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Abstract. This note surveys some recent results on higher-dimensional
birational geometry, summarising the views expressed at the conference
held at MSRI in November 1992. The topics reviewed include semistable
flips, birational theory of Mori fiber spaces, the logarithmic abundance
theorem, and effective base point freeness.
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1. Introduction

The purpose of this note is to survey some recent results in higher-dimensional
birational geometry. A glance to the table of contents may give the reader some
idea of the topics that will be treated. I have attempted to give an informal
presentation of the main ideas, emphasizing the common grounds, addressing a
general audience. In §3, I could not resist discussing some details that perhaps
only the expert will care about, but hopefully will also introduce the non-expert
reader to a subtle subject.

Perhaps the most significant trend in Mori theory today is the increasing use,
more or less explicit, of the logarithmic theory. Let me take this opportunity
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to advertise the Utah book [Ko], which contains all the recent software on log
minimal models. Our notation is taken from there.

I have kept the bibliography to a minimum and made no attempt to give
proper credit for many results. The reader who wishes to know more about
the results or their history could start from the references listed here and the
literature quoted in those references.

The end of a proof or the absence of it will be denoted with a �. Anyway
here proof always means “proof”: a bare outline will be given at best, usually
only a brief account of some of what the author considers to be the main ideas.

In preparing the manuscript, I received considerable help from J. Kollár, J.
McKernan and S. Mori. The responsibility for mistakes is of course entirely
mine.

2. Notation, Minimal Models, etc.

The aim of this section is to introduce the basic notation and terminology
to be used extensively in the rest of the paper, and to give a quick reminder of
minimal model theory, including the logarithmic theory.

Unless otherwise explicitly declared, we shall work with complex projective
normal varieties.

An integral Weil divisor on a variety X is a formal linear combination B =∑
biBi with integer coefficients of irreducible subvarieties Bi ⊂ X of codimension

1. A Q-Weil divisor is a linear combination with rational coefficients. We say B

is effective if all bi ≥ 0. We denote with dBe =
∑dbieBi the round-up and with

bBc =
∑bbicBi the round-down of B.

A Cartier divisor is a line bundle together with the divisor of a meromorphic
section. A Q-Weil divisor B is Q-Cartier if mB is Cartier (i.e., the divisor of the
meromorphic section of some line bundle) for some integer m > 0. Numerical
equivalence of Q-Cartier divisors is defined below and is denoted by ≡, while
linear equivalence of Weil divisors is denoted by ∼.

A Cartier divisor D on X is nef if D · C ≥ 0 for all algebraic curves C ⊂ X .
A Weil divisor is qef (quasieffective) if it is a limit of effective Q-divisors.

Clearly a nef divisor is qef.
Here are some elementary examples with nef and qef. Let X be a smooth

algebraic surface containing no −1 curves, and let KX be the the canonical
class. If KX is qef, it is also nef; on the other hand, if KX is not qef, adjunction
terminates (that is, |D + mK| = ? for all D, where m is a sufficiently large
positive integer) and X must be uniruled (the reader who does not find these
assertions obvious is invited to prove them now as an exercise). It is also true,
but it appears to be more delicate to show, that if KX is qef, (a multiple of) KX

is actually effective (and even free from base points).
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A variety X is Q-factorial if every Weil divisor on X is Q-Cartier. This
property is local in the Zariski but not in the analytic topology, which makes
this notion quite subtle and may lead to confusion. However, to avoid sometimes
serious technical problems, when running the minimal model algorithm starting
with a variety X , we shall always assume that X is Q-factorial.

Let f : X 9 9 KY be a birational map, B ⊂ X a Weil divisor. Then f∗B ⊂ Y

denotes the birational transform. It is the Weil divisor on Y defined as follows.
Let U ⊂ X be an open subset of X with codimX(X \ U) ≥ 2 and fU : U → Y

a morphism representing f . Then f∗B is the (Zariski) closure in Y of fU∗B. If
B =

∑
biBi with Bi prime, fU∗B =

∑
bifU∗Bi, where by definition fU∗Bi =

fU (Bi) if fU (Bi) is a divisor, and fU∗Bi = 0 otherwise.

Consistently, if B ⊂ Y is a Weil divisor on Y , we use f−1
∗ B for (f−1)∗B. This

way we don’t confuse it with the set theoretic preimage f−1(B), defined when f

is a morphism, or the pullback as a (Q-)Cartier divisor f∗B, which makes sense
when f is a morphism and B happens to be a (Q-)Cartier divisor.

I will now describe the minimal model algorithm. The starting point is always
a normal projective Q-factorial variety X , together with a Q-Cartier (Q-)divisor
D. All or part of D may only be defined up to linear equivalence of Weil divisors
(such is the case in the most important example, where D = KX). In practice,
some additional conditions are imposed on the pair (X, D) in order for the pro-
gram to work: for instance, D = KX +B, where B is an effective Q-Weil divisor
and (X, B) is log canonical (see Definition (2.1) below).

In the theory of Zariski decomposition, one tries to remove from D the “nega-
tive” part, thus writing D = D′+D′′, where D′′ is nef and H0(mD′′) = H0(mD)
for all positive integers m. Instead, we modify X by a sequence of birational op-
erations, removing all configurations in X , where D is negative. We inductively
construct a sequence of birational maps X = X0 9 9 KX1 9 9 K · · · 9 9 KXn = X ′,
and divisors Di on Xi, in such a way that H0(Xi−1, mDi−1) = H0(Xi, mDi) for
all i and all positive integers m, and Dn = D′ is nef. After introducing the cone
of curves with some motivating remarks, I will describe in more detail how this
is done.

Let NS(X)⊗R ⊂ H2(X,R) be the real Néron–Severi group (it is the subgroup
of H2(X,R) generated by the classes of Cartier divisors). Numerical equivalence
on NS(X)⊗ R is defined by setting D ≡ D′ if and only if D · [C] = D′ · [C] for
all algebraic curves C ⊂ X , and we let N1(X) be the quotient of NS(X)⊗R by
≡ (if X has rational singularities, ≡ is trivial on NS(X) ⊗ Q). We also define
N1(X) to be the dual real vector space. By definition N1(X) can be naturally
identified with the free real vector space generated by all algebraic curves C ⊂ X ,
modulo the obvious notion of numerical equivalence. The Kleiman–Mori cone
NE(X) is by definition the closure (in the natural Euclidean topology) of the
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convex cone NE(X) ⊂ N1(X) generated by the (classes of) algebraic curves.
Let X be a normal projective variety, f : X → Y a projective morphism. If

H is any ample divisor on Y and C ⊂ X a curve, f∗H · C = 0 if and only if C

is contained in a fiber of f . By the Kleiman criterion for ampleness, this shows
that {[C] | f(C) = pt} generates a face F ⊂ NE(X). A one-dimensional face of
NE(X) is called an extremal ray.

Here is how Mori theory works. Start with (X0, D0) = (X, D). Assume that

the chain X0
t0
9 9 K· · ·Xk−1

tk−1
9 9 KXk and divisors Dk on Xk have been constructed.

If Dk is nef on Xk, we have reached a D-minimal model , and the program stops
here at (X ′, D′) = (Xk, Dk). Otherwise if Dk is not nef we need to show that
NE(Xk) is locally finitely generated in {z | Dk · z < 0} (cone theorem), pick
an extremal ray R ⊂ NE(Xk) with Dk · R < 0, and construct a morphism
f : Xk → Y to a normal variety Y , with the property that a curve C ⊂ X is
contracted by f if and only if [C] ∈ R (contraction theorem). There are three
possibilities for f :

1) dim(Y ) < dim(Xk). In this case we say that Xk, together with the fibra-
tion f : Xk → Y , is a D-Mori fiber space. The program stops here, and we are
happy because we have a strong structural description of the final product.

2) f is birational and the exceptional set of f contains a divisor (it is easy to
see that the exceptional set must then consist of a single prime divisor E). In
this case we say that f is a divisorial contraction and set tk = f , Xk+1 = Y ,
Dk+1 = f∗Dk and proceed inductively.

3) f is birational and small (or flipping)—that is, the exceptional set of f

does not contain a divisor. The problem here is that f∗Dk is not Q-Cartier,
so it makes no sense to ask whether it is nef. The appropriate modification
tk : Xk 9 9 KXk+1 is an entirely new type of birational transformation, called to
the D-opposite or D-flip of f , and Dk+1 = tk∗Dk. The flip f ′ : Xk+1 → Y is
characterized by the following properties: Dk+1 is (Q-Cartier and) f ′-nef, and
f ′ is small.

If every step of the program (cone theorem, contraction theorem and flip
theorem) can be shown to exist, and there is no infinite sequence of flips (i.e.,
termination of flips holds), the minimal model algorithm is established, and
terminates in a minimal model or a Mori fibration. Presently, this has only been
completed in the following cases:

a) dim(X) ≤ 3, D = KX , and X has terminal or canonical singularities.

b) dim(X) ≤ 3, D = KX + B, and the pair (X, B) is log terminal or log
canonical .

c) X is a toric variety and D = KX .

Let me recall the definition:
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(2.1) Definition. Let X be a variety, B =
∑

biBi a Weil divisor with Bi

prime divisors and 0 < bi ≤ 1 (we allow B = ?). We say that the pair (X, B)
is terminal (resp. canonical, resp. log terminal, resp. log canonical), or that the
divisor K + B is terminal (resp. canonical, etc.) if KX + B is Q-Cartier and
for all normal varieties Y and birational morphism f : Y → X with exceptional
prime divisors Ei we have:

KY + f−1
∗ B = f∗(KX + B) +

∑
aiEi

with all ai > 0 (resp. ai ≥ 0, resp. ai > −1, resp. ai ≥ −1).

The numbers ai in definition (2.1) only depend on the valuations νi of C (X)
associated to Ei, and can be computed on any normal Z with birational Z →
X such that νi is a divisor in Z. This way we may define the discrepancy
a(ν, KX + B) for any (algebraic) valuation ν with small center on X . In this
language KX + B is log terminal if and only if a(ν, KX + B) > −1 for all ν with
small center on X , and likewise for the other adjectives. The following result is
very easy to prove but crucial in all questions concerning termination:

(2.2) Theorem. Let X be a normal variety, and D = KX +B. Let t : X 9 9 KX ′

be a step (divisorial contraction or flip) in the D-minimal model program. Then
a(ν, KX′ +B′) ≥ a(ν, KX +B) for all valuations ν with small center in X. Also,
a(ν, KX′ + B′) > a(ν, KX + B) if and only if t is not an isomorphism at the
center of ν in X. In particular, if KX + B is log terminal (terminal, canonical,
log canonical), so is KX′ + B′.

Proof. The result is an exercise in the definition if t is a divisorial contraction.
If t is a flip, see [Ko, 2.28]. �

I wish to spend a few words on the meaning of the D-minimal model program.
First, when X is smooth and D = KX , this is the genuine minimal model

program or Mori program: for surfaces, it consists in locating and contracting
−1 curves until none can be found.

When X is smooth, B is a (reduced) divisor on X with global normal crossings,
and D = KX + B, the D-minimal model program is a sort of Mori program for
the open variety U = X \ B. The (birational) category of open varieties was
introduced by Iitaka, and it may be argued that it too is a primitive God-given
entity.

For D general, the D-minimal model program should be considered as a way
to obtain some kind of “Zariski decomposition” of D. In particular, it is not
clear (certainly not to me) a priori that there should be any interesting reason
at all to consider general logarithmic divisors KX + B, where B =

∑
biBi is

allowed to have rational coefficients bi, 0 < bi ≤ 1. Nevertheless, these divisors
have been profitably used (especially by Kawamata) since the earlier days of the
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theory, to direct or construct portions of the (genuine) Mori program, especially
in relation to flops and flips. They are crucial in Shokurov’s approach to the
flipping problem [Ko]. Also, as I will try to show in this survey, the general log
category is a key tool in several recent advances in higher-dimensional birational
geometry.

3. Semistable Flips

This section summarizes some of the results of [Ka] and [S].
The starting point is a projective semistable family of surfaces f : X → T

over a Dedekind scheme T . This means that f is a projective morphism, X is
a regular scheme of dimension 3, and all fibers of f are reduced divisors with
global normal crossings. The goal is to establish the minimal model algorithm
over T :

X/T 9 9 KX1/T 9 9 K· · · 9 9 KXi/T 9 9 KXi+1/T 9 9 K· · · 9 9 KXN/T = Y/T.

The idea is as follows. It may be assumed that T is the spectrum of a DVR;
let S ⊂ X be the central fiber. By assumption KX + S is log terminal and
KX + S ≡ KX , since S is a fiber so numerically trivial over T . Every step in
the K-minimal model program is then a step in the (K + S)-minimal model
program. In particular, by (2.2), each KXi + Si is log terminal. This implies
that KSi too is log terminal, that is, Si has quotient singularities. The presence
of Si gives a good control of singularities appearing on Xi, so flips are easier to
construct than in the general case. The most important message in [Ka] is that
a good understanding of the log surface S is all that is needed to establish the
minimal model program in this particular setting. Semistable families of surfaces
is the simplest situation where a proof of the existence of flips is known. It is
important to revisit this proof in the light of the most recent advances in Mori
theory, in the hope to gain a better understanding of flips in general.

[Ka] extends the known results to all Dedekind schemes T (with a new con-
struction of flips), and [S] gives a new proof over C , thereby giving an explicit
classification of singularities appearing on each intermediate Si ⊂ Xi (and hence
on the final product Y/T ) which, among other things, allows to explain an old
result of Kulikov.

From now on, for simplicity of notation, T will be the spectrum of a DVR
O with parameter τ , f : X → T a projective morphism from a 3-fold, S ⊂ X

the fiber over the closed point. Starting with (3.4), T = ∆ ⊂ C is a small disc
centered at the origin.

The approach in [Ka] is based on the following classification.

(3.1) Lemma. Let T be the spectrum of a complete DVR O with uniformizing
parameter τ and algebraically closed residue field k = O/(τ). Let f : X → T be a
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morphism from a three-dimensional scheme X. Assume that f is smooth outside
S = f∗(0), and that KX + S is log terminal (the conditions imply that X has
terminal singularities and S is reduced). If T has positive or mixed characteristic,
assume moreover that X is Cohen–Macaulay (this is automatic in characteristic
0). Let x ∈ S be a point, r the index of KX at x. One of the following alternatives
holds, describing the completion ÔX,x as a O-algebra:

(3.1.1) ÔX,x
∼= O[[x, y, z]]/(xyz − τ),

(3.1.2) ÔX,x
∼= O[[x, y, z]]Zr/(xy − τ), where Zr acts with weights (a,−a, 1)

for some (a, r) = 1.

(3.1.3) r > 1 and ÔX,x
∼= O[[x, y, z]]Zr/(xy − F (zr)), where Zr acts with

weights (a,−a, 1) for some (a, r) = 1, or
r = 1 and ÔX,x

∼= O[[x, y, z]]/(G(x, y, z)).

Let F ∈ k[z] (resp. G ∈ k[[x, y, z]]) be the reduction of F (resp. G) mod τ .
Then xy − F (resp. G) defines a rational double point, which must then be of
type Ahr for some h (resp. could be any rational double point).

Proof. The proof goes by analyzing the canonical cover π : (x ∈ X ′) →
(x ∈ X). There are two technical problems if O has positive or mixed charac-
teristic:

a) It is important to know that S ⊂ X (hence S′ ⊂ X ′) is S2. Here we
need the assumption that X is Cohen–Macaulay. In characteristic 0 it is known
that log terminal singularities are Cohen–Macaulay, but the proof relies on the
Grauert–Riemenschneider vanishing theorem, which in general does not hold in
positive or mixed characteristic. It is not known, in positive or mixed character-
istic, whether log terminal singularities are Cohen–Macaulay in general.

b) The canonical cover depends on the choice of an isomorphism OX → ω
[r]
X .

A poor choice may produce a nonnormal X ′. �

(3.2) Construction. As a consequence of the classification (3.1), one can (par-
tially) resolve singular points x ∈ X of index r > 1 with weighted blow-ups of
the ambient toric variety, in a way that will be now described.

First we introduce some terminology. Let x ∈ S ⊂ X be a higher-index
(r > 1) singular point of the type described in (3.1.3). Then x ∈ S is a rational
double point of type Ahr, and we call h the complexity of x (we also say that
x is a simple point if h = 1, or if we are in case (3.1.2)). Also, the integer
n(x) = ordτ F (0) is called the axial multiplicity of x (n(x) = 1 always in case
(3.1.2)).

(3.2.1) With the notation of (3.1), if r > 1, let f : Z → X be induced by the
weighted blow-up of O[x, y, z] with weights of (x, y, z, τ) equal to 1

r (a, r−a, 1, r).
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Let S′ = f∗S. The following can be checked directly, by a straightforward, if
tedious, calculation in toric geometry:

(3.2.1.1) Z is normal and Cohen–Macaulay. Also, KZ = f∗KX + 1
r E, where

E is the exceptional divisor. This means that f “extracts” valuation(s) over x

with minimal discrepancy.

(3.2.1.2) Assume that h(x) = 1, that is, x ∈ X is a simple point. Then Z

has terminal singularities, KZ + S′ is log terminal, and E is irreducible. More
precisely, Z has three singular points zi ∈ Z, and the completed local rings are
as follows:
ÔZ,z1

∼= O[[x, y, z]]Za/(xy − τ), with weights (r,−r, 1),
ÔZ,z2

∼= O[[x, y, z]]Zr−a/(xy − τ), with weights (r,−r, 1),
ÔZ,z3

∼= O[[x, y, z]]Zr/(xy − 1
τ F (τzr)), where Zr acts with weights (a,−a, 1).

In particular z1 and z2 have index < r, and z3 has index r but axial multi-
plicity n(z) = n(x) − 1. It can thus be reasonably asserted that Z has simpler
singularities than X .

If h(x) > 1, various elements change the picture just given for the case h = 1,
all of which are slightly disturbing for the purpose of constructing flips with the
method of [Ka]. Specifically, KZ + S′ is not log terminal (but very mildly so),
Z does not always have terminal singularities (it always has a cAs−2 curve, for
s = min{h(x), n(x)}), and the exceptional set E has two irreducible components
when n(x) ≥ 2.

(3.2.2) Assume h = h(x) ≥ 2; so we are in case (3.1.3). Let m = ordF (if
F =

∑
j≥0 Fjz

rj; by definition m = min{ordτ (Fj) + j | j ≥ 0}). Let f : Z → X

be induced by the weighted blow-up of O[x, y, z] with weights of (x, y, z, τ) equal
to (i + a

r , m − i − a
r , 1

r , 1), for any 0 ≤ i < m. Also write, as above, S′ = f∗S.
Then as above Z is normal, Cohen–Macaulay, and KZ = f∗KX + 1

r E. Again
KZ + S′ is not log terminal (very mildly so), but at least now Z has terminal
singularities and E is irreducible. More precisely, Z has four singular points
zi ∈ Z, and the completed local rings are as follows:
ÔZ,z1

∼= O[[x, y, z]]Zri+a/(xy − τ), with weights (r,−r, 1),
ÔZ,z2

∼= O[[x, y, z]]Zr(m−i)−a/(xy − τ), with weights (r,−r, 1),
ÔZ,z3

∼= O[[x, y, z]]Zr/(xy− 1
τm F (τzr)), where Zr acts with weights (a,−a, 1),

z4 ∈ Z is a cAl terminal singular point (for some l). It is at this point that
KZ + S′ is not log terminal.

To summarize (3.2), one can use the classification of singularities and weighted
blow-ups to construct partial resolutions f : Z → X (perhaps using (3.2.2) if
h > 1). The blow-up constructed in (3.2.1), in the case h = 1, is useful for
constructing flips inductively, because (a) singularities on Z have lower index or
axial multiplicity, (b) KZ + S′ is again log terminal. The main disadvantage of
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(3.2.2) is that, although the singularities zi ∈ Z do appear to be “simpler” than
x ∈ X , this is difficult to make precise because z1 ∈ Z or z2 ∈ Z has index > r.

Next I state the main result in [Ka]:

(3.3) Theorem. Let X/T be a semistable family of surfaces over a Dedekind
scheme T . Assume that the chain

X
t1
9 9 K· · · 9 9 KXi−1

ti
9 9 KXi

has been constructed, where each tj : Xj−1 9 9 KXj is the modification (divisorial
contraction or flip) associated to an extremal ray Rj−1 ⊂ NE(Xj−1/T ) with
KXj−1 · Rj−1 < 0. Then the cone theorem, on the structure of NE(Xi/T ),
the contraction theorem and the flip theorem hold for Xi/T in the usual way. In
particular, if KXi is not nef over T , there is an extremal contraction ϕ : Xi → Z.
If ϕ is divisorial, set Xi+1 = Z; if ϕ is small, let ti+1 : Xi 9 9 KXi+1 be the flip.
This inductively establishes the minimal model program for X/T .

Proof. The cone and contraction theorem for Xi are deduced from the cone
and contraction theorem for the log surface Si. Because of this, and because we
need the classification (3.1) to establish the existence of flips, we need at each
step to check that Xj is Cohen–Macaulay.

Existence of flips goes as follows. Let ϕ : Xi → W be a flipping contraction.
As usual I may assume that the exceptional set consists of a single irreducible
curve C ∼= P1 ⊂ Xi. It can be seen that there is a point x ∈ C ⊂ Xi, where KXi

has index r > 1. Choose x with maximal r.
If x ∈ Xi looks like (3.1.3), assume moreover that h = 1. Let f : Z → Xi be

the blow-up at x ∈ Xi described in (3.2.1), and C′ ⊂ Z the proper transform
of C. A direct calculation taking place on Si, and involving the classification of
surface quotient singularities, shows that KZ ·C′ ≤ 0. Then C′ can be flipped or
flopped on Z over W . A sequence of flips on Z/W (possibly preceded by a single
flop), followed by a divisorial contraction, gives the original flip of Xi → W . Flips
on Z exist because Z is simpler (3.2.1.2). The flop at the beginning sometimes
occurs, but in this situation it can be easily constructed directly, so no previous
knowledge of (terminal) flops is assumed here.

This point deserves to be emphasized a little more. The reader of [Ka] may
notice that, as a byproduct of the above mentioned calculation leading to the
inequality KZ · C′ ≤ 0, it is easy to construct a divisor B in a neighbourhood
of C ⊂ X such that KX + B is log terminal and numerically trivial on C (we
do not even need h = 1 for this). Traditionally, one is done at this point via a
covering trick: if U is a double covering of a neighbourhood of C with branch
divisor B, the flip of X is a quotient of the flop of U . Here, however, U has
canonical singularities, so we need to know that canonical flops exist for this
approach to work. The whole purpose of using the toric blow-up f : Z → X
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(with the complications if h > 1 soon to be described) is to avoid using canonical
flops at this stage (in fact, any knowledge of flops at all).

If x ∈ Xi looks like (3.1.3) and h > 1, a base change followed by a small
analytic Q-factorialization reduces to the case h = 1. �

In working with the singularities appearing on Xi/T in (3.3), two attitudes are
possible. The maximalistic view of [Ka] studies Si ⊂ Xi such that KXi +Si is log
terminal. In the minimalistic view of [S], one tries to understand exactly which
Si ⊂ Xi can originate from a semistable X/T . This is based on the following
observations.

Assume the germ (x ∈ S ⊂ X) is analytically isomorphic to the germ 0 ∈
(xy + z2 = 0) ⊂ C 3 . Although K + S is log terminal and S is Cartier, this germ
does not appear on a semistable family of surfaces. If f : Y → X is an embedded
resolution of S, then f∗S ⊂ Y is not reduced, nor, consequently, semistable (one
has to base extend in order to construct a semistable reduction of S ⊂ X).

Now consider (x ∈ S ⊂ X) ∼= (0 ∈ (z = w) ⊂ (xy + zw = 0)). Here S = f∗(0)
for f = z − w, and this singularity certainly appears on the minimal model of
a semistable family of surfaces. However x ∈ X can be resolved with a single
small blow-up, also resolving the double point x ∈ S.

This suggests that Du Val singularities should not appear on special fibers of
analytic Q-factorializations of minimal models of semistable families of surfaces.
Note that if X → ∆ is projective and X ′ → X is an analytic Q-factorialization
of X , the composite X ′ → ∆ is often not projective.

(3.4) Definition. Let f : X → ∆ be a not necessarily projective morphism
from a complex threefold X to a small disk ∆ ⊂ C , and let S = f∗(0) be the
central fiber. Then f is S-semistable (Shokurov-semistable) if X has terminal
singularities and there is a resolution g : Y → X such that (fg)∗(0) is a global
normal crossing divisor.

The above definition has the obvious disadvantage that the conditions are
difficult to check. In particular it is not clear at all (but true) that if X → ∆
is S-semistable and X/∆ 9 9 KX ′/∆ is a flip, then X ′ → ∆ is also S-semistable.
The next two statements summarize the main results of [S]:

(3.5) Theorem. Let f : X → ∆ be S-semistable and projective, and

X/∆ 9 9 K· · · 9 9 KXi/∆ 9 9 KXi+1/∆ 9 9 K· · · 9 9 KXN/∆

a minimal model program for X over ∆. Then each Xi → ∆ (and so also the
final product XN → ∆) is S-semistable. �

The following result should be compared with (3.1) above, and represents the
shift in philosophy from [Ka] to [S] (the main difference is (3.6.3)):
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(3.6) Theorem. Let X → ∆ be S-semistable, and as usual let S = f∗(0) be the
central fiber. Let x ∈ S ⊂ X be a point, r the index of KX at x. One of the
following holds :

(3.6.1) x belongs to exactly three irreducible components of S and the germ
x ∈ S ⊂ X is analytically isomorphic to

0 ∈ (xyz = 0) ⊂ C 3 .

(3.6.2) x belongs to exactly two irreducible components of S and the germ
x ∈ S ⊂ X is analytically isomorphic to

0 ∈ (xy = 0) ⊂ C 3/Zr,

where Zr acts with weights (a,−a, 1) and (a, r) = 1.

(3.6.3) x belongs to exactly one irreducible component of S. Let X ′ → X be a
small analytic Q-factorialization of X, S′ ⊂ X ′ the proper transform, xi ∈ S′ a
singular point lying over x. The germ xi ∈ S′ ⊂ X ′ is analytically isomorphic to

0 ∈ (t = 0) ⊂ (xy + zr + tni = 0 ⊂ C 4/Zr)

where ni > 0 is an integer (this is the axial multiplicity (3.2)), Zr acts on C 4

with weights (a,−a, 1, 0), and (a, r) = 1. �

In particular, as a consequence of (3.6), S-semistable analytically Q-factorial
singularities have a very simple structure.

In [S], the existence of flips and the above results are proved at the same
time, by induction on the depth of S-semistable singularities. The depth of a S-
semistable singularity, depth(x, S, X), is by definition the minimum number of
g-exceptional divisors in a resolution g : Y → X as in (3.4). The minimum is to
be taken among all g’s admitting a factorization g = gN◦gN−1◦· · ·◦g1 in gi : Yi →
Yi+1 (here Y = Y1 and X = YN+1) such that gi is projective locally analytically
over Yi+1. This approach seems to have two main technical nuisances, which
I try to briefly describe. On the one hand the minimal model algorithm only
works for projective morphisms, so we are not free to analytically Q-factorialize
everything. On the other hand, the inductive approach of Shokurov uses certain
divisorial extractions that only exist in the analytic category. As a result, one
is led to run the minimal model program on varieties that are not necessarily
Q-factorial. A typical paradox arising in this context is that sometimes it is
necessary to “flip” divisorial contractions.

As a corollary one immediately obtains an old result of Kulikov:
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(3.7) Corollary. Let X → ∆ be a semistable degeneration of K3 surfaces,
X/∆ 9 9 KY/∆ the minimal model, Y ′ → Y a small analytic Q-factorialization,
Y ′ → ∆ the induced morphism. Then Y ′ → ∆ is semistable (in the usual sense).

Proof. The generic fiber Yη is a minimal K3 surface, so KYη ∼ 0. Because KX

is nef over ∆, we have KX ≡ 0. Since the central fiber is reduced, KX ∼ 0, and
so KX has index 1 at all singular points. The result now follows instantly from
(3.6). �

Note again that Y ′ → ∆ in (3.7) is often not projective.

4. Birational theory of Mori fibrations

This section summarizes the results of [C] on birational maps between Mori
fibrations in dimension three.

Recall that X admits a Mori fibration if X has Q-factorial terminal singu-
larities and there is a morphism ϕ : X → S to a lower-dimensional normal S,
with −KX ϕ-ample and ρ(X) − ρ(S) = 1. The condition ρ(X) − ρ(S) = 1 is
very important and means that a class D on X is the pull-back of a class on S

whenever D · C = 0 for some curve C contained in a fiber of ϕ.
Philosophically, the statements arise from the systematic attempt to consider

the morphism ϕ as a built in structure, not merely as an accessory of the vari-
ety X .

We work with the following incarnation of the log category. Let X be a variety
with Q-factorial terminal singularities, H a linear system without base divisors
on X . The pair (X, bH) is terminal (canonical, etc.) if and only if for all normal
varieties Y and birational morphism f : Y → X with exceptional divisors Ei one
has:

KY + bf−1
∗ H = f∗(KX + bH) +

∑
aiEi

with all ai > 0 (ai ≥ 0, etc.). Here f−1∗ H denotes the linear system without
fixed divisors induced on Y by H, and is called the birational transform.

Throughout this section, a birational map Φ and the following notation will
be fixed:

X

��
ϕ

//Φ ___ X ′

��
ϕ′

S S′

Choose a sufficiently large (and divisible) positive integer µ′, and an extremely
ample divisor A′ on S′. Then the linear system H′ = | − µ′KX′ + ϕ′∗A′| is very
ample on X ′.

Let H = Φ−1
∗ H′ be the birational transform on X . For some positive rational

number µ and (not necessarily ample) class A on S, we have H ≡ −µKX + ϕ∗A
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(recall that ρ(X)− ρ(S) = 1!).
Let p : (Y,HY ) → (X,H) be a resolution of X and the base locus of H.
The situation is summarized in the following diagram:

Y

��

p

� �
� �
� �
� �

��

q

??
??
??
??

HY = q∗H′

H ≡ −µKX + ϕ∗A X

��
ϕ

//Φ _______ X ′

��
ϕ′

H′ =| −µ′KX′ + ϕ′∗A′ |

S S′

The next result is the key to understand the numerical geometry of Φ. Recall
that a class in H2

R
is qef (quasieffective) if it is a limit of classes of effective

Q-divisors.

(4.1) Theorem (Nöther–Fano inequalities).

(4.1.1) µ ≥ µ′, and equality holds only if Φ induces a rational map S 9 9 KS′

and Φ−1 is contracting.

(4.1.2) If KX + 1
µH is canonical and qef, Φ is an isomorphism in codimension

one, and it induces an isomorphism Xη
∼= X ′

η′ of generic fibers. In particular,
µ = µ′.

(4.1.3) If KX + 1
µH is canonical and nef, Φ is an isomorphism, and it also

induces an isomorphism S ∼= S′. In particular, µ = µ′.

Proof. Let’s prove (4.1.1) first. We have

KY +
1
µ′
HY = q∗(KX′ +

1
µ′
H′) +

∑
a′iEi = q∗ϕ′∗A′ +

∑
a′iEi,

with all a′i > 0 because X ′ has terminal singularities. Also

KY +
1
µ′
HY = p∗(KX +

1
µ′
H) +

∑
aiEi,

where I know nothing of ai. Let C ⊂ X be a general curve contained in a fiber
of ϕ, let C′ ⊂ X ′ be the transform in X ′ and C′′ the transform in Y . Then

(KX +
1
µ′
H) · C = (KY +

1
µ′
HY ) · C′′ = ϕ′∗A′ · C′ +

∑
a′iEi · C′′ ≥ 0.

Thus µ ≥ µ′, and µ = µ′ only if C′ is contained in a fiber of ϕ′ and every
q-exceptional divisor is also p-exceptional, i.e., Φ−1 is contracting.

To prove (4.1.2), reverse the above argument. This gives µ = µ′. Then (4.1.1)
and some extra work imply that Φ is an isomorphism in codimension one.

One has to work a little harder to get (4.1.3). This is standard once the
statement of what we wish to prove is known. �
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The intent is to think of µ as the “degree” of Φ. The plan is to define a class
of elementary maps, and use (4.1) to construct an elementary map Ψ : X/S 9 9 K

X1/S1 such that Φ1 = Ψ−1 ◦ Φ : X1/S1 9 9 KX/S has degree µ1 < µ. Note
that the definition itself of µ makes crucial use of the fibration X → S and the
property ρ(X)−ρ(S) = 1, while the proof of (4.1) also uses the similar structure
of X ′. To emphasize even more these concepts, I observe that the elementary
Ψ : X/S 9 9 KX1/S1 might very well be the identity map of X , only changing the
Mori fibration structure X → S to X → S1 (see links of type IV below). Indeed,
I win in this game if I can reduce the degree µ. For instance, in the surface case,
if X → S ∼= P1×P1 π1→ P1 is the first projection, the degree µ equals 1

2H·π−1
1 (∗),

and it might well be that the degree is smaller when measured with respect to
the second projection P1 × P1 π2→ P1.

The following is the most important statement of [C]. It is due to Sarkisov,
as is the philosophy of its proof.

(4.2) Theorem. Let φ : X/S 9 9 K X ′/S′ be a birational map between Mori
fibrations, with dim(X) ≤ 3. There is a factorization Φ = Φn · · ·Φ1 :

X

��

//Φ1 ___ · · · Xi

��

//Φi ___ Xi+1

��

· · · //Φn___ X ′

��
S Si Si+1 S′

where Φi : Xi/Si 9 9 KXi+1/Si+1 is one of the following elementary maps:

(4.2.1) Links of type I. They are commutative:

Z

��~ ~
~ ~
~ ~
~

//___ X ′

��

X

��
S S′oo

where Z → X is a Mori extremal divisorial contraction and Z 9 9 KX ′ a sequence
of Mori flips, flops or inverse Mori flips. Note that ρ(S′)− ρ(S) = 1.

(4.2.2) Links of type II. They are commutative:

Z

��~ ~
~ ~
~ ~
~ ~

//___ Z ′

  B
BBB
BBB
B

X

��

X ′

��
S S
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where Z → X and Z ′ → X ′ are Mori extremal divisorial contractions, and
Z 9 9 KZ ′ a sequence of Mori flips, flops or inverse Mori flips. The link induces
here an isomorphism S ∼= S′.

(4.2.3) Links of type III. They are commutative:

X

��

//___ Z

  A
AAA
AAA
A

X ′

��
S // S′

where X 9 9 K Z is a sequence of Mori flips, flops or inverse Mori flips, and
Z → X ′ a Mori extremal divisorial contraction. Note here that ρ(S)−ρ(S′) = 1.

(4.2.4) Links of type IV. They are commutative:

X

��

//_______ X ′

��
S

��@
@@
@@
@@
@ S′

~~} } }
} } }
} }

T

where X 9 9 KX ′ is a sequence of Mori flips, flops or inverse Mori flips. Here
ρ(S)− ρ(T ) = ρ(S′)− ρ(T ) = 1.

Proof. There are two cases:

a) If KX + 1
µH does not have canonical singularities, let c < 1

µ be the max-
imum such that KX + cH has canonical singularities. There is an extremal
blow-up f : Z → X with exceptional E such that

KZ + cf−1
∗ H = f∗(KX + cH).

A minimal model program for KZ + cf−1
∗ H over S produces the desired Φ1 of

type I or II.

b) If KX + 1
µH does have canonical singularities, either we are done (4.1.3)

or KX + 1
µH is not nef. A minimal model program for KX + 1

µH gives Φ1 of
type III or IV. Care has to be paid not to lose S.

It remains to show that repeated application of steps (a) and (b) above even-
tually gives a factorization. It is easy to see that µ decreasesafter “untwisting”
by Φ1, and that it strictly decreases unless the base locus of H has improved
by a measurable bit. These bits however may get smaller and smaller. In [C]
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this is the major technical difficulty. The proof uses results of [Ko, Ch. 18] and
Alexeev, showing that certain sets satisfy the ascending chain condition. [Ko,
Ch 18] contains some conjectures along these lines, [Ko4] explores a somewhat
different direction (see also [A]). �

I will make some comments on the last statement and the future ambitions
of this theory.

First, one should ask why the transformations I–IV above should be considered
“elementary”. Let me once again emphasize that the main philosophical point
here is that the Mori fibration morphism is the relevant structure. So whatever
an elementary map is, it has to “link” a Mori fibration X → S to another Mori
fibration X ′ → S′. So, for example, a blow-up Z → X of the maximal ideal
of a smooth point in X should not be considered an elementary map, unless
we are in the unlikely case that Z admits a Mori fibration Z → S′ of its own.
Elementary transformations of ruled surfaces then show that we need to allow
at least two divisorial contractions to form an elementary map. Examples show
that in dimension ≥ 3 flops and flips (hence inverse flips) are necessary. This
explains that elementary maps satisfy some reasonable economy criterion.

It is to be hoped that the factorization theorem will eventually lead to usable
criteria to determine the birational type of a given space admitting a Mori fibra-
tion. This definitely requires a better understanding of elementary maps. The
idea is that the graph ΓΦ ⊂ X ×X ′ of an elementary map Φ : X/S 9 9 KX ′/S′

is a relative Q-Fano model with ρ = 2 (over S and/or S′) and these tend to fit
in a finite number of algebraic families. This however is not true because of the
possibility of inverse flips, whose role has yet to be clarified. It seems that a close
understanding (perhaps a classification) of divisorial contractions would also be
necessary.

The following is taken from [I]:

(4.3) Conjecture. Let X → S be a standard conic bundle, i.e., X is smooth
and X → S the contraction of an extremal ray. Assume that X is rational. Then
the quasieffective threshold τ = τ(S, ∆)—that is, the maximum value τ such that
τK + ∆ is quasieffective—is less than 2.

The idea is that the quasieffective threshold of the pair (S, ∆) has a strong
birational meaning for X .

5. Log abundance

This is the statement of the log abundance theorem for threefolds, proved in
[KMM].

(5.1) Theorem. Let (X, B) be a pair consisting of a threefold X and boundary
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B ⊂ X. If K + B is log canonical and nef, |m(K + B)| is free from base points
for some sufficiently large (and divisible) m. �

The genuine (i.e., non logarithmic) abundance theorem states that if X is a
three-dimensional minimal model (recall that this means that X has terminal
singularities and KX is nef), |mKX | is free from base points for some m large
and divisible.

Recall that the Kodaira dimension κ(D) of a divisor D on a variety X is the
dimension of ϕmD(X) for all sufficiently large and divisible integers m (ϕmD :
X 9 9 KPH0(mD)∗ is the canonical map; by convention κ(D) = −∞ if H0(mD) =
(0) for all positive integers m). Also, the numerical dimension of a nef Q-Cartier
divisor D on a variety X is by definition the largest integer ν(D) such that
Dν 6≡ 0. It is easy to show that κ ≤ ν. It is also easy to see that log abundance
is equivalent to ν(K + B) = κ(K + B). Log abundance for ν(K + B) = dim(X)
is an immediate consequence of the base point free theorem.

The proof of the (genuine) abundance theorem for threefolds (mainly due to
Kawamata and Miyaoka) is very long and complicated: it can be found in [Ko],
together with proper attributions. Roughly speaking, the proof is divided in two
parts, requiring entirely different techniques. Here is a quick summary:

A) First one shows that |mK| 6= ? for some m. This is quite hard, and I
refer to [Ko, Ch. 9] for an extremely attractive presentation.

B) We must eventually show that mKX is free for m large and divisible. By
(A) there is a divisor D ∈ |mK|. Note that if ν = 0 we are done already, so
we need to discuss ν = 1 and ν = 2. Roughly speaking, the argument proceeds
by induction on the dimension: we show that a form of abundance holds on D,
then try to use exact sequences to lift it to X . However, D may be too singular
to work with. The first step is to modify X to improve the singularities of the
support of D, namely to achieve that K +Dred is log canonical. This is achieved
by choosing a log resolution X ′, D′ of X, Dred, and running a (KX′+D′)-minimal
model program, ending in the new X ′′, D′′. Then KX′′ + D′′ is log terminal and
D′′ is semi log canonical. So, perhaps at the expense of introducing slightly
worse singularities on X , we may assume that KDred is semi log canonical.

If ν = 1 (here we expect the canonical map to give a fibration in surfaces), by
a further reduction step, using again log minimal model theory, we may assume
that every connected component of Dred is irreducible. Then Dred is a surface
with log terminal singularities and it is not too hard to show that log abundance
for Dred implies abundance for X . An excellent introduction to the yoga is
[Ko, Ch. 11], where log abundance is proved for surfaces with log canonical
singularities.

The situation is technically more complicated if ν = 2. Here Dred is a surface
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with semilog canonical singularities. Abundance for Dred requires some careful
considerations [Ko, Ch. 12]. To show abundance for X , it is enough to show
that H0(mKX) has at least two sections for m large (i.e., κ ≥ 1). This uses
log abundance on Dred and some delicate estimates of the relevant terms in the
Riemann–Roch formula.

In closing, I wish to emphasize that even to prove genuine abundance one
naturally dips in the log category.

The proof of the log abundance theorem for threefolds, part (B), follows closely
the proof of genuine abundance, except that it is more difficult at various tech-
nical points, especially in the proof that ν = 2 implies κ ≥ 1 in showing the
positivity of the relevant terms in the Riemann–Roch formula.

However, showing that |m(K + B)| 6= ? for some m requires some entirely
new ideas, which I shall now describe following [KMM].

(5.2) Theorem. Let (X, B) be a pair consisting of a threefold X and boundary
B ⊂ X. If K + B is log canonical and nef, |m(K + B)| 6= ? for some positive
integer m.

Proof. a) First construct a terminal modification f : Z → X . This means
that Z has terminal singularities,

KZ + f−1
∗ B +

∑
aiEi = f∗(KX + B)

with 0 ≤ ai ≤ 1 and KZ + B0 is log canonical when B0 = f−1
∗ (B) +

∑
aiEi.

b) Next run an (ordinary) minimal model program for KZ . If KZ is not nef
there is a smallest value 0 < ε ≤ 1 such that KZ + εB0 is nef, and an extremal
ray R with KZ · R < 0 and (KZ + εB0) · R = 0. Let Z 9 9 KZ1 be the divisorial
contraction or flip of R, and B1 ⊂ Z1 the proper transform. Then inductively
define a chain

· · · (Zi, εiBi) 9 9 K(Zi+1, εi+1Bi+1) 9 9 K· · · 9 9 K(ZN , εNBN ) = (X ′, B′),

where εi ≤ εi−1 is the smallest value such that KZi +εiBi is nef, and Zi 9 9 KZi+1

the divisorial contraction or flip associated to an extremal ray Ri ⊂ NE(Zi) with
KZi ·Ri < 0 and (KZi + εiBi) ·Ri = 0. It is quite clear that |m(KZ + B0)| 6= ?

for some m if |m(KX′ + B′)| 6= ? for some m. There are two cases:

b1) X ′ is a minimal model and B′ = ?. Here |mKX′ | 6= ? by genuine
abundance.

b2) X ′ has a Mori fibration X ′ → S with (KX′ + B′) · C = 0 for a curve C

contained in a fiber. The result is immediate if X ′ is a Q-Fano threefold, but the
other cases still require considerable work. From now on, I assume (b2) holds.
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c) The strategy at this point is to produce sections of |m(KX′/S + B′)|. It
is easier to do this because the relative dualizing sheaf KX′/S behaves well with
respect to fiber squares. That is, if Y ′ = X ′ ×S T in

Y ′

��
ϕ′

//f ′

X ′

��
ϕ

T //f
S

then KY ′/T = f ′∗KX′/S . By choosing a suitable finite T → S I can “untwist”
X ′/S, and going again through (b), I may assume that X ′ → S is a P1-bundle
over a surface or a P2-bundle over a curve, and argue there directly.

d) Now assume |m(KX′/S + B′)| 6= ?. This means that there is an effective
Q-divisor D on S such that ϕ∗(D) = KX′/S + B′. Since KX′ = KX′/S + ϕ∗KS ,
this says that ϕ∗(KS + D) = KX′ + B′. It can be shown that KS + D is log
terminal, and since it is nef, we are done by log abundance on S. �

The log abundance theorem is a very high-brow generalization of the genuine
abundance theorem. Its meaning has to be found in the context of log minimal
model theory, as a natural extension of minimal model theory. One very inter-
esting feature peculiar to log abundance as opposed to genuine abundance is the
analysis of Mori fibrations. The proof just described provides some new tools to
study numerical aspects of curves and divisors on Mori fibrations. Let X → S

be a Mori fibration, H a linear system without base divisors on X , and assume
KX + 1

µH to be trivial on fibers. Theorem (5.2) suggests that KX + 1
µH is likely

to be quasieffective, which explains the experimental fact that the possibility
of X admitting a birationally distinct Mori fibration should be deemed unlikely
(compare 4.1.2).

6. Effective base point freeness

A lot of work has been done recently on finding effective nonvanishing and
global generation results for pluricanonical (nK) and adjoint (K + L) divisors
in higher dimension [EL], [Ko2], and [Ko3]. The common ground of most of this
work is an attempt to render the “Kawamata technique” effective.

This is a technically simplified version of the main result in [EL]:

(6.1) Theorem. Let L be a nef and big divisor on a smooth complex projective
threefold X, and let x ∈ X be a given point. Assume:

(6.1.1) L3 > 92,
(6.1.2) L2 · S ≥ 7 for all surfaces S ⊂ X with S 3 x,
(6.1.3) L · C ≥ 3 for all curves C ⊂ X with C 3 x.
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Then KX +L is free at x, that is, O(K+L) has a section that is nonvanishing
at x. Moreover, if L3 � 0 (e.g., L3 ≥ 1000), the same conclusion holds with
L2 · S ≥ 5. �

The proof of the above result is quite complicated. The Kawamata technique
is still in a stage where it is rather difficult to use it to prove things, even when one
has a good idea of what should be proved. In the case at hand, the general form
of the statement is suggested by earlier results of Reider on algebraic surfaces
(proved with Bogomolov’s stability of vector bundles). As an introduction to the
ideas, following [EL], I will state and completely prove a Reider type statement
on surfaces:

(6.2) Theorem. Let L be a nef and big divisor on a smooth complex projective
surface X, and let x ∈ X be a given point. Assume:

(6.2.1) L2 ≥ 5,
(6.2.2) L · C ≥ 2 for all curves C ⊂ X with C 3 x.

Then KX +L is free at x, that is, O(K+L) has a section that is nonvanishing
at x.

Proof. One starts by writing the divisor we are interested in, KX + L, in the
form:

K + L = K + B + M

where B ≥ 0 is a nef Q-divisor, M a nef and big Q-divisor. The method works by
choosing B very singular at x, and relating the singularity of B at x to sections
of K + L at x.

The leading term of Riemann–Roch and (6.2.1) give D ∈ |nL| with a singular
point of multiplicity at least 2n + 1 at x for some n large. Put B = 1

nD, and
write B = B′ +

∑
biBi, where the Bi’s are the irreducible components of B

containing x. Let µi be the multiplicity of Bi at x. By construction,

b =
∑

biµi > 2 (∗).

I discuss two cases:

a) b > 2bi for all i.

b) There is a value i0, say i0 = 0, such that b ≤ 2b0. In particular, b0 > 1.
What happens here is that we chose D to be very singular at x, and unexpectedly
got a D that has very high multiplicity along all of B0. It seems that this
occurrence should be considered lucky, but it is the hardest to work with.

a) Let f : Z → X be the blow-up at x, and E the exceptional curve. Then:

f∗KX = KZ − E
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and f∗B = f−1
∗ B + bE, so for all c we have

f∗(KX + L) = f∗(KX + cB) + (1 − c)f∗B

= KZ + cf−1
∗ B + (cb− 1)E + (1− c)f∗B.

Set c = 2/b. Then M = (1 − c)f∗B is a nef and big Q-divisor. Also, by
assumption, cbi < 1. Then

N = f∗(K + L)− bcf−1
∗ Bc = KZ + dMe+ E.

By Kodaira vanishing H0(N) � H0(N |E). We are done because N |E ∼ OE and
H0(KX + L) ↪→ H0(N |E).

b) In this case with c = 1/b0 and M = (1− c)B,

N = KX + L− bcB′c = KX + dMe+ B0.

By Kodaira vanishing H0(N) � H0(N |B0), so we are done as soon as we prove
that H0(N |B0) has a section not vanishing at x. This is the ugly part, where it
is very helpful to already know the statement we wish to prove. The observation
here is that

N |B0 = KB0 + (1 − c)B|B0 +
∑

i>0

cbiBi|B0

is an integral divisor, and

[(1− c)B +
∑

i>0

cbiBi] ·B0 > 2(1− c) +
∑

i>0

cbiµi = 1 + c(
∑

i≥0

biµi − 2) > 1

by (∗) applied twice. The statement then follows from the one-dimensional
analogue of (6.2) (more precisely, one needs (6.2) for Gorenstein curves). �

In higher dimensions matters quickly become more complicated, seemingly
due to the possibility of case (b) above, especially in conjunction to the more
complicated, but necessary in dimension ≥ 3, hypotheses in the Kawamata–
Viehweg vanishing theorem. The reader may show as an exercise that case (b)
never occurs if L · C ≥ 2 is replaced with L · C ≥ 3 in (6.2.2) (I learned this
observation from R. Lazarsfeld, who attributes it to Demailly).

Finally, I wish to make a philosophical remark. The log category intervened
“behind the scenes” in the proof of (6.2). Indeed, we chose B such that K + B

is not log canonical at x, and c the maximum such that K + cB is log canonical
at x, in order to isolate the base component with “maximal multiplicity”.

References

[A] V. Alexeev, Boundedness and K2 for log surfaces, preprint (1994).

[C] A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom.
(to appear).

[EL] L. Ein and R. Lazarsfeld, Global generation of pluricanonical and adjoint linear series
on smooth projective threefolds, J. Amer. Math. Soc. 6 (1993), 875–903.



56 ALESSIO CORTI

[I] V. A. Iskovskikh, Towards the problem of rationality of conic bundles, Algebraic Ge-
ometry, Proceedings of the US-USSR Symposium, Chicago 1989, Lecture Notes in
Mathematics 1479, Springer-Verlag, New York, pp. 50–56.

[Ka] Y. Kawamata, Semistable minimal models of threefolds in positive or mixed charac-
teristic, J. Algebraic Geom. 3 (1994), 463–491.

[KMM] S. Keel, J. McKernan and K. Matsuki, Log abundance theorem for threefolds, Duke
Math. J. 75 (1994), 99–119.

[Ko] J. Kollár et al., Flips and abundance for algebraic threefolds, Astérisque 211 (1992).
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