0

Figure 8. Book play on more integers, moves 21–23.

rules allow, which is −1. So Black wins the right to play at a tax rate of −1. In
Figure 9, he plays move 24 as a Black Go stone in the middle of the three empty
spaces, and collects $1. (According to Universalist Go rules, the Black Go stones
are now “immortal”, and cannot be captured even if Black fills in both of the
visible eyes.)

Again, White passes and submits no bid. So Black again submits the minimum
allowable bid of −1, and plays move 25 as another Black Go stone, for which
he again collects $1 from White. Again White has no option but to pass and
submit no bid. Black again submits the minimum allowable bid of −1, wins the
auction, and plays move 26 as another Black Go stone, for which he collects his
final $1 from White.

24 25

26

µ = 2 t = −1 µ = 1 t = −1 µ = 0

Figure 9. Book play on integers remaining after move 23.
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After move 26, both players pass. Neither player has any remaining legal
move, so neither can bid. The game finally ends, and our demonstration is
concluded.

1.2. Theorem: Book Play Ensures No Monetary Loss. After the initial
auction has determined who plays Left and who plays Right, then either player
may elect to use the Book Strategy to select his subsequent tax rate bids and
plays. The following theorem asserts that this strategy is optimal for games
played according to the Economist’s Rules:

Theorem. If Left plays Book Strategy, she ensures a total net gain of at least
µ dollars. If Right plays Book Strategy, he ensures that Left’s total net gain will
be at most µ dollars.

2. Thermography

Thermography may be viewed as a methodology for deriving the Book values
of µ and t. Classical thermography for loopfree games is presented in [Conway
1976] and Winning Ways. In this paper, we present an extended version of this
methodology, which also handles loopy Go positions called kos. To this end, we
must first extend the Economist’s Rules to deal with kos.

2.1. The Economist’s Ko Rules. The game of Go includes some loopy posi-
tions. By far the most common such positions are 2-cycle loops. Locally, White
captures a stone, Black captures it back, then White again captures Black’s
stone, etc. These positions are called kos. All popular dialects of Go rules pro-
hibit such loopiness, by banning the immediate recapture of a single stone if it
would return the board to the same position it reached after mover’s prior turn.

The extension of thermography to cover kos is facilitated by the following
extensions of the Economist’s Rules:

For each region of the game, a specified player is designated as the local
Komaster. In principle, the privilege of being Komaster might be determined by
local auctions, held before the play begins. If the global game contains several
regions with potential kos, then it is quite possible for Left to be Komaster of
some regions, and Right to be Komaster of others. (These rules do not attempt to
model positions such as the classical triple ko, in which multiple interdependent
kos appear within a single region.)

According to the Economist’s Rules, kos are resolved by overruling the pref-
erence for alternating moves. Any move that repeats an overall game position
is allowed. If the mover is not the Komaster of the region wherein the move is
made, there are no further restrictions. However, if the local Komaster makes a
move that repeats the global board position (and, necessarily, the local regional
position), I call this local ko position critical. The Komaster, who just moved to
the critical ko position, is compelled to make another local move immediately.
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This rule for resolving ko overrides the referee’s normal preference for alternating
moves. Instead, the Komaster makes two moves consecutively, to and from the
critical ko position, and the Komaster pays two taxes (at the same tax rate),
one tax for each move.

2.2. Bottom-Up Thermography. As mentioned earlier, thermography may
be viewed as a methodology for calculating the book values, µ and t. The version
we now present handles kos. It also gives the classical results in the special case
of loopfree games.

Trajectories. We call the basic data structure of thermography a trajectory.
A trajectory is a piecewise linear real function of a real variable. Its input ar-
gument, t, is called the temperature, or the tax rate, and can range from 0 to
+∞ (or from −1 to +∞, according to the extension made in Section 4.2.) The
trajectory’s output value is a real number, called v or µ. Within each linear
piece of the trajectory, the value of the derivative dv/dt is constant and equal
to an integer. In elementary calculus, it is conventional to plot the independent
variable on the horizontal axis and the dependent variable on the vertical axis.
However, in thermography it is conventional to rotate the conventional calcu-
lus plots counterclockwise by 90◦, in conformity with a long-standing tradition
introduced by Conway. The temperature, t, is plotted along the vertical axis,
with increasing values of t corresponding to higher positions along the axis. The
value, v, is plotted along the horizontal axis, with the convention that increasing
positive values are plotted to the Left; large negative values, to the Right. This
facilitates a more direct correspondence with the formal expressions for most hot
games, in which Left moves toward more positive values and Right moves toward
more negative values.

A thermograph is a pair of trajectories, called stops or scores or walls. In
this exposition, we use the term “wall”. The Left wall, LW, is always at least as
great as the Right wall, RW.

Scaffolds, Hills, and Caves. The final stages of the construction of a ther-
mograph begin with another pair of trajectories LS and RS, called scaffolds
(Figure 10, left). In the most general case, the Left and Right scaffolds might
cross several times. A temperature interval in which the Left scaffold exceeds
the Right scaffold is a hill, or solid region. A temperature interval in which the
Right scaffold exceeds the Left scaffold is a cave, or gaseous region. Within a
hill, the Left wall equals the Left scaffold and the Right wall equals the Right
scaffold. However, within a cave, the Left and Right walls coincide in a local
trajectory called the mast.

The lowest region of a nondegenerate Thermograph is necessarily a hill. The
interval along the v-axis, or “ground”, between the walls of this hill is the base
of the hill. The point at which the two scaffolds cross at the top of the hill is
both the summit of the hill and the drain of the cave above it. If the scaffolds
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hill

cave

hill

(degenerate)
cave

LS

LS

RS

R
S

LW
RW

LW
RW

Figure 10. Scaffolds (left), and the thermograph constructed therefrom (right).

cross again at the top of the cave, that point is called the chimney of the cave,
and the fulcrum of the hill above it.

Normal Masts. Within any cave, the normal mast can be easily constructed
by following the path of an ideal balloon from the drain to the chimney. When
free to do so, the balloon rises vertically. If it hits a scaffold, the balloon follows
that roof scaffold upward until it is either again free to rise vertically or until
it reaches the chimney, at which point the mast ends and the Left and Right
walls again become different, starting at the fulcrum of the adjacent hill. This is
shown on the right in Figure 10. Moving upward from t = 0, this thermograph
has a hill, a cave, another hill, and then an infinite gaseous region (a degenerate
cave) through which the mast rises vertically to infinity. All hot games have
thermographs with a hill at t = 0 and a vertical mast as t approaches infinity.

The walls give the values of the economic game with a current tax rate of t.
If the thermograph is a hill region at temperature t, then each player desires

to move first. By doing so, he can ensure a value given by the corresponding wall.
If the thermograph is a cave region at temperature t, then at least one player
prefers to pass until the tax rate becomes lower. If the mast is vertical, then both
players prefer to pass, and neither will play until the tax rate is lowered. If the
mast coincides with a roof of the cave which is a Left scaffold, then Left prefers
to play and Right prefers to pass. If it is Right’s turn, he will pass and propose
a tax cut, but Left will then reject Right’s proposal. Left will instead exercise
his right to move at the old, higher tax rate. In a subsequent subsection we will
see a specific example of this surprising phenomenon, where it is to a player’s
advantage to insist on playing at a higher tax rate rather than at a lower one.
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Definitions. We define the initial temperature of a game G, as the temperature
of the base of the highest mast of its thermograph. A game G is said to be active
at temperature t unless its thermograph at t is a vertical mast. In that case, we
say that G is dormant at t. If G is dormant at t, then the temperature of the
base of this mast is called the activation temperature of G at t.

Pass-Banned Masts. The constructions of thermographs must reflect the Eco-
nomic Rules that resolve kofights. As described in Section 2.1, these rules do not
allow the Komaster to pass from a critical position. Under such circumstances,
the masts within each cave degenerate into the maximum (Right) scaffold if Right
is not allowed to pass, or the minimum (Left) scaffold if Left is not allowed to
pass.

Recursion for Thermographs of Games with No Immediate Ko. Let G be a
game represented in canonical form, G = {GL | GR}. where GL and GR are sets
of games whose thermographs are already known. We first consider the case in
which G itself is not part of any loop, even though some of the positions in GL

and GR may contain kos.
Under these circumstances, the scaffolds of G are defined as

Left scaffold of Gt = −t + max
GL

(
Right wall of GL

t

)
,

Right scaffold of Gt = t + min
GR

(
Left wall of GR

t

)

Thermographs of Kos. Figure 11 shows a simple 33-point ko and the graph of
its legal moves.

= B

24 −9

A B

Figure 11. Simple 33-point Ko.

Let G and H be a pair of games that represent the two states of a ko. G is a
Left follower of H, and H is a Right follower of G. In the general case, G and H
may also have other followers; thus we may have

G = {V |W, H}, H = {G, X|Y}.

For such a ko, we construct two pairs of thermographs. Ĝ and Ĥ assume that Left
is the regional Komaster; Ǧ and Ȟ assume that Right is the regional Komaster.

From Ĥ, Left may play to a close relative of G, which we call G.
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The relevant pair of thermographs are computed by working through the
following three equations, from the bottom up:

Ĝ= {V |W, Ĥ},
Ĥ= {G, X|Y},
G= {V |W}, with proviso that Left cannot pass immediately.

The motivation behind these equations is as follows: Since Left, as komaster,
can win the ko, she may effectively prevent Right’s move from G back to Ĥ.
However, the price of this prevention is the constraint that if Right elects to pass
because of the koban, Left is forbidden the privilege of passing immediately from
G. Such a pass would permit Right to recapture the ko at a lower tax than Left
paid to get there, and to return to the same board position as Ĥ. However, this
new position would be accompanied by a ko state less favorable to Left than Ĥ.
So if Left is competent, we should never see the sequence of play in which Left
moves from Ĥ to G, and later passes when position G is still available. If Left
intends to do that, she could do at least as well by passing immediately from Ĥ.

Similarly, to find the thermographs of Ǧ and Ȟ, we may use the next three
equations, again from the bottom up:

Ȟ= {Ǧ, X|Y},
Ǧ= {V |W, H},
H= {X|Y}, with proviso that Right cannot pass immediately.

A similar methodology enables us to compute thermographs for iterated kos.
For example, suppose thermographs A and E are known, and that

B= A|C, C= B |D, D= C |E.

Then, if we are interested in the games in which Left wins these kos, we may
compute thermographs of B, C, D̂, Ĉ, and B̂, in that order.

Here are the thermographs derived by this methodology for the positions of
Figure 11, when White is komaster. (Naturally, Ǎ = A, with Right as komaster;
B̌ = B, with Right as komaster; B = B̌ with Right not allowed to pass.)

24 13 0 −9

AL

Ǎ

BR

LS
(Ǎ

)

RS(Ǎ)

B

AL is a vertical mast at v = 24. BR is a vertical mast at v = −9. The pass-
banned B is a mast of slope +1 starting from t = 0, v = −9. The Left scaffold
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of Ǎ is obtained by subtracting t from AL. It is a ray with slope −1, from
t = 0, v = 24. The Right scaffold of Ǎ is obtained by adding t to ǍR = B.
It is a ray with slope +2 from t = 0, v = −9. The two scaffolds intersect at
t = 11, v = 13. For t ≤ 11, LW(Ǎ) = LS(Ǎ) and RW(Ǎ) = RS(Ǎ). For t ≥ 11,
LW(Ǎ) = RW(Ǎ) = 13.

The thermograph for B̌ of Figure 11 is constructed as follows:

24 13 2 −9

t = 11

Ǎ = B̌
L

B̌ BR

RS(B̌)LS(B̌)

RS(B̌) is a ray of slope −1 from t = 0, v = −9. LS(B̌) is obtained by subtracting
t from RW(B̌L) = RW(Ǎ). For t ≥ 11, LS(B̌) = RS(B̌), but LS(B̌) changes
direction at t = 11. Above t ≥ 11, LS(B̌) and RS(B̌) form a cave, in which
LW(B̌) = RW(B̌) = 2. For 0 ≤ t ≤ 11, LW(B̌) = RW(B̌) = −9 + t.

The derivation of thermographs for Â and B̂ is directly analogous. Here are
the results:

24 13 2 −9

t = 11

Â B̂

Figure 12, left, shows a Go position called a seki. This position is terminal
because competent players will pass. Mathematically, its value is

24 |−10 ||26 |−8 = 0.

Its thermograph is a vertical mast at v = 0.
Figure 12, middle, shows G, a famous position from traditional Go literature

called the “thousand-year Ko”. Its game graph is shown on the right in the same
figure. From G, White can play either to the seki of value 0 just mentioned, or
to B, the ko of Figure 11. Left has two similar options, whose thermographs are
superimposed in Figure 13. From Ǧ, if t < 5, Left prefers to play to the seki;
but if t > 5, Left prefers to start the ko. Figure 14, left, shows the result of
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G

0 0

C D A B

23 −10 24 −9

Figure 12. The seki of value 0 (left) is one option for White in the “thousand-year

Ko” (middle), whose game graph is shown on the right.

23 12 0 −10

t = 11

t = 5
C

Figure 13. Thermographs of black’s options from Ǧ.

translating the maximal Right wall of ǦL into the Left scaffold of Ǧ. Figure 14,
right, shows RS(Ǧ).

The thermograph of Ǧ, shown in Figure 15, left, illustrates some features of
the thousand-year ko that most intermediate Go players find counterintuitive.
If the global temperature exceeds 11, both players will prefer to play elsewhere
rather than on Ǧ. The activation temperature of Ǧ is 11. At temperatures
between 11 and 7, White prefers to play elsewhere, but Black is eager to start
the ko from Ǧ. White will win this ko, but doing so costs him two moves and
it costs Black only one move to start the ko. Thus, at temperatures between 11
and 7, the higher the global temperature at which Black can start the kofight,
the happier she is.

01 −5

t = 5

t = 11

st
ar
t
ko

LS(Ǧ
)

start
ko

pl
ay

se
ki

9 0 −9

t = 9

start ko

R
S(Ǧ

)

play
seki

Figure 14. Left and Right scaffolds of Ǧ.
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1 0 −3 −9

t = 3

t = 7

t = 11

Ǧ

07 2
3

23

t = 7 2
3

Ĝ

Figure 15. Left: Thermograph of Ǧ. Right: Thermograph of Ĝ.

At global temperatures between 3 and 7, Ǧ is again inactive. Both players
prefer to play elsewhere.

At global temperatures below 3, both players are eager to play on Ǧ. White
would like to start and win the ko, and Black is eager to avoid this loss by playing
to the seki.

The thousand-year ko has two activation temperatures, and a region wherein
one player prefers to pay a higher tax rate rather than a lower one. These
features are unusual, and dependent on the assumption that White is Komaster.
The thermograph of Ĝ, shown on the right in Figure 15, is much more common-
looking. At high temperatures, the value of being Komaster on G is 7 2

3 − 1 =
6 2

3 points. This contrasts sharply with the common ko of Figure 11, where being
komaster has zero value at high temperatures.

2.3. Overview of Thermography.

Combinations and Sums. Thermographs support combinations. The thermo-
graph of A contains just enough information so that, when combined with the
thermograph of B or C, one can obtain the thermographs of A|B and of C|A.

Thermographs do not support addition, as is evident from the following ex-
ample. Let A = 1 |−1, B = {1, 1 + A | −1}, C = {1, 1 + A | −1,−1−A}.

Then A, B, −B, and C each has the thermograph shown on the left in Fig-
ure 16, which we call X. Yet A + B has thermograph Y; A − B has Z; A + C has
X; and A + A has 0.

1 0 −1

t = 1

t = 0

X

1 0

Y

0 −1

Z

0

Figure 16. Thermographs don’t behave well under addition.

For a general loopfree game, the shape of the thermograph at the base of its
mast depends on the sign of the infinitesimal by which the game differs from
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a number at its freezing point, and the information contained in the values of
these infinitesimals is not present in the thermographs. We will return to this
topic in Section 2.5.

However, at sufficiently high temperatures, all thermographs become masts,
and their mast values do add. Therefore, knowing the thermographs of all of the
summands is sufficient to determine the thermograph of the sum at sufficiently
high temperatures.

Means and Temperatures. The µ-value of the initial, infinite, vertical mast,
which we call µ(G), is the “count”, or the “mean value” of G.

The temperature at the base of this mast, which we call t(G), is the “size of
the move”, or the “temperature” of G.

Placid Kos and Hyperactive Kos. A game G is said to be “hyperactive” if
µ(Ĝ) > µ(Ǧ). Such a game G necessarily contains a position K that is a ko. It
is not the size of K itself that makes G hyperactive, but special circumstances
which include the fact that K is a follower of some position of G that is cooler
than K.

A game G is said to be “placid” if µ(Ĝ) = µ(Ǧ). If G is placid, then when
played according to Economic Rules, µ(G) does not depend on kothreats. Many
kos, even many rather big kos, turn out to be placid.

Stable and Unstable Positions. Thermographs with more than a single hill
and a single (degenerate) cave are relatively rare. In the common case, stable
and unstable positions can be defined relatively simply, as follows:

Definitions. A position H of a game G is stable in G if all ancestors of H in
G have temperatures greater than H’s. H is unstable or transient in G if it has
an ancestor of lower temperature. If H is not unstable, but has one or more
ancestors of temperature equal to its own, it is called semistable.

In the more general case, in which some positions may have thermographs with
multiple hills and caves, a single position may have multiple activation temper-
atures, and so a more refined definition is required:

Refined Definitions. G is stable in G, and its activation temperature is the
base of its infinite mast. H is stable in G if its thermograph is a vertical mast at
the activation temperature of its nearest stable ancestor.

Semi-stable positions can be treated as stable or as unstable. Treating them as
stable yields the simplest and most convenient economic analyses. Treating them
as unstable leads to more refined, more complicated algorithms that exploit the
calculus of infinitesimal games to get the last move at each t, whenever possible.

Sentestrat players will choose to play “in another region” “elsewhere” only
when the region just played in has reached a stable position.



THE ECONOMIST’S VIEW OF COMBINATORIAL GAMES 385

Sente and Gote. From the perspective of Sentestrat, an opponent’s move that
increases the temperature has sente; it requires our immediate response. How-
ever, this move and its response might begin a longer sequence of moves through
several transient positions before the game reaches the next stable position. The
question of whether the overall sequence had sente or gote depends on whether
the length of this alternating sequence of moves was odd or even, and that ques-
tion can usually be answered by examining the thermograph of the originating
stable state. Generally speaking, if, just below the base of its relevant mast, both
walls branch outward, then the initial move by either player is gote. If Left’s wall
drops vertically but Right’s branches outward, then Left’s initial move is sente
but Right’s is reverse sente. If Right’s wall drops vertically but Left’s branches
outward, then Right’s initial move is sente and Left’s move is reverse sente.

These correspondences between the Go player’s view of sente and gote and the
thermograph are correct whenever the relevant positions have significantly differ-
ent temperatures. However, when there are intermediate semi-stable positions,
the distinction between sente and gote may become blurred.

Mainlines and Sidelines. Let n be a large integer, and suppose that two gurus
play the sum of n copies of a game G. For each H that is a position of G, let
#(H) be the number of copies of G that pass through the position H. If #(H)
approaches infinity as n approaches infinity, then H is a “mainline” position of
G. But if #(H) remains bounded as n approaches infinity, then H is a “sideline”
position of G.

If G is a traditional gote position, then #(GL) = #(GR) = n/2, and both
GL and GR are mainline positions. However, if G is a position in which Left’s
move is sente and Right’s move is reverse sente, then, depending on who plays
first from n.G, #(GR) = 0 or 1, and #(GL) = n or n− 1. In either case, GR is
a sideline position of G.

Thermographs of sideline positions have no effect on the means of any of their
ancestors, although they often do affect the temperature(s) of some of their near
ancestors.

We illustrate these notions with an example.
Let A be the starting position on the right, be-
fore any of the numbered stones have been played.
Then moves 1, 2, 3, and 4 show a main line of
play, through positions we’ll call B, C, D, and E.
Position E is the terminal position after all four

1

4

2

3

numbered stones have been played. F is the position if White rather than Black
had played the first stone at 1. The means and temperatures of all dominant
positions are shown in Table 1.

The only stable mainline positions are A, C, and E, each having mean 1. The
mean of A is unaffected by any small change in the mean or temperature of any
other position. Hence, to verify that the mean of A is 1, it is unnecessary to
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Position µ t Stable? Mainline?

A 1 3 yes yes
B =AL 8 7 no yes

BL 15 −1 yes no
C =BR 1 1 yes yes

CL 2 −1 yes no
D =CR − 1

2 1 1
2 no yes

DR −2 0 yes no
E =DL 1 −1 yes yes
F =AR −2 1 yes no

FL −1 −1 yes no
FR −31

2 1 1
2 no no

FRR −5 0 yes no
FRL −2 −1 yes no

Table 1. Means and temperatures of dominant positions.

know the values of other means and temperatures precisely; appropriate bounds
are sufficient.

In general, a stable mainline gote position will have both a mainline Black
follower and a mainline White follower. On the other hand, stable mainline sente
positions have only one mainline follower. In this example, the line of play shown
is the unique main line. Notice that the mainline moves do not alternate colors;
White plays both moves 2 and 3.

If we played a sum of n copies of A concurrently on n different Go boards,
then the local line of play would follow the main line shown above on all but
one or two boards. If White gets the first move overall, he plays one exceptional
board from A to a sideline position, F. But Black then plays another board from
A to B, and White responds by continuing to C. That happens on all n − 1
boards, successively. Black then might play a second exceptional board from C
to CL. But White then plays another C to D, and White responds by continuing
to E. That sequence, from C to D to E, then happens on all boards, successively,
until all positions are terminal.

The sum of n copies of A is only one example of a rich environment, which
we shall explore further in Section 4.3. If a single copy of A is played in any
sufficiently rich environment, the play within A will follow the main line shown
above. Heuristically, the reason that Black rather than White will make the first
move from A is that Black can move there at any tax rate between 7 and 3;
White cannot afford to play A until the tax rate is 3. After A has been played
to B and C, both players make several moves elsewhere if possible. Eventually,
any time after the tax rate drops below 1.5, White can play at C. Since Black
cannot afford to play there until the tax rate is 1, White will get in his move
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first, unless the background is so impoverished that there are no suitable moves
“elsewhere”.

Smaller Thermographic Databases of G. Given a game, G, and its purported
thermograph, how much information about the positions of G is needed to verify
that the purported thermograph of G is correct? Evidently, considerably less
than the thermographs of all of the positions of G. Many positions of G are
transient. Often the only information needed about many of the followers of
transient positions is that they are “sufficiently hot”, and this bound can easily be
quantified. Precise thermographs of many sideline positions are also unnecessary;
it is required only that portions of such thermographs fall between specified
bounds.

How much information is needed to verify the purported mean of G? Evidently,
even less than is needed to verify G’s thermograph.

2.4. Top-Down Thermography. “Top-down” thermography promises to be
much more efficient than “bottom-up” thermography. The latter computes the
details of many walls of positions that the former could ignore.

A proposed top-down approach to finding the thermograph of a position G
starts by considering a reasonably large set of lines of play from G, such as
GLRL1LRLRRLR. Most relevant lines do not follow alternating play. Indeed, em-
pirical evidence indicates that Go positions, such as the thousand-year ko of
Figure 12, which have different dominant Left options depending on the temper-
ature, are fairly rare. So the main reason that there are typically many relevant
lines of play from G is that there may be many relevant sequences of Left and
Right plays, rather than choices between HL1 and HL2 .

The proposed approach to computing the “top-down” thermograph of G as-
sumes that the given set of lines of play contains the “complete” set of G’s stable
positions. This assumption allows a program to infer that missing positions are
sufficiently hot.

One is often interested in only the high-temperature portions of thermo-
graphs. For this reason, it would eventually be desirable to have programs that
do all thermographic computations from a top-down perspective. Each trajec-
tory might be stored as a list of slopes and breakpoints, listed in top-down order.
A better programming strategy is to view each trajectory as a function whose
outputs are a list of slopes and breakpoints, generated in the top-down order.
This function is able to call other functions and itself, recursively, as needed, in
order to pursue the top-down computation of thermographs. The programming
goal is to get the next output as quickly as possible, by looking no further than
necessary.

Thermography Justifies Some Go Maxims. Many of the standard Go maxims
are equivalent to some of the common special cases that a top-down thermogra-
phy program will encounter. For example, if we let τ = 1

2 (µ(GL)− µ(GR)), and
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1 0 −1

t = 0

t = −1

X

fuzzy

1 0

Y

positive

0 −1

Z

negative

0

Figure 17. Thermographs of loop-free infinitesimals.

1 0

1
2

1 0

1
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1 0

1
8

1 0

3
8

Figure 18. Thermographs of numbers.

if t(GL) ≤ τ and t(GR) ≤ τ , then G might be said to be “gote”, and we have
µ(G) = 1

2 (µ(GL) + µ(GR)), and t(G) = τ . This condition is very common.
One type of situation in which thermography yields much more precision than

traditional Go folklore is the “double sente” position, in which t(GL) and t(GR)
are both substantially larger than LW(GL)− RW(GR). Traditional Go maxims
indicate only that a move from such a position G is very desirable, presumably
relative to the naive approximation of movesize as LW(GL)− RW(GR). This is
true if the overall temperature is low and the position has just arisen.

2.5. Subzero Thermography. Although thermographs are conventionally
plotted for temperatures ranging from 0 to infinity, they can also be plotted
for negative temperatures. Temperatures infinitesimally less than zero appeared
inWinningWays, page 151, as “Foundations of Thermographs”. Since the Econ-
omist’s Rules allow temperatures as low as −1, thermographs can be extended
into that same region. The four possible thermographs for an infinitesimal game
are shown in Figure 17.

The astute reader will notice the correspondence between Figures 16 and 17.
At negative temperatures, the thermographs of noninteger numbers also be-

come active, as illustrated in Figure 18.
The half-ish thermographs are shown in Figure 19.
If v is a number, at positive temperature, the thermograph of any v-ish game

is a vertical line emating upward from the value v, which can be any rational
number whose denominator is a power of 2. These values form a dense set on
the line t = 0. However, the possible values of thermographs become sparse at
negative temperatures. Figure 20 shows the superposition of the thermographs
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∗

1 0

1
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1 0

1
2
↓

1 0

1
2

Figure 19. Thermographs of games infinitesimally close to 1
2
.

1 0 −1

Figure 20. The foundations of number-ish thermographs.

of all number-ish loopfree games, in the temperature range between 0 and −1.
Figure 21 illustrates where the thermographs of two particular numbers appear
in Figure 20.

If one views an arbitrary conventional thermograph from a positive temper-
ature perspective, it may appear to be resting on “solid ground”, consisting of
the v-axis at t = 0. However, if one probes deeper as in Figure 20, one finds that
at t = −1 all thermographs rest on a discrete set of pilings located at the integer
values. At t = − 1

2 , there are twice as many pilings located at half-integers, etc.
An earlier, less universal, version of Figure 20, based on overheating rather

than on the Economist’s Rules allowing negative temperature, appeared on page
172 ofWinning Ways.

1 0 −1

t = 0
t = − 1

8

t = − 1
4

t = − 1
2

t = −1

1
2

− 3
8

Figure 21. Underground thermographs of 1
2

and − 3
8
.
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3. Theorems and Strategies

Thermography always gives the unique value for the count, µ(G), and a usable
value for the size of the move, t(G). We now look at some of the theorems that
these quantities satisfy.

3.1. Theorem: Thermography Determines Fair-Market Values for
Games Played by Economic Rules. We assert that thermography deter-
mines fair economic values for µ and for the initial tax rate t. These values are
“safe” to bid. For a single game (no sum), the proof follows recursively from the
“Economist’s Rules” and the way the thermograph was constructed.

3.2. Theorem: µ-Values Add; Temperatures Maximize. The mast-value,
µ, is analogous to the mean in probability. The temperature, t, is analogous to
the standard deviation. As in probability, the mean value of a sum of things is
the sum of their mean values. But the dispersion about this mean is much more
constrained in combinatorial game theory than it is in probability. In probability,
the standard deviation of the sum of n objects typically grows as the square root
of n. In combinatorial games played by the Economist’s Rules, the dispersion is
zero. In combinatorial games played according to the normal rule of alternating
play, the dispersion of the sum about its mean is constrained by an upper bound
independent of n. For sums containing no positions with hyperactive kos, this
bound is proportional to t, and the constant of proportionality depends on the
maximal iterative depth of any of the placid kos.

When multiple hyperactive kos are present, we need to define “independence”
of regions. This can be done by constructing each local position on a different
board, and then playing all boards concurrently. At each turn, a player selects
any board and makes one move on that board. When the game ends, each player
receives a single score, equal to the total score on all of the boards. Each ko that
Left can win is placed on a board with a plentiful supply of Left kothreats; each
ko that Right can win is placed on a board with a plentiful supply of Right
kothreats. We further define the ko rule to prohibit any recapture of ko unless
there is a change of position on the same board, so that no move on another
board constitutes a kothreat and different boards are really independent of each
other.

3.3. Sentestrat, Thermostrat, and Hotstrat. “Hotstrat” is an intuitively
obvious strategy for playing a sum of games. It says “always move on a hottest
summand”. Unfortunately, we shall see that in some (uncommon) cases, this
strategy turns out to yield losing results. This defective behavior of Hotstrat
is evaded by either of two slightly refined strategies, called “Thermostrat” and
“Sentestrat”. If the current tax rate is t, and there are several current positions
whose thermographs are hills (or summits) at temperature t, then these three
strategies choose among those options in slightly different ways:
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• Hotstrat: Move in a region whose temperature is maximal.

• Thermostrat: Move in a region whose hill is widest at temperature t.

• Sentestrat: If your opponent has just played in one of these hill regions, re-
spond directly by playing in the same region in which he just moved.

All three strategies essentially agree under other circumstances. If all thermo-
graphs are caves at temperature t, then pick one of them whose mast touches
your own scaffold at temperature t, if any such exist. When you are about to play
a move of this type, you should decline any tax cut proposal that may be pend-
ing. If the only hill move at the current temperature is banned by ko, then pass
but do not lower the bid tax rate. If there are no moves of any of the previously
mentioned types, then you should pass and propose a lower tax rate. Sentes-
trat proposes the tax rate equal to the next lowest value at which you would
be willing to move, namely, the drain of a cave or the point at which a vertical
mast touches your (necessarily jagged) scaffold inside the cave. Thermostrat
calculates other trajectories in hopes of getting a stronger result. Thermostrat
computes the sum of all of your opponent’s walls from Sentestrat’s proposed
tax rate on downwards, and to this sum it adds the width of the widest cave
at each temperature. It then picks the temperature at which this trajectory is
most favorable. Often, that is the same temperature as Sentestrat’s, but on some
examples (including one shown inWinningWays), Thermostrat takes advantage
of an opponent’s recent mistake to outperform Sentestrat, even though both do
equally well against a good opponent.

Hotstrat’s Failure. Although it usually recommends the same moves as Sen-
testrat and Thermostrat, Hotstrat plays poorly in some situations. An example
is the following sum A+ B, as played by Left, going second:

A = 1 ||||10 ||0 |−20 |||−21, B = 1 |||0 ||−18.

Both A and B are loopfree and have temperature 1. Right plays A to AR.
All three strategies play AR to ARL = C = 10 ||0 |−20. Right then plays B to
BR = D = 0| − 18.

Left now faces the crucial decision, whether to play on C or on D. Sentestrat
and Thermostrat both play D, after which Right plays C to CR and Left to CRL,
giving a total score of 0. Hotstrat, on the other hand, computes the temperatures:
t(C) = 10, and t(D) = 9. Ignoring the fact that both of these temperatures are
far above the current tax rate (which has been 1 since the beginning of this
example), Hotstrat plays C to 10, after which Right plays D to −18, giving a
total score of −8. This failure of Hotstrat occurs under either the Economist’s
Rules, or under the Conventional Rules requiring alternating play without taxes.
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4. An Economic Guru Kibitzes a Conventional Game

Sentestrat and Thermostrat both ensure perfect play according to economic
rules. Either strategy can also be used in conventional games, in which there
are no taxes and alternating play is required. In loopfree games, these strategies
ensure that the first player will attain a stopping position at least as good as the
mean.

When there are many summands and the temperature is t, a good player
can often improve that score by about 1

2 t. To gain more understanding of this
situation, it is helpful to view a conventional game through the eyes of a kibitzing
economic guru.

4.1. Hard and Soft Currencies. It is convenient to refine the Economist’s
Rules by introducing dual currencies, cash and chips. The rules that specify
which currency must be used for which types of debts are as follows:

Debt Required Form of Payment

Privilege of playing Left Cash
Privilege of playing First, at
beginning of game

Chips, half of which must be bought
from the opponent for cash

Tax on mover during game, while
tax rate is positive

Chips

Payment to mover while tax rate is
negative

Cash

Thanks to the footnote on page 367, all payments made during our demonstration
followed these rules.

Except for kos, conventional play may be viewed as economic play with a
preference for alternating moves, and with the proviso that chips are worthless.

In a typical economic game, the pile of chips on the table moves back and
forth between the two players frequently. Only when the tax rate is lowered is
a player able to move some of these chips off of the table and into his pocket.
Economically, this is an apparent gain for the first player to move at the new
and lower temperature. The player who made the last move at the old, higher
temperature sees an immediate loss of chips. However, if she is is following
Sentestrat, which ensures no net overall economic loss, then she will eventually
receive a compensating payment later. If this occurs after the tax rate has
become negative, then that payment will be in cash.

So the conventional player who gets the last move at some temperature would
appear to receive a benefit equal to the change of temperature.

There is an alternative, heuristic view that leads to similar conclusions without
assuming that the chips are worthless. In this view, the big pile of chips on the
table at early stages of the economic game is very likely to be pocketed in many
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small decrements. These decrements are likely to be divided sufficiently evenly
between the two players that, to a good approximation, the chips can be ignored.

4.2. The Economist’s Forecast. In his role as a kibitzer of a conventional
game, our economic guru computes its thermograph. He can also keep track
of the temperature at each stage of the game. Before the game begins, the
economist presumes the prehistoric (big bang?) temperature, t = +∞. Then,
at each stage of the game, the kibitzer determines whether the game is active
or dormant at the temperature he has determined. If dormant, he lowers his
temperature as little as needed to make the game active.

Our economic kibitzer also computes an economic forecast based on these
observations and computations. If it is Left’s turn to play from G and the
current global temperature is t, then

Forecast = LW(G) + 1
2 t.

But if it is Right’s turn to play from G and the current global temperature is t,
then

Forecast = RW(G)− 1
2 t.

We note that if the players both follow Sentestrat, then the forecast does not
change during any interval of ko-free play at which the temperature remains con-
stant. But, when Left moves from G, of temperature told, to GL, of temperature
tnew, the forecast changes from

LW(G) + 1
2 told to RW(GL)− 1

2 tnew.

If Left followed Sentestrat, then RW(GL) = LW(G) + told, and the effect of
Left’s move was not only to lower the temperature from told to tnew, but also to
increase the forecast by

∆Forecast = 1
2 |∆t|.

In general, whenever the temperature drops by ∆t, the forecast may be revised by
up to 1

2 |∆t| in favor of the player who made the last move at the old temperature.
Since either player may choose not to follow Sentestrat, other moves may

occur that cause the economist to revise his forecast. However, it is not hard to
see that all such forecast revisions are adverse to the player who moves. Hence,
moves that cause forecast revisions adverse to the mover are called sacrificial.
From this viewpoint, all moves can be partitioned into three sets:

1. Temperature-lowering moves improve the forecast by up to 1
2 |∆t|.

2. Sacrificial moves degrade the forecast.
3. All other moves leave the forecast unchanged.

Sacrificial moves may be either voluntary or compulsory, depending on whether
or not any alternative option was available. An examination of Sentestrat reveals
the only condition under which a sacrifice can be compulsory:
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4. A sacrifice is voluntary unless the only move at the current temperature is
banned by the ko rule.

So far, we have assumed that our economic kibitzer is able to compute a single
thermograph for the entire game. In practice, this assumption may entail too
much computation to be practical. In particular, if the game is a sum of many
components, then it may be feasible to compute the thermograph of each com-
ponent even though it may not be feasible to compute the thermograph of the
sum. Under such circumstances, our economic kibitzer may be forced to define
temperature and make forecasts based only on the component thermographs.
And the resulting temperature may be higher. In particular, if two components
sum to zero, then their thermographs will have the same temperature, t, and this
will be the temperature used by the kibitzer who sees only the thermographs of
the individual component games. However, the better-informed kibitzer who
also knows the thermograph of the combined game will see it to be a vertical
mast of minimum temperature.

Nevertheless, we assert that our economic guru can still classify each move
that changes the forecast as temperature-lowering or sacrificial, even though
forecasters using different databases may take somewhat differing views of the
same game.

And it is easy to see that as the game approaches its conclusion, the forecast
converges to the final score.

Evidently, the forecast is a plausible prediction of the final score. Thermostrat
is a greedy algorithm, which optimizes this forecast on a one-move time horizon.

In order to be a viable investment, our sacrificial move must prepare for some
later payoff, and this payoff must eventually show up either as a temperature
at which we get the last big move before a sizable drop in temperature, or as
a ko that we can win while the opponent has only smaller (i.e., cooler) moves
available.

If there are no foreseeable kos, then all changes in forecasts result from a
sequence of plays in which the player who benefits from the forecast revision
“gets the last big move”. Since each such event lowers the temperature, it is
clear that the forecast’s absolute margin of error can be no worse than t/2. In
very simple situations, the forecasting error is often precisely that. However,
in a complicated game that is the sum of many components, it is reasonable to
expect that the temperature will decline adiabatically in many small decrements,
and that each side will be able to get about half of the total absolute value of
these decrements. Under such conditions, the net of forecasting improvements
and degradations will be about zero. We now concoct some models in which this
result is precise and provable.

4.3. Enriched Environments. Let 2δ be the greatest common divisor of
all temperatures of all positions of all summands of G. For example, if these
temperatures are 1

4 , 1
3 , and 5

8 , then 2δ = 1
24 . Suppose the maximum initial
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temperature of all summands of G is T . Then we define the minimally enriched
environment MEE for G as the sum of the elementary switches of temperatures
δ, 2.δ, 3.δ, 4.δ, . . . , n.δ, where n = T/δ. Let h be an upper bound on the total
number of moves, in all positions of all summands of G, which might serve as
a kothreat for any ko in G. (Any move that raises the temperature might serve
as a kothreat). We then define SEE, the standard enriched environment for G,
as (2h + 1) copies of MEE. SEE is the sum of (2h + 1).n distinct switches. An
over-enriched environment is defined in the same way as the standard enriched
environment, except that δ is taken to be some proper divisor of the greatest
common divisor of all temperatures of all positions of all summands of G; the
maximum temperature of OEE may be larger than the temperature of G, and
the number of switches at each multiple of δ may be any odd number greater
than (2h− 1).

Theorem on Enriched Environments. Let G be a position that contains no
hyperactive kos. Then:

Theorem. The economic forecasts for G + MEE and G + SEE are the same as
the economic forecast for G. If G+SEE is played by two gurus using Conventional
Rules , the economic forecast of the final score will be precisely correct .

If our economist provides us with all of the relevant means and temperatures,
we can play G + SEE against an opposing guru. Even in the conventional game,
we can elect to play Sentestrat, subject to the proviso that whenever any move
permitted by Sentestrat involves a ko, we will prefer the ko move, and if there are
several permitted ko moves, we will play the same one (if any) that we previously
played most recently.

It is not hard to see that this policy ensures that the overall result is at least
as favorable as the forecast. If a placid ko has temperature t, then the standard
enriched environment also contains a bountiful supply of switches at the same
temperature. Our policy ensures that the ko will be resolved before all of these
switches are played. So, whenever we are faced with a koban, we have another
(switch) move at the same temperature that serves us just as well.

A Sequence of Universal Environments. Notice that it is possible to construct
a sequence of over-enriched environments that are universal. We’ll construct a
specific sequence, U1, U2, U3, . . . , with the property that if G is any game that
contains no hyperactive kos, then for all sufficiently large n,

• the Economist’s forecast for G + Un is the same as the forecast for G, and
• the forecast of G + Un is precisely accurate.

To this end, it is sufficient to let

δn =
1

lcm{1, 2, 3, ..., n} .
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Let Un consist of (2n + 1)n/δn switches, (2n +1) copies each of temperatures δ,
2δ, . . . , n.

It is easy to see that this construction has the specified property; it is a
sequence of “Universal Enriched Environments”. Any reasonable game G (one
without hyperactive kos), when played in such an environment, behaves precisely
according to the economist’s forecast.

Universal environments, and other enriched environments, are artificial the-
oretical constructions intended to show why, when there are sufficiently many
independent regions in the game, the economic forecast is a very plausible pre-
diction of the outcome.

In fact, there are serious difficulties in realizing our theoretical enriched en-
vironments within the practical constraints of a game like Go, even if we allow
it to be played as the sum of arbitrarily many boards, some of which may have
arbitrarily large sizes. The first problem is that all final scores in Go are integers,
and this Diophantine constraint prevents the direct construction of even simple
switches, such as { 1

2 |− 1
2}. This difficulty can be at least partially alleviated by

working with “chilled Go”, as described in [Berlekamp and Wolfe 1994]. But
even in chilled Go, there is no switch of value such as { 1

3 |− 1
3}; the denominators

of all temperatures of switches must be powers of 2.
So, even though the enriched environments we have constructed are all sums

of extremely simple (two-stop) abstract games, some of these games might not
be realizable within the natural constraints of the class of games (e.g., Go) to
which we want to apply our economic forecasts.

In more realistic environments, our economic forecasts are typically not pre-
cise. But they are still often quite close. Yonghoan [Kim 1995; Berlekamp and
Kim 1996] has analyzed placid kos in several kinds of realistic environments, in
which there are no other regions having exactly the same temperature as the
ko. In such situations, kothreats have value, but the typical value of a kothreat
is only a small multiple of δ, where (as in our constructions), δ is the typical
difference between temperatures of other regions.

So, the total value of any fixed number of kothreats still approaches zero as
the background becomes sufficiently rich. The rich environment must have many
independent regions, whose temperatures are relatively dense in the vicinity
of the temperature of the placid ko. Other details about the games in the
background environment don’t seem to matter much; they need not be switches.
Even though the details of the background can affect the accuracy of the forecast
by up to t/2, nearly all of these forecasting inaccuracies are due to inherent
difficulties in predicting who can get the last move at each tax rate. Only a
small part of the forecasting inaccuracies are due to placid kos, even though
thermographs ignore kothreats entirely.

Hyperactive Kos. Even in a very rich environment, kothreats can have a big
effect on the final score if the game contains a position that is a hyperactive ko.



THE ECONOMIST’S VIEW OF COMBINATORIAL GAMES 397

Max
Amt Book Max $ Loss Chip Loss

Buyer Item Bid Value DW YK DW YK

YK Black in −Go 2 1
4 2 1

32
7
32

DW Black in −Go 1 3
4 2 1

32
9
32

YK Domin. Left 1 1
2

3
4

3
4

DW Domin. Left 1
2

3
4

1
4

DW First move 1 3
4 1 15

32
9
32

9
64

YK First move 1 1
4 1 15

32
7
32

7
64

Total mistakes 43
64

69
64

9
64

7
64

Net gains due to bidding +13
64 −13

64 − 1
64 + 1

64

Table 2. Accountant’s error ledger for the demonstration game of Figures 2–6.

From the economist’s perspective, the µ-value of such a ko depends on who is its
master, and this, in turn, depends on a global tally of kothreats. And, en route
to elegance and simplicity, combinatorial game theory suppresses much kothreat
information from the canonical form. Then even more kothreat information
is suppressed when the information in the canonical form is condensed into a
thermograph. So, if there is a hyperactive ko, a precise analysis requires more
data than the mathematics has retained. Of course, µ(Ĝ) and µ(Ǧ) still provide
firm bounds; but for some positions these bounds may be quite far apart.

4.4. Dollar Accounting. Economic Rules facilitate some very detailed ac-
counting, which identifies the moves at which mistakes were made and the cost
of each mistake. Table 2 shows an example.

In these auctions, every Book bid was intermediate between the bids submit-
ted by the two players, and all maximum bidding losses were realized.

Altogether, in these auctions, the average of the two players made 1 point
worth of bidding errors, 7

8 in dollars, and 1
8 in chips. DW was better than this

average; YK was worse. The absolute difference of each from the average was
13
64 dollars minus 1

64 chips.
After all play was concluded, the final result (after converting chips back to

cash) was that DW ended with $5.1875; YK, with $4.8125. Since both players
played all moves according to perfect Book strategies, YK’s net loss of $ 3

16

resulted entirely from the fact that his bidding errors cost more than DW’s.
The economist’s accounting can be readily extended to itemize any errors that

occur in play.



398 ELWYN BERLEKAMP

Total chips
still on Temper-

DW YK the table ature

−2G− 4Y −2G− 4Y At start 4G + 8Y 1 1
2 (bid)

1G + 2Y (after move 1) 3G + 6Y 1 1
8

1Y (after move 5) 3G + 5Y 1 1
16

1Y (after move 6) 3G + 4Y 1

2Y (after move 9) 3G + 2Y 7
8

2Y (after move 10) 3G 3
4

1G (after move 11) 2G 1
2

2G (after move 12) 0 0

+ Y − Y

= + 1
16 − 1

16 Net total chips gained from playing
(both players used perfect Book play)

Table 3. Pocketed chip ledger for the demonstration game of Figures 2–6.

4.5. Chip Accounting. The accuracy of economic forecasts is limited by a
crucial approximation that states that, in the course of a sufficiently long and
intricate well-played game, each player will eventually pocket about half of the
chips that are placed on the table at the conclusion of the initial auctions.

It is instructive to see how the forecasts evolved during the (unenriched)
demonstration game. At the start of the game, each player put chips of value 3

4

onto the table (Y = 1
4G = 1

16 ). This total sum of 1 1
2 units (4G + 8Y) was then

pocketed as shown in Table 3.

4.6. Forecasting Records. Economists studying history like the Big Picture,
which, for the demonstration game, is shown in Figure 22. As usual, µ is plotted
along the reversed horizontal axis; t, on the vertical. Each point plotted in this
figure shows the global [µ, t] values of the full game after the numbered move.

Figure 22 records the values of the total µ and the maximum t after moves
0–12 of the demonstration game. The sequence terminates when the temperature
reaches 0. The values of µ oscillate back and forth around the forecast, and each
decrease in the tax rate is accompanied by a revision in the forecast, as illustrated
in Table 4.

The magnitude of the revision is one half the decrease in the tax rate, and
the sign of the revision favors the player who made the last move before the tax
rate decrease.
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1
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Figure 22. The Big Picture of the demonstration game.

Tax Rate µ Forecast Move Change

1 15
32 2 25

32 2 3
64 1 − 11

64

1 1
8 1 5

16 1 7
8 2–5 − 1

32

1 1
16 1 5

16 1 27
32 6 + 1

32

1 2 3
8 1 7

8 7–9 − 1
16

7
8 1 3

8 1 13
16 10 + 1

16

3
4 2 1

4 1 7
8 11 − 1

8

1
2 1 1

2 1 3
4 12 + 1

4

0 2 2 13 . . .

Table 4. Forecasting record.

4.7. The Komi in Go. Professional Go games begin with an empty board.
By symmetry, µ = 0. The player who makes the first move is required to give
his opponent some number of points in return. This number of points is called
the komi. To prevent ties, the komi is traditionally chosen as a half-integer. The
komi is specified by the tournament directors. Values of the komi in modern
tournaments have ranged from 5.5 to 8.5 points.
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Our economist’s viewpoint suggests that the komi could be determined by a
competitive auction between the two players rather than by executive decree.
Our economist conjectures that the optimal value of the komi, like his forecast,
should be half the temperature of the empty board.

If the temperature of the empty board is t, then an expert player will find the
first move on the empty board to be equally attractive to playing on an additive
switch of value +t |−t. In Go jargon, such a switch is called a 2t-point gote move.
So, from the viewpoint of our economist, the n-point gote move that is just as
tempting as the first move on an empty board is attained when n is four times
the value of the fair komi. That’s because n should be twice the temperature,
and the fair komi should be half of the temperature. In view of the accepted
range of the komi, n is presumably twenty-something.

5. Incentives

In loopfree combinatorial games without taxes, the best moves are those
for which the mover has a maximum incentive. If the position is G, Left’s
incentive is ∆L(G) = GL − G; Right’s incentive is ∆R(G) = G − GR. If
G = A + B + C + · · ·+ F, then ∆L(G) and ∆R(G) are the sets

∆L(G) = {∆L(A), ∆L(B), ∆L(C), . . . ,∆L(F)}
∆R(G) = {∆R(A), ∆R(B), ∆R(C), . . . ,∆R(F)}

It is helpful to consider the union of both sets:

∆ =
{
∆L, ∆R

}
.

When temperatures are negative, both incentives equal the temperature, and
values are numbers that are equal to the means. However, when temperatures
are nonnegative, both values and incentives are necessarily games that are more
complicated than numbers. To manipulate these games, familiarity with classical
combinatorial game theory is required [Berlekamp et al. 1982; Conway 1976].

The partial ordering of the incentives plays an important role in the mathe-
matical analysis of various lines of play [Berlekamp and Kim 1996]. If ∆L(A) >

∆L(B), Left will prefer to play on A rather than on B. If ∆R(A) > ∆L(B), then
Left’s move on B is reversed through Right’s response on A. Reversibility is a
technical criterion well known in combinatorial game theory.

Every incentive is a game that has 0 as a right follower. Conversely, any game
in which 0 is a right follower is one of its own right incentives. So no incentive
can be 0 or positive.

Many pairs of incentives are incomparable. On the other hand, temperatures
of incentives, being numbers, can be totally ordered (although ties will occur in
cases of equal temperatures). Thus, a wise prelude to an investigation of the
partial ordering of the incentives is to compute each incentive’s temperature,
and then sort them accordingly. If temp(∆L(A)) > temp(∆L(B)), this does
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not imply that ∆L(A) > ∆L(B), but it certainly precludes the possibility that
∆L(B) ≥ ∆L(A).

In general, temp(A− B) ≤ max{temp(A), temp(B)}. However, in the special
case of incentives, we can assert that for any G, there is at least one left incentive
such that

temp ∆L(G) = max
{

temp(G), temp(GL)
}
.

This is true because if the temperature of the incentive were less, then we could
pick a value of t between the temperature of the incentive and the temperature
of G and GL. Cooling the incentive-defining equation by t would yield

∆L(Gt) = GL
t −Gt,

where neither term on the right side is a number, but their difference is. But this
contradicts another theorem of combinatorial game theory, which states that if
H = Gt is not a number, then it has at least one left incentive that exceeds all
negative numbers.

The same arguments can be repeated for right incentives.
In earlier sections of this paper, we showed that for economic rules, when

players bid to set a new tax rate, either player can safely select the temperature
of the full board position as his bid, except in the case when he has no legal
move. This leads directly to the important conclusion that initial tax rate bids
may be submitted independently of the bids to play Left’s side of the game.
When the tax rate is fair and both players are competent, it makes no economic
difference who moves first.

However, it is in many ways more natural to view the temperature as a func-
tion of the move rather than as a function of the initial position. In that sense,
temperature is a natural function of the incentive. Sentestrat still works.

5.1. “Cooling” via Honorific Tie-Breaking and Prescribed Initial Tem-
peratures. The winner of an economic game is the player who realizes a net
profit. His opponent necessarily incurs a net loss. If two gurus bid and play
perfectly, then the net score should be zero and the economic outcome is a tie.
We can break such ties by awarding an honorific victory to the player whose
opponent made the first pass at the original temperature at which the game
started.

We can also decree that the economic game begin with a prescribed finite tax
rate, t, and with a prescribed player assigned to play first.

We temporarily assume that the sum is loopfree. If t is sufficiently large, this
game is identical to the rules of our ideal economist, augmented only by the
honorific tie-breaking convention. However, if t is 0, then this game is identical
to a classical combinatorial game with the last mover winning. This is because
at subzero temperatures, the economic rules and the conventional rules yield
identical outcomes.
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At intermediate values of the starting temperature, this game turns out to
be identical to Gt, called “G cooled by t”. Cooling is a well-known mapping of
combinatorial games onto combinatorial games.

5.2. Implications for Computer Go and Similar Games We focus on
those endgames that are sums of numerous regional positions. Such problems
best display the unique power of mathematics to cope with complexities that
lie beyond the reach of alternative methods based only on heuristics and/or the
judgment of human experts.

Combinatorial game theory provides the machinery to obtain precise analyses
of sums of loopfree games played according to conventional rules. The recom-
mended approach is to compute the incentives of all summands, then order the
incentives as much as possible, and then search among all lines of play that are
locally canonical. As exemplified by the $1000 Ko problem [Berlekamp and Kim
1996], this approach often yields a rigorous analysis relatively quickly, even for
problems that are well beyond the scope of less sophisticated methods. However,
it is known that, in general, even sums of simple games can be NP hard. The
first such results were due to Lockwood Morris. Later, Laura Yedwab [1985] and
David Moews [1993] showed that a precise determination of the outcome of even
a sum of elementary three-stop games is NP-hard. So, for some problems in to-
day’s technology, the preferred methodology of combinatorial game theory (like
any other method that finds only rigorously correct answers) must necessarily
bog down in a combinatorial explosion of calculations that will not terminate
until long after everyone has run out of patience.

On the other hand, thermography offers fast, polynomial-time algorithms that
solve the same problems according to slightly different (economic) rules. The dis-
crepancy between the ideal results of sums of games played according to economic
rules and conventional rules is relatively small and easily bounded. Economic
forecasting offers further small adjustments that usually yield further decreases
in this discrepancy, driving it towards zero as the background environment in-
cluded in the sum becomes sufficiently rich. However, in the most difficult prob-
lems, the background may still be “impoverished” despite the presence of many
summands.

We have given an economic interpretation of the combinatorial game theory
technique of cooling. This interpretation suggests a strategy by which computer
Go buffs might achieve appropriate tradeoffs that would combine most of the
precision of incentives with most of the speed of thermography. This approach
begins by computing thermographs of positions and their incentives, top-down.
This provides a solution of the frozen image of the original game. Then one
refines these conclusions to obtain a solution to the original game cooled by a
temperature that is not quite large enough to freeze it. This can then be further
refined by further iterations, each of which yields a solution of a less-cooled
version of the original.
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5.3. Thermal Disassociation. Thermal disassociation [Berlekamp et al. 1982],
first proposed by Simon Norton in the early 1970s, represents an arbitrary
loopfree game as the sum of its mean and appropriate infinitesimals, each heated
by a successively smaller temperature. Excellent approximations to the game,
at various temperatures, can be obtained by ignoring the cooler terms in this
expansion.

A ko can also be represented as the sum of its mean and a heated “infinitesimal
ko”. The study of infinitesimal kos is still in its infancy.

As a loopfree instructive example, we consider the incentives of the general
3-stop game, G = x|y ||0. G’s stops are 0 and the numbers x and y, where
x ≥ y ≥ 0. G’s right incentive is ∆R(G) = G−GR = G. Its left incentive is

∆L(G) = GL −G

= {x|y}+ {0 ||−y |−x}
= {x||x−y |0, x|y |||0}
= {x−y, x|y ||0}
= H.

As shown in Figure 23, the thermographs of H can have any of three different
forms, depending on how x compares with 2y and 3y.

Corresponding to Figure 23, we have these expressions for the thermal disso-
ciations of G and H, where 	v = {v |0 ||0} and �v = {0 ||0 |−v}:

Cases 1 and 2: G =
x + y

4
+

∫ 1
4 (x+y)

∗ +
∫ 1

2 (x−y)

ε1,

where ε1 =
{∗| 12 (x−3y)

}
+

{
1
2 (3y−x)|0}

is fuzzy with 0

Case 3: G = y +
∫ y

	x−3y

Case 1: H = G

Case 2: H = G +
∫ x−2y

ε2,

where ε2 =
{
0, 3y−x|0 ||x−3y

}− {
3y−x|0 ||x−3y

}
> 0

Case 3: H =
x− y

2
+

∫ 1
2 (x−y)

∗ +
∫ y

�x−3y

(Note: We have H > G, since v |0 > 	v 	v.)
It is interesting to note that the Yedwab–Moews construction of NP-complete-

ness requires no games of Case 2, and only their coolest game is of Case 3. All
but one of their summands are of Case 1, in which left and right incentives are
equal.
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G = {x|y ||0} = ∆R(G)

H = {x−y, x|y ||0} = ∆L(G)

Case 1: y ≤ x < 2y

0 < x

0x+y
4

yx+y
2

H
x−y

2

x+y
4

0x+y
4

y

G

Case 2: 2y ≤ x < 3y

0x+y
4

yx− y

H

x−y
2

x− 2y

x+y
4

0x+y
4

y

G

x−y
2

Case 3: 3y ≤ x

0yx−y
2

x− y

H

x−y
2

0y

G

y

Figure 23. Thermographs of incentives of three-stops.
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