INTRODUCTION

This book gives a treatment of exterior differential systems. It will include both
the general theory and various applications.

An exterior differential system is a system of equations on a manifold defined by
equating to zero a number of exterior differential forms. When all the forms are
linear, it is called a pfaffian system. Our object is to study its integral manifolds,
i.e., submanifolds satisfying all the equations of the system. A fundamental fact is
that every equation implies the one obtained by exterior differentiation, so that the
complete set of equations associated to an exterior differential system constitutes a
differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-
free and computations typically have an algebraic character; however, even when
coordinates are used in intermediate steps, the use of exterior algebra helps to
efficiently guide the computations, and as a consequence the treatment adapts well
to geometrical and physical problems.

A system of partial differential equations, with any number of independent and
dependent variables and involving partial derivatives of any order, can be writ-
ten as an exterior differential system. In this case we are interested in integral
manifolds on which certain coordinates remain independent. The corresponding
notion in exterior differential systems is the independence condition: certain pfaf-
fian forms remain linearly independent. Partial differential equations and exterior
differential systems with an independence condition are essentially the same object.
The latter, however, possess some advantages among which are the facts that the
forms themselves often have a geometrical meaning, and that the symmetries of the
exterior differential system are larger than those generated simply by changes of
independent and dependent variables. Another advantage is that the coordinate-
free treatment naturally leads to the intrinsic features of many systems of partial
differential equations.

It was Pfaff who pioneered the study of exterior differential systems by his formu-
lation of the Pfaff problem in Pfaff [1814-15]. The exterior derivative of a pfaffian
form, called the bilinear covariant, was introduced by Frobenius in 1877 and effi-
ciently used by Darboux in Darboux [1882]. In his book Cartan [1922], Elie Cartan
introduced exterior differential forms of higher degree and their exterior derivatives.
In 1904-08 he was led to the notion of a pfaffian system in involution through his
work in generalizing the Maurer—Cartan forms in Lie groups to infinite Lie pseu-
dogroups. The geometrical concepts introduced in this study apply to general
exterior differential systems, as recognized by Goursat. An authoritative account
was given in Kéahler [1934], culminating in an existence theorem now known as the
Cartan—Kahler theorem.
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On the side of partial differential equations the basic existence theorem is of
course the Cauchy—Kowalewski theorem. More general existence theorems were
given by Riquier [1910]. The use of differential operators in studying differential
geometry has been traditional and has an extensive literature.

Among our fundamental concepts are prolongation and involutivity. Intuitively
the former is the classical way of adjoining the partial derivatives themselves as new
variables, and taking as new equations those obtained by differentiating the old set,
while the latter is the property that further prolongations will not give essentially
new integrability conditions. Their precise definitions are more subtle, and will be
given in Chapters VI and IV respectively. A linear pfaffian system in involution is
a “well-behaved” system.

This concept entered in correspondence between Cartan and Einstein [1979] on
relativity. While Elie Cartan proved that the Einstein field equations in general
relativity based on distant parallelism form an involutive system, Einstein was at
first suspicious of the notion. Later he understood it and expressed his satisfaction
and appreciation.

Cartan expressed the involutivity condition in terms of certain integers, known
as Cartan’s test. In modern language this is a homological condition. In fact, Serre
proved in 1963 that involutivity is equivalent to the vanishing of certain cohomology
groups (see Guillemin—Sternberg [1964]). This makes it possible to use the powerful
tool of commutative algebra. At the very beginning one notices the similarity
between polynomials and differential operators. It turns out that this relationship
goes much deeper, and the theory involves a mixture of both commutative and
exterior algebra.

A fundamental problem is whether a given differential system will, after a finite
number of prolongations lead to an involutive system. Cartan attempted to answer
this question, but it was Kuranishi [1957] who finally proved the Cartan-Kuranishi
prolongation theorem. The main tool is homology theory. A slightly weaker version
of the theorem will be proved in this book.

We should however emphasize that differential systems not in involution are just
as important. In fact, they are probably richer in content. For example, non-
generic conditions on a manifold such as isometric embedding in low codimension
or the presence of additional geometric structures frequently are expressed by a
non-involutive system. The last half of Cartan [1946] and Partie II of his “(Buvres
Completes” (Cartan [1953]) are full of “examples”, many of which are topics in
their own right. An objective of this book is to call attention to these beautiful
results, which have so far been largely ignored.

As the results are coordinate-free, the theory applies well to global problems
and to non-linear problems. A guiding problem in the theory is the equivalence
problem:

Given two sets of linear differential forms 6%, 6*7 in the coordinates z*, z*!
respectively, 1 < 4,4, k,I < n, both linearly independent, and given a Lie group
G C GL(n, R). To find the conditions that there are functions

*7

o=zt "),

such that 6*7, after the substitution of these functions, differ from * by a transfor-
mation of G. This gives rise to an exterior differential system. Cartan’s idea was
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to introduce the parameters of G as new variables, setting
W=D g, Wt = "gr0v, (gh), (97" €G.
J

Then in the product of the manifold with G, the condition becomes

which is symmetrical in both sides. This means we should study the problem in a
principal G-bundle and the formulation becomes global.

The equivalence problem gives local Riemannian geometry when G = O(n)
and the local invariants of an almost complex structure when n = 2m and G =
GL(m,C). Similarly, it gives the local invariants of CR-geometry when n = 2m —1
and G is a suitable subgroup of GL(m,C).

We have stated the equivalence problem because of its importance; it will not
be explicitly treated in this book; see Gardner [1989] for a modern exposition.

The subject is so rich that a worker in the field is torn between the devil of the
general theory and the angel of geometrical applications, which present all kinds of
interesting phenomena. We have attempted to strike a balance. We will develop
the general theory both from the standpoint of exterior differential systems and
from that of partial differential equations. We will also give a large number of
applications. A summary of contents follows:

Chapter I gives a review of exterior algebra, with emphasis on results which are
relevant to exterior differential systems. For those who like an intrinsic treatment
it includes an introduction to jet bundles.

Chapter II treats some simple exterior differential systems, particularly those
which can be put in a normal form by a change of coordinates. They include com-
pletely integrable systems (Frobenius theorem) and the pfaffian equation. Cauchy
characteristics for exterior differential systems come up naturally. Some arithmetic
invariants are introduced for pfaffian systems. Even a pfaffian system of codimen-
sion 2, only partially treated in the last section, is a rich subject, with several
interesting applications.

Chapter III discusses the generation of integral manifolds through the solution of
a succession of initial-value problems. Various basic concepts are introduced. The
Cartan—Kahler theorem is given as a generalization of the Cauchy-Kowalewsky
theorem; the proof follows that of K&hler. As an application we give a proof of the
isometric imbedding theorem of Cartan—Janet.

Chapter IV introduces the important concepts of involution, linear differential
systems, tableau and torsion. For linear pfaffian systems the condition of involution,
as expressed by Cartan’s test, takes a simple form that is useful in computing
examples. We also introduce the concept of prolongation, which will be more fully
developed in Chapter VI.

As one example we show that the high-dimensional Cauchy—Riemann equations
are in involution. We also study the system of ¢ partial differential equations of the
second order for one function in n variables and find conditions for their involutivity.
A geometrical application is made to the problem of isometric surfaces preserving
the lines of curvature. It is an example of an over-determined system which, after
several prolongations, leads to a simple and elegant result. In this example the
effectiveness of exterior differential systems is manifest.
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Chapter V introduces the characteristic variety of a differential system. Intu-
itively its tangent spaces are hyperplanes of integral elements whose extension fails
to be unique. It plays as important a role as the characteristics in classical par-
tial differential equations. For a linear pfaffian system a definition can be given in
terms of the symbol and the two agree in the absence of Cauchy characteristics.
We discuss in detail the case of surfaces in E? and their Darboux frames, as this
example illustrates many of the basic notions of exterior differential systems. Some
properties of the characteristic variety are given. The deeper ones require the sys-
tem to be involutive and the use of the complex characteristic variety. Their proofs
rely on results of commutative algebra and are postponed to Chapter VIII.

Chapter VI treats prolongation, another well-known process in the case of partial
differential equations. The issue is whether any system with an independence con-
dition (I,) can be prolonged to an involutive system in a finite number of steps
(Cartan—Kuranishi theorem). With our definition of prolongation we prove that
the first prolongation of an involutive linear pfaffian system is involutive, a result
that does not seem to appear in the literature. We establish a somewhat weaker
version of the Cartan—Kuranishi theorem, thus giving in a sense a positive answer
to the above question. As usual the general theory is illustrated by a number of
examples.

Chapter VII is devoted to some examples and applications. We give a classi-
fication of systems of first-order partial differential equations of two functions in
two variables. Other examples include: triply orthogonal systems, finiteness of web
rank, isometric imbedding and the characteristic variety.

In Chapter VIII we study the algebra of a linear pfaffian system and its pro-
longations. The crucial information is contained in the tableau. Its properties are
given by the Spencer cohomology groups or the Koszul homology groups, which are
dual to each other. Involutive tableau is characterized by the vanishing of certain
Spencer cohomology or Koszul homology groups. It is a remarkable coincidence that
a regular integral flag and a quasi-regular graded SV -module represent essentially
the same object. Homological algebra provides the tools to complete the proofs of
the theorems stated in Chapters V and VI, and in particular the Cartan—Kuranishi
theorem. As a consequence sheaf theory in commutative algebra and micro-local
analysis in partial differential equations become parallel developments.

Chapters IX and X give an introduction to the Spencer theory of over-determined
systems of partial differential equations. While Cartan began his theory in the
study of infinite pseudogroups, Spencer had a similar objective, viz., the study of
the deformations of pseudogroup structures. His approach is more in the spirit of
Lie, with a full use of modern concepts. We see in our account more emphasis
on the general theory, although many examples are given. We hope that after the
exposition in this book we come to realize that exterior differential systems and
partial differential equations are one and the same subject. It is conceivable that
different attires are needed for different purposes.

This book grew through our efforts to work through and appreciate Partie II
of Cartan’s “(Buvres Complétes” (Cartan [1953]), which we found to be full of
interesting ideas and details. Hopefully our presentation will help the study of the
original work, which we cannot replace. In fact, for readers who have gone through
most of this book we propose the following problem as a final examination: Give a
report, on his famous five-variable paper, “Les systemes de Pfaff a cinq variables et
les équations aux dérivées partielles du second ordre” (Cartan [1910]).
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CHAPTER I

PRELIMINARIES

In this chapter we will set up some notations and conventions in exterior algebra,
give a description of the basic topic of the book, and introduce the language of
jets which allows easy passage between partial differential equations and exterior
differential systems. In particular we establish some basic results in exterior algebra
Theorems 1.3, 1.5, and 1.7 which will be used in Chapter II.

§1. Review of Exterior Algebra.

Let V' be a real vector space of dimension n and V* its dual space. An element
x € V is called a vector and an element w € V* a covector. V and V* have a
pairing
(x,w), €V, weV™

which is a real number and is linear in each of the arguments, z, w.
Over V there is the exterior algebra, which is a graded algebra:

AV)=A(V)a A (V)@@ A™(V),

with
A(V)=R, AY(V)=V.

An element £ € A(V) can be written in a unique way as
=& +&a+ - +&,
where &, € AP(V) is called the p-th component of {. An element
=& e A(V)

is called homogeneous of degree p or a multivector of dimension p.

Multiplication in A(V) will be denoted by the wedge sign: A. It is associative,
distributive, but not commutative. Instead it satisfies the relation

EAn=(=DPpng £eAP(V), neAiV).

The multivector £ is called decomposable, if it can be written as a monomial

(1) E=zi N Nzp, x; €V

We have the following fundamental fact:
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Proposition 1.1 (Criterion on linear dependence). The vectors x1, ...,z are lin-
early dependent if and only if x1 A --- Axp =0.

If the decomposable multivector £ in (1) is not zero, then x4, ..., z, are linearly
independent and span a linear subspace W of dimension p in V. This space can be
described by

(2) W={zeV]zAn{=0}

Let @, ..., z; be another base in W. Then

is a (non-zero) multiple of £&. We will call &, defined up to a constant factor, the
Grassmann coordinate vector of W, and write

(3) [l =w,

the bracket indicating the class of coordinate vectors differing from each other by
a non-zero factor.
In the same way there is over V* the exterior algebra

AV =A' (V) A (VF) @ o A" (VF),
AO(V*) =R, AL(V*) =V~

An element of AP(V*) is called a form of degree p or simply a p-form.
Let e; be a base of V and w* its dual base, so that

e, why =6F, 1<ik<n.
K3

Then an element £ € AP(V) can be written

(4) E=1/p!) a e ANy,

and an element o € AP(V*) as
(5) o= 1/10!z:bilmipwi1 A AW,

In (4) and (5) the coefficients a’*~*» and b;,..;, are supposed to be anti-symmetric
in any two of their indices, so that they are well defined. It follows from (4) that
any multivector is a linear combination of decomposable multivectors.

For our applications it is important to establish the explicit duality or pairing of
A(V) and A(V*). We require that AP(V) and A9(V*), p # ¢, annihilate each other.
It therefore suffices to define the pairing of AP(V') and AP(V*). Since, by the above
remark, any multivector is a linear combination of decomposable multivectors, it
suffices to have the pairing of

E=21 N Nxp, T €V,
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and
a=wA-AWP, We V.

We will define
(6) (€ a) = det((zs,w")), 1<ik<p.

It can be immediately verified that this definition is meaningful, i.e., if £ (resp. a) is
expressed in a different way as a product of vectors (resp. covectors), the right-hand
side of (6) remains unchanged.

In terms of the expressions (4) and (5) the pairing is given by

(7) (€ a) =1/p> a by, .

This is proved by observing that the right-hand side of (7) is linear in the arguments
¢ and « and that the right-hand sides of both (6) and (7) are equal when ¢ and «
are products of the elements of the dual bases.

An endomorphism f of the additive structure of A(V) is called a derivation of
degree k if it satisfies the conditions:

() f: APV - APTFV 0<p<n

(i) f(EAD) = f(E) An+ (=1)*?EA f(n)
for £ € APV, e AV.

A derivation of degree —1 is also called an anti-derivation.

Given £ € V, we define the exterior product

e(€) : A(V) — A(V)
by

e@n=&nn ne V).
The adjoint operator of e(§),

EL:AVH) — A(VF)
is called the interior product, and is defined by the relation

(n,€Ja) = (e(€)n.a) neAV),aeAV).
The following result is easily proved:

Proposition 1.2. If x € V, then x 1 is an anti-derivation.

Notice that e(z) is neither a derivation nor an anti-derivation.

Definition. A subring I C A(V*) is called an ideal, if:
a) a € I implies a A B € I for all § € A(V*);
b) a € I implies that all its components in A(V*) are contained in I.

A subring satisfying the second condition is called homogeneous. As a conse-
quence of a) and b) we conclude that o € I implies S A« € I for all § € A(V*).
Thus all our ideals are homogeneous and two-sided.

Given an ideal T C A(V*), we wish to determine the smallest subspace W* C V*
such that I is generated, as an ideal, by a set S of elements of A(WW*). An element of
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I is then a sum of elements of the form o A3, 0 € S, B € A(V*). Ifx €¢ W = (W*)*,
we have, since the interior product x _I is an anti-derivation,

rzlo =0,

xd(ocNB)=FcA(xdpB) el

Therefore we define
Al)={z eV |zl C I},

where the last condition means that @ J« € I, for all « € I. A(I) is clearly a
subspace of V. It will play later an important role in differential systems, for which
reason we will call it the Cauchy characteristic space of I. Its annihilator

C(I)=AI)* cv*

will be called the retracting subspace of I.

Theorem 1.3 (Retraction theorem). Let I be an ideal of A(V*). Its retracting
subspace C(I) is the smallest subspace of V* such that A(C(I)) contains a set S of
elements generating I as an ideal. The set S also generates an ideal J in A(C(I)),
to be called a retracting ideal of I. There exists a mapping

A A(V*) — A(C(D))

of graded algebras such that A(I) = J.

Proof. Suppose W* C V* be a subspace such that A(W*) contains a set S of
elements which generate I as an ideal. By the above discussion, if z € W = (W*)+,
we have z 11 C I. Tt follows that W C A(I), and consequently, C(I) = (A(I))*+ C
W,

We now choose a complementary space B of C'(I) in V*, so that V* = B@ C(I).
Let w?, 1 < i < n, be a base in V* with

who Wb eB, WM Wt e (D).

Its dual base e;, 1 < i < n, then has the property that A(I) = {e1,...,ex}. We
define
hj t A(V*) = A(V"), 1<j<k,

by
hi(a)=a—w! A(ej Ja), acAV*).

It is easy to verify that
hj(a A B) = hj () A hy(B),

so that each h; is a mapping of graded algebras. The same is therefore true of the
composition

AthO"'Ohl.

Since e¢; € A(I), 1 < j < k, we have h;(I) C I, from which we get A(I) C I.
Clearly we have the restrictions A|p = 0, A|c(y = Id. Since A is a mapping of
graded algebras, this implies that A(C(I)) is the image of A.
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It remains to construct the set S in A(C(I)) which generates I. This is done by
induction on the degrees of the elements of I. Let I, be the set of elements of I
of degree p. To exclude the trivial case that I = A(V*) itself, we suppose Iy = 0.
Using this assumption we have, by the definition of A(I), z J o = (x,a) = 0,
€ A(I), a € I. It follows that A(I) C I} of I C C(I).

To apply induction suppose that I, . . ., I,_1 are generated by elements of A(C([)).
Denote by J,—1 the ideal generated by them. Recall that h;, 1 < j <k, are map-
pings of graded algebras and induce the identity mapping on C(I). They therefore
leave J,_1 invariant. By the definition of h; we have hq(a) — a € J,—1. Applying
ha, ..., hi successively, we get A(a) — a € Jp—1. By replacing a by A(«) as a
generator of I, we complete the induction. O

We wish to make some applications of the retraction theorem (Theorem 1.3).
First we recall that, dualizing (2) and (3), the Grassmann coordinate vector ] of
a subspace W* C V* of dimension p is a non-zero decomposable p-covector such
that

W*={weV" |wAa=0}

This notion can be extended to any p-form «, decomposable or not, by defining
Ly={weV"|wAa=0}

L, will be called the space of linear divisors of «, because of the property given in

the following theorem:

Proposition 1.4. Given a p-form «, let w',...,w? be a base for L. Then o may
be written in the form

a=w' A AW AT, with T € APV,

Proof. Take first the case ¢ = 1. We can suppose w' to be a base element of V*.
By the expression (5) we can write

ozzwl/\w—l—oq,

where o does not involve w'. The hypothesis w! A @ = 0 implies a; = 0, so that
the statement is true.
The general case follows by induction on g. O

Theorem 1.5. Let I be an ideal generated by the linearly independent elements
wl ... w® € V* and the 2-form Q € A2(V*). Let p be the smallest integer such
that

(8) PPTEAOI A AW =0.

Then the retracting space C(I) is of dimension 2p + s and has the Grassmann
coordinate vector
QPAW A AW

Proof. Consider first the case s = 0. An element of I is a linear combination of €2,
O2,...,QP # 0. Hence by Theorem 1.3, we have Q € A(C(I)), and QP € A?P(C(1)).
The latter implies

dim C(I) > 2p.
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Let
f: V-V

be the linear map defined by
fl@)=21Q, xeV.
Since I does not contain a linear form, we have
£ 1Q =0if and only if z € A(I) = C(I)*.

This proves

ker f = A(]),
so that
(9) dim ker f =dim A(I) <n—2p.

On the other hand, the equation (8) gives for s = 0,
T IOQPT = (p4+1)(z JQ) AQP =0.

Hence the space of linear divisors of 2P contains the image of f. Since 2P is of
degree 2p and has at most 2p linear divisors, we have

(10) dim im f < 2p.
Now it is an elementary fact that
dim ker f +dim im f =n.
Therefore the equality signs hold in both (9) and (10). In particular, we have
dimC(I) = 2p and A?P(C(I)) is of dimension one, with QP as a base element,
which is thus a Grassmann coordinate vector of C(I).
In the general case, let W* = {w!,...,w*} be the space spanned by the w’s.

Then W = (W*)+ C V and the quotient space V*/W* have a pairing induced by
that of V and V*, and are dual vector spaces. We have

0#£ QP Awh A~ Aw® € A2+ (C(D)),

so that
dim C(I) > 2p + s.

Consider the linear map
w Loy v
where 7 is the projection (into a quotient space) and f is defined by
fl@)=21Q,2e W.

As above, we wish to find upper bounds for the dimensions of the kernel and image
of f' =mo f. The sum of these dimensions is

dim ker f +dim im f' =n — s.
A generalization of the above argument gives
dim ker f' <n—2p—s
dim im f < 2p

Hence the equality signs hold everywhere and the theorem follows as before.
O
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Proposition 1.6. Let w',...,w® 7 be linearly independent elements of V* and
Q € A2V*; then

(11) PATA AW AT=0

implies
PPTEAOI A AW =0.

Proof. Let {m} denote the one dimensional space spanned by 7 and let W* denote
a complement in V* of {r} which contains w!, ..., w*. Then there exist « € A2W*,
B € W*, uniquely determined, such that

Q=a+ [ Am.

It follows that
P =aP+paP 'ABAT

and the hypothesis (11) implies
AP AW A AW AT =0,
Since a? Aw! A+ Aw® € A(W*), we must have
AP AW A AW =0,
The conclusion now follows since
QP =Pt L (p+ 1P AB AT

O

A sequential application of Theorem 1.5 leads to a constructive proof of the
algebraic normal form of a two form which is useful for many arguments in the
theory of exterior differential systems.

Theorem 1.7. Let Q € A2(V*) and let r be the smallest integer such that

Qt=o.
Then there exist 2r linearly independent elements w',...,w?" such that
r . .
(12) Q:E:w’"H Aw'.
i=1

Proof. The theorem is proved by repeated applications of Theorem 1.5. In fact,
from the hypotheses it follows that 2" is decomposable and hence has a linear
divisor w!. Next consider the ideal [(1) = {w', Q} generated by w! and Q. Let r;
be the smallest integer such that

QA =0.
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Clearly r1 +1 < r.

Then Q" Aw? is the Grassmann coordinate vector of the retraction space C(I(1))
and is decomposable and non-zero. Let w? be a linear factor of Q" A w!, which is
linearly independent from w!. Then

QAW AW? =0.
Let ro be the smallest integer satisfying
Q2 AWt AW =0
so that ro < r1.

Continuing this process, we get a sequence of positive integers r > 71 > ro > ...,
which must end with zero. This means that there are linear forms w',...,w?,
linearly independent, satisfying

QAW A AW =0.

Q= Z ni AW,

1<i<gq

From this we get

where 7; are linear forms. Since Q" # 0, we must have ¢ = r and n;,w?, 1 <i <7
are linearly independent. The theorem is proved by setting

w’“'”l =T1)-

O

Remark. Theorem 1.7 is equivalent to the theorem in linear algebra on the normal
form of a skew-symmetric matrix. In fact, in terms of a base w?, 1 < i < n, of V*
we can write
Q:l/QZaijwi/\wj, a;j +aj; = 0.

,J

Let .
wizz(s};w* , 1<i,k<n
k

be a change of base. Then

Q= 1/2§:a,§lw*lc /\w*l,
where
(13) ay, = Zaijs};s{, 1<4,5,k1<n.
@]
If we introduce the matrices
A= (aij), A" =(aj;), S=1(s]),

ij %
of which A and A* are skew-symmetric, and S is non-singular, then (13) can be
written as a matrix equation

A* = SA'S, 'S = transpose of S.

Theorem 1.7 can be stated as follows: Given a skew-symmetric matrix A. Its rank
is even. There exists a non-singular matrix S, such that

0 I, 0
A=|(-1, 0 0],
0 0 0

where I, is the unit matrix of order p.
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§2. The Notion of an Exterior Differential System.

Consider a differentiable manifold M of dimension n. Its cotangent bundle,
whose fibers are the cotangent spaces T5(M), x € M, we will denote by T*M.
From T*M we construct the bundle AT* M, whose fibers are

AT = ) AT,

0<p<n

which have the structure of a graded algebra, as discussed in the last section. The
bundle AT*M has the subbundles APT* M, whose definition is obvious. Similar
definitions are valid for the tangent bundle T'M.

A section of the bundle

ANPT*M = | J AT} — M
zeM

is called an exterior differential form of degree p, or a form of degree p or simply a
p-form. By abuse of language we will call a differential form a section of the bundle
AT*M; its p-th component is a p-form. All sections are supposed to be sufficiently
smooth.

In terms of a system of local coordinates x!, ..., 2™ on M, an exterior differential
form of degree p has the expression

o= 1/p!Zai1m¢pdx“ A Adate, 1<, cip <,

where the coefficients are smooth functions and are anti-symmetric in any two of
the indices.
Let QP(M) = C*-sections of APT*M and let Q* (M) = @ QP(M).

Definition. (i) An exterior differential system is given by an ideal Z C Q*(M) that
is closed under exterior differentiation; (ii) an integral manifold of the system is
given by an immersion f : N — M such that f*a =0 for all « € Z.

By our conventions Z = @ Z7 is a direct sum of its homogeneous pieces 77 =
I NQYM), and by differentiation; and by differential closure we have da € 7
whenever o € Z. We sometimes refer to an ideal Z C Q*(M) satisfying dZ C T as
a differential ideal.

In practice, Z will be almost always generated as a differential ideal by a finite
collection {aa}, 1 < A < N of differential forms; forms of degree zero, i.e. functions,
are not excluded. An integral manifold of Z is given by an immersion

f:N—=M
satisfying f*a=0for 1 < A < N. Then
ff(BAaa) =0 and [f*(das)=0,

and so f*a = 0 for all « in the differential ideal generated by the {a4}.
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The fundamental problem in exterior differential systems is to study the integral
manifolds. We may think of these as solutions to the system

aA:0

of exterior equations. When written out in local coordinates, this is a system of
P.D.E.’s.

The notion is of such generality that it includes all the ordinary and partial
differential equations, as the following examples show:

Ezample. The second-order differential equations in the (z,y)-plane,

4’y
dx?

d
= Fla.y. 7)

can be written as an exterior differential system

dy —y'dr =0,
dy' — F(z,y,y )dz =0

in the space of the variables (z,y,y’).

Ezxample. Consider the partial differential equation of the first order

(14) F(2', 2, 8—?) =0, 1<i<n.
ox’

By introducing the partial derivatives as new variables, it can be written as an
exterior differential system

F(xia Zap’i) = 0)

(15) .
dz — Zpidx’ =0

in the (2n + 1)-dimensional space (z°, z, p;).

From these examples it is clear that any system of differential equations can
be written as an exterior differential system. However, not all exterior differential
systems arise in this way. The following example marks the birth of differential
systems:

Ezample. The equation
ar(x)dz' + -+ ap(2)dz™ = 0,2 = (2!, ..., 2"),

is called a Pfaffian equation. Pfaff’s problem is to determine its integral manifolds
of maximal dimension.

From the examples we notice two important concepts. One is an exterior differen-
tial system with independence condition (I, Q) which is given by a closed differential
ideal I together with a decomposable p-form

Q=w'A - AwP.
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An integral manifold of (I,?) is an integral manifold of I satisfying the additional
condition f*Q # 0. This is the case when we wish to keep some variables inde-
pendent, as in the case when the system arises from a system of partial differential
equations. For instance, in the second example, we take

(16) Q=dz' N Ada™.

The partial differential equation (14) is equivalent to the system with independence
condition (I,£2), where I is generated by the left-hand members of (15) and € is
given by (16). Whether an independence condition should be imposed depends on
the particular problem.

The other important concept is that of prolongation, which will be treated in
detail later on. In our first and second examples it is necessary to introduce the
derivatives as new variables. With more general systems the consideration of higher-
order derivatives becomes necessary. Thus we could be forced to introduce higher-
dimensional manifolds and related systems, the prolonged systems, whose study is
necessary for that of the given system.

§3. Jet Bundles.

A rigorous theory of differential systems depends on a foundation of differentiable
manifolds and their differentiable maps. One such foundation is provided by the
theory of jets developed by Charles Ehresmann. An introduction will be given
below.

We will give a geometric description of the spaces of partial derivatives of maps
between two differentiable manifolds. These spaces will be constructed as differ-
entiable manifolds with underlying sets given by equivalence classes of maps. The
equivalence relation will be given in a form which is clearly intrinsic by first defin-
ing it for normalized functions on the real line and then defining it for general
maps by a universal extension. The analytical content of the equivalence relations
is then exhibited by a local characterization which is in turn used to provide the
differentiable structure.

Historically these ideas were motivated by geometers studying partial differential
equations, say

F(x',...,2™, 2,02/0x",...,02/02™) = 0,

and their desire to interpret this equation as representing a hypersurface in the
space with coordinates

ot 2™, 2, 02/0xt ... 0z/0x™.

The idea behind jets is simply to give this a precise formulation.
Let R denote the real line, with the usual differentiable structure and let ¢ denote
a coordinate function in a neighborhood of the origin. If

fiR—=Randg:R—R

are two differentiable maps of the real line into itself which map the origin into the
origin, then f and g are said to have the same r-jet whenever

Py L dg
L0 =Z0),.... 2o = L.
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Now let N be a differentiable manifold, and let p € N, then a p-based parametrized
curve u, written

u: (R,0) = (N,p)

is a map of the real line into N which takes the origin of R into p and is differentiable.
Similarly, a p-based real valued function v, written

v: (N,p) — (R,0),

is a real valued function on N which maps the point p onto the origin of R and is
differentiable.
Let M and N be differentiable manifolds and let

fiN—-Mandg: N —-M

be differentiable maps of N into M. Then f and g are said to have the same r-jet
at a point p € M whenever
a) f(p) =9(p) =4
and
b) for all p-based parametrized curves u : (R,0) — (N, p),
and for all g-based real valued functions

v:(M,q) — (R,0),
the differentiable maps
vofou and wvogou

of the real line into itself mapping the origin into the origin have the same r-jet.
The relation that two maps have the same r-jet at a point p is an equivalence
relation and the equivalence class with the representative

f:N—=M
will be denoted by
Jp(f)-
The point p is called the source of j,(f) and the point f(p) is called the target

of j (f)-
We have given an intrinsic characterization of these equivalence classes. In order
to get hold of this notion we express the relation in local coordinates. Given

a=(a1,...,Qn),
we define
al=aoi!l...ap! and |a|=a1 4+ + an
and given z = (z!,...,2™) we define
@y am
x® =gt ™
and . .
1 )
po =9 oo
TPl T ggmem

with the convention that DY f = f(0).
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Proposition 3.1. Let f and g be two differentiable maps
R —=R" and ¢g:R™ —R"

mapping the origin into the origin. Let {x',... 2™} denote coordinates in a neigh-
borhood of the origin of R™ and {z',...,2"} denote coordinates in a neighborhood
of the origin of R™. These coordinates allow us to introduce real valued functions

I g by
fl@)=(f'@),....f"(x) and g(z)=(9'(x),...,9"(@)).
With these notations f and g have the same r-jet at the origin if and only if

(17) DEFiI(0) = D2g'(0) (1<i<m,|a|<r).

Proof. Assume that (17) holds and let
u: (R,0) — (R™,0)

be an arbitrary 0-based curve. Using the {z',..., 2™} coordinates we may define

Next let
v:(R"0)— (R,0)

be an arbitrary 0-based real valued function. Then repeated application of the
chain rule and the Leibniz product formula gives rise to an equation

d* 3 o d'u
%U © f © U’lt=0 = F(DZ’U(O), Dxf(o)a dt—,y(o))a |Oé|, |6|57 S T,

where F' is a constant coefficient polynomial in the indicated indeterminates. It
follows that

d d
T v Foulimo = P(D2u(0), DS £(0), 2 4(0)
d
= F(D0(0), Dg(0), 52(0))

dk
= %U ° g ouli=o

for k < r, which verifies that f and g have the same r-jet at 0.
Conversely let us assume that

Jo(f) = Jo(9)-

Then if we take
u: (R,0) — (R™,0)
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to be the 0-based parametrized curve defined by

u(t) = (&1t, ..., &mt)
with & € R, 1 <1i <m and take
v : (R™,0) — (R,0)
to be the 0-based real valued function defined by projection on the j-th coordinate,
- vt 2 =2, 1<j<n
then by hypothesis

k. k.
%f](glta"wgmt):%gj(glta--wgmt)a k<r,

which implies

8kfj N ; 8kgj . )
3 g g O € = 3 gt 8

it i = ke

Since this last equation holds for all real &, ..., &,, the corresponding coefficients
must be equal, that is

DIfI(0)=DIg’(0), 1<j<n, |B<r

as claimed.
In order to carry this last result over to the general situation
f
)

we introduce coordinates hyy with p the origin, and hy with ¢ the origin and define

f
(R™,0) — (R™,0)

9

by
7=hvofoh51 and EZhVogohal.

Clearly we have jy (f) = j;(g) if and only if
76(f) = 45 (3)-

Now let J; (N, M) denote the set of all r-jets of mappings from N into M with
source p and target q. Then define the set

J(NM)= ) Ty, (N M).
pEM,qgeN
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We introduce the natural projections
a:J(NM)— N and B:J(N,M)— M

defined by
a(jy(f)) =p and B(j,(f)) = f).

Matters being so, if {U*} denotes a coordinate covering of N and {V#} denotes
a coordinate covering for M, then we define a topology on the set J"(N, M) by
prescribing a coordinate covering to have underlying open sets

WY = {5, (f) [ (f) € UY and B(j;(f) € VM.

Now if {z!,...,2™} denote the coordinate functions on U* and {z,...,2"}
denote the coordinate functions on V#, then Proposition 3.1 implies that we may
define a coordinate system on W * by
(18)
h(ip(f) = (@*(p), 2’ (f(p)), DZ (20 f)(p)), 1<i<m, 1<j<n, 1<[a[<T.

We will call these coordinates the natural coordinates on the jet space.

The Leibniz product formula together with the chain rule guarantee that a dif-
ferentiable change of local coordinates in U* and in V# will induce a differentiable
change of local coordinates in J"(N, M). The fact that this change of local coor-
dinates has non-zero Jacobian determinant follows from the fact that the matrix is
block upper triangular with the diagonal blocks given by symmetric powers of the
Jacobian of the original coordinate change. Thus we have defined a differentiable
structure on J"(N, M).

The next natural question is to determine the dimension of J"(N, M) in terms
of the dimensions of N and M.

A real valued function on an m-dimensional manifold N

f:N—=R

has as many derivatives of order i as there are independent homogeneous polyno-
mials of degree 7. This number is

m+i—1\ [(m+i—-1
m—1 o 7 '
The total dimension of J"(N,R) is thus given by
~(m+i—1 ~(m+i—1 m-+r
m+1+§;( : >:m+§;( : >:m+(r>.
1= 1=

Now each coordinate function in a target space M will give rise to an independent
set of derivatives, thus

dim J"(N, M) = dim N + dim M (dlmJXJ”) .



83. Jet Bundles 21

Example. J?(R?,R)
Let (x,y) denote coordinates on R? and z a coordinate on R. Let

and

r(32, (1) = 82 F/0x?, (52, ) (f)) = 82 f/0xdy,

Then
W5y () = (2,9, 2,0, 4,7, 5, 1)

defines the natural coordinates for J!(R? R).
If we introduce a change of coordinate on R? by

S(x,y) = (&(x,y),n(x,y)),

then this induces a transformation of the derivatives. In fact

| s | HS)N |
t = t ’
! () .
q q
where
0%¢/0x*  9%*n/ox*
_ (0§/0x On/ox _ 2 2
o= (3 50%) o= (i )
and
(0¢/0x)? 20¢/0x On/ox (On/0z?)
S(I(S)(S) = | 06/01 0€/0y  0€/0w OnJOy + € /Dy Ou/0x  On/0x Onjdy |
(0¢/0y)? 20¢ /0y dn/dy (On/0y)?

A good viewpoint to keep in mind is that
J'(N,M)— N x M,

that is, J" (N, M) sits over N x M, and the coordinate transformations on N x M
induce the action of a linear group on the set of elements in the inverse image of a
point.

The notion of jet bundles allows us to formulate general problems in differential
geometry. As an example we observe that a partial differential equation for maps

f:N—=M
can be described by an imbedded submanifold

i:% = J(N,M).
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A solution is a map f: N — M such that for all p € N
Jp(f) €i(X).
We introduce the r-graph of a map f
J"(f): N — J(N,M)
by the definition
J"(Np) =y (f)-

Then the problem of finding solutions to a partial differential equation is the prob-
lem of finding maps whose r-graphs lie on the locus i(X) of the partial differential
equation. This will be illustrated in Chapters IX and X.

Several standard constructions of differential geometry fit into the language of
jet bundles. For example the cotangent space T, (N) for p € N is defined by

T: (N) = JL4 (N, R)

and the differential of a real valued function f : N — R at p € N is defined by

dflp = jp(f = f(p))-

The vector space structure on 7, () is intrinsically induced from the real line by

ajy(f) + Bip(9) = jplaf + Bg).
The tangent space T,,(N) for p € N is defined as the space of linear functionals on
T(N) and is realized by
TP(N) = ‘]&,p(Ra N)
under the action
(o (w), 4, () = d/dt(f o u)|i=o.
In particular the cotangent bundle is defined by
= |J T;(N) c JY(N,R)
peM
and the tangent bundle is defined by
= nw) cJ' (R, N).
pem
Finally we wish to introduce the contact system Q7 (N, M) of a jet bundle
J"(N, M). By a change of notation we can write the natural coordinates in (18) as
(19) xi(p)aza(f(p))ap?ap?;iw"'7pf?;mir
1<3,1,..,.<m, 1<a<n,

where the p’s are the partial derivatives with respect to the z%’s, up to the order r
inclusive, and are symmetric in their lower indices. The Pfaffian equations

— Y p&dat =0,
(20) dpf, — P, de =
Apg: iy = 2Dy i, ATt =
define the contact system Q"(N, M). A form in Q"(N, M) is called a contact form.
The forms (20) are those that naturally arise when a system of partial differential

equations is converted to an exterior differential system. The fundamental property
of these systems is contained in the following theorem.
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Theorem 3.2. A section o : N — J"(N, M) is a r-graph, that is o(p) = j, (f), if
and only if
o Q" (N, M) = 0.

A proof of this theorem and an intrinsic treatment of the contact system can
be found in various sources, cf. Gardner and Shadwick [1987] or Goldschmidt and
Sternberg [1973].
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CHAPTER II

BASIC THEOREMS

In this chapter we consider classical results on simple exterior differential systems
that can be established by algebra and ordinary differential equations. In particular
these results hold in the C'*°-category. This is to be contrasted with later results
that rely on the Cartan—Kéahler theorem and hold in the analytic category.

§1. Frobenius Theorem.

Perhaps the simplest exterior differential systems are those whose differential
ideal 7 is generated algebraically by forms of degree one. Let the generators be

which we suppose to be linearly independent. The condition that Z is closed gives
(F) da'=0, modal,...,a" ™", 1<i<n-—r.

This condition (F) is called the Frobenius condition. A differential system

1.2 " =0

satisfying (F') is called completely integrable.

Geometrically the a’s span at every point x € M a subspace W, of dimension
n — r in the cotangent space T(M) or, what is the same, a subspace W of
dimension 7 in the tangent space T,. Following Chevalley, such data is known
as a distribution. Notice that the condition (F') is intrinsic, i.e., independent of
local coordinates, and is also invariant under a linear change of the a’s with C°°-
coefficients.

The fundamental theorem on completely integrable systems is:

Theorem 1.1 (Frobenius). Let Z be a differential ideal having as generators the
linearly independent forms o', ..., a™~" of degree one, so that the condition (F) is
satisfied. In a sufficiently small neighborhood there is a coordinate system y', ..., y"
such that I is generated by dy"t', ..., dy"™.

Proof. We will prove the theorem by induction on r. Let » = 1. Then the subspace
WL C Ty, x € M, is of dimension 1. Relative to a system of local coordinates ',
1 <4 < n, the equations of the differential system is written in the classical form

det  da”
X)) Xn(a)
where the functions X*(z!,...,2™), not all zero, are the coefficients of a vector field

X =Y, X(2)0/dz" spanning W;-. By the flow box coordinate theorem (Warner
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[1971], p. 40), we can choose coordinates y!,...,y", such that W is spanned by
the vector 9/9y'; then W, is spanned by dy?,...,dy". The latter clearly form a
set of generators of Z. Notice that in this case the condition (F) is void.
Suppose 7 > 2 and the theorem be true for »r — 1. Let 2%, 1 < i < n, be local
coordinates such that
al,. AT da”

are linearly independent. The differential system defined by these n — r + 1 forms
also satisfies the condition (F'). By the induction hypothesis there are coordinates
y® so that

dy”,dy™, . dy"

are a set of generators of the corresponding differential ideal. It follows that dz" is
a linear combination of these forms or that x” is a function of y", ..., y"™. Without
loss of generality we suppose

ox" /0y" # 0.
Since B B
. r X +i .
dz" = 8y’“dyr+z 8y’“+1dyr tol<i<n—r
K3
we may now solve for dy” in terms of dx” and dy"+',...,dy". Since a',..., o™ "
are linear combinations of dy”, ..., dy"™ they can now be expressed in the form

ol = Zaédyr"’j +blde”, 1<i,j<n-—r.
J

Since o’ and dz" are linearly independent, the matrix (aé) must be non-singular.

Hence we can find a new set of generators for I in the form

ot =dy" 4 plda”, 1<i<n-—r,
and the condition (F') remains satisfied. Exterior differentiation gives
17 % T 8pi A T /1 m—r
da* =dp* Ndx" = Z dy* Ndz" =0, moda'",...,« .

I
1<A<r—1

It follows that
o)y =0, 1<i<n-—r, 1<A<r—1,

which means that p’ are functions of 4", ...,3". Hence in the y-coordinates we
are studying a system of n — r forms of degree one involving only the n — r + 1
coordinates 4", ...,y". This reduces to the situation settled at the beginning of
this proof. Hence the induction is complete. O

The theorem gives a “normal form” of a completely integrable system, i.e., the
system can be written locally as

dy ™t =...=dy" =0
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in a suitable coordinate system. The maximal integral manifolds are

y" ™ = const,...,y" = const,

and are therefore of dimension r. We say that the system defines a foliation, of
dimension r and codimension n — r, of which these submanifolds are the leaves.

The simplest non-trivial case of the Frobenius theorem is the system generated
by a single one form in three space. Thus

T ={Rdx + Sdy + Tdz}

and the condition (F') are the necessary and sufficient conditions that there exist
an integrating factor for the one form w = Rdx + Sdy+ T'dz. That is there exists a
function p such that pw is exact. This example will be considered when condition
(F) is not identically satisfied in Example 5.11 of Chapter IV.

The condition (F') has a formulation in terms of vector fields, which is also
useful. We add to a',...,a” " the r forms a™ "1, ..., a™, so that a’, 1 <i < n,
are linearly independent. Then we have

(1) do/zl/ZZcﬁ-koﬂ'/\ak, 1<4,j,k<mn, cﬁ-k—l—c};jzo.
gk
The condition (F') can be expressed as

(2) =0, 1<a<n—7r, n—r+1<pqg<n.

Let f be a smooth function. The equation
(3) df =) (Xif)a!

defines n operators or vector fields X;, which form a dual base to a*. Exterior
differentiation of (3) gives

1/2> (XX () = X5(Xs (M) Aa? + > Xi(f)da’ = 0.
W] J
Substituting (1) into this equation, we get
(4) (X0, X)1f = (XX = X;X3) f = =Y X f.

It follows that the condition (2) can be written

(5) [Xanq]f:_ZC;qufa n_r_‘_lgpaanSn

Equation (4) is the dual version of (1). The vectors X,,_,11,..., X, span at each
point 2 € M the subspace W of the distribution. Hence the condition (F) or (2)
or (5) can be expressed as follows:

Proposition 1.2. Let a distribution M be defined by the subspace W;- C Ty,
dimW;- = r. The condition (F) says that, for any two vector fields X,Y, such
that X,,Y, € W, their bracket [X,Y], € W;.
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§2. Cauchy Characteristics.

The Frobenius Theorem shows that a completely integrable system takes a very
simple form upon a proper choice of the local coordinates. Given any exterior
differential system, one can ask the question whether there is a coordinate system
such that the system is generated by forms in a smaller number of these coordinates.
This question is answered by the Cauchy characteristics. Its algebraic basis is the
retraction theorem (Theorem 1.3 of Chapter I).

Let Z be a differential ideal. A vector field & such that £ 1Z C 7 is called a
Cauchy characteristic vector field of Z. At a point x € M we define

AD)y = {& € TuM | &, 1T, C T}

and C(Z), = A(Z)} C T:M. These concepts reduce to the ones treated in §1,
Chapter I. In particular, we will call C(Z), the retracting space at z and call
dim C(Z), the class of T at x. We have now a family of ideals Z, depending on
the parameter z € M. When restricting to a point z we have a purely algebraic

situation.

Proposition 2.1. If £, 1 are Cauchy characteristic vector fields of a differential
ideal T, so is their bracket [, 7).

Proof. Let L¢ be the Lie derivative defined by £. It is well-known
Le = d(§J) + (§)d.

Since 7 is closed, we have dZ C Z. If £ is a characteristic vector field, we have
§1Z CT. It follows that L¢Z C Z. The lemma follows from the identity

(6) [Le;n ] = Lend—nd Le = [€ ],

which is valid for any two vector fields &, 7.

To prove (6) we observe that L¢ is a derivation of degree 0 and 7! is a derivation
of degree —1, so that [L¢, n] is also a derivation of degree —1. It therefore suffices
to verify (6) when the two sides act on functions f and differentials df. Clearly,
when acting on f, both sides give zero. When acting on df, we have

[Le,nldf = Le(nf) —nJd(Ef)
=[&nlf = [ n L df.

This proves (6) and hence the proposition. O

Theorem 2.2. LetT be a finitely generated differential ideal whose retracting space
C(Z) has constant dimension s = n — r. Then there is a neighborhood in which
there are coordinates (z',...,x"; y*,...,y°) such that T has a set of generators
that are forms in y',...,y° and their differentials.

Proof. By Proposition 1.2 the differential system defined by C(Z) (or what is the
same, the distribution defined by A(Z)) is completely integrable. We may choose
coordinates (z!,...,2"; y*,...,9°) so that the foliation so defined is given by

(o}

Yy’ = const, 1<o<s.
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By the retraction theorem, 7 has a set of generators which are forms in dy?, 1 <
o < s. But their coefficients may  involve  zP,
1 < p < r. The theorem follows when we show that we can choose a new set
of generators for 7 which are forms in the y° coordinates in which the z” do not
enter. To exclude the trivial case we suppose the 7 is a proper ideal, so that it
contains no non-zero functions.

Let Z, be the set of g-forms in Z, ¢ = 1,2,.... Let ',... P be linearly
independent 1-forms in Z; such that any form in Z; is their linear combination.
Since T is closed, dp® € Z, 1 < i < p. For a fixed p we have % € A(Z), which
implies
O gt = Ly € T
B $ = LgjozeP € L1,

since the left-hand side is of degree 1. It follows that

Oyt
ozP

(7)

= Lo/oar ' = Za%j, I1<u,j<p
J

where the left-hand side stands for the form obtained from ¢’ by taking the partial
derivatives of the coefficients with respect to x”.

For this fixed p we regard a2 as the wvariable and
b xPert 2"yt ..., y° as parameters. Consider the system of ordi-
nary differential equations

dz’
dxP

(8)

=> a2, 1<ij<p.
J
Let zzk), 1 < k < p, be a fundamental system of solutions, so that

det(sz)) #0.
We shall replace ¢* by the @F defined by
(9) o' =2k @k
By differentiating (9) with respect to z” and using (7), (8), we get

og* _
dxr

?

so that @* does not involve z”. Applying the same process to the other x’s, we
arrive at a set of generators of Z; which are forms in .

Suppose this process carried out for Zy,...,Z,_1, so that they consist of forms
in y?. Let Jy;—1 be the ideal generated by Zi,...,Z4—1. Let ¥* € Z,, 1 < a <
7, be linearly independent mod J,—1, such that any g-form of 7, is congruent
mod J,;—1 to a linear combination of them. By the above argument such forms
include

0
B A
D dyp 8/0xr
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Hence we have
8 «
%E g bgwﬁ, mod J4—1, 1<a,8<

By using the above argument, we can replace the ¥ by ¢? such that

o

oxP

€ Jg-1-
This means that we can write

o
oxr = an A wg’
h

where njy € 7y U---UZ,_; and are therefore forms in y?. Let 6; be defined by

00y o
dar

Then the forms

~

F=ge - e
h

do not involve z”, and can be used to replace ¥®. Applying this process to all x”,
1 < p<r, wefind a set of generators for Z,, which are forms in y” only. O

Definition. The leaves defined by the distribution A(Z) are called the Cauchy char-
acteristics.

Notice that generally r is zero, so that a differential system generally does not
have Cauchy characteristics (i.e., they are points). The above theorem allows us
to locally reduce a differential ideal to a system in which there are no extraneous
variables in the sense that all coordinates are needed to express 7 in any coordinate
system. Thus the class of Z equals the minimal number of variables needed to
describe the system.

An often useful corollary of Theorem 2.2 which illustrates its geometric content
is the following:

Corollary 2.3. Let f : M — M’ be a submersion with vertical distribution V C
T(M) with connected fibers over x € M’ given by (ker f.)z. Then a form « on M
is the pull-back f*a’ of a form o/ on M' if and only if

vlda=0 and vlda=0 foral vevV.

Proof. By the submersion theorem (Warner [1971], p. 31), there are local coordi-
nates such that
flt, . a2y = (2. 2P).

0 0
VZ(ax—+ax—N>

As such
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Now setting Z = («), we see that V' C A(Z). Therefore, by Theorem 2.2 there
exists a generator for Z independent of (zP*! ... zV), and hence of the form f*a’
with o’ € M’. Thus there is a function p such that

/,I/Oé — f* O/I.
Since
0=vd(duna” +pudd")=v(p)a” forall veV,
we see that y is independent of (zP*1, ..., z™V) and hence = Ao f for some function
A defined on M’. Setting o/ = £’ we have our result that a = f*(a/). O

We will apply this theorem to the first order partial differential equation
F(2',2,02/0x") =0, 1<i<n.
Following the example starting with §2 equation (14) of Chapter I, the equation

can be formulated as the differential system (15), §2, Chapter I. To these equations
we add their exterior derivatives to obtain

F(z',2,p:)) =0
dz — Zpidxi =0
> (Fyi + Fupi)da® + ) Fpdpi =0

dei/\dpi =0.

These equations are in the (2n+1)-dimensional space (¢, z, p;). The corresponding
differential ideal is generated by the left-hand members of (10).
To determine the space A(Z) consider the vector

&= Z u'0/0x" +ud/dz + Z v;0/0p;

and express the condition that the interior product £ | keeps the ideal Z stable.
This gives

U — Zpiui =0,
(11) > (Fui + Fapi)u' + Fpv; =0,
Z(uidpi —vidz') = 0.
Comparing the last equation of (11) with the third equation (10) we get
(12) u' = Ay, vi = =AN(Fyi + Fapi),

and the first equation of (11) then gives

(13) u=X\> piFp,.
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The parameter A being arbitrary, equations (12) and (13) show that
dim A(Z) = 1, i.e., the characteristic vectors at each point form a one-dimensional
space. This fundamental (and remarkable) fact is the key to the theory of par-
tial differential equations of the first order. The characteristic curves in the space
(2%, z, p;), or characteristic stripsin the classical terminology, are the integral curves
of the differential system

dx? dp; d
(14) e @ %
Fpa‘, Fyi+ F.pi Zpini

These are the equations of Charpit and Lagrange. To construct an integral manifold
of dimension n it suffices to take an (n—1)-dimensional integral manifold transverse
to the Cauchy characteristic vector field (or non-characteristic data in the classi-
cal terminology) and draw the characteristic strips through its points. Putting it
in another way, an n-dimensional integral manifold is generated by characteristic
strips.
We remark that points in (2%, p;)-space may be thought of as hyperplanes >~ p;dz* =

0 in the tangent spaces T (R™). A curve in (z%, 2, p;)-space projects to a curve in
(2%, p;)-space, which is geometrically a 1-parameter family of tangent hyperplanes.
This is the meaning of the terminology “strips”.

Ezample. Consider the initial value problem for the partial differential equation

0z 0z .
o + oy
with initial data given along y = 0 by z(z,0) = /z.
Let us introduce natural coordinates in J*(2, 1) by (x,y, z, p, ¢). This initial data
D : R — R? x R where D(z) = (x,0,+/7) is extended to a map 6 : R — J?(2,1)
where the image satisfies the equation and the strip condition

1
2\/x

here p = ﬁ and g =1—2p = % and 0 is unique. (For the general non-linear

0=06*(dz — pdx —qdy) = dr — pdx

equation, there can be more than one choice of §.) The extended data becomes

1
) = 0 —.1/2).
(@) = (#.0.VE 3= 1/2)
If we parametrize the equation by i : ¥ — J*(2,1) where i(z, y, z,p) = (v,9,2,p, 1 —
zp), then the data can be pulled back to a map A : R — X, where A(s) =
(Sa 0, \/ga QL\/;)

The Cauchy characteristic vector field is

0 0 0 5 0
X_Z%_‘_a_y_‘_&_pa_p

and the corresponding flow is given by

dz dy dz dp 9
at a0 ar 0 dt



32 II. Basic Theorems

The solution for the given data representing the union of characteristic curves along

the data is )
t
r=S+(Ve)tit+s y=t z=i+s

and eliminating s and ¢ gives an implicit equation for z(z, y), namely

) 2
Zoay=z— o

Note that only the upper branch of the double-valued solution

oy E e —y?
=0

z

actually satisfies the initial conditions.

Next we wish to apply the Cauchy characteristics to prove the following global
theorem:

Theorem 2.4. Consider the eikonal differential equation
(15) D (0z/0x')* =1 1<i<n.

If 2 = z(@'...,2") 4s a solution walid for all (z',...,2") € E"
(= n-dimensional euclidean space), then z is a linear function in x*, i.e.,

z= Z a;z" + b,
where a;, b are constants satisfying > a3 = 1.

Proof. We will denote by E"*! the space of (x!,...,2", 2), and identify £ with
the hyperplane z = 0. The solution can be interpreted as a graph I' in E"*! having
a one-one projection to E™. For the equation (15) the denominators in the middle
term of (14) are zero, so that the Cauchy characteristics satisfy

p; = const.

The equations (14) can be integrated and the Cauchy characteristic curves, when
projected to E™*!, are the straight lines

(16) ot =+ pit, 2= 20+t

where x}, p;20 are constants. Hence the graph I' must have the property that it is
generated by the “Cauchy lines” (16), whose projections in E™ form a foliation of
E™.

Changing the notation in the first equation of (16), we write it as

o =t 02 t
N Ozt
where z = z(z!,...,2") is a solution of (15). For a given t € R this can be

interpreted as a diffeomorphism f; : E™ — E™ defined by

file)=2"=(z*,...,2"), =z,z"€E"
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Geometrically it maps x € E™ to the point 2* at a distance t along the Cauchy line
through z; this makes sense, because the Cauchy lines are oriented. Its Jacobian
determinant is

i 0%z
J(t) = det (6j + DB t>

and is never zero. But this implies

0%z
(17) Oxidri 0

and hence that z is linear. For if (17) is not true, then the symmetric matrix
(0?2/02°0x7) has a real non-zero eigenvalue, say A, and J(—1/)) = 0, which is a
contradiction. O

1/2
z= (Z(Jﬁ’)2>

%

Remark. The function

satisfies (15), except at #' = 0. Hence Theorem 2.3 needs the hypothesis that (15)
is valid for all z € E™.

§3. Theorems of Pfaff and Darboux.

Another simple exterior differential system is one which consists of a single equa-
tion

(18) a =0,

where a is a form of degree 1. This problem was studied by Pfaff [1814-15]. The
corresponding closed differential ideal Z has the generators «,da. The integer r
defined by

(19) (da)" Ao #0, (da)" ' Aa=0

is called the rank of the equation (18). It depends on the point z € M, and is
invariant under the change

a—ax, a#0.

Putting it in a different way, the two-form da mod «, has an even rank 2r in the
sense of linear algebra.

The study of the integral manifolds of (18) is clarified by the normal form, given
by the

Theorem 3.1 (The Pfaff problem). In a neighborhood suppose the equation (18)
has constant rank r. Then there exists a coordinate system w', ..., w™, possibly in
a smaller neighborhood, such that the equation becomes

(20) dw? + w2dw? 4+ 4 w2 dw? ! = 0.
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Proof. Let T = {«, da} be the ideal generated by «, da. By Theorem 1.5 of Chap-
ter T and (19), the retraction space C(Z) is of dimension 2r + 1 and has the Grass-
mann coordinate vector (da)” A a. By Theorem 2.2 there is a function f; such
that

(da)" ANaAdfy =0.

Next let Z7 be the ideal {dfi,a,da}. If r = 0, our theorem follows from the
Frobenius theorem. If » > 0, the forms df; and a must be linearly independent.
Applying Theorem 1.5, Chapter I to Z1, let 71 be the smallest integer such that

(doa)™ T A Adfy = 0.

Clearly 71 +1 < r. The equality sign must hold, as otherwise we get a contradiction
to the first equation of (19), by Theorem 1.6, Chapter I. Applying Theorem 2.2 to
74, there is a function fo such that

(doa)" Y Aa Adfy Adfs = 0.
Continuing this process, we find r functions fi, ..., f, satisfying

daNaANdfi A---ANdf, =0,
aANdfy A--- Ndf,. # 0.

Finally, let Z, be the ideal {df1,...,df., a, da}. Its retraction space C(Z,) is of
dimension r + 1. There is a function f,4; such that

aANdfi A+ Ndfry1 =0,
dfy A+ ANdfry1 #0.

By modifying a by a factor, we can write
o =dfry1+ gudfi + -+ grdfy.

Because of the first equation of (19) the functions fi,..., fry1, 91, .., gr are inde-
pendent. Theorem 3.1 follows by setting

1 21 2i+1 .
w:fT-i-l) wz:g’i) 'LU’L+ :f’i) 1SZST-

O
Corollary 3.2 (Symmetric normal form). In a neighborhood suppose the equation
(18) has constant rank r. Then there exist independent functions z, y',...,y",
2, ...,z such that the equation becomes
T
(21) dz+1/2 z:(y’clat:z —z'dy") = 0.
i=1

Proof. 1t suffices to apply the change of coordinates

1 o
wl =z — 523:’3;’,

w? =y, wrtl=2g 1<i<nr.
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O

From the normal form (20) we see that the maximal integral manifolds are of
dimension r. They are, for instance, given by

wh = f(wd, ..., wdth, s<r

witl = const, w2t arbitrary, s+ 1<t<r.

Related to the Pfaffian problem are normal forms for the forms themselves and

not the ideals generated by them. For one-forms and closed two-forms we have the
following theorems.

Theorem 3.3 (Darboux). Let Q be a closed two-form satisfying
Q" 40, QT =0, r = const.
Locally there exist coordinates w', ..., w™ such that

(22) Q = dw* Adw? 4 -+ dw* ! A dw®".

Proof. We put 2 = da, where « is a one-form. The argument in the proof of Theo-
rem 3.1 applies, and we can suppose a to be a form in the 2r variables ', ..., 7%".
In 2r variables the Pfaffian equation o = 0 must be of rank < r —1, and is exactly
equal to 7 — 1, because 2" # 0. Hence we can set

a = u(dzl 224 ZQT_QdZQT_l),
or, by a change of notation
a=w'dw’+- - +w dw.

This gives the Q in (22). Since Q" # 0, the functions w!, ..., w?" are independent
and are a part of a local coordinate system. O

Consider next the case of a one-form a. The rank r is defined by the conditions
A(da)" #0, aA(da)™ =0.
There is a second integer s defined by
(da)® #0, (da)** =0.
Elementary arguments show that there are two cases:

i) s=m
(i) s=r+1.
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Theorem 3.4. Let a be a one-form. In a neighborhood suppose r and s be constant.
Then « has the normal form
(23a) a=y0dy' + -+ ydy* T, ifr+1l=s;
(230) a=dy' +1Pdy’ +- - +yTdy T, ifr=s.
In these expressions, the y’s are independent functions and are therefore parts of a
local coordinate system.
Proof. Let T be the differential ideal generated by « and da. By Theorem 3.1 there
are coordinates y', ..., y" in a neighborhood such that
a = ’U,(dyl + deyS + . +y2rdy2r+l).
A change of notation allows us to write
o = zodyl 4 Z2dy3 R ZQrdyQT—i-l.
Then

(da)™ = cd2® Ady' NdZ2 ANdyP Ao ANdZ2T A dy*T, ¢ = const. ¢ # 0.

If s = r 41, this is # 0, and the functions 2°,22,..., 22",y 93, ..., y*" ! are
independent. This proves the normal form (23a).

Consider next the case r = s. Then da is a two-form of rank 2. By Theorem 3.3
we can write

da = dw' Adw? + - + dw? 1 A dw®
= d(wdw?® + - - - + w* " tdw?).

Hence the form
o — (wlde 4+t w2r—1dw2r)

is closed, and is equal to dv. A change of notation gives (23b). ([

Remark. A manifold of dimension 2r + 1 provided with a one-form «, defined up
to a factor, such that

A (de)"” # 0,

is called a contact manifold. An example is the projectivized cotangent bundle of
a manifold, whose points are the non-zero one-forms on the base manifold defined
up to a factor. A manifold of dimension 2r provided with a closed two-form of
maximum rank 27 is called a symplectic manifold. An example here is the cotangent
bundle of a manifold. In terms of local coordinates z,..., 2" on an r-dimensional
manifold M, points in the projectivized cotangent bundle PT* M are non-zero 1-

forms
K
n=>_ pida’,
i=1
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where we identify n and An for A # 0. In a neighborhood in PT*M in which, say,
p1 # 0 we may normalize by taking p; = —1. Then (x',..., 2", pa,...,p,) are local
coordinates on PT™* M in terms of which

T
n=—dz' + Zpidxi.

=2

If we normalize differently on change of local coordinates on M, 1 changes by a
non-zero factor. It then defines the contact structure on PT*M.
The symplectic structure on T*M is given locally by

Z dp; A dzt.

It is invariant under changes of coordinates on M. Both contact manifolds and
symplectic manifolds play a fundamental role in theoretical mechanics and partial
differential equations. Unlike Riemannian manifolds they have no local invariants.

Remark. Darboux’s Theorem 3.3 has been generalized in several directions, in par-
ticular to Banach manifolds, by Weinstein [1971].

Finally, we wish to make an application of the normal form in Corollary 3.2 to
prove a theorem of C. Caratheodory on local accessibility, which played a funda-
mental role in his “foundations of thermodynamics” (Caratheodory [1909]) and is
now of equal importance in control theory. We say that the Pfaffian equation (18)
has the local accessibility property if every point x € M has a neighborhood U such
that every point y € U can be joined to = by an integral curve of (18). Then we
have

Theorem 3.5 (Caratheodory). Suppose the rank of the Pfaffian equation
a=0
be constant. It has the local accessibility property if and only if

aANda#0.

Proof. The condition is equivalent to saying that the rank r defined in (19) is > 1.
Suppose r = 0. This means that the Frobenius condition is satisfied and the
equation can locally be written
dz = 0.

Thus the integral curves are restricted to the leaves z = const, and local accessi-
bility is impossible.

For r > 1 we use the normal form (21), by supposing that the local coordinates
be z,z', 4yt ..., 2", y",ul, ..., u® where 2r4+s54+1 =n = dim M. Let x be the origin
and let y have the coordinates (20,28, yd, -\ @5, U5, uds -« -, ug). In the (zf y*)-
plane, 1 <i <7, let C; be the curve (2%(t),y*(t)), 0 < t < 1, satisfying
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Consider the function

z(t)z%/ot 3

1<i<lr

syt dat

On the curves C; we impose the further condition
2(1) = 2o,

which is clearly possible. Geometrically this means that zg is the sum of the areas
bounded by the curves C; and the chords joining their end-points. The curve v in
M defined by

(@), 2" @), y' (), ..., 2" (), ¥ (), tug, - ., tuf), 0<t <1,

is an integral curve of (21) and joints z to y. O

Note that the accessibility is by smooth curves, is constructive with an infinite
number of solutions, and is valid in the largest domain in which the normal form can
be constructed. The theorem was extended by Chow [1940] to finitely generated
Pfaffian systems with certain constant rank conditions.

t4. Pfaffian Systems.
A Pfaffian system is a differential system
(24) al=...=a*=0,

where the a’s are one-forms. We suppose them to be linearly independent and
s = const. We will denote the Pfaffian system by I and call s its dimension. The
first properties will be described by the two-forms

(25) do’ mod (at,...,0*) 1<i<s.

The Frobenius condition is equivalent to saying that they are zero. We shall consider
the general case and study their properties.

Geometrically the a’s span at every point € M a subspace W of dimension s
in the cotangent space 7)), or equivalently, a subspace W, = (W;)L of dimension
n—s (n=dim M) in the tangent space T,,. They form a subbundle of the tangent
bundle. Already in the case of the Pfaffian problem (s = 1), we have shown that
there is a local invariant given by the rank. In the general case the local properties
could be very complicated. In this and the next sections we shall single out, after
a general discussion, some of the simple cases and give some applications.

We can view I C Q'(M) as the sub-module over C*°(M) of 1-forms

Q@ ZZinéi
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where the f; are functions. We denote by {I} C Q*(M) the algebraicideal generated
by I. Thus 8 € {I} is of the form

B=vnad
i

where the ~; are differential forms. The exterior derivative induces a mapping

§: 1 — Q*(M)/{I}
that is linear over C*°(M). We set

IV = ker§
and call IV the first derived system. We thus have
0—1U 1 % a1/{1} — o0,

and I") = I exactly in the Frobenius case. Now I is the space of C'* sections of a
sub-bundle W C T*M with fibres W, = span(al(z),...,a*(z)). The images of

W @ AYT*M — AT T M

are sub-bundles Wt ¢ A9T'T*M, and the mapping § above is induced from a
bundle mapping

WS AT MW

We assume that § has constant rank, so that I(!) is the sections of a sub-bundle
WicWcCcT*M.
Continuing with this construction we arrive at a filtration

(26) IMc...cr®cr®cr®=r,

defined inductively by
T+ ([(k))(l).

We assume that the ranks of mappings § are all constant, so that the above filtration
corresponds to a flag of bundles

WecC---CWeCW; CW.
There will then be a smallest integer N such that W1 = Wh, i.e.
TN+ — (N)

We call (26) the derived flag of Iy and N the derived length. Note that TN is the
largest integrable subsystem contained in I. We also define the integers

po = dim I(N)
(27) Py, =dim I /70D 0 <j < N —1,
=dimC(I)/I.

Py
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These are called the type numbers of I. Our hypothesis says that they are all
constants. The type numbers are not arbitrary; there are inequalities between
them. Cf. Gardner [1967].

An integral manifold of I annihilates all the elements of its derived flag, and in
particular those of (™). A function g with differential dg € IN) is called a first
integral of I, since it is constant on all integral manifolds of 1.

There are two other integers, which can be defined for a Pfaffian system I. The
wedge length or the Engel half-rank of I is the smallest integer p such that

(da)?™ =0 mod {I} foralla € I.

The Cartan rank of I is the smallest integer v such that there exist 7',..., 7% in

QY(M)/I with
A ATU#£0

and
daAT' A A" =0 mod {I} forallacl.

We will suppose that both p and v are constants. The following theorems are simple
properties concerning the wedge length and the Cartan rank:

Proposition 4.1. Let I be a Pfaffian system and p its wedge length. Then all
(p + 1)-fold products of the elements in dI mod {I} are zero.

Proof. If I is given by the equation (24), an element of the module I is
a=tiat + - Fta,
where the t’s are arbitrary smooth functions. The hypothesis implies
(trdat 4 -+ tyda®)P™ =0 mod {I},

where the t’s can be considered as indeterminates. Expanding the left-hand side
of this equation and equating to zero the coeflicients of the resulting polynomial in
the t’s, we prove the proposition (Griffin [1933]).

Proposition 4.2. Between the wedge length p and the Cartan rank v the following

inequalities hold:

(28) p<v<2p.

Proof. The condition that da A7t A--- A7¥ =0 mod {I} for all & € I can be
written
da=0 mod {I,7*,...,7"}.

Hence
(da)*™ =0, mod {I},

so that p < w.
To prove the inequality at the right-hand side we notice that by the definition
of p there exists n € I such that

(dn)? #0, and (dn)*™ =0 mod {I}.
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By Theorem 3.3, (dn)? is a monomial of degree 2p. Moreover, by Proposition 4.1,
we have
daA(dn)” =0 mod {I} forallael.

It follows that v < 2p. O

Remark. The bounds for v in (28) are sharp. The lower bound is achieved by
a system consisting of a single equation. To achieve the upper bound consider in
R3P3 with the coordinates (z1x, Tak, T3k, y*, ¥, 3°), 1 < k < p, the Pfaffian system

o =dy' + Z TordTsg
%

o =dy? + ) wspdra,
k

o’ =dy® + Z T1kdToy.

This system has v = 2p.

Proposition 4.3. With our notations the following inequalities hold:

(29) s+20<dimC(I) < s+ p+pyp.

Proof. We remark that C(I) is the retracting subspace of I. By the definition of p
the left-hand side inequality is obvious.
To prove the inequality at the right-hand side we recall that by (27)

py =dimI/I.
We choose a basis of I such that
(da')? #0 mod {I}.
But the left-hand side is a monomial (Theorem 3.3), which we can write as
(da')? =B A---AB* #0 mod {I},
when the (’s are one-forms. By Proposition 4.1 we have
(da')? ANda? =0 mod {I}, 2<j<pn

or

do? € ideal{B',..., 3%, I}.

Now we can use the proof of Theorem 1.7 of Chapter I on the construction of
the canonical form of a two form, by choosing sequentially divisors 'yjl-, ceey 'yf I of
da?, 2 < j < py resulting in

Class I <s+2p+(py —Lp=s+p+pnp-

This proves the right hand side of (29). O
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Remark. The lower bound for dim C(I) is achieved by a system consisting of a
single equation. To reach the upper bound consider the contact system

Iz{dz)‘—pr‘dxi}, 1<i<m, 1<X<n,
in the space (2%, 2}, p}). For this system we have
K3
L=0, s=pnv=n, p=v=m

and
dim C(I) = mn +m + n.

These properties characterize the contact system, as given by the following the-
orem. For this theorem, and for the rest of this chapter, we shall let {3, ..., 3%} C
QY(M) be the sub-module of 1-forms 3 = 3 ;3" generated by the set of 1-forms

RN

Theorem 4.4 (Bryant normal form). Let I = {at, ..., a®} be a differential system
with Il =0. If

(30) dimC(I) =s+wvs+wv, s>3,
there is a local coordinate system containing the coordinates ', z)‘,pf‘, 1<i<o,

1 < X <s, such that
I={d"— pr‘dxi}.

Proof. By the definition of v there exist 7!,..., 7%, such that
A AT #£0 mod T,
do* At A AU =0 mod I.
The last relation can be written

doz)‘EZm)‘/\wi mod I.

The hypothesis (30) implies that the forms o*, 7%, n} are linearly independent. By
exterior differentiation of the last relation we get

Zm)‘/\dwizo mod {I, 7%, ..., 7"},

which implies .
dr' =0 mod {I,7',.... 7" n}},
for every fixed A. Since s > 3, this is possible only when

dr' =0 mod I,7t,..., 7",

It follows that the system
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is completely integrable, and we can write
J={de, ... destvy,
where the £’s are the first integrals. Then we have
at = ZbﬁdﬁA, 1<A< s+,

in which we can assume that the (s X s)-minor at the left-hand side of the matrix
(b%) is non-zero. Writing

=2 et=y 1<A<s, 1<i<uw,
Wwe can suppose
I={d - pr‘dxi}.
Because of our hypothesis the functions z?, z*, p} are independent. ([

Remark. The theorem is true for s = 1, in which case it reduces to the Pfaffian
problem. It is not true for s = 2. An important counter-example is the following:
Consider in R® a Pfaffian system

I=1{a' a?,
satisfying
do' =a® Nat, do®=a’ Aad, mod I,
where o', ..., a® are linearly independent one-forms. We have I; =0 and

s=2, v=1, dimC(I) =25,

so that the hypotheses of Theorem 4.4 are satisfied. But this system has further
local invariants; cf. the end of the next section.

Remark. The original Bryant normal form was a deeper theorem proved in his
thesis (Bryant [1979]), which can be stated as follows:
The conclusion of Theorem 4.4 remains valid, if the condition (30) is replaced by

dimC(I) = s+ ps + p.

The proof depends on an algebraic argument to show that p = v.

§5. Pfaffian Systems of Codimension Two.

We follow the notations of the last section and consider a Pfaffian system I
defined by (24). If s = n — 1, the system I is completely integrable. In fact, on
the choice of an independent variable, it becomes a system of ordinary differential
equations.

In this section we study the case n = s+2. We will show that this case is already
a rich subject and the diverse phenomena are present. The case s = 3 is the content
of Cartan’s [1910] paper and the general case has barely been touched. We will also
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make some applications to ordinary differential equations of the Monge type which
have applications to control theory.
To the forms at the left-hand side of (24) we add the forms a"~!, o, so that

al,...,a" are linearly independent. Then we have

da' =T 'Aa™ modI, 1<i<s.

If T* = 0, I is completely integrable, and I(*) = I. We discard this case and suppose

(T, ..., T%) # 0. The o’s are defined up to the non-singular linear transformation
ul N 0 0
1 : 1
a ... a
— ui ... ud 0 0 :
n—1 n—1 n—1 n—1
a uy ool up_y Uy al
n n n n
Uy Ug Up—1 Up,

By choosing the above matrix u properly, we can suppose

T H=...=T5"1=0, T°=1,
i.e.,
(31) do'=---=da*1'=0, da®*=a""tAa", mod 1.
s—1

Under this choice I™) is generated by o', ..., a* !, and we have dim I(V) = s — 1.

In the case s = 2, n = 4 we have the theorem:

Theorem 5.1 (Engel’s normal form). Let I be a Pfaffian system of two equations
in four variables with derived flag satisfying

dim/®M =1, 1® =o.
Then locally there are coordinates x,y,y ,y" such that

I={dy—y'dz,dy —y"dx}.

Proof. The derived system I") is generated by a'. Since I®?) = 0, we have
do' Aot # 0.
On the other hand, we have, for dimension reason,
(da')* Aot =0.
By Theorem 3.1 we can therefore suppose
{a'} = {dy —y'dz}.

From (31) we have
da' Aol Aa? =0,



85. Pfaffian Systems of Codimension Two 45

which gives
deANdy Aol Aa? =0,
and consequently
o =ady’ +bdx mod o'

The coefficients a and b are not both zero. If a # 0, we write
1
—o?=dy —y"dz mod o'
a

Since
da’ Aot ha?=at AP Aad Aat £0,
we have
dx ANdy Ady Ady” #0,

so that x,¥,1 , 1y are independent functions and can serve as local coordinates.
Similarly, if b # 0, we obtain the form

1
Eon =dx —y'dy.

The two normal forms
I={dy—ydx,dy —y"dz}

and
II = {dy — y'dz,dz — y"dy'}

are however equivalent since the coordinate change
(.13, Y, y/a y/l) - (y/) Yy— xy/a -, _y/l)
takes the normal form I into the normal form I1. O

If a system is put into Engel normal form then the “general solution” is visibly
given by
y=1[(=), v =r(), ¥'=f),
where f(x) is an arbitrary function of z. Here general solution means a solution of

the Pfaffian system with independence condition: (I, dx) so that dz # 0.
The Engel normal form is the key tool in the theory of the Monge equation

,_@ ,_dz

(32) Fla,y,zy.2)=0, o =, Z=-,

which is an under-determined first order system of one equation for the two un-
known functions y and z in the independent variable x.
The Pfaffian system equivalent to this problem is

I={dy—y'dr,dz— 7'dr}.

The manifold in question is the hypersurface (32) in the jet manifold
JY(R, R?), which is five-dimensional and has the coordinates x,v,z,3,2’. The
equation dF = 0 gives, when expanded

aF

Fydy + F, dz' + F,(dy — y dz) + F,(dz — 2’ dz) + y
x

dx =0,
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where IF
T = et By + F
denotes the so-called ‘total derivative’. To achieve the equations (31), we suppose
Fy +F2 #0,

and set

o' = Fy(dy — y'dz) + F.(dz — #'dx),

a? = —F.(dy — ' dv) + Fy (dz — #'dx)
Then

do'=0 mod T
do? = (Fydy — Fypdz') Adz#0  mod 1.

Hence the conditions of Theorem 5.1 are satisfied and we have the following corol-
lary:

Corollary 5.2. If the Monge equation (32) satisfies the condition
Fy +F2 #0,

it has a general solution depending upon an arbitrary function in one variable and
its first two derivatives.

Ezxample.
y/2 4 Z/Q - 1.

This can be interpreted either as the equation for unit speed curves in the plane
or as null curves in the Lorentzian 3-space with metric dz? — dy? — dz2.
The equation can be parametrized by

Yy =sing 2 = cos
and leads to the differential system

7 { dy — sin pdz
| dz — cos pda.

The first derived system is given by
I = {dx — sin pdy — cos pdz}
= {d(z — sin py — cos pz) + (cos py — sinpz)dp}.
Following the general theory we set
x — siny — cos oz = f(p)
— cos py + sinpz = f(y)

1!

sin py + cospz = " (p)
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and solve for x,y, z to find

= f"(p)+ fly)
y =sinpf"’ () — cosof ()
z = cospf"(p) +sinpf'(¢),

where f(p) is an arbitrary function of ¢.
The applications to ordinary differential equations of higher order lead to the

Pfaffian system, where

al =dy —y'dz,

af =dy* ! — y(s)dx,

the space being (x,,%/,...,%)). This system is of codimension two. It satisfies
the relations

dof = - Ade, 1<i<s—1

(33)
da® #0 mod I.

Such a system can be characterized by a set of conditions, as given by the theorem:
Theorem 5.3 (Goursat normal form). Let
I={a' ...,

be a Pfaffian system of codimension two in a space of dimension n = s+2. Suppose
there exists a Pfaffian form w # 0, mod I, satisfying

(34) do'=—-a"' A1 modal,...,af, 1<i<s—1, da®*#0 mod I.
Then there is a local coordinate system .y, , ...,y such that

I={dy—ydz,... dy"" —y®dz}.

Proof. The first equation of (33) gives, for i = 1,
dot Aot #0, (da')2Aal =0.
By Theorem 3.1, we can suppose, by multiplying a' by a factor if necessary,
al =dy — vy de.
As in the proof of Theorem 5.1, we have

da' Aot A =0.
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The proof of Theorem 5.1 applies, and we can suppose, by replacing a? by a linear
combination o', o2 if necessary,

o =dy —ydx.

Equation (34) then gives
atANdat = —al ANaP AT = —dz Ady A dy,
from which it follows that
T Adr Ady Ady =0,

and that we can write
T = ady’ + bdx + cdy.

By hypothesis we have
7= (ay” +cy +b)dx Z0 mod ol,a?
or
ay’ +cy +b#0.

Suppose s > 3 and suppose, as induction hypothesis,
o =dy’ —y"dx,.. ..ot =dy™? — 0 Vdy, i<s—1.
Equation (34) gives

do'™' = da AdytY = —a’ A (ay’ + ¢y +b)dz mod o, ... oL
It follows that, mod a',...,a’"! and dx, the form ' is a non-zero multiple of
dy"~1). We can therefore change a’ to

o = dy Y —yOdyg.
This completes the induction.
By the second equation of (34) we have

a' A Anaf Adad # 0,

giving
de Ady A -+ ANdy'® £ 0,
so that x,4,7/, ...,y serve as a local coordinate system. O

To understand the significance of the Goursat normal form we return to the
general case. Suppose the a’s be chosen so that the equations (31) are satisfied.
They are determined up to the transformation

1 1
Uy ... Ug_q 0 . 0
1 1
o s—1 s—1 o
. U U, _ 0 . 0 .
(35) S I B -1 Y .
: uj u;_, U 0 . 0 :
n © n
(0% n—1 n—1 n—1 n—1 (0%
Uy . Ug U’n—l Up,
uf ug o Uy oy Uy
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Let

do’ = Ria® Na™ 1 4+ S7a A o™, mod al,...,a*7t, 1<j<s—1.

)

Under the transformation (35), the rank of the matrix
R' ... Rs!
(36) ( st s >

is invariant. In fact, dimI®?) = s — 2 or s — 3, according as this rank is 1 or 2.
Comparing with (34), we see that a necessary condition for I to be in the Goursat
normal form is dim I = s — 2.

Ezample. The Goursat normal form can be used to study the second-order Monge
equation

dz dy d%y
(37) %:F(xayazay/ay/l)a y/: %a y”:w, Fy” 7é0

This can be studied as a Pfaffian system of codimension two in the space (x,y, z, ¢/, ¥"),
namely, (s = 3,n =5)

I'={dy—y'da,y —y'dv,dz— F(z,y,2y,y")dz}.

To achieve the equations (31), we set

ol =dy —y'dz,

o? = dz — Fdx — Fyu(dy' — y"dz),

o =dy —y'dx,

at = dx,

o =dy".
An easy calculation gives

da' =deANdy =a*Nad

do? = ca* N ad + Fyryna® Aad

mod ot,a?

where ¢ is some function. Hence I can be put in the Goursat normal form only if
Yy
Fyryr =0, i.e. F is linear in y".
Consider the system .J in the Goursat normal form:
Y

B = dw — w'dt,

B = dw —w'dt,

B2 = dw” —w"dt.



50 II. Basic Theorems

If Fynyr # 0, there is no local diffeomorphism

which maps I into J. In other words, the “general” solution of I or (37) cannot
be expressed in terms of an arbitrary function w(t) and its successive derivatives.
This was proved by D. Hilbert for the equation

dz _ &y’
de  \dz2) °
On the other hand, for the equation

dz d%y

T ym__Z
dr 7 dz?’

which is linear in y”/, E. Cartan gave the solution

x==2f"(t) - f(t),
Yt = (m+ 120 f (1)
z=(m— 1) f"(t) — mtf'(t) + mf(t),

where f(t) is an arbitrary function in ¢.
We continue with the case s = 3, n = 5. Its generic situation is when the rank of
the matrix (36) is 2. Then the a’s can be so chosen that the matrix (30) becomes

i.e.
4

do' = Nat, do® =a3 Aad, mod al, o’

By (31) we also have
da® =a* A ad, mod o, a2, .

This generic case is very interesting. A complete system of invariants was deter-
mined in Cartan [1910] by the method of equivalence. The fundamental invariant is
a ternary quartic (symmetric) differential form. If it vanishes identically, the Pfaf-
fian system is invariant under the exceptional simple Lie group G2 of 14 dimensions.
This is clearly a very natural way that the split real form of Gg is geometrically
realized. The general case involves tensorial invariants. Its treatment has to be
divided into cases and is long; cf. Cartan’s paper for details.
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CHAPTER III

CARTAN-KAHLER THEORY

In the first two chapters, we have seen how problems in differential geometry
and partial differential equations can often be recast as problems about integral
manifolds of appropriate exterior differential systems. Moreover, in differential
geometry, particularly in the theory and applications of the moving frame and
Cartan’s method of equivalence, the problems to be studied often appear naturally
in the form of an exterior differential system anyway.

This motivates the problem of finding a general method of constructing integral
manifolds. When the exterior differential system 7 has a particularly simple form,
standard differential calculus and the techniques of ordinary differential equations
allow a complete (local) description of the integral manifolds of Z. Examples of such
systems are furnished by the theorems of Frobenius, Pfaff~Darboux, and Goursat
(see Chapter II).

However, the differential systems arising in practice are usually more complicated
than the ones dealt with in Chapter II. Certainly, one cannot expect to construct
the general integral manifold of a differential system Z using ordinary differential
equation techniques alone. However, at least locally, this problem can be expressed
as a problem in partial differential equations. It is instructive to see how this can
be done.

Let S C Q*(M) be an arbitrary set of differential forms on M. Suppose that
we are interested in finding the n-dimensional integral manifolds of the set S. To
simplify our notation, we will agree on the index ranges 1 < 4,5,k < n and 1 <
a,b,c < m — n and make use of the summation convention. We choose local
coordinates z!', x2,..., 2™, y", ...,y " centered at z on a z-neighborhood U C M.
Let Q = dz' A...dz". Let G,(TU,Q) denote the dense open subset of G,,(TU)
consisting of the n-planes P C T,,U on which €2 restricts to be non-zero. Then
there are well defined functions p? on G, (TU, Q) so that, for each P € G,,(TU, Q),
the vectors

(1) Xi(P) = (9/02" + p{(P)0/0y" )| w

form a basis of P. In fact, the functions z%, %, p¢ form a coordinate system on
Gn(TU, Q).

Now, for each g-form ¢ on U with ¢ < n and every multi-index J = (j1, jo, - - -, jq)
with 1 < j1 < jo < --- < jg < n we may define a function Fi, y on G,(TU, Q) by
setting

(2) Fp5(P) = ¢(X;, (P), ..., Xj,(P)).

(Note that, when F, s is expressed in the coordinates z,y®, p?, it is linear in the
(k x k)-minors of the matrix p = (p¢), where k < g.)

Any submanifold V' C U of dimension n which passes through z € U and satisfies
Qly # 0 can be described in a neighborhood of z as a ‘graph’ y* = u%(x) =

u(xl,...,2") of a set of m — n functions u® of the n variables z¢. For each
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w = (z,u(x)) in V, the p-coordinates of T,V € G,,(TU, ) are simply the partials
p¢ = Ou®/dz" evaluated at z. It follows that V is an integral manifold of S if and
only if the function u satisfies the system of first order partial differential equations

(3) F, j(z,u,0u/0x) =0

for all ¢ € S and all J with deg(¢) = |J| < n.

Thus, constructing integral manifolds of S is locally equivalent to solving a sys-
tem of first order partial differential equations of the form (3). Conversely, any first
order system of P.D.E. for the functions u',...,u™ ™ as functions of z',..., 2"
which is linear in the minors of the Jacobian matrix Ou/0x can be expressed as the
condition that the graph (z,u(z)) in R™ be an integral manifold of an appropriate
set S of differential forms on R™.

It is then natural to ask about methods of solving systems of P.D.E. of the form
(3). Tt is rare that the system (3) can be placed in a form to which the classical
existence theorems in P.D.E. can be applied directly. In general, even for simple
systems S, the corresponding system of equations (3) is overdetermined, meaning
that there are more independent equations in (3) than unknowns u. For example,
if m = 2n and S consists of the single differential form ¢ = dy' A dz! + dy? A dz? +
-+ dy™ A dz™, then (3) becomes the system of equations du’/dx? = Ou’ /Oxt,
which is overdetermined when n > 3. Even when (3) is not overdetermined, it
cannot generally be placed in one of the classical forms (e.g., Cauchy-Kowalevski).

Nevertheless, certain systems of equations of the form (3) had been treated
successfully (at least, in the real analytic category) in the nineteenth century by
methods generalizing the initial value problem (sometimes called the “Cauchy prob-
lem” because of Cauchy’s work on initial value problems). Let us illustrate such an
approach by the following simple example: Consider the following system of first
order partial differential equations for one function u of two variables x and y:

(4) ux:F(xayau)a uy:G(xayau)

If we seek a solution of (4) which satisfies u(0,0) = ¢, then we may try to construct
such a solution by first solving the initial value problem

(5) vy = F(x,0,v) where v(0)=c

for v as a function of z, and then solving the initial value problem (regarding x as
a parameter)

(6) uy = G(z,y,u) where wu(z,0)=v(z).

Assuming that F' and G are smooth in a neighborhood of (z,y,u) = (0,0,c¢),
standard O.D.E. theory tells us that this process will yield a smooth function u(z, y)
defined on a neighborhood of (z,y) = (0,0). However, the function u may not
satisfy the equation u, = F(x,y,u) except along the line y = 0. In fact, if we set
E(x,y) = ug(x,y) — F(x,y,u), then F(z,0) =0 and we may compute that

Ey(xay) = (G(x,y,u))x - Fy(x,y,u) - Fu(xayau)G(xayau)
= Gu(xayau)E(xay) —I—T(x,y,u)
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where
T(J?, Y, U’) = F(J?, Y, ’U,)Gu(.l?, Y, U’) - G(J?, Y, ’U,)Fu(.l?, Y, U’) + Gx(xa Y, U’) - F’y(xa Y, U’)

Suppose that F and G satisfy the identity 7' = 0. Then E satisfies the differential
equation with initial condition

E, =Gy(z,y,u)E and E(z,0)=0.

By the usual uniqueness theorem in O.D.E., it follows that E(z,y) = 0, so u satisfies
the system of equations (4). It follows that the condition T' = 0 is a sufficient
condition for the existence of local solutions of (4) where (0, 0) is allowed to be an
arbitrary constant as long as (0,0, (0,0)) is in the common domain of F and G.

Note that if we consider the differential system Z (on the domain in R? where
F and G are both defined) which is generated by the 1-form ¥ = du — Fdx — Gdy,
then d = —Tdx Ady mod ¥, so the condition T'= 0 is equivalent to the condition
that Z be generated algebraically by 9. Thus, we recover a special case of the
Frobenius theorem. It is an important observation that the process of computing
the differential closure of this system uncovers the “compatibility condition” T' = 0.

Let us pursue the case of first order equations with two independent variables a
little further. Given a system of P.D.E. R(z, y, u, Uz, uy) = 0, where u is regarded as
a vector-valued function of the independent variables z and y, then, under certain
mild constant rank assumptions, it will be possible to place the equations in the
following (local) normal form

(i) uy = F(z,y,u)
(i) Uy = G(2,y, u,uq)
U'gl/ = H(z,y,u,uy)

by making suitable changes of coordinates in (x,y) and decomposing u into u =
(u®, ut, u?) where each of the u® is a (vector-valued) unknown function of z and y.
Note that the original system may thus be (roughly) regarded as being composed
of an “overdetermined” part (for u°), a “determined” part (for u!), and an “under-
determined” part (for u?). (This “normal form” generalizes in a straightforward
way to the case of n independent variables, in which case the unknown functions u
are split into (n + 1) vector-valued components.)

The “Cauchy—Kowalewski approach” to solving this system in the real analytic
case can then be described as follows: Suppose that the collection u® consists of
Sa > 0 unknown functions. For simplicity’s sake, we assume that F', G, H are real
analytic and well-defined on the entire R¥ (where k has the appropriate dimension).
Then we choose sy constants, which we write as f°, s; analytic functions of x, which
we write as f1(z), and sy analytic functions of x and y, which we write as f2(x,y).
We then first solve the following system of O.D.E. with initial conditions for sg
functions 1° of x:

(i/) ’UgZF(J?,O,’UO,fl(J?),fQ(x,O))
0(0) = f°
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and then second solve the following system of P.D.E. with initial conditions for
5o + s1 functions (u’, u') of x and y:

U'g :G(x,y,uo,ul,fQ(x,y),ug,uglc,fg(x,y))
(“/) U’gl; :H(x,y,uo,ul,fQ(x,y),ug,uglc,fg(x,y))
ii
0 0
u(z,0) = v'(x)
ul(z,0) = f1(x).

This process yields a function u(z,y) = (u’(z,y), u' (x,y), u*(z,y)) (where u?(z,y)
is defined to be f?(z,y)) which is uniquely determined by the collection f =
{£°, fX(z), f*(z,y)}. While it is clear that the u(x,y) thus constructed satisfies
(ii), it is not at all clear that u satisfies (i). In fact, if we set

E(x,y) = ug(x,y) - f(xayau(xay))a

then E(x,0) = 0 since u(z,0) satisfies (i’), but, in general E(x,y) # 0 for the
generic choice of “initial data” f.

In the classical terminology, the system (i), (ii) is said to be “involutive” or “in
involution” if, for arbitrary analytic initial data f, the unique solution uy of (i’,it’) is
also a solution of (i,ii). Because of the nature of the initial conditions f, the classical
terminology further described the “general solution” of (i,ii) in the involutive case
as “depending on sy constants, s; functions of one variable, and s, functions of two
variables”.

In the analytic category, the condition of involutivity for the system (i,ii) can
be expressed in terms of certain P.D.E.; called “compatibility conditions”, which
must be satisfied by the functions F, G, and H. For example, in the case of (4),
the compatibility condition takes the form T = 0. Also note that, for the system
(4), we have (sg, s1,s2) = (1,0,0).

Of course, this notion of involutivity extends to P.D.E. systems with n indepen-
dent variables.

The condition of involutivity is rather stringent (except in the case (sg, ..., Sp) =
(0,...,0,s,0), which corresponds to the classical Cauchy problem). Thus, one often
must modify the equations in some way in order to reduce to the involutive case.

Let us give an example. Consider the following system of three equations for

three unknown functions u', u?, u> of three independent variables z', z2, z3. Here

we write d; for /027 and v',v? v? are some given functions of z!, 2%, z3.

Oou® — 93u? = ul + ot
(7,1,i,iii) Oqut — 01ud = u? +0?
hu? — dout = u + 03
The approach to treating (7) as a sequence of Cauchy problems (with (sg, s1, S2, s3) =
(0,1,1,1)) is as follows:
(1) Choose three functions ! (xt), p?(zt, 22), p? (2!, 22, 23).

(2) Solve the equation in R2, dow = 91 — > — v3 with the initial condition

w(z!,0) = p!(z!) where @3 (2!, 22) = 3(x!, 22,0) and v3(zt, 22) = v3 (2!, 22, 0).
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(3) Solve the pair of equations dzu' = 91> +u? +v? and d3u? = dpp® —ul —v?
with the initial conditions u!(z!, 22,0) = w(z!, 2?) and u?(z!, 22,0) = ©?(at, 2?).

(4) Set u? equal to 3.

However, the resulting set of functions u® will not generally be a solution to
(7,iii). If we set E = O1u® — dou'! — u3 — v3, then, of course E(x!, 22, 0) = 0, but
if we compute 93FE = —{01(u' + v') + Ga(u? + v?) + O3(u® + v®)}, we see that E
vanishes identically if and only if the functions u® satisfy the additional equation

(7,iv) 0 =01 (u* +v') 4+ 0 (u? + %) 4+ O3(u® + ).

This suggests modifying our Cauchy sequence by adjoining (7,iv), thus getting a
new system with (sg, s1, $2, s3) = (0,1,2,0) and then proceeding as follows:

(1*) Choose three functions ¢! (x!), 2 (xt, 22), o3 (2!, 22)

(2*) Solve the equation in R?, Qow = —d;p? — 3 — 03 with the initial condition
w(x!,0) = p!(z!) where v3 (2!, 22) = v3 (2!, 22,0).

(3%) Solve the triple of equations with initial conditions

Ozut = O1ud +u? + 02, ul(zt, 22,0) = w(z!, 2?)
Ozu? = Ou® — ul — ol u?(zt, 22,0) = p? (2, 2?)
Ozud = =0y (ut +vb) — 0o (u? + v?) — 9303, w(at, 22,0) = L3 (!, 22).

It then follows easily that the resulting u® also satisfy (7, iii) (assuming that we are
in the analytic category, so that we have existence and uniqueness in the Cauchy
problem).

In the example just given, the “compatibility condition” took the form of an
extra equation which must be adjoined to the given equations so that the Cauchy
sequence approach would work. One can imagine more complicated phenomena.
Indeed, in the latter part of the nineteenth century, many examples of systems
of P.D.E. were known to be tractable when treated as a sequence of initial value
problems, provided that one was able to find a sufficient number of “compatibility
conditions.”

Around the turn of the century, Riquier [1910] and Cartan [1899] began to make
a systematic study of this compatibility problem. Riquier’s approach was to work
directly with the partial differential equations in question while Cartan, motivated
by his research in differential geometry and Lie transformation groups (nowadays
called Lie pseudo-groups), sought a coordinate-free approach.

It was Cartan who realized that partial differentiation (which depends on a choice
of coordinates) could be replaced by the exterior derivative operator (which does
not). His method was to regard a collection of s functions u® of n variables x? as
defining, via its graph, an n-dimensional submanifold of R**%. The condition that
the collection u® satisfy a system of first order P.D.E. which was linear in the minors
of the Jacobian matrix Qu/dx was then regarded as equivalent to the condition that
the graph be an integral of a system S of differential forms on R"**. Cartan then let
7 be the differential ideal generated by the system S. The problem of constructing
n-dimensional integral manifolds of Z by a sequence of Cauchy problems then was
reformulated as the problem of “extending” a p-dimensional integral manifold of 7
to one of dimension (p + 1).
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Cartan’s next major insight into this problem was to realize that the condition
that a submanifold N C M be an integral manifold of a differential ideal Z on M is
a condition only on the tangent planes of N. This led him to define the fundamental
concept of integral elements of a differential system. Namely, the integral elements
of dimension p of Z are the p-planes ¥ C T, M on which all of the forms in Z vanish.
These form a closed subspace V,(Z) of G,(T'M). Cartan’s approach was to study the
structure of these subspaces and their interrelationships as p varies. Two important
concepts arise which depend only on the structure of 7 as an algebraic ideal. These
are the notions of ordinarity and regularity which are treated in detail in Section 1
of this Chapter. Roughly speaking, these concepts describe the smoothness of
the spaces V,(Z) and the incidence spaces Vj, p+1(Z) C Vp(Z) X Vo1 (Z). If one
thinks intuitively of integral elements as “infinitesimal integral manifolds,” then
these notions describe the well-posedness of the “infinitesimal Cauchy problem.”
The main highlight of this section is Theorem 1.11, a version of Cartan’s test for
an integral element to be ordinary. The version given here is an improvement over
Cartan’s original version and was suggested to us by the recent work of W. K.
Allard [1989].

In Section 2, after stating the classical Cauchy—Kowalevski theorem on the initial
value problem for first order P.D.E., we state and prove the fundamental Cartan—
Kahler theorem. Roughly speaking, this theorem states that in the real-analytic
category, the well-posedness of the initial value problem for an exterior differential
ideal 7 is determined completely by the infinitesimal (algebraic) properties of the
space of integral elements. Here, the condition that the ideal be differentially
closed takes the place of the compatibility conditions which one must deal with in
the P.D.E. formulation. We also discuss the classical terminology concerning the
“generality” of the space of integral manifolds of a differential system, and introduce
the important sequence of Cartan characters, which generalize the sg, s1, ..., etc.
described above.

In Section 3, we consider a set of examples which demonstrate the use of the
Cartan—Kaéhler theorem in practice. Some of the examples are merely instructive
while others are of interest in their own right. One example in particular, the
isometric embedding example (Example 3.8), reproduces (with some improvements)
Cartan’s original proof of the Cartan—Janet isometric embedding theorem.

The following terminology will be used in the remainder of this chapter.

If X is a smooth manifold and F C C°°(X) is any set of smooth functions on X,
let Z(F) C X denote the set of common zeros of the functions in F. We say that
x € Z(F) is an ordinary zero of F if there exists a neighborhood V of z and a set
of functions f*, f2,..., f¢ in F whose differentials are independent on V so that

ZF)NV ={yeV|fiy) === rf(y) =0}

By the implicit function theorem, Z(F) NV is then a smooth submanifold of
codimension ¢ in V. Note that the set of ordinary zeroes of F is an open subset of
Z(F) (in the relative topology). If we let Z°(F) denote the set of ordinary zeroes
of F, then Z°(F) is a disjoint union of connected, embedded submanifolds of X.
Of course, the components of Z°(F) do not all have to have the same dimension.
By definition, the codimension of Z°(F) at x € Z°(F) is the codimension in X of
the component of Z°(F) which contains z.

A related piece of terminology is the following. If A C X is any subset and
x € A, then we say that A has codimension at most (resp., at least) q at x if there
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exists an open neighborhood V of x € X so that ANV contains (resp., is contained
in) a smooth (embedded) submanifold of V' of codimension ¢ which passes through
x. Clearly A has codimension at least g at 2 and has codimension at most ¢ at x
if and only if A has the structure of a smooth submanifold of codimension ¢ on a
neighborhood of x.

§1. Integral Elements.

Throughout this section, M will be a smooth manifold of dimension m and
T C Q*(M) will be a differential ideal on M. Recall from Chapter I that an integral
manifold of T is a submanifold ¢ : V' — M with the property that :*(a) = 0 for
alaeZ IfveVand F =T,V C T,M is the tangent space to V at v, then
t*(a)|y = ag where, as usual, ap denotes the restriction of af, to E C T, M. Tt
follows that the vanishing of t*(a)|, for all @ € 7 depends only on the tangent space
of V' at v. This leads to the following fundamental definition.

Definition 1.1. Let M and Z be as above. A linear subspace £ C T, M is said to
be an integral element of T if o = 0 for all o € Z. The set of all integral elements
of 7 of dimension p is denoted V,(Z).

A submanifold of M is an integral manifold of Z if and only if each of its tangent
spaces is an integral element of Z. Intuitively, one thinks of the integral elements
of 7 as “infinitesimal integral manifolds” of Z.

It is not true, in general, that every integral element of 7 is tangent to an integral
manifold of Z. A simple counterexample is obtained by letting M = R! and letting
T be generated by the 1-form a = xdx. The space E = TyR! is an integral element
of Z, but FE is clearly not tangent to any 1-dimensional integral manifold of Z.

A more subtle example (which will be used to illustrate several concepts in this
section) is the following one.

Example 1.2. Let M = R® and let T be generated by the two 1-forms 9! = dz' +
(2% — z%2%)dx* and 92 = dz? + (23 + 2*2)dz®. Then T is generated algebraically
by the forms 9!, 92, d9' = 93 A dz?, and d¥? = 93 A dx® where we have written
93 = da3 + 2%dz* — 2*dx®. For each p € M, let

H, = {veT,R® | 9! (v) =9?(v) = 0} C T,R®.

Then H C TR® is a rank 3 distribution. A 1-dimensional subspace E C T,R® is an
integral element of Z if and only if E C H,. Thus, V4(Z) 2 PH and it is a smooth
manifold of dimension 7. Now let

K, = {v € T,R® | 9*(v) = ¥?v) = 93(v) = 0}.

Then K C H is a rank 2 distribution on R®. It is easy to see that, for each p € R,
K, is the unique 2-dimensional integral element of Z based at p. Thus, V2(Z) = R®.
Moreover, Z has no integral elements of dimension greater than 2.

It is not difficult to describe the 1-dimensional integral manifolds of Z. Let
ft) = (f3(t), f4(t), f3(t)) be an arbitrary smooth immersed curve in R3. There
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exist functions f1(t), f2(t) (unique up to a choice of 2 constants) which satisfy the
differential equations

dft fdt = —(f° — f*f°)df* /dt
df?/dt = —(f* + f* £°)df° /.

Then F(t) = (f1(t), f2(t), £2(t), fA(t), f°(t)) is an integral manifold of Z. Con-
versely, every 1-dimensional integral manifold of 7 is obtained this way. It is now
easy to see that there exists an integral manifold of dimension 1 tangent to each
element of V4(Z).

On the other hand, by our calculation of V5 (Z) above, any 2-dimensional integral
manifold of Z is an integral manifold of the differential system Z, generated by 91,
92, and ¥3. Using the fact that d¥3 = —2dx* A dz®, we see that T, is generated
algebraically by 91, 92, 93, and dz* A dx®. Hence Z, has no 2-dimensional integral
elements, and a fortiori, no 2-dimensional integral manifolds. Thus, Z has no 2-
dimensional integral manifolds either.

As Example 1.2 shows, the relationship between the integral elements of a differ-
ential system and its integral manifolds can be subtle. In general, even the problem
of describing the spaces V,,(Z) can be complicated. The rest of this section will be
devoted to developing basic properties of integral elements of Z and of the subsets
Vo (Z).

Proposition 1.3. If E is an n-dimensional integral element of I, then every sub-
space of E is also an integral element of T.

Proof. Suppose that W C F is a subspace of E. If W were not an integral element
of Z, then there would be a form ¢ in Z satisfying pw # 0. But then we would
clearly have pg # 0, contradicting the assumption that E is an integral element of
7. O

Proposition 1.4.

Vo(Z)={E € G,(TM) |95 =0 for all 9 in T of degree n}.

Proof. The containment “C” is clear. Thus, we must prove that if Jg = 0 for all
¥ in 7 of degree n then ¢pp = 0 for all ¢ in Z. Suppose that ¢ # 0 for some ¢ in
T of degree p < n. Then there exists 79 in A" P(E*) so that g A g is a non-zero
form in A"(E*). Let n be a smooth (n —p)-form on M so that ng = 9. Then ¢ An
is a form in Z of degree n, but (¢ An)g = g Ang # 0. O

It follows from Proposition 1.4 that, for each x € M, the set V,,(Z) N G, (T, M)
is an algebraic subvariety of G, (T, M). The structure of this algebraic variety
can be complicated. Fortunately, it is seldom necessary to confront this problem
directly. In practice, the spaces V,,(Z) are most often studied by an inductive
procedure which uses information about V,(Z) to get information about V,+1(Z).
The ultimate reason for this approach will be clear in the next section when we
prove the Cartan—Ké&hler theorem, which builds integral manifolds of Z by solving
a sequence of initial value P.D.E. problems. A more immediate reason will be
furnished by Proposition 1.6 below.
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Definition 1.5. Let ey, ez, ..., e, be a basis of E C T, M. We define the polar space
of E to be the vector space

H(E)={veT,M|pv,er,eq,...,ep) =0 forall ¢ in T of degree p+ 1}.

Note that E C H(FE). The annihilator of H(FE) is denoted £(E) C T;M and is
referred to as the space of polar equations of E.

The importance of H(E) is explained by the following proposition.

Proposition 1.6. Let E be an integral element of T of dimension p. Then a
(p+1)-plane ET containing E is an integral element of T if and only if it satisfies
E* c H(E).

Proof. Suppose that ET = E + Rov and that ey, e,...,€, is a basis of E. By
Proposition 1.4, ET is an integral element of Z if and only if ¢+ = 0 for all
(p + 1)-forms ¢ in Z. By definition, this latter condition holds if and only if v lies
in H(E). O

Even though the space Vj41(Z) N Gp11(Tp M) may be a complicated algebraic
variety, for a fixed F € V,(Z), the space of those ET € V,;1(Z) which contain F
is a (real) projective space which is canonically isomorphic to P(H(E)/E). This
motivates us to define a function r : V,,(Z) — Z by the formula

r(E) = dim H(E) — (p + 1).

Note that r(F) > —1 with equality if and only if E lies in no (p+ 1)-dimensional
integral element of Z, i.e., F is maximal. When r(FE) > 0, the set of (p + 1)-
dimensional integral elements of Z which contain F is then a real projective space
of dimension r(FE).

This linearization of an exterior algebra problem is related to the linearization
process in multi-linear algebra known as “polarization,” the most common example
being the polarization of a quadratic form on a vector space to produce a bilinear
form. We shall not try to make this relationship more precise. We merely offer
this comment as a motivation for the name “polar space” for H(E), which was
coined by E. Cartan. Other authors have referred to H (E) as the “space of integral
enlargements of E” or used similar terminology.

If Q is any n-form on M, let G,,(TM, Q) denote the open set consisting of those
E’s for which Qg # 0. If ¢ is any other n-form on M, we can define a function
pqo on G,(TM,Q) by the formula o = po(E)Qg for all E € G,,(TM, ). (Since
A™(E™*) is 1-dimensional with basis Qp, this definition makes sense.)

By Proposition 1.4, the set V,,(Z,Q) = V,(Z) N G,(T M, Q) is the space of com-
mon zeroes of the set of functions

Fa(Z) = {ea | ¢ lies in T and has degree n}.

Definition 1.7. An integral element E € V,,(Z) will be said to be Kdhler-ordinary if
there exists an n-form Q on M with Qg # 0 with the property that E is an ordinary
zero of the set of functions Fq(Z). We shall use the notation V,°(Z) C V,(Z) to
denote the subspace of Kéahler-ordinary points of V,,(Z). If E is a Kahler-ordinary
integral element and the function r is locally constant on a neighborhood of E in



60 III. Cartan—Kéhler Theory

Vo(Z), then we say that E is Kdhler-regular. We shall use the notation V' (Z) C
V.2(Z) to denote the subspace of Kahler-regular points of V,°(Z).

The role of € in the above definition is not critical. If Q and ¥ are two n-forms
with Qg # 0 and U # 0, then E € G,(TM,Q) N G,(TM, ) and the identity
va = pw - Yo holds on G,,(TM,Q) N G, (TM,¥). Since ¥q never vanishes on
Gn(TM, Q)NG,(TM, ), it follows that F is an ordinary zero of Fq(Z) if and only
if it is an ordinary zero of Fy(Z). Note that V,°(Z) is an embedded submanifold
of G,,(TM) and is an open subset of V,,(Z) in the relative topology. Since r is an
upper semicontinuous function on V,°(Z), V;7(Z) is a open, dense subset of V,?(Z).

Ezample 1.2 (continued). We will show that all of the 2-dimensional integral el-
ements of Z are Kéhler-regular. Let Q = dz? A dz®. Then every element E €
G2(TR3, Q) has a unique basis of the form

X4(E) = 8/ + pi(E)/dx" + pi(E)d/dx? + p3(E)d/da’
X5(E) = 0/02° + pL(E)0/0x" + p2(E)0/0x> + pd(E)d/da>.

The functions 2, ..., 2% pi,...,p3 form a coordinate system on Gao(TR?, ().

Computation gives

(0" Ndx')g = —ps

(' Ndx®)q = ps + (22 — 2'2P)
(92 ANdxt)q = —p2 — (23 + 2'2P)
(9% Ndx®)g =

(93 Ndzt)q = —pd + 2*
(93 A dx®)g = +p3 + 5.

These 6 functions are clearly independent on G2(TR?, Q) and their common zeroes
are exactly Vo(Z). Thus, every point of V5(Z) is Kéahler-ordinary. Since none of
these elements has any extension to a 3-dimensional integral element, it follows that
r(E) = —1for all E € V2(Z). Thus, every element of V2(Z) is also Kéhler-regular.

Similarly, it is easy to see that every E € Vi (Z) is Kéhler-ordinary. However,
not every element of V1 (Z) is Kéhler-regular. To see this, note that any E € V;(Z)
on which 92 does not vanish cannot lie in any 2-dimensional integral element of Z.
Thus, r(E) = —1 for all E € V;(Z,93). On the other hand, each ET € V;(Z) on
which 92 does vanish lies in a unique E* € V5(Z) and hence has 7(E) = 0. Since
Vi(Z,93) is clearly dense in V;(Z), it follows that V;"(Z) = Vi (Z,9?).

Returning to the general theory, we shall need to understand the following inci-
dence correspondences:

Vppi1(Z) = {(B, BY) € Vy(Z) x Vps (Z) | E C E*}

Vit (D) = {(B.E%) € VJ(2) x Vpu (Z) | E C E¥).

We let 7, @ Vppy1(Z) — V,(Z) denote the projection onto the first factor and
we let mpq1 1V pt1(Z) — Vp+1(Z) denote the projection onto the second factor.
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The fibers of these maps are easy to describe. If E € V,(Z) has r(E) > 0, then
(mp)"H(E) = P(H(E)/E) = RP"®). On the other hand, if E* € V,1(Z), then
(mp1) " H(ET) = P(ET)*, the space of hyperplanes in ET. It is helpful to keep in
mind the following diagram.

7T V}L;D-H(I) _—
r)/ NPt
V,(T) Vi1 ()

This “double fibration” fails, in general, to be surjective or submersive on either
base. The next proposition shows that the picture is better for V. 1(Z). Its
proof, although technical, is straightforward. Some care is needed to prove that the
regularity assumption suffices to guarantee that certain maps have maximal rank.

Proposition 1.8. If V] .,(Z) is not empty, then it is a smooth manifold. More-
over, the image m,41(V,) ,+1(Z)) is an open subset of V,?11(Z) and both of the maps
T Vyp1 (Z) = VJ(Z) and mpy1 0 V) 1 (Z) — w1 (V1 (Z)) are submersions.

Proof. Let E € V(Z) have base point 2 € M and let t = dim M — dim H(E).
By hypothesis, there exist ¢ (p + 1)-forms !, x2,..., k" in Z so that, for any basis

€1, €z,...,ep of £, we have
HE)={veT, M|k (v,e1,e2,...,ep) =0 for 1 <7 <t}

Since r is locally constant on a neighborhood of E in V;(Z), it follows easily that
we must have

H(E)z{vETgM|/@T(v,él,ég,...,ép)zofor1§T§t}

for all E in V,;(Z) (based at Z, with basis €1, s, ..., &,) sufficiently near £. From
this, it follows that if we set H = {(E,v) € V,(Z) x TM | v € H(E)}, then H is
a family of vector spaces over V,,(Z) which restricts to each component of V;'(Z)
to be a smooth vector bundle of constant rank. We also conclude that, for each
component Z of V,'(Z) on which r is non-negative, the component (m,)~'(Z) of
Vy p1(Z) is a smooth bundle over Z.

We now show that the image of 7,41 restricted to V', (Z) is open in V)11 (Z).
Let (E, E™) belong to V,/,;(Z). There exists an open neighborhood of E, U C
Gp(TM), so that U N V,(Z) € V;(Z) and an open neighborhood of E*, Ut C
Gp1(TM), so that every Et in Ut contains a p-plane E in U. Thus, if Et €
UtNV,y1(Z), then E € UNV,(Z) C V,(Z). It follows that 7m,41(V, ,+1(Z)) contains
Ut NVpt(Z).

It remains to show that 1 (V,,,1(Z)) lies in V2, ;(Z) and that ;41 restricted
to V, ,+1(Z) is a submersion onto its image. To do this, we choose coordinates. Let
(E, ET) belong to V] ,,1(Z), let r = r(E) > 0, and let t = dim M — dim H(E) =
dim M — (r + p+ 1). The cases where either r or ¢ are zero can be handled by
obvious simplifications of the following argument, so we assume that r and t are
positive.

Choose coordinates z!,...,zP,y,v',...,v",u', ..., u! centered on the base point
z of ¥ with the properties

(i) E is spanned by the vectors 9/dx" at z for 1 <i < p.
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(ii) E7 is spanned by the vectors in E and the vector 9/dy.

(iii) H(E) is spanned by the vectors in ET and the vectors 9/0v” at z for
I1<p<r.

Let Q = da' A---AdaP. By hypothesis, there exist a set of p-forms {¢!, ..., 7}
in 7 and an E-neighborhood U C G,(TM, Q) so that the functions f¢ = ¢§, for
1 < ¢ < ¢ have independent differentials on U and

Vo(Z)NU ={E €U | f(E) =0 for all c}.

We may also suppose, by shrinking U if necessary, that there are t (p+ 1)-forms
kY k2, ..., Kkt in T so that

H(E)z{vETgM|/@T(v,él,ég,...,ép)zofor1§T§t}

for all E in V,(Z) N U (based at 2, with basis é1,éa, . . ., &p).

We now want to show that if we set QT = Q A dy and define g¢ = (©° A dy)q+
and h7 = (K7)q+ then there is an open neighborhood Ut C G 41 (T M, Q1) of ET
so that the set of functions {g¢, h™} have independent differentials on Ut and that

Vo (Z)NUT ={ET €U | g°(ET) =h™(E") =0 for all ¢ and 7}.

In particular, we will conclude that E* € V¢, (Z).

Note that every ET € Gpi1(TM, Q1) contains a unique p-plane, which we will
denote E C E™, on which the differential dy vanishes. Let Ut C Gy 1(TM, Q%) be
an E*-neighborhood in G4 1 (T M) so that E € U whenever E+ € U*. There exist
unique functions A7, B7, a”, and b7 on Gp,q1(T'M, Q1) so that the p + 1 vectors

Xi(E*) = 0)0x" + AP(EH)d /o + B (E+)d/ou”
Y(E*Y) = 8/0y + a”(EH)0/0vf + b7 (ET)0/0u™

are a basis of ET. The vectors X;(ET) form a basis of E. Note that the functions
z,y, v, u, A, B, a, and b form a coordinate system on G,11(TM, Q7).

Since dy(X;(E*)) = 0, we have the formula ¢g°(ET) = f¢(E) for all ¢ and all
Et € Gpp1(TM, Q). Tt follows that, if ET € Ut and g¢(E+) = 0 for all ¢, then
E € V,(T)NU. Since h™(Et) = 6™ (X1 (EY),..., X,(ET),Y(E™T)), it follows that
the equations h™(E*) = 0 imply that Y (E*) lies in H(E) whenever E € V,(Z)NU.
It follows that

Vot (D)NUT D {ET €U | g°(ET) =h7(ET) =0 for all ¢ and 7}.

Since the reverse inclusion is clear, we have proved equality.

It remains to show that the functions {g¢, h™ } have linearly independent differen-
tials at E*. Tosee this, first note that since h™(E1) = k™ (X1 (EY), ..., X,(ET), Y(ET)),
when we expand the functions A7 in terms of the coordinates (z,y,v,u, 4, B, a,b)
they are linear in the functions {a”,b”}. Thus h™ = N7 + M7b” for some coeffi-
cients N and M that depend only on (z,y,v,u, A, B,a). By hypothesis, we have
N7 (E*) = 0 and the t x t matrix (M (E™)) is invertible. It follows that, by shrink-

ing U™ if necessary, we may suppose that (M7 (E1)) is invertible for all E+ € U+,
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Hence we may write h™ = M7 (b¥ —T") where the functions 7% depend only on the
variables z, y, v, u, A, B and a. It follows that the functions {g¢, h” } have indepen-
dent differentials at E7T if and only if the functions {g¢, b — 7" } have independent
differentials at ET. Since the functions ¢g¢ can be expressed in terms of the coor-
dinates z, y, v, u, A, and B alone, it follows that the functions {g¢,b” — T"} have
independent differentials at E* if and only if the functions {g°} have independent
differentials at E+. Let K C U be the set of p-planes on which the differential dy
vanishes. Then K is clearly a smooth submanifold of U which contains E. Since F
lies in K whenever Et lies in U, and since we have the identity g¢(E1) = f¢(E),
it follows that functions {g°} have independent differentials at E* if and only if the
functions {f°} have independent differentials at E after they have been restricted
to K. Now every F € U has a unique basis of the form

Xi(E) = 0/0x" +wi(E)0/0y + AL (E)d/dvP + B (E)d/du”,

and the functions z, y, v, u, A, B, and w form a coordinate system on U centered on
E. Also, we have K = {E € U | w;(E) = 0 for all i}. It follows that the functions
{f¢} have independent differentials at E after they have been restricted to K if and
only if the functions {w;} have independent differentials on the set V,(Z) N U =
{E €U | f¢(E) = 0 for all ¢}. However, since E* € V,,1(Z), it follows that, for
any vector A = (A1,..., A,) where the A; are sufficiently small, V,,(Z) N U contains
the p-plane E\ C E* which is spanned by the vectors X;(\) = 9/9z® + \;0/0y for
i between 1 and p. Since the functions {w;} are independent when restricted to the
p-manifold &€ = {E) | Ex € U} C V,(Z) NU, we are done.

Since we have shown that ET is a Kihler-ordinary integral element of Z, it
follows that mp11(V,),,1(Z)) is an open subset of V7, (Z). The fact that 7,1 is a
submersion when restricted to V', ., (Z) is now elementary. O

The proof of Proposition 1.8 has an important corollary: If (E, E*) € V., (T),
then the following formula holds

(codim V,41(Z) in Gpy1(TM) at ET)

®) = (codim V,(Z) in G,(TM) at E) + (codim H(E) in T, M).

A nested sequence of subspaces (0), C Ey C E2 C --- C E, C T.M where
each Fj is of dimension k and FE, is an integral element of 7 is called an integral
flag of T of length n based at z. If z is an ordinary point of the set of functions
F=INQ%M) (i.e., the set of 0-forms in Z), and the function r is locally constant
on a neighborhood of Ej in Vi (Z) for all K < n — 1, then Proposition 1.8 applies
inductively to show that each Ej is Kahler-regular for K < n — 1 and that E,, is
Kéhler-ordinary.

Definition 1.9. Let Z be a differential system on a manifold M. An integral element
E € V,(Z) is said to be ordinary if its base point z € M is an ordinary zero of
ZNQO°(M) and moreover there exists an integral flag (0), C By C By C --- C E,, C
T.M with F = E,, where Ej, is Kahler-regular for £k < n — 1. If ' is both ordinary
and Kahler-regular, then we say that E is reqular.

In an integral flag (0), C B4 C E3 C --- C E, C T, M where each F}, is Kéahler-
regular for £k < n — 1, note that each Fj is actually regular for £ < n — 1. Such
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a flag is called an ordinary flag. If, in addition, E,, is also regular, the flag is said
to be regular. Note that, for integral elements, we have the implications: regular
= Kahler-regular, ordinary = Kahler-ordinary, and regular = ordinary. However,
these implications are not generally reversible.

Our goal in the remainder of this section is to describe one of the fundamen-
tal tests for an integral element to be ordinary. First, we shall introduce a set of
constructions which are frequently useful in the study of integral flags of Z. It is
convenient to assume that the differential ideal Z contains no non-zero forms of de-
gree 0. Since this is usually the case in practice, this restriction is not unreasonable.

Proposition 1.10. Let 7 C QT (M) be a differential ideal which contains no non-
zero forms of degree 0. Let (0), C Ey C Es C --- C E, C T,M be an integral
flag of T. Let e1,ea,...,e, be a basis of FE, so that ey,es,...,ex is a basis of
Ey for all 1 < k < n. For each k < n, let c; be the codimension of H(Ey) in
T.M. The numbers ¢y satisfy cy—1 < cx. For each integer a between 1 and c,—1,
define the level of a, denoted X a), to be the smallest integer so that a < c). If
cn_1 > 0, then there exists a sequence @', ..., of forms in I so that ©® has
degree A(a) + 1 and so that for all 0 <k <n—1,

(9) H(Ey) ={veT.M|¢"(v,e1,...,exa)) =0 for all a < ci}.

Proof. Since it is clear that H(Fxy1) C H(Ey), it follows that cx1q1 > cx. To
construct the sequence @', ..., %1, we proceed by induction on the level k. By
the very definition of H(Ey), there exist 1-forms ¢!, ..., ¢ in Z so that (9) holds
for kK = 0. Suppose now that we have constructed a sequence ¢!,..., ¢! so
that (9) holds for all k& < p. Let w',...,w" be a sequence of 1-forms on M so
that their restriction to E is the dual coframe to ey, es, ..., e,. Define % € T by
@ = @* AWML A WMAF2Z AL AP Then ¢ is a form in Z of degree p + 1 and,
since p® vanishes on F, the identity

(10) P%(v,e1,...,6p) = @*(v,€1,...,€xr(a))

holds for allv € T,M. If ¢, = ¢p—1, then H(E,) = H(E,_1), so (10) shows that (9)
already holds for k = p. If ¢, > ¢p_1, then by the definition of H(E,), we can choose
a set of (p+1)-formsin Z, {¢® | ¢,—1 < a < ¢}, so that H(E,) is the set of vectors

v satisfying ¢ (v, e1,...,ep) = 0 for all a < ¢,—1 as well as p*(v,e1,...,¢e,) =0 for
all ¢,—1 < a < ¢p. This completes the induction step. ([
A sequence @', ..., %1 of forms in 7 with the properties given in Propos-

tion 1.10 will be call a polar sequence associated to the integral flag (0), C Fy C
Ey C---C E, CT,M. Note that the polar sequence does not necessarily carry
complete information about H(FE,).

Theorem 1.11 (Cartan’s test). Let T C QT (M) be an ideal which contains no
non-zero forms of degree 0. Let (0), C Ey C By C --- C E,, C T, M be an integral
flag of T and, for each k < n, let ¢ be the codimension of H(FEy) in T, M. Then
Vo(Z) C G (TM) is of codimension at least co+c¢1 + -+ -+ cn—1 at E,. Moreover,
each Ey; is reqular for all k < n (and hence E,, is ordinary) if and only if E,, has a
neighborhood U in G,,(TM) so that V,(Z)NU is a smooth manifold of codimension
co+ec1+--+epo1inU.
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Proof. Set s = dim M — n. There exists a z-centered local coordinate system
z', ... z™ ul, ... u® with the property that Ej, is spanned by the vectors {0/0z"}i<k

and so that, for all £ < n,
H(Ey) ={veT,M|du*(v) =0 for all a < ¢;}.
Let @', ..., %1 be a polar sequence for the given flag so that
du®(v) = ¢*(v,0/8x",0/822, . ..,8/92MY)
for all v € T, M. It follows that
0 =du® Adaz' Ada® A - A daNY 40,

where 1% is a form of degree A(a)+ 1 which is a sum of terms of the following three
kinds:

(i) du® A dz’ where J is a multi-index of degree A(a) which contains at least one
index j which is larger than \(a),

(ii) forms which vanish at z,

(iii) forms which are of degree at least 2 in the differentials {du®}.

We are now going to show that the forms {¢® | a < ¢,—1} suffice to generate a set
of at least co+c1 +- - -+ c¢,—1 functions on a neighborhood of E,, whose differentials
are linearly independent at E, and whose set of common zeroes contains V,,(Z) in
a neighborhood of E,.

Let Q =dz! Adx? A---Adz". Let G,,(TU,Q) C G,(TM) be the set of n-planes
E which are based in the domain U of the (x, u)-coordinates and for which Qg # 0.
Then there exist functions {p | 1 < j <nand 1 <a < s} on G,(TU,Q) so that,
for each E € G,,(TU, ), the vectors X;(E) = 9/0x" + p}(E)d/d0u® form a basis of
E. The functions (x,u,p) form an E,-centered coordinate system on G,,(TU, ().

For convenience, we define A(a) = n for all ¢,—1 < a < s. Let us say that a
pair of integers (j,a) where 1 < j < n and 1 < a < s is principal if it satisfies
j < Ala) otherwise, we say that the pair is non-principal. (For example, there are
no principal pairs if ¢g = s.) Since, for j > 1, there are ¢; — ¢;_1 values of a in
the range 1 < a < s which satisfy A\(a) = j, it easily follows that the number of
principal pairs is ns — (co + ¢1 + -+ + ¢n—1). Hence, the number of non-principal
pairsiscog4+c1 4+ 4+ cp_1.

Let (j,a) be a non-principal pair. Define the function F{' on G, (TU,) by
F(E) = ¢*(X;(E), X1(E), X2(E), ..., Xx)(F)). Then we have an expansion

Fj = pf + P} + Qjf

where Pf is a linear combination (with constant coefficients) of the variables xt,
u?, and {p{ | (i,a) is principal} and @} vanishes to second order at E,. This
expansion follows directly from an examination of the terms in ¥ as described
above. It follows that the functions {F} | (j,a) is non-principal} have linearly
independent differentials at E,. Let U C G, (TU,Q) be a neighborhood of E,, on
which these functions have everywhere linearly independent differentials. Then we
clearly have

Vu(Z)NU C{E €U | F}(E) = 0 for all non-principal (j,a)}.
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It follows that V,,(Z) has codimension at least co+c1+---+cn—1 at E,, as desired.
This proves the first part of the theorem.

In order to prove the second statement of the theorem, we begin by supposing
that each Ey is Kéhler-regular for all 1 < k& < n. Then, by definition, F,, is ordinary.
Then (8) shows that we have the following recursion formula for all k& between 1
and n:

(codim Vi (Z) in Gi(TM) at E},)
=Cir—1 + (codim Vk_l(I) in Gk_l(TM) at Ek—l)-

Since, by hypothesis, Z contains no O0-forms, it follows that Vu(Z) =
Go(TM) = M. Thus, by induction, the codimension of V,(Z) in G,(TM) at
FE,, has the desired value co +c¢1 + -+ ¢p_1.

To prove the converse statement, let us now suppose that there is an FE,-
neighborhood U in G, (T M) so that V,,(Z)NU is a smooth manifold of codimension
cot+c1+---+cp—1 in U. It follows that, by shrinking U if necessary, we may suppose
that

Vau(Z)NU ={E €U | F}(E) = 0 for all non-principal (j,a)}

and that the functions F = {F} | (j, @) is non-principal} have linearly independent

differentials on all of U. If we set ¢ = p* A dz’(3) where K (a, j) is a multi-index
of degree n — (A(a) + 1) with the property that

ded Adzt Adz? A - A daMD A deB@D) = dzt Ada? A A da?,

then F#(E) = ¢f(X1(E), X2(E),..., X,(E)) for all £ € U. It follows that £, is
Kahler-ordinary. In fact, we can say more. Applying the implicit function theorem
to the above expansion of FY, it follows that, by shrinking U if necessary, the
submanifold V,,(Z) N U in U can be described by equations of the form

pi = P for all (i,a) non-principal,

where the functions Pf are functions of the variables zt, u?, and {p¢ | (i,a) is
principal}. (For the sake of uniformity, we define the function P{* to be p¢ when
the pair (i, a) is principal.) Thus, the variables z?, u®, and {p¢ | (i,a) is principal}
form an F,-centered coordinate system on V,,(Z)NU.

By the first part of the proof, we know that V,,_1(Z) has codimension at least
cotert-+ep—oin Gp—1(TM) at E,,_1. We will now show that, in fact, V,,_1(Z)
contains a submanifold of codimension co+c1+- - ~+¢p—2 in Gy —1 (T M) which passes
through F,,_1. This will imply that F,,_; is Kdhler-ordinary and that V;,_1(Z) has
codimension co+c¢1+- -+ cp—2 in G,_1(TM) at E,_1. To demonstrate this claim,
let v = (v1,v2,...,0,_1) € R®"! and define amap ® : R* ' xV,,(Z)NU — V,,_1(Z)
by letting ®(v, E) = E¥ be the (n — 1)-plane in E which is spanned by the n — 1
vectors

X;(E®) = X;(E) + v; X,,(E) foralll1 <i¢<n-—1
= 0/0x" +v;0/9x" + (P(E) + v; PX(E))9/0u”.

We claim that ® hasrank p=n+s+(n—1)(s+1)—(co+c1+ -+ cn_2) at
(0, E,,). To see this, note that since co+c1+- - -+¢p—2 is already known to be a lower
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bound on the codimension of V,,_1(Z) in G,,—1(TM) at E, _1, the image of ® must
lie in a submanifold of G,,—1(T'M) whose codimension is at least co+c¢1+- - -+ cp_2
and hence the rank of ® cannot be larger than p at any point of some neighborhood
of (0, Ey,). On the other hand, the rank of ® at (0, F,,) is equal to p, since it is clear
that the p functions z%, u®, {v; | 1 <i < n — 1}, and {P*(E) + v;PY(E) | (i,a)
principal and ¢ < n — 1} have linearly independent differentials on a neighborhood
of (0, E,). Thus, the rank of ® must be identically p near (0, E,,).

Moreover, there is a neighborhood O of (0, E,,) in R*~! x V,,(Z)NU and a neigh-
borhood U™ of E,,_1 in G,,—1(T M) so that V,,_1(Z)NU~ is a smooth submanifold
of U~ of codimension ¢g + ¢1 + -+ -+ ¢p—2 and so that & : O — V,,_1(Z)NU™ is a
surjective submersion. As noted above, this implies that E,,_; is Kahler-ordinary.

We may also conclude that E,,_; is Kéhler-regular by the following observation.
For all E in U™, the set {E € V,(Z)NU | ®(v, E) = E for some v} is an open
subset of the set P(H(E)/E) of n-dimensional integral elements which contain E.
The dimension of this set is thus 7(E). However, since ® is a surjective submersion,
this set clearly has the dimension of the fibers of ®, which is the same as the
dimension of the fiber ®~1(E,,_1). It follows that the function r is locally constant
on a neighborhood of E,,_1 in V,,_1(Z). Thus, E,_; is Kéhler-regular, as desired.

By induction, it follows that each FEj is Kéhler-regular for all 1 < k < n — 1.
Since 7 contains no forms of degree 0, it immediately follows that each E} is regular
foreach 1 <k <n-—1. O

Ezample 1.2 (continued). Using Theorem 1.11, we can give a quick proof that none
of the elements in V5(Z) are ordinary. For any integral flag (0), C E; C Eo C T,R?,
we know that ¢y < 2 since there are only 2 independent 1-forms in Z. Also, since
Es C H(Ey), it follows that ¢; < 3. Since there is a unique 2-dimensional integral
element at each point of R®, it follows that V2(Z) has codimension 6 in G2(TR?).
Since 6 > cp+ci, it follows, by Theorem 1.11, that none of the integral flags of length
2 can be ordinary. Hence there are no ordinary integral elements of dimension 2.

FExample 1.12. Let M = RS with coordinates z', 22, 23, u1, us2, u3. Let T be the
differential system generated by the 2-form

9 = d(urda’ + uadz? + usda®) — (urda® A da® + updae® A dat 4 usdx A da?).
Of course, 7 is generated algebraically by the forms {¢, dJ}. We have
d¥ = —(duy Ada® A da® 4 dug A dz® Adat + dus A dat A da?).

We can use Theorem 1.11 to show that all of the 3-dimensional integral elements
of Z on which Q = dx!' A dz? A da® does not vanish are ordinary. Let E € V3(Z, Q)
be fixed with base point z € RS. let (e1, €2, €3) be the basis of E which is dual to
the basis (dx!,dz?, dz3) of E*. Let E; be the line spanned by e, let Ey be the
2-plane spanned by the pair {e1, ez}, and let E3 be E. Then (0), C F1 C E3 C F3
is an integral flag. Since 7 is generated by {¢,d¥} where ¢ is a 2-form, it follows
that ¢y = 0. Moreover, since 9(v, e;) = 71 (v) where 7 = du; mod (dx!, dz?, dx?),
it follows that ¢; = 1. Note that, since H(F3) D Es, it follows that ¢co < 3. On the
other hand, we have the formula

(v, e1) =71 (v)
I(v, e2) = m2(v)
dd(v, eq, e2) = —m3(v)
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where in each case, 7 = duy, mod (dz', dz?, dz3). Since the 1-forms 7y are clearly
independent and annihilate H(Es), it follows that co > 3. Combined with the pre-
vious argument, we have co = 3. It follows by Theorem 1.11 that the codimension
of V3(Z) in G3(TR®) at E is at least ¢ + ¢1 +c2 = 4.

We are now going to show that V3(Z, () is a smooth submanifold of G3(TRS)
of codimension 4, and thence, by Theorem 1.11, conclude that F is ordinary. To
do this, we introduce functions p;; on G3(TRS, Q) with the property that, for each
E € G5(TR®, Q) based at z € R®, the forms m; = du; — p;j(E)dz? € T7(RY) are
a basis for the 1-forms which annihilate E. Then the functions (z,u,p) form a
coordinate system on G3(TR®, Q). It is easy to compute that

V5 = (pa3 — p3z — w1)dx? A dax® + (p31 — p13 — ug)dx® A da?
+ (p12 — po1 — ug)da' A da?

d9g = —(p11 + paa + p33)daz’ A dx® A da®.

It follows that the condition that E € G3(TRS Q) be an integral element of T
is equivalent to the vanishing of 4 functions on G3(TRS, Q) whose differentials are
independent. Thus V3(Z, Q) is a smooth manifold of codimension 4 in G3(TRS, ),
as we desired to show.

The following results will be used in later sections:

Proposition 1.13. Let T C Q*(M) be a differential ideal which contains no non-
zero forms of degree 0. Let Z C V,(Z) be a connected component of the space of
ordinary integral elements. Then there exists a unique sequence (Co, C1,C2, - - -, Cn—1)
of integers so that ¢y, is the codimension of H(EY) in T, M for any ordinary integral
flag (O)C EyC---CE, CT.M with E, € Z.

Proof. Let Z C VJ(I) x Vi (Z) x ... x V/_(T) x Z denote the space of ordinary
integral flags F = (Eo, E1,...,E,) of T with E, € Z. We endow Z with the
topology and smooth structure it inherits from this product. Note that even though
Z is connected, Z may not be connected. However, if we define ¢y (F) = dim M —
dim H(E}), then the functions ¢ for k < n are clearly locally constant on Z. We
must show that these functions are actually constant on Z.

To do this, suppose that for some p < n, ¢, were not constant on Z. Then there
would exist non-empty open sets Z;, Z, so that cp =gqon Z; and cp #qon Z,. The
images Z1, Z» of these two sets under the submersion Z — Z would then be an open
cover of Z. By the connectedness of Z, they would have to intersect non-trivially.
In particular, there would exist an E € Z and two p-planes E*, E* € VJ(T)NG,(E)
for which r(E') = q # r(E?).

We shall now show that this is impossible. Since E C T, M is an integral element,
it follows that G,(E£) C V,,(Z) and hence that V' (Z) N G(E) is an open subset of
Gy,(E). Moreover, since the function r is locally constant on V;(Z), it follows that
Vo (Z) N Gp(E) is a subset of the open set G (E) C G,(E) on which r is locally
constant. Thus, it suffices to show that r is constant on G} (E).

Let o', ..., ¢%be aset of (p+1)-forms in Z with the property that a (p+1)-plane
Ep+1 C T, M is an integral element of Z if and only if each of the forms ¢!, ..., ¢?
vanish on F,41. (Since we are only considering planes based at z, such a finite
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collection of forms exists.) Then for any E, € G,,(E) with basis e, 2, . . ., €p,
H(E,) ={veT,M|¢*(v,e1,e2,...,6,) =0, 1 <a<g}.

By the usual argument involving the ranks of linear equations whose coefficients
involve parameters, it follows that dim H(E,) is locally constant on G,(F) only on
the open set where it reaches its minimum. Thus, r is constant on G (E), as we
wished to show. O

Proposition 1.14. Let T C Q*(M) be a differential ideal which contains no non-
zero forms of degree 0. If o', ... @1 is a polar sequence for the ordinary integral
flag (0) C Ey C --- C E,, CT.M, then it is also a polar sequence for all nearby
integral flags.

Proof. Obvious. O

We conclude this section by proving a technical proposition which provides an
effective method of computing the numbers ¢; which are associated to an integral
flag. We need the following terminology: If J = (j1, j2, - - -, jp) is a multi-index of
degree p taken from the set {1,2,...,n}, then we define sup J to be the largest of
the integers {ji,jo2,...,Jp}. If J = 0 is the (unique) multi-index of degree 0, we
define sup J = 0.

Proposition 1.15. Let Z C QT (M) be an ideal which contains no non-zero forms
of degree 0. Let E € V,(I) be based at z € M. Let w', ..., w", ml,
..., (where s = dAim M — n) be a coframing on a z-neighborhood so that E =
{veT.M |7 (v) =0 for all a}. For each p < n, define E, = {ve E|wk(v) =0
for all k > p}. Let {p', 0% ..., 0"} be a set of forms which generate I algebraically
where P has degree d, + 1.

Then, for each p, there exists an expansion

o= Y
|J|=d,

where the 1-forms 7, are linear combinations of the w’s and the terms in @° are
either of degree 2 or more in the w’s or else vanish at z.
Moreover, we have the formula

H(E,) ={veT.M | x%(v) =0 for all p and sup J < p}.
In particular, for the integral flag (0), C E1 C Eo C --- C E, CT,M of Z, ¢,
is the number of linearly independent 1-forms in the set {n/}|. | sup J < p}.

Proof. The existence of the expansion cited for ¢ is an elementary exercise in
exterior algebra using the fact that F is an integral element of Z. The “remainder
term” @” has the property that ¢”(v,e1,es,...,eq,) = 0 for all v € T, M and all

{e1,e2,...,eq,} CE. Ifey, ea,..., e, is the basis of E' which is dual to the coframing
whw? ... 0" and K = (k1, ko, ..., kq,) is a multi-index with deg K = d,, we have
the formula ¢”(v A ex) = wh(v). The stated formulas for H(E,) and ¢, follow
immediately. t

To see the utility of Proposition 1.15, consider Example 1.12. Here, 7 is generated
by two forms ¢' = ¢ and ¢? = —d¥, of degrees 2 and 3 respectively. If E €
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G3(TRS, Q) is any integral element, then the annihilator of E is spanned by 1-
forms m; = du; — p;;dx? for some numbers p;;. It is clear that we have expansions
of the form

<p1219=7r1/\dx1+7r2/\dx2+7r3/\dx3+<,51
<p2:—d19:7T3/\dxl/\dx2+7rg/\dxg/\dxl—l—m/\de/\de—l—ng,

on a neighborhood of the base point of E. By Proposition 1.15, it follows that the
annihilator of H(F7) is spanned by {71} and the annihilator of H(F3) is spanned
by {1, 72, m3}. Thus, we must have ¢; = 1 and ¢y = 3, as we computed before.

§2. The Cartan—Kéihler Theorem.

In this section, we prove the Cartan—Ké&hler theorem, which is the fundamen-
tal existence result for integral manifolds of a real-analytic differential system.
This theorem is a coordinate-free, geometric generalization of the classical Cauchy—
Kowalevski theorem, which we now state.

We shall adopt the index ranges 1 <4, <nand 1<a,b<s.

Theorem 2.1 (Cauchy-Kowalevski). Let y be a coordinate on R, let x = (z%) be
coordinates on R™, let z = (2%) be coordinates on R®, and let p = (p}) be coordinates
on R™. Let D C R™ x R x R® x R™ be an open domain, and let G : D — R*® be a
real analytic mapping. Let Dy C R™ be an open domain and let f : Dy — R® be a
real analytic mapping so that the “l-graph”

(11) Ty ={(, 0, f(x), Df(x)) | z € Do}

lies in D for some constant yo. (Here, Df(x) € R™®, the Jacobian of f, is described
by the condition that p?(Df(x)) = 0f*(x)/0z;.)

Then there exists an open neighborhood Dy C Dy X R of Dy x {yo} and a real
analytic mapping F : D1 — R® which satisfies the P.D.E. with initial condition

OF /0y = G(x,y, F,0F/0x)

(12)

F(x,y0) = f(x) for all x € Dy.
Moreover, F is unique in the sense that any other real-analytic solution of (12)
agrees with F' on some neighborhood of Dy x {yo}.

We shall not prove the Cauchy—Kowalevski theorem here, but refer the reader to
other sources, such as Tréves [1975] or Spivak [1979]. We remark, however, that the
assumption of real analyticity is necessary in both the function G' (which defines
the system of P.D.E.) and the initial condition f. In the smooth category, there
are examples where the existence part of the above statement fails and there are
other examples where the uniqueness part of the above statement fails.

We now turn to the statement of the Cartan—Ké&hler theorem. If T C Q*(M)
is a differential ideal, we shall say that an integral manifold of Z, V' C M, is
a Kdhler-reqular integral manifold if the tangent space T,V is a Kahler-regular
integral element of Z for all v € V. If V is a connected, Kéahler-regular integral
manifold of Z, then we define (V') to be r(T,V) where v is any element of V.
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Theorem 2.2 (Cartan-Kahler). Let T C Q*(M) be a real analytic differential
ideal. Let P C M be a connected, p-dimensional, real analytic, Kdhler-reqular
integral manifold of T.

Suppose that v = r(P) is a non-negative integer. Let R C M be a real analytic
submanifold of M which is of codimension r, which contains P, and which satisfies
the condition that T, R and H(T,P) are transverse in T, M for all x € P.

Then there exists a real analytic integral manifold of T, X, which is connected
and (p + 1)-dimensional and which satisfies P C X C R. This manifold is unique
in the sense that any other real analytic integral manifold of T with these properties
agrees with X on an open neighborhood of P.

Proof. The theorem is local, so it suffices to prove existence and uniqueness in
a neighborhood of a single point g € P. Let s = dimM — (r +p + 1). (The
following proof holds with the obvious simplifications if any of p, r, or s are zero.
For simplicity of notation, we assume that they are all positive.)

Our hypothesis implies that the vector space T,, RN H (T, P) has dimension p+ 1
for all z € P. It follows that we may choose a local (real analytic) system of coordi-
nates centered on o of the form
b 2Py ut, ., uf, vt L, 0" so that P is given in this neighborhood by the
equations y = v = v = 0, R is given in this neighborhood by the equations
v = 0, and, for all x € P, the polar space H(T,P) is spanned by the vectors
{0/027}1<j<p U{0/0y} U{0/0v° b1<per.

Now, there exists a neighborhood U of T, P in G,(T'M) so that every E € U
with base point z € M has a basis of the form

X;(E) = (0/02" + q;(E)0/dy + pd (F)d/0u® + w! (E)9/0v?)]..

The functions z,y, u,v, g, p, w form a coordinate system on U centered on T}, P.
By the definition of H (T}, P), there exist s real analytic (p+ 1)-forms x', ..., x® in
7 with the property that

H(T,,P) ={v & T,yM | x%(v,0/0x* 8/02*,...,0/02P) =0 for 1 <o < s}.
In fact, we may even assume that x°(v,d/dz%,9/0x2,...,0/02P) = du®(v) for
1 <o <sandall ve T, M. By the Kdhler-regularity of T, P, we may assume,

by shrinking U if necessary, that, for all E € V,,(Z) NU with base point z € M, we
have

HE)={veT, M|k’ (v,X1(E),X2(E),...,Wp(E)) =0for 1 <o <s}.
If we seek v € H(FE) of the form
v = (ad/dy + b79/0u’ + c”9/OP)|.,

then the s equations k%(v, X1 (E), X2(E),...,X,(E)) = 0 are, of course, linear
equations for the quantities a, b, and ¢ of the form

A°(E)a + BS(E)" + CS(E)e? = 0.

Again, by hypothesis, when E = T, P these s equations are linearly independent
and reduce to the equations b = 0. Thus, by shrinking U if necessary, we may
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assume that the s x s matrix B(F) = (BZ(E)) is invertible for all E € U. It follows
that there exist unique real analytic functions G° on U so that, for each £ € U
based at z € M, the vector Y (E) = (0/0y + G°(E)0/0u’)|, satisfies

K (Y (E), X1(E), X2(E), ..., X,(E)) = 0.

Since the functions x,y,u,v,q,p,w form a coordinate system on U centered on
T,,P, we may regard the functions G as functions of these variables.

We first show that there exists a real analytic submanifold of R of the form
v =0, u = F(z,y) on which the forms x° vanish. Note that the following vectors
would be a basis of the tangent space to such a submanifold at the point z(z,y) =
(z,y, F(z,y),0):

Xi(z,y) = (8/0x" + 0;F (x,y)0/0u”) (2 )
Y(z,y) = (0/0y + 0, F (z,y)0/0u’)|.(a.y)-

It follows that the function F would have to be a solution to the system of P.D.E.
given by

(13) OyF? = G%(z,y, F,0,0,0,F, 0).

Moreover, in order that the submanifold contain P (which is given by the equations
y =u=wv=0), it is necessary that the function F satisfy the initial condition

(14) F(x,0) = 0.

Conversely, if F' satisfies (13) and (14), then the submanifold of R given by v = 0 and
u = F(x,y) will both contain P and be an integral of the set of forms {k? }1<s<s.

By the Cauchy—Kowalevski theorem, there exists a unique real analytic solution
F of (13) and (14). We let X C R denote the (unique) submanifold of dimension
p + 1 constructed by this method. Replacing the functions u in our coordinate
system by the functions v — F(z,y) will not disturb any of our normalizations so
far and allows us to suppose, as we shall for the remainder of the proof, that X is
described by the equations u = v = 0.

We must now show that X is an integral manifold of Z. We have already seen
that X is the unique connected real analytic submanifold of dimension p + 1 which
satisfies P C X C R and is an integral of the forms {7 }1<,<s. We now show that
all of the p-forms in Z vanish on X.

Again using the Kéhler-regularity of T, P, let 3%, ..., 3% be a set of real analytic
p-forms in 7 so that the functions f¢(E) = 5%(X1(E),...,Xp(E)) for 1 < ¢ <
a have linearly independent differentials on U and have the locus V,(Z) N U as
their set of common zeros. (We may have to shrink U once more to do this.)
Since Ty, X lies in Vj41(Z) by construction, Proposition 1.8 shows that T, X is
Kéhler-ordinary. In fact, the proof of Proposition 1.8 shows that the (p + 1)-forms
{B° AN dyt1<c<a U {K7 }1<o<s have V41 (Z) NU™T as their set of ordinary common
zeros in some neighborhood U™ of T, X in Gp11(T'M). Thus, in order to show that
X is an integral manifold of Z, it suffices to show that the forms {8° A dy}1<c<a
vanish on X.
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Shrinking U™ if necessary, we may suppose that every ET € U™ has a basis
X1(ET), Xo(E™), ..., X,(ET),Y(ET)
that is dual to the basis of 1-forms dz!, dz?, ..., dzP, dy. If we set
BY(ET) = 5° Ndy(X1(ET), X2(ET), ..., X,(ET), Y(E"))
K7(EY) = s (X1(ET), Xo(ET),..., X, (ET),Y(E")),
then we have

Vot (D)NUT ={ET €U | BY(ET) = K°(E") = 0}.
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Since 7 is an ideal, the forms 3°Adz® are also in Z and hence vanish on V1 (Z)NU ™.

Thus, if we set
BE(ET) = 5° N da' (X1 (BY), Xo(BY), ..., Xp(EY),Y(ET)),

then the functions B are in the ideal generated by the functions B¢ and K°.
follows that there exist real analytic functions A and L on U™ so that

Bci _ AgiBb + LC’iKU.
Since K°(T,X) = 0 for all z € X by construction, it follows that
BY(T.X) = AY(T. X)B*(T.X)

for all z € X.
Since 7 is differentially closed, the forms d3¢ are in Z. Thus, if we set

DY(E™) = dB*(X1(ET), Xo(EY), ..., Xp(ET), Y(ET)),
there must exist functions G and H on U™ so that
D¢ =GiB" + H{K°.
Again, since K?(T,X) = 0, we must have
DY(T.X) = G§(T. X)B"(T.X)

for all z € X.
Now, if we restrict the forms ¢ to X, then we have an expansion of the form

B|x = B(z,y)dz' A--- A daP
+ Z(—l)p_i+1BCi(x, ydrt A AdeTEANdTTE A - A daP A dy,
i

where, for z = (z,%,0,0) € X, we have set B°(z,y) = B¢(T.X) and B®(x,y)
B¢ (T, X). We also have the formula

df|x = (—1)? (%BC(J% y)+ Y 0:B%(x, y)) dz' A~ A da? A dy

7

= D(z,y)dz* A - AdaP A dy,

It
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where we have written D¢(z,y) = D¢(T,X) for z as before. Using the formulas
D*(z,y) = Gi(,y)B(z,y)
B (x,y) = Aj'(z,y)B" (z,y),
we see that the functions B¢(x,y) satisfy a linear system of P.D.E. of the form
0,B°(x,y) = Af' (2,4)9;B" (z,y) + Gi(z,y) B (z,y)

for some functions A and G on X. Moreover, since T.X is an integral element of
Z when y = 0, we have the initial conditions B¢(x,0) = 0. By the uniqueness part
of the Cauchy-Kowalevski theorem and the fact that all of the functions involved
are real-analytic, it follows that the functions B¢(z,y) must vanish identically. In
turn, this implies that the forms ¢ vanish on X. Hence X is an integral manifold
of 7, as we wished to show. Since we have already established uniqueness, we are
done. O

The role of the “restraining manifold” R in the Cartan—Kahler theorem is to
convert the “underdetermined” Cauchy problem one would otherwise encounter in
extending P to a (p + 1)-dimensional integral to a determined problem. In the
coordinate system we introduced in the proof, we could have taken, instead of R,
which was defined by the equations v” = 0, the submanifold R, defined by the
equations v = fP(x,y) where the functions f? are “small” but otherwise arbitrary
real analytic functions of the p + 1 variables (z!,z2,...,2P,y). The construction
in the above proof would then have lead to an integral manifold X of dimension
p + 1 defined locally by equations u? = ¢° (z,y) and v = fP(x,y). In this sense,
the (p+ 1)-dimensional extensions of a given p-dimensional, Kahler-regular integral
manifold P of Z depend on r(P) functions of p + 1 variables.

The Cartan-K&hler theorem has the following extremely useful corollary. (In
fact, this corollary is used more often than Theorem 2.2 and is often called the
Cartan—Kéhler theorem, even in this book.)

Corollary 2.3. Let T be an analytic differential ideal on a manifold M. Let E C
T, M be an ordinary integral element of Z. Then there exists an integral manifold
of T which passes through x and whose tangent space at x is E.

Proof. Assume that the dimension of E is n and let (0), = Fg C F1 C E; C -+ C
E, = E C T,M be an ordinary integral flag. Suppose that, for some p < n, we
have found a p-dimensional, regular, real analytic integral manifold X, of Z which
passes through = and which satisfies T;; X, = E,,. Then it is easy to see that there
exists a real analytic manifold R, C M which contains X, is of codimension r(E,),
and satisfies T, R,N H(E,) = E,4+1. Shrinking X, if necessary, we may assume that
T.R, is transverse to H(T,X,) for all z € X,,. Applying Theorem 2.2, we see that
there exists a real analytic integral manifold of Z of dimension (p + 1), Xp41, with
the property that T, Xp41 = Ept1. If p+1 < n, then Ep; is a Kéhler-regular
integral element of 7 and hence, by shrinking X, if necessary, we may assume
that X,41 is a (p + 1)-dimensional, Kahler-regular, real analytic integral manifold
of Z. If p+1 =mn, then X, is the desired integral manifold. (]

We conclude this section by explaining some classical terminology regarding the
“generality” of the space of ordinary integral manifolds of an analytic differential
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system Z. For simplicity, let us suppose that 7 is a real analytic differential system
on a manifold M and that Z contains no non-zero 0-forms. Let (0), = Ey C Fy C
--- C E, CT.M be an ordinary integral flag of Z. As usual, for 0 < k <n —1, let
¢ be the codimension of H(Ey) in T, M. For convenience of notation, let us set
c—1 =0and ¢, = s = dimM —n. Then we may choose a z-centered coordinate
system on some z-neighborhood of the form x', 22, ..., 2", u!, u?, ..., u® so that F}

is spanned by the vectors {0/0z7}1<j<k and so that, for k < n,
H(Ey) ={veT,M|du*(v) =0 for all a < ¢;}.

For any integer a between 1 and s, let A(a), the level of a, be the integer k
between 0 and n which satisfies cx—1 < a < ¢x. The number of integers of level k
is clearly cx — cx_1. The (non-negative) number s; = ¢, — cx_1 is called the k*?
Cartan character of the given integral flag.

Let Q = dz! Adz? A---Adz™ and let V,,(Z, Q) denote the space of n-dimensional
integral elements of Z on which ©Q does not vanish. For each E € V,,(Z,Q), let
us define By, = {v € E | da/(v) = 0 for all j > k}. Then for each k, the map
E — Ej is a continuous mapping from V,(Z,Q) to Vi(Z). It follows that there
exists a (connected) neighborhood U of E, in V,,(Z, Q) with the property that Fj
is Kahler-regular for all k < n and all E € U. By shrinking U if necessary, we may
even suppose that the 1-forms {dz?}1<;<, and {du®},>., are linearly independent
on H(E}) for all k <n and all E € U.

We now want to give a description of the collection C of real analytic n-dimensional
integral manifolds of Z whose tangent spaces all belong to U and which intersect
the locus z = 0. By Corollary 2.3, we know that C is non-empty. If X belongs to C,
then locally, we may describe X by equations of the form u® = F¢(z!,22,..., 2").
If the index a has level k, let us define f® to be the function of k variables given
by fo(z!,2?,...,2%) = Fe(z', 22,...,2%,0,0,...,0). By convention, for level 0 we
speak of “functions of 0 variables” as “constants”.) Then the collection {f*}1<a<s
is a set of sy constants, s; functions of 1 variable, s functions of 2 variables, ...,
and s,, functions of n variables.

We now claim that the collection {f®}1<,<s characterizes X in the sense that
any X in C which gives rise to the same collection of functions {f%}1<a<s agrees
with X on a neighborhood of the point (z,u) = (0, F(0)). Moreover, the functions
in the collection { f*}1<4<s are required to be “small”, but are otherwise arbitrary.
It is in this sense that C is parametrized by sy constants, s; functions of 1 variable,
so functions of 2 variables, ..., and s, functions of n variables. It is common to
interpret this as meaning that the local n-dimensional integrals of Z depend on
sp constants, s; functions of 1 variable, so functions of 2 variables, ..., and s,
functions of n variables.

To demonstrate our claim, let {f®}1<q,<s be a collection of real analytic functions
which are suitably “small” and where f® is a function of the variables 2!, 22, ..., (@),
For 1 < k < n, define the manifold R, to be the locus of the equations zF+! =
22 = ... =" =0 and u® = f4(z',...,2%0,...,0) where a ranges over all in-
dices of level greater than or equal to k. The codimension of Ry isn—k+(s—cp_1) =
r(Ex—_1). Define Xy to be the point (x,u) = (0, f(0)). By sucessive applications of
the Cartan—Ké&hler theorem, we may construct a unique nested sequence of integral
manifolds of Z, {X}o<k<n, which also satisfy the conditions X C Ry. (It is at
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this stage that we use the assumption of “smallness” in order to guarantee that the
necessary transversality conditions hold.) This clearly demonstrates our claim.

The following proposition shows that the sequence of Cartan characters has an
invariant meaning.

Proposition 2.4. Let T C Q*(M) be a smooth differential system which contains
no 0-forms. Let Z C V,(Z) be a component of the space of ordinary integral ele-
ments. Then the sequence of Cartan characters (so, S1,---,58n) is the same for all
ordinary integral flags (0), C By C --- C E,, with E,, € Z.

Proof. This follows immediately from Proposition 1.13 and the definitions of the
Sk, namely: sg = cg, Sy =cx —cxp—1 for 1 <k <n,and s, =s—cp_1.

Usually, the component Z must be understood from context when such state-
ments as “The system Z has Cartan characters (sg, s1, ..., 8,).” are made. In fact,
in most cases of interest, the space of ordinary, n-dimensional integral elements of
7 has only one component anyway.

&®

§3. Examples.

In this section, we give some applications of the Cartan—Ké&hler theorem. Some
of the examples are included merely to demonstrate techniques for calculating the
quantities one must calculate in order to apply the Cartan—Ké&hler theorem, while
others are more substantial. The most important example in this section is the
application of the Cartan—Kahler theorem to the problem of isometric embedding
(see Example 3.8).

Ezample 3.1 (The Frobenius theorem). Let M be a manifold of dimension m =
n + s and let 7 be a differential system which is generated algebraically in degree
1 by a Pfaffian system I C T*M of rank s. Then at each € M, there is a
unique integral element of dimension n, namely I.- € T, M. In fact, every integral
element of 7 based at z must be a subspace of I, since H((0);) = I;-. Thus, if
(0), C By C -+ C B, = I} is an integral flag, then we have H(E,) = I.- for all
0 <p <n. Thus ¢, = s for all p. It follows by Theorem 1.11 that V,,(Z) must have
codimension at least ns in G,,(TM). On the other hand, since there is a unique
integral element of Z at each point of M, it follows that V,,(Z) is a smooth manifold
of dimension n+ s while G,,(T'M) has dimension n+s+ns. Thus, V,,(Z) is a smooth
submanifold of codimension ns in G,,(T'M). By Theorem 1.11, it follows that all
of the elements of V,,(Z) are ordinary. If we now assume that Z is real analytic,
then the Cartan-Kéhler theorem applies (in the form of Corollary 2.3) to show that
there exists an n-dimensional integral manifold of Z passing through each point of
M. The characters are sy = s and s, = 0 for all p > 0. Thus, according to our
discussion at the end of Section 2, the local integral manifolds of Z of dimension n
depend on s constants. This is in accordance with the usual theory of foliations.

The assumption of analyticity is, of course, not necessary. We have already
proved the Frobenius theorem in the smooth category in Chapter II. The reader
might find it helpful to compare this proof with the proof given there.
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Ezample 3.2 (Orthogonal coordinates). Let g be a Riemannian metric on a manifold
N of dimension n. We wish to know when there exist local coordinates =, 22, ..., 2"
on N so that the metric takes the diagonal form

g= gll(dxl)Q + 922(653:2)2 NS gnn(dx")Q.

Equivalently, we wish the coordinate vector fields {0/0x'}1<;<, to be orthogonal
with respect to the metric. Such a local coordinate system is said to be orthogonal.

If 21, x2,..., 2" is such an orthogonal coordinate system, then the set of 1-forms
N = \/Gii dx’ is a local orthonormal coframing of N. These forms clearly satisfy the
equations 7; Adn; = 0. Conversely, if n1, 72, . . ., 7, is a local orthonormal coframing
on M which satisfies the equations 7; Adn; = 0, then the Frobenius theorem implies

that there exist local functions x!, 2% ..., 2™ on N so that 7; = fidz' (no summa-

tion) for some non-zero functions f;. It follows that the functions z', 22, ... 2"
form a local orthogonal coordinate system on IN. Thus, our problem is essentially
equivalent to the problem of finding local orthonormal coframes 71,72, . . ., 7, which
satisfy the equations n; A dn; = 0.

Let F — N denote the bundle of orthonormal coframes for the metric g on V.
Thus, for each x € N, the fiber F, consists of the set of all orthonormal coframings
of the tangent space T, N. The bundle F has a canonical coframing w;,w;; = —wj;

which satisfies the structure equations of E. Cartan:
dw; = —Zwij A wj
J

1
dwij = — E Wik A Wkj + 5 E Rijriwr A wy.
% Kl

The forms w; have the “reproducing property” described as follows: If n =
(711,M2, - - -, Mn) is any local orthonormal coframing defined on an open set U C M,
then 1 may be regarded as a local section nn : U — F of F. Then the formula
n*(w;) = n; holds.

We set 2 = wi Awa A+ -Awy,. Notice that € does not vanish on the submanifold
n(U) C F since n* () = m Anma A - An, # 0. Conversely, it is clear that any
n-dimensional submanifold X C F on which Q does not vanish is locally of the
form n(U) for some section 7. Let Z denote the differential system on F generated
by the n 3-forms ©; = w; A dw;. If X C F is an integral of the system Z on which
) does not vanish, then clearly X is locally of the form n(U) where 7 is a local
orthonormal coframing satisfying our desired equations n; A dn; = 0. Conversely, a
local orthonormal coframing 7 satisfying n; A dn; = 0 has the property that n(U) is
an n-dimensional integral manifold of Z on which 2 does not vanish.

We proceed to analyse the m-dimensional integral manifolds of Z on which
does not vanish. Note that 7 is generated algebraically by the 3-forms ©; and the
4-forms ¥; = dO;. Let E € V,(Z,Q) be based at f € F. When we restrict the
forms w;, w;; to E, the forms w; remain linearly independent, and we have relations
of the form

0, = —(Zwij /\w]') Aw; = 0.
J



78 III. Cartan—Kéhler Theory

It follows that there exist 1-forms \; = Zj L;jw; so that (Z] wij Awj) = A Aw.
Collecting terms, we have the equation

Z(wij + Lijwi — Ljiwj) ANwj = 0.
J

Since the forms ¢;; = (w;; + Lijw; — Lj;w;) are skew-symmetric in their indices, it
follows that the above equations can only hold if we have

wij + Lijwi - Ljiwj =0.

Conversely, we claim that if {L;;};»; is any set of n? —n numbers, then the n-plane
E C T;F annihilated by the 1-forms ¢;; = (wi; + Lijw; — Ljw;) is an integral
element of 7 on which € does not vanish. To see this, note that for such E, we
have the identity —dw; = (> jwig A wj) = A\ Aw;. It immediately follows that
0, = w; Adw; and ¥; = dw; A dw; must vanish on E.

It follows that the space of integral elements of Z which are based at a point of F
is naturally a smooth manifold of dimension n? — n. Moreover, the space V;,(Z, Q)
is a smooth manifold of dimension dimF + (n? — n). Thus, the codimension of
Vo(Z,Q) in Go(F) is (n —2)(3).

When n = 2, we are looking for integrals of dimension 2. However, Z has no
non-zero forms of degree less than 3. It follows that any surface in F is an integral
of T.

From now on, we assume that n > 3. Since dimF = 1(n? +n), if (0); C E; C
-+ C By, is an integral flag, it follows that ¢, < (g) for all 0 < p < n. However,
since Z contains no non-zero forms of degree less than 3, it follows that ¢ = ¢; = 0.

Moreover, since Z contains only n 3-forms, it follows that co < n. Thus, we have
the inequality

cot+ci+eat+en Sn+(n—3)(g>

It follows, by Theorem 1.11, that for n > 4, none of the elements of V,,(Z, Q)
are ordinary. Thus, the Cartan—Ké&hler theorem cannot be directly applied in the
case where n > 4. This is to be expected since a Riemannian metric in n variables
has (g) “off diagonal” components in a general coordinate system and a choice
of coordinates depends on only n functions of n variables. Thus, if n < (g),
(which holds when n > 4) we do not expect to be able to diagonalize the “generic”
Riemannian metric in n variables by a change of coordinates.

Let us now specialize to the case n = 3. By Theorem 1.11 and the calculation
above, an integral element FE € V3(Z,(Q) is an ordinary integral element if and only
if it contains a 2-dimensional integral element E5 whose polar space has codimen-
sion 3. Now a basis for the 3-forms in Z can be taken to be {wa3 A wa A w3, w31 A
w3 Awi,wiz Awy Awa}. If E € V5(Z, Q) is given, then let vy, v € E be two vectors
which span a 2-plane F3 on which none of the 2-forms {ws A w3, w3 A w1, w1 Aws}
vanish. Then it immediately follows that the polar equations of Fo have rank 3.
Thus FE is ordinary. This yields the following theorem.

Theorem 3.3 (Cartan). Let (M?3,g) be a real analytic Riemannian metric. Let S
be a real analytic surface in M and let n : S — F be a real analytic coframing along
S so that none of the 2-forms {n2 A n3,n3 A n1,m A n2} vanishes when restricted
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to S. Then there is an open neighborhood U of S in M and a unique real analytic
extension of n to U so that the equations n; A dn; = 0 hold.

Proof. The surface n(S) C F is a Kihler-regular integral of Z by the above calcu-
lation. The rest follows from the Cartan—Ké&hler theorem.

Corollary 3.4. Let (M3,g) be a real analytic Riemannian metric. Then every
point of M lies in a neighborhood on which there exists a real analytic orthogonal
coordinate system for g.

Remark. Theorem 3.3 has been proved in the smooth category by DeTurck and
Yang [1984]. Their proof relies on the theory of the characteristic variety of an
exterior differential system, and in that context, this example will be revisited in
Chapter V. For example, the conditions on the n; A 7; in the above theorem say
exactly that S is non-characteristic.

Ezample 3.5 (Special Lagrangian geometry). This example is due to Harvey and
Lawson [1982]. Let M = C™ with complex coordinates z1, 22, ..., zn. Let Z be the
ideal generated by the 2-form ® and the n-form ¥ where

O = (V/—-1/2)(dz1 Ndzy +dza NdZy + - -+ dz, NdZp)

and
U =Re(dzy Adza A -+ Ndzy)

=3dzn ANdoa A Ndzy +dzr AdZ A A dZ).

Note that Z is invariant under the group of motions of C™ generated by the trans-
lations and the rotations by elements of SU(n).

We want to examine the set V,,(Z) for all p. First assume that E € V,(Z) where
p is less than n. Let eq, ez, ..., e, be an orthonormal basis for £, where we use the
standard inner product on C". Since, for any two vectors v, w € C™, the formula
®(v,w) = (v/=1v,w) holds, it follows that (v/—1e;,ex) = 0 for all j and k. Thus,
the vectors eq, e, . .., e, are Hermitian orthogonal as well as Euclidean orthogonal.
Since p < n, it follows that by applying a rotation from SU(n), we may assume
that ey = 9/0x* where we define the usual real coordinates on C” by the equation
¢ = 2% + /=1y*. Tt follows that the group of motions of C"* which preserve Z
acts transitively on the space V,(Z) for all p < n. In particular, the polar spaces of
all of the elements of V,,(Z) have the same dimension. Since Z contains no non-zero
0-forms, Proposition 1.10 now shows that every integral element of 7 of dimension
less than n is Kéhler-regular. Thus, every integral element of Z of dimension n is
ordinary.

For each p < n, let E, be spanned by the vectors {9/02"}<,. Then it is easy
to compute that, for p <n — 1,

H(E,) = {v € T,C" | dy*(v) = 0 for all k < p}.
On the other hand, we have
H(E, 1) ={veT.C" | dy*(v) =0 for all k < n —1 and dz"(v) = 0}.

Thus, ¢, = p for all p < n —1 and ¢,—1 = n. In particular, note that there are
no integral elements of dimension n + 1 or greater, and each E € V,,(Z) is the



80 III. Cartan—Kéhler Theory

polar space of any of its (n — 1)-dimensional subspaces. It follows that the group
of motions of C™ which preserve 7 acts transitively on V;,(Z) as well.

Using the technique of calibrations, Harvey and Lawson show that any n-dimensional
integral manifold N™ C C™ of 7 is absolutely area minimizing with respect to com-
pact variations. They call such manifolds special Lagrangian. We may now combine
our discussion of the integral elements of 7 with the Cartan—Ké&hler theorem to
prove one of their results:

Theorem 3.6. Fuvery (n — 1)-dimensional real analytic submanifold P C C™ on
which ® vanishes lies in a unique real analytic n-dimensional integral manifold of
7.

Remark. Because of the area minimizing property of the n-dimensional integrals
of Z, it follows that every integral of Z is real analytic. Thus, if P C C*~! is an
integral of ® which is not real analytic, then there may be no extension of P to
an n-dimensional integral of Z in C". As an example of such a P, consider the
submanifold defined by the equations

Zn:yl:y2:...:yn—szn—l_f(xn—l)zo

where f is a smooth function of 2”1 which is not real analytic. This shows that
the assumption of real analyticity in the Cartan—Kahler theorem cannot be omitted
in general.

Ezample 3.7 (An equation with degenerate symbol). This example is a generaliza-
tion of Example 1.12. Let a vector field V' be given in R3. Let A be a fixed constant.
We wish to determine whether there exists a vector field U in R?® which satisfies
the system of 3 equations

curlU + \U = V.

Note that even though this is three equations for three unknowns, this set of equa-
tions cannot be put in Cauchy—Kowalevski form. In fact, computing the divergence
of both sides of the given equation, we see that U must satisfy a fourth equation

AdivU =divV.

Of course, if A = 0, then a necessary and sufficient condition for the existence of
such a vector field U is that divV = 0. If A # 0, then the situation is more subtle.

We shall set up a differential system whose 3-dimensional integrals correspond

to the solutions of our problem. Let R® be given coordinates z', z2, 23, u', u2, u?.

We regard z', 2, 2% as coordinates on R3. If the components of the vector field V/

are (v',v2,v?), let us define the forms

a = ulde! + u?da® 4+ udda?
B = utdz® A da® + u?da® A dat + WBdat A da?
v = vtda® A da® 4+ v?da® A dat + vidat A da?.
Now let Z be the differential system on R® generated by the 2-form © = da+A\3—

7. Any 3-dimensional integral manifold of © on which the form Q = da! Adz?Adz3
does not vanish is locally a graph of the form (x,u(x)) where the components of



§3. Examples 81

u(z) determine a vector field U on R3 which satisfies the equation curl U +A\U = V.
Conversely, any local solution of this P.D.E. gives rise to an integral of Z by reversing
this process.

We now turn to an analysis of the integral elements of Z. The pair of forms
0, dO clearly suffice to generate 7 algebraically. The cases where A\ vanishes or
does not vanish are markedly different.

If A\ =0, then d© = —dy = —(div V). Thus, if divV # 0, then there cannot
be any integral of 7 on which 2 does not vanish.

On the other hand, suppose divV = 0. Then 7 is generated by © alone since
then dO© = 0. If E € V53(Z,Q), then the annihilator of E is spanned by three 1-forms
of the form 7' = du’ — Y j A’dx? for some numbers A. Tt follows that, at the base
point of F, the form © can be written in the form

O =71 Adz' + 72 Adx? + 72 A dad.

Setting w’ = dz*, we may apply Proposition 1.15 to show that the characters of
the associated integral flag satisfy ¢, = p for all 0 < p < 3. On the other hand, it
is clear from this formula for © that there exists a 6-parameter family of integral
elements of © at each point of R®. By Theorem 1.11, it follows that all of the
elements of V3(Z, ) are ordinary. The character sequence is given by sg = 0 and
sp =1 for p =1,2,3. At this point, if we assumed that V' were real analytic, we
could apply the Cartan—Ké&hler theorem to show that there exist local solutions to
our original problem. However, in this case, an application of the Poincaré lemma
will suffice even without the assumption of real analyticity.

Now let us turn to the case where A # 0. If, for any (i, j, k) which is an even
permutation of (1,2, 3), we set

m = du’ + 2[(Md —o?)dz* — (WP —oF)dad] — Aot dat

then
O = m Adz' + mo Ada? + 73 A da®

ANO = 7 Adz? Ada® + o Ade® Adzt 4 s A dat A da?.

It follows that any F € V53(Z,Q) is annihilated by 1-forms of the form o; =
e —Zj pijdx; where, in order to have O = 0, we must have p;; = p;; and, in order
to ahve (dO)g = 0, we must have p1; + paz + p3s = 0. Thus V53(Z, Q) is a smooth
manifold of codimension 4 in G3(TR®). On the other hand, by Proposition 1.15, it
follows that ¢cg = 0, ¢c; = 1, and ¢ = 3 for the integral flag associated to the choice
w' = da*. Since cg + ¢1 + co = 4, it follows that all of the elements of V3(Z,Q) are
ordinary.

By the Cartan—Ké&hler theorem, it follows that, if V' is real analytic, then there
exist (analytic) local solutions to the equation curlU + AU = V for all non-zero
constants .

Ezample 3.8 (Isometric embedding). We now wish to consider the problem of lo-
cally isometrically embedding an n-dimensional manifold M with a given Riemann-
ian metric g into Euclidean space EY where N is some integer yet to be specified.
Note that the condition that a map v : M — EY be an isometric embedding
is a set of non-linear, first-order partial differential equations for u. Precisely, if
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xl 2% ... 2" is a set of local coordinates on M and g = Y g;;dz’ o dz?, then the

equations that u must satisfy are g;; = ;u-0;u. This is 2n(n+1) for the N unknown
components of u. Thus, we do not expect to have any solution if N < %n(n +1).
It is the contention of the Cartan—Janet isometric embedding theorem (which we
prove below) that such a local isometric embedding is possible if the metric g is
real analytic and N = %n(n +1). Note that even though the isometric embedding
system is determined if N = %n(n + 1), it cannot be put in Cauchy-Kowalevski
form for n > 1.

We begin by writing down the structure equations for g. Since our results will
be local, we may as well assume that we can choose an orthonormal coframing
N1,M2,---,Mn on M so that the equation g = (11)? + (12)? + - - - + (7,)? holds. By
the fundamental lemma of Riemannian geometry, there exist unique 1-forms on M,
Nij = —7ji, S0 that the first structure equations of E. Cartan hold:

dn; = —ij A ;.
J

The second structure equations of E. Cartan also hold:

dnij + — Zm‘k Aij + 3 Z Rijrime A .
k Jo.l

Here, the functions R;;j; are the components of the Riemann curvature tensor and
satisfy the usual symmetries

Rijki = —Rjiri = —Rijuk
Rijki + Ririj + Rigjre = 0.

Let F,(EY) denote the bundle over EV whose elements consist of the (n + 1)-
tuples (z;e1,€e,...,e,) where z € EN and ey, es, ..., e, are an orthonormal set of
vectors in EV. Note that F,(EY) is diffeomorphic to EN x SO(N)/SO(N —n). For
several reasons, it is more convenient to work on F,(EY) than on the full frame
bundle of EV. We shall adopt the index ranges 1 < 4,j,k,1 < n < a,b,c < N.
Let U C F,(EN) be an open set on which there exist real analytic vector-valued
functions e, : U — EV with the property that for all f = (z;e1,es,...,e,) € U,
the vectors e, ea,...,en, eni1(f),...,en(f) form an orthonormal basis of EV. We
also regard the components of f as giving vector-valued functions xz,e; : U — EN.
It follows that we may define a set of 1-forms on U by the formulae

w; =e; - dx
Wq = €q - dx
Wij = €5 dej = —Wy;
Wia = €; - deq = —Wa; = —€q - de;

Wab = €q - dep = —Wpq.
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Of these forms, the set {w;} U {ws} U{wij}icj U{wai} forms a coframing of U. We
shall have need of the following structure equations

dw; = —Zwij/\wj —Zwib/\wb
J b

dw, = _Zw“j A wj —Zwab/\wb
J b

dwij = —Zwik N Wrj — Zwib/\wbj.
k b

Now, on M x U, consider the differential system Z_ generated by the 1-forms
{wi = Miticn U{watasn. Let Q@ =wi Awa A+ Awy.

Proposition 3.9. Any n-dimensional integral of T_ on which 0 does not vanish
is locally the graph of a function f : M — U with the property that the composition
zof: M — EN is a local isometric embedding. Conversely, every local isometric
embedding v : M — EN arises in a unique way from this construction.

Proof. First suppose that we have an isometric embedding u : M — EV. Let {E;}
be the orthonormal frame field on M which is dual to the coframing {n;}. For
each z € M, define f(z) = (u(z);du(E1(2)),...,du(E,(2))). Now consider the
graph T'y, = {(2, f(2)) | z € M} C M xU. Clearly, T, is an integral of Z_ if and
only if f satisfies f*(w;) = n; and f*(w,) = 0. However, since e,(f(z)) is normal
to the vectors du(E;(z)) by construction, we have f*(w,) = (eq 0 f) -d(zo f) =
(eq o f)-du = 0. Also, since u is an isometric embedding, we have, for allv € T, M,
[ (wi)(v) = (e; 0 f) - du(v) = du(E;(2)) - du(v) = F;(z) - v = n;(v). Note also that,
on 'y, we have Q =wi Awa A+ Awp =m1 Ang A -+ Any,. Since the latter form is
non-zero when projected onto the factor M, it follows that €2 is non-zero on T',,.
Now suppose that X C M x U is an n-dimensional integral manifold of Z_
on which Q does not vanish. Then since w; = n; on X, it follows that the form
nm Anz A+ Any, also does not vanish on X. It follows that the projection X — M
onto the first factor is a local diffeomorphism. Thus we may regard X locally as the
graph of a function f:M — U. Now let u = z o f. We claim that u:M — E¥ is an
isometry and moreover that e; o f = du(E;). This will establish both parts of the
proposition. To see these claims, note that we have f*(w;) = n; and f*(w,) = 0.
Since f*(wq) = f*(eq - dz) = (eq o f) - du = 0, it follows that (e, o f)(z) is normal
to du(E;(z)) for all i and a and z € M. Thus, the vectors du(F;(z)) are linear
combinations of the vectors {(e;j o f)(2)};j<n. On the other hand, for any v € T, M,
we have E;(z) -v = n;(v) = f*(w;)(v) = f*(e; - dx)(v) = (e; o f)(2) - du(v). Using
the fact that {E;(z)} is an orthonormal basis for T,M and that {(e; o f)(2)} is
an orthonormal basis for du(T,M), we see that du must be an isometry and that
e; o f = du(FE;), as claimed. O

We are now going to show that any integral of Z_ on which €2 does not vanish is
actually an integral of a larger system Z (defined below). Suppose that X is such
an n-dimensional integral. Then let us compute, on X,

0=d(w; —mn) = _Z(wij — i) N 1j-
J
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Since the forms 7; are linearly independent on X and since the forms ¥;; = (w;; —n:;)
are skew-symmetric in their lower indices, this implies that the forms 1;; must
vanish on X. The geometric meaning of this fact is that the Levi—Civita connection
of a Riemannian metric is the same as the connection induced by any isometric
embedding into Euclidean space.

Let us now consider the differential system Z on M x U which is generated by
the set of 1-forms {w; —n; }i<n U {wa tn<a U{wij —nij}icj<n. We are going to show
that if N > %n(n—l— 1), then there is an ordinary integral element of Z at every point
of M x U. We begin by describing a set of forms which generate 7 algebraically.
Let I denote the Pfaffian system generated by the 1-forms in Z. We compute that

dlw; —m;) =0 mod I

dw, = —Zwai/\wi mod [

i
d(wij — ni5) = Zw‘“' ANWaj — %Z Rijriwr Awp mod 1.
a k.l

Thus, Z is generated algebraically by the 1-forms in I and the 2-forms O, =
Zi Wai N w; and @ij = Zawm‘ Nwqj — %Zk,l Rijriwig Awy. Let B C T(x7f)(M X U)
be an n-dimensional integral element of Z on which the form  does not vanish.
Then, in addition to annihilating the 1-forms in I, F must annihilate some 1-
forms of the form 74 = wei — Y, j haijw; for some numbers hg;;. The condition
that ©, vanish on FE is the condition that he;; = hej; for all a, ¢, and j. Using
this information, the condition that ©;; also vanish on E becomes the quadratic
equations on hg;:

> (haikhaji = haithaji) = Rijra(z).

a

These equations represent the Gauss equations.

Let W be the Euclidean vector space of dimension »r = N —n. We can interpret
the numbers hq;; = hgji as a collection of ("'QH) vectors hi; = (hqij) in W. In
fact, we may interpret h = (hq;j) as an element of the vector space W ® S?(R"™)
in the obvious way. If we let K,, C A%2(R") ® A%2(R"™) denote the space of Riemann
curvature tensors in dimension n, then there is a well defined quadratic map =y :
W @ S?(R™) — K,, defined for h = (hq;j) € W @ S%(R™) by

Y(h)ijrr = Z(haikhajl — haithajk)-

a

We shall need the following algebraic lemma, whose proof we postpone until the
end of our discussion.

Lemma 3.10. Suppose that r = N —n > (3). Let H C W ® S*(R") be the open
set consisting of those elements h = (hgj) so that the vectors {h;; | i < j < n}
are linearly independent as elements of W. Then v : H — K, is a surjective
submersion.

Assume this lemma for the moment, we now state our main result for local
isometric embedding.
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Theorem 3.11 (Cartan-Janet). Suppose that N > in(n+ 1). If the Riemannian
metric g on M is real analytic, then every point of M has a neighborhood which
has a real analytic isometric embedding into EN .

Proof. By virtue of the Cartan—K&hler theorem, it suffices to show that, for every
(z, f) € M x U, there exists an ordinary integral element E € V,,(Z,Q) based at
(x, f). Let Z C M x U x H denote the set of triples (z, f, h) so that the equation
~v(h) = R(x) holds where R(z) = (Rijri(x)) € Ky, is the Riemann curvature tensor
at © € M. By Lemma 3.10 and the implicit function theorem, Z is a smooth
submanifold of M x U x ‘H of codimension n?(n? — 1)/12 (= dimK,,) and the
projection onto the first two factors, Z — M x U is surjective. In particular, note
that the dimension of 7 is

dim Z = dim(M x U) + (N —n) - in(n+1) — n*(n* — 1)/12.

We define a map ¢ : Z — V,,(Z, Q) by letting e(z, f, h) be the n-plane based at
(z, f) which is annihilated by the 1-forms

{wi = ni}icn U{watn<a U{wij — Mij}icion U {Tai = wai = Y Paijws }i<nn<a-
J

It is clear that the map € is an embedding. By our previous discussion, it maps
onto an open submanifold of V,,(Z,2). We are now going to show that the image
e(Z) consists entirely of ordinary integral elements.

Let E = e(x, f,h) with (x, f,h) € Z. Let E, C E be the subspace annihilated
by the 1-forms w; where i > p. We want to compute the codimension of H(E,) for
all p < n. To do this, we will apply Proposition 1.15. Of course, all of the 1-forms
in Z lie in the polar equations of E, for all p. We may express the 2-forms in terms
of {mai,w;} as follows:

E wai/\wizg Tai N\ Wi
i i

1 —
D wai Awaj — 5 Y Rigriwk Awr = 3 (hajrTai — hainTai) Awi + Qij
a ol ak

where );; is a 2-form whose terms are either quadratic in 7 or else vanish at the
base point (z, f). It follows by Proposition 1.15 that the polar equations of E, are
spanned by the 1-forms

{wi—mni} fori<n
{we} for a >n
{wij =iy} fori<j<n
{mqi} fori<panda>n
{(haikTaj — hajxmai)} for k < pand i < j <n.

The first 3 types of terms are the same for all p > 0 so they contribute N +4n(n—1)
forms for all p > 0. The fourth type of term contributes pr = p(N —n) terms which
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are clearly linearly independent from the previous terms. In the fifth type of term,
the cases where the i, j indices are both less than or equal to p are obviously linear
combinations of terms of the fourth kind. The remaining terms of the fifth kind can
be broken into the subcases where either 1) i <p < j<norelse2) p<i<j<n.

In case 1), in view of the terms of the fourth kind, we may replace these terms
by the simplified expressions {h;; - 7; | i,k < p < j < n} where we have written
7wj = (mq;) and regard m; as a W-valued 1-form (all of whose components are
linearly independent). These terms are clearly linearly independent from the terms
of the fourth kind due to the assumption that the vectors {h;; | i, < n} are linearly
independent. They contribute (n—p)- %p(p—l— 1) more terms to the polar equations.

In case 2) the remaining expressions are given by the collection
{hit - 75 — hjk -m | k <p <i<j<n} Again, the assumption that the vec-
tors {hi; | i,j < n} are linearly independent shows that these %p(n —p)n—p-—1)
terms are linearly independent from all of the previous terms. It follows that the
rank of the polar equations for E, is equal to

¢p=N+gn(n=1)+rp+(n—p)- 3pp+1)+ 5p(n —p)(n—p—1)
=N+ in(n—1)+rp+ ipn(n—p).
We may now compute
co+ecit--F+cn1=Nnn+1)/24+n*n?*—-1)/12.

However, this is precisely the codimension of e(Z) in G,, (T (M xU)). It now follows
from Theorem 1.11 that F is ordinary. (]

Proof of Lemma 8.10. Throughout this argument, whenever p < n, we identify
RP with the subspace of R™ consisting of those elements of R™ whose last n — p
coordinates are zero. As above, we let K, C A?(RP) ® A%(RP) denote the space of
elements R = (R;j;) which satisfy the relations

Rijki = —Rjirt = —Rijik
Rijri + Riryj + Rijr = 0.

Note that if p < n then K, C K,. It is well known that the dimension of I, is
p?(p? — 1)/12 for all p > 0. (Actually, our calculations will contain a proof of this
result.)

Let W be an Euclidean vector space of dimension r > %n(n —1). Then, as we
defined v before, note that (W ®S?(RP)) C K,. We are going to prove Lemma 3.10
by induction on p between the values 1 and n. Fix an element R = (R;jr) € K.
For each p < n, we let RP denote the element of K, got from R by setting all of
the components with an index greater than p equal to zero.

First note that since K1 = (0), the lemma is trivially true for p = 1. Suppose
now that, for some p < n, we have shown that there is an element h? = (h? j) in
W @ S?(RP) with y(h?) = RP and with all of the vectors {hl; e Wi <j<p}
linearly independent and that the differential of the mapping v : W @ S?(RP) — K,
is surjective at any such hAP?. We now try to construct a corresponding extension
hP*1. Let vy, ..., v, be p vectors in W. Consider the equations

p p _
Ry, v = iy - vk = Rip1yijie
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where 4, j, k run over all choices of indices less than or equal to p. We want to
show that there exist vectors vy, ..., v, so that these equations hold. To see this,
note that the tensor L;jz = R(p+1)ijr in R? @ A?(RP) lies in the kernel of the
skew-symmetrizing map R? @ A?(RP) — A3(RP) by the symmetries of the Riemann
curvature tensor. It follows, by the exactness of the sequence

0 — S3(RP) — S?(RP) ® RP — RP ® A?(RP) — A3(RP) — 0

that there exists an element r € S?(RP) ® R? so that r;5; — rijx = Lijk. Thus, it
suffices to find the vectors v; so that hf G Uk = Tijk = Tjik- By the independence
assumption on hP, such vectors v; exist. If p < n — 1 then there is even room to
choose the vectors v; so that they and the vectors h? ; are linearly independent.
Once the v; have been chosen, we choose a vector w so that the following equations
hold:

w - hiy = vi 05 = Riprayipi);-

Again, by the independence assumption on AP and the fact that the Riemann
curvature tensor has the well-known symmetry R;jr = Ry, this can be done.
Also, if p < n — 1, we have room to choose w so that the vectors h? Vi, W are all
linearly independent in W.

We can now define an element h?*! of W @ S?(RPT!) by letting

hffl =h}; wheni, j<p

pptl o pptl

(p+1)i i(pt1) = Vi when 7 < p

p+1 _
hps1)(ps1) = W-

It is clear that y(hP*1) = RPTL. Moreover, using the assumption of surjectivity
of the differential of v : W ® S?(RP) — K, at h?, and the explicit formula for
the equations defining the extension, it is clear that the differential of v : W ®
S%(RPTY) — K41 is surjective at h?T1. Finally, note that if AP is any element of
W ®S%(RPH!) where the vectors hf JTH with ¢ < j < p are linearly independent in W,
then the induction hypothesis implies that the differential of v : W®S5?(RP) — K, is
surjective at the corresponding restricted element hP. Thus, by the above argument,
the differential of v : W @ S*(RPT!) — K, 41 is surjective at AP+ O
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CHAPTER IV

LINEAR DIFFERENTIAL SYSTEMS

The goal of this chapter is to develop the formalism of linear Pfaffian differential
systems in a form that will facilitate the computation of examples.

Let 7 be a differential ideal on a manifold M. In practice we usually seek integral
manifolds of 7 that satisfy a transversality condition, and this then leads to the
concept of a differential system with independence condition (Z,2) to be explained
in Section 1. There we also introduce the fundamental concept of involution for such
systems. Recall from the proof of the Cartan—Ké&hler theorem in Chapter III that
integral manifolds are constructed by solving a succession of Cauchy initial value
problems. Roughly speaking, to be involutive means, according to that proof, that
the solutions to the (k + 1)%¢ initial value problem remain solutions to the family
of k" initial value problems depending on zF*1.1 On the other hand, intuitively a
system 1is involutive when all of the integrability conditions implicit in the system
are satisfied. It is not obvious that these two viewpoints coincide. Although it
is relatively simple to define, the concept of involution is subtle and gaining an
understanding of it will be one of the main goals of this chapter.

In Section 2 we introduce the important concept of linearity for a differential
system with independence condition. We also introduce the linearization of an
arbitrary differential system at an integral element. This is a linear differential
system with constant coefficients that, roughly speaking, corresponds to linearizing
and freezing the coefficients of an arbitrary P.D.E. system. Both of these concepts
play a fundamental role in developing the theory.

Section 3 introduces the purely algebraic concept of a tableau. The motivation
arises from trying to extend the concept of the symbol of a P.D.E. system to general
exterior differential systems. The purely algebraic notion of involutivity of a tableau
is also defined, and we explain how this arises naturally from the consideration of
involutive differential systems.

In Section 4 we introduce the definition of the tableau Ag of a differential ideal
7 at an integral element E. This tableau appears naturally both as the tangent
space to the variations of an integral element over a point and as the homogeneous
1-jets of integral manifolds to the linearization of Z at F. A non-trivial theorem is
that Ag is involutive in case E is an ordinary integral element.

Section 5 takes up the very important class of linear Pfaffian systems. These
include most examples and will be the systems mainly used throughout the rest
of Chapters V-VII. Associated to a linear Pfaffian system are two invariants, its
tableau and torsion (or integrability conditions). These are discussed in some detail,
and Cartan’s test for involution is seen to have a very simple and computable form
using the tableau and torsion.

In Section 6 we introduce the concept of the prolongation (Z(), Q) of an exterior
differential system Z. This is a linear Pfaffian system that is defined on the space
of integral elements of Z. Intuitively, (Z(), Q) is obtained by introducing the first

n this regard we refer to the introduction to Chapter I1I. Involutivity implies that solutions
to (ii’) and (i) are also solutions to (i) and (ii).
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derivatives as new variables, and its effect is to impose the first order integrability
conditions in the original system. This section is preparatory to Chapter VI, where
the main results will be proved; it is put here so that the concept of prolongation
is available for computation of examples.

In Section 7 we give a number of examples, including the conditions that a
pair of 2" order P.D.E.’s for one unknown function be in involution. Finally, in
section 8 we give a non-trivial and natural example from surface geometry of an
overdetermined, non-involutive system requiring prolongation.

In this chapter we will let {#} denote the algebraic ideal in Q*M generated by
a set of differential forms f (for example, § may be the sections of a sub-bundle
I C T*M). We shall also denote by pg the restriction of a form ¢ on M to an
n-plane F C T, M. If T C Q*(M) is a differential ideal, we denote by I C T*M
the sub-bundle spanned by the values of the 1-forms in Z (assuming, of course, the
obvious constant rank condition). Finally we will use the summation convention.

§1. Independence Condition and Involution.

We suppose we are given a closed differential system Z on a manifold M. Many
problems require the existence of integral manifolds of 7 satisfying a transversality
condition given by the following:

Definition 1.1. A differential system with independence condition, denoted by (Z, ),
is given by a closed differential ideal Z together with an equivalence class of n-forms
Q where the following conditions are satisfied:

(i) Q and Q' are equivalent if

Q= fQ' modulo T

where f is a non-zero function;
(ii) locally © may be represented by a decomposable n-form

(1) Q=w'A-AW"

where the w’ are 1-forms; and

(iii) Q, ¢ 7, for any = € M.

In intrinsic terms, under suitable constant rank assumptions the degree one
piece, I, of 7 is given by the sections of a sub-bundle I C T*M. There should be
an additional sub-bundle J C T* M with

IcJcT*M
rank J/I = n.

The w’ above give local sections of J that induce a framing of J/I and ) represents
a non-vanishing section of A™(J/I). We shall usually work locally and write @ =
w! A~ Aw™ asin (1) above.

Definition 1.2. (i) An integral element for (Z,Q) is an n-dimensional integral ele-
ment for Z on which Q is non-zero; and (ii) an integral manifold for (Z,Q) is given
by an n-dimensional integral manifold

f:N—=M
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for 7 such that each f,(T,N) is an integral element of (Z, ).
Integral elements of (Z,2) are thus given by the n-planes E € G, (T M) that
satisfy

Op =0, forall® T
@) {

Qp #0 ’

where we recall our notation g for the restriction of a differential form ¢ to FE.
In intrinsic terms, the first equation in (2) implies that E C T, M lies in le; thus
the restriction mapping J, /I, — E* is well-defined, and the second equation in (2)
says that this mapping should be an isomorphism. We denote by

G(Z,Q) C Go(TM)

the set of integral elements of (Z,Q). If we think of the set G, (Z) of all n-
dimensional integral elements of Z as being a subvariety of G, (T M) (say, in the
real-analytic case), then for each irreducible component Z of G,,(Z) the intersection
G(Z,Q) N Z is either empty or is a dense open subset.

Example 1.3. Any P.D.E. system
(3) FMat 2%,02%/02, . ..,0%2%/0xT) = 0, ox! = 9z ... 9z,

may be written as a differential system with independence condition. For instance,
in the 2"? order case (k = 2) we introduce variables

a a a
PisDi; = Py

and then the system is defined on the space with coordinates (z%, 2%, p¢, p%) and is
generated by the equations

F)\(xia Zaapzqapij) = 0
dz® — pldz' =0
dp§ — p;-ljdxj =0,

and their exterior derivatives, with the independence condition given by Q =
dxz' A ---Adz™. An integral manifold of the differential system with independence
condition is locally the same as a solution to the P.D.E. system.

This example may be expressed in coordinate free terms by thinking of a P.D.E.
system as defined by a submanifold M of a suitable jet manifold J*(X,Y") and by
restricting the contact system on J*(X,Y) to M (cf. Chapters I and IX, X).

It is clear that any P.D.E. system may be written as a differential system (Z, 2) on
a manifold M. However, the diffeomorphisms f of M that preserve the structure
(Z,Q) may be strictly larger than those induced by changes of dependent and
independent variables separately.? In addition, we may utilize non-integrable co-
framings of M adapted to the structure of (Z, ) in order to isolate the geometry of

2We have seen one instance of this given by the local normal form (i) and (ii) of an arbitrary
P.D.E. system in the introduction to Chapter III.
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the P.D.E. These points of view will be extensively illustrated by examples below
and in Chapters V and VIIL.

Ezxample 1.4. Suppose we are given two manifolds X, Y and a set of geometric
conditions on immersions

f: X—=Y

that are expressed in local coordinates by a P.D.E. system. An example is when X
and Y are Riemannian manifolds and f is an isometric immersion, as discussed in
Chapter III. We may then set up a differential system with independence condition
(Z,9Q) on a suitable manifold M C J*(X,Y) whose integral manifolds are locally
k-jets of mappings f satisfying the given geometric conditions. The independence
or transversality condition simply reflects the fact that a submanifold N C X x Y
with dim NV = dim X is locally the graph of an immersion f if, and only if, 7*Q # 0
where () is any volume form on X and 7 : N — X is the projection.

Ezample 1.5. Let M be a manifold and consider the Grassmann bundle
m:Gp(TM) — M

whose fiber G,, (T, M) over any point z € M is the Grassmann manifold of all n-
planes in T, M. Given any n-dimensional manifold N and immersion f: N — M,
there is a canonical lifting

G (TM)

(4) forlm
NT)M

where f.(y) = f.(T,N) C TreyM. We will define a differential system with in-
dependence condition (£, ®) on G,,(T'M) whose integral manifolds are locally the
liftings f, in (4) above. £ will be a Pfaffian system and we will define (£, ®) by
giving the sub-bundles

ICJCTGu(TM)

as explained above.
Points of G,,(TM) will be written as (z, E) where E C T, M is an n-plane, and
we then set

I(gc,E) = W*(El)
J(x7E) = W*(T;M).

Let us see what this means in local coordinates. Setting dim M = m = n + s,

relative to a local coordinate system (x',..., 2" y',...,y%) on M an open set U in

Gn(TM) is given by tangent n-planes to M on which
(5) dzt A - Ada™ # 0.
In this open set tangent planes are defined by equations

(6) dy® —pldx' =0 1<i<n, 1<0<s,
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and (z°,y?, p¢) forms a local coordinate system on G,,(T'M). The canonical system
(L, ®) is locally generated by the tautological 1-forms

07 = dy° — p?da’
with the independence condition ® = dz! A --- A dz™. Given an integral manifold
g:Y = G,(TM)

satisfying the conditions (5) and (6), we set f = mog and then f*(dz*A- - -Adz™) # 0.
We may then take z!, ..., 2™ as local coordinates on Y in terms of which g is given
by

' — (a',y% (z), p (7).

From (6) we conclude that

(e = 2L

as claimed.
This construction will be used below to define the prolongation of a differential
system Z on the manifold M.

We now come to one of the main concepts in the theory:

Definition 1.6. The differential system with independence condition (Z,€) is in
involution at x € M if there exists an ordinary integral element £ C T,M for
(Z,9Q).

We sometimes say that (Z,€Q) is involutive, and we shall usually drop reference
to the point x € M, it being understood that the system is in involution at each
point of M.

When (Z,€) is in involution and we are in the real analytic case, the Cartan—
Kahler theorem may be applied to conclude the existence of local integral manifolds
of (Z,Q) passing through z € M. Conversely, the Cartan—Kuranishi prolongation
states roughly that any local integral manifold of (Z,{2) is an integral manifold
of a suitable involutive prolongation (Z(@, Q) of (Z,Q)—this will be explained in
section 6 below and more fully in Chapter VI.

Definition 1.7. A P.D.E. system (3) is involutive if the corresponding exterior dif-
ferential system with independence condition is involutive.

To make this precise, we should include reference to the point & on the manifold
M, but we shall omit this. Of course, the definition is valid for P.D.E. systems of
any order.

Ezxample 1.8. On a 6-dimensional manifold with basis 6, 62, w', w?, 7!, 72 for the

1-forms, we consider a Pfaffian system #' = #? = 0 with independence condition
w' Aw? # 0 and structure equations

do' = 7' Aw' mod 7
(7)

do? = 7' Aw? mod 7.

We shall show that this system is not in involution.
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For this we denote by /90, 0/96%, 8/0w', 8/0w?, 0/0rt, 8/0r? the basis
of tangent vectors dual to the above basis of forms. A one-dimensional integral
element of T, i.e., a general vector in the space 8! = 2 =0, is

0

3
ve el el

0
(8) (=857

Using self-evident notation, the polar equations
(6", ENE) = 0= (dF* ENE)

of the vector ¢ in (8) are
gOéQ _ §2§~0 =0
©) {@§—§@=0

This linear system has rank 2 if £€° # 0. The latter is therefore the condition for &
to be regular.

On the other hand, any 2-plane E? on which #' = #? = 0 and w' A w? # 0 is
given by linear equations in the tangent space

{ m = piw! + pyw?
72 = plwl + p3uw?.

The condition that this 2-plane be integral is p% = p} = 0. Thus, any E' C E? will
have a basis vector 8

77=§ é +§3

Comparing with the above remark, we see that E2 contains no regular one-dimensional
integral element, and is therefore not ordinary.

The situation can perhaps be explained more intuitively as follows: From (7) we
find, as a consequence of 8 = 2 = 0, that

an any integral manifold of Z. Using the transversality condition w! A w? # 0, the
first equation says that 7! is a multiple of w' and the second equation says that
it is also a multiple of w? on any integral manifold of (Z,Q). Combining these
two conclusions, we get 7! = 0 on any integral manifold. This last equation and
its exterior derivative must be added to the system. Thus the integral manifolds
must satisfy additional equations which result through differentiations and not just
through algebraic operations. This is one of the simplest phenomena for “failure”
of involution.

We remark that with the independence condition given by m = 7! A 72 # 0 the
system (Z,7) is in involution.

Although it is relatively simple to define, the concept of involution is one of
the most difficult in the theory. Gaining both a computational and a theoretical
understanding of it will be one of the main goals of this chapter.
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§2. Linear Differential Systems.

The concept of a linear exterior differential system with an independence con-
dition is an extremely useful one. In order to define it we will first show that the
set of n-planes in a fixed vector space that satisfy a set of linear equations with
a transversality condition has a natural affine linear structure. More precisely, we
will prove that:

(10) On a vector space T for which we have a filtration
IcJcCcT* withdimJ/I =n, the n-planes E C T
which satisfy

EcIt

J/I = E* (i.e. the restriction J/I — E* is
an isomorphism,)

form a subset of G, (T) on which there is a natural

affine linear structure.

To establish (10) we shall first treat the case when I = 0. For this we use
coordinates (z%,y%) in R"** 2 R" ® R® where 1 <i,j <nand 1 <o,p <s. The
n-planes on which dz! A --- Adz™ # 0, i.e., n-planes that project isomorphically
onto the R™ factor, are given by equations

y” =pia’.
Under an invertible linear change
2t = A;-xj
Yy =By +Cla
we have
(11) pi” A = Bypli 4+ CF
or, in obvious matrix notation,

p=BpA 4+ CAL.

It follows that the p’s transform affine linearly.
To treat the general case when I # 0, we consider R*™"+5 with coordinates
(u®, z*,y%) where 1 < a < h. Then n-planes on which

du® =0
dz' A---ANdz™ #0

are given by linear equations

u® = pia’
(12) Y’ =piat
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Under an invertible linear change
u'® = Djub
2t = A;-xj + Elu®
Yy =By +Cla' + Flu"

it is easy to check that the p? and p$ defined by the first two equations in (12)
transform quadratically. However, when we impose the third equation the remaining
non-zero py’s transform by (11). Taking I to be spanned by the u®’s and J/I by the
x¥’s, by virtue of u® = 0 on E the map J/I — E* is well defined and the condition
that this be an isomorphism is dz! A --- A dx™ # 0 on E. From this we conclude
(10).

Now let (Z,Q) be a differential system with independence condition over a man-
ifold M. Applying this construction fibrewise where T'=T, M, [ = I, J = J, we
conclude that

(13) The subset G(I,Q)) of tangent n-planes E satisfying
{9E=0, forall el
Qr #0

forms in a natural way a bundle of affine linear spaces

over M.

In the future we shall ususally write the above equations more simply as

{9:@ 0ecl
Q#0 '

Clearly the set G(Z, ) of integral elements of (Z,() is a subset of G(I, ?).

Definition 2.1. The differential system (Z, ) is linear if the fibres of G(Z,Q) — M
are affine linear subspaces of the fibres of G(I,Q) — M.

Implicit in the above discussion is that the definition of linearity requires an
independence condition.

Roughly speaking, a partial differential equation system is linear when its solu-
tions may be linearly superimposed. For a differential system on a manifold the
concept of linearity only makes sense infinitesimally. The integral elements of (Z, )
are the infinitesimal solutions and the above definition is the corresponding con-
cept of linear. We will see that many but not all differential systems are linear.
Moreover, given any differential system Z and an integral element E, we will define
its linearization (Zg,Qg) at E, which will correspond to linearizing an arbitrary
P.D.E. at a solution. Before doing this we need to develop conditions that will allow
us to recognize when (Z,€) is linear. We mention that both these conditions and
the linearization (Zg,Qg) are implicit in the proofs of the results in Chapter IIT
above, (cf. Proposition 1.15 in that chapter).

We let (Z, ) be a differential system with independence condition. Locally we
choose a coframe
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adapted to the filtration

ICJcT (M)
Differential forms on M may then be locally written as
(14) ¢=fz:KA7TE/\wK/\9A
where ¥ = (01,...,01), K = (k1,...,kp) and A = (a1, ..., aq) are increasing multi-

indices and 7> = w7 A --- A w7, etc.

Definition 2.2. We will say that (Z, ) is linearly generated if locally it is generated
algebraically by forms 1 which are of combined total degree one in the 6*’s and
w%’s.

It follows that (Z,€) is algebraically generated by forms

(15) {7

= form® Awk,

and it is clear that this condition is intrinsic. Integral elements of (Z, ) are then
defined by the equations

0 =0

(16) 77 = pJuw' where
ZmK JorpIw A wK =0.

Since these equations are linear in the p{’s we conclude that:

If (Z, Q) is linearly generated, then it is linear.

We shall now give some examples of systems that are linearly generated. These

will all be generated in degrees p > 2; the very important case of linear Pfaffian
systems will be treated below. In these examples we will denote by Q*!(M) C
0*(M) the forms (14) that are at most linear in the 77’s, i.e., that have |X| < 1.
The system (Z,Q) is then linearly generated if it is algebraically generated by
QL (M)NT.
Ezample 2.3 (The third fundamental theorem of Lie). Let R™ be endowed with a
Lie algebra structure [, ] : R® x R™ — R™. One version of the third fundamental
theorem of Lie is that there exists a neighborhood U of 0 € R™ and an R"-valued
1-form n on U so that n|g : ToR™ — R™ is an isomorphism and so that dn =
—1/2[n,n]. To establish this, let z¢ be linear coordinates on R and let (pz) be the
usual coordinates on GL(n,R). We are secking functions p’(z) so that the forms
n' = pl(x)da’ satisfy both det(p’(0)) # 0 and the differential equation d(pdx) =
—1/2[pdz, pdx]. Thus, let M = GL(n,R) x R™ and let

0 = d(pdzx) + 1/2|pdz, pdx].

Let Z be the ideal in Q*(M) generated by the n 2-form components of §. We easily
compute that

40 = 1/210, pdz] — 1/2[pdz, 6] — 1/2[[pdz. pdal, pda]
= —1/2[[pdz, pdzx], pdx] mod Z
=0 modZ
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since [[pdx, pdzx], pdz] = 0 by the Jacobi identity. Thus 7 is differentially closed. As
independence condition, we take J so that its sections are spanned by dz', ..., dz".
Clearly an integral manifold of (Z,Q) is locally of the form («*, p’(z)) where 1 =
(n') = (p}(x)da?) satisfies our conditions. Note that Z is linearly generated: We
have 6" = dp’; A daz’+ (terms quadratic in dz’) € Q*'(M). More explicitly, we may
write 67 = dpz A dr? + 1/2T;kdxk Adax? = 7 A da? where 7 = dp’ + 1/2Tjkdxk,
and the {dz’, 7} form a coframing of M.

An integral element of (Z, Q) is obviously described by a set of equations of the
form 7r§- — pg-kdxk = 0 where pé-k = p};j. Thus the dimension S of the space of

integral elements over a point is given by S = n n—2|— by = n%(n +1)/2. On
the other hand, it may be easily seen that the characters s are given by sg = 0,
8] =83 =+ =8, =n. Since s1+283+ - +ns, = n(1+2+---+n) =n?(n+1)/2,

from Theorem 1.11 in Chapter III it follows that (Z,€) is involutive. Since Z is
clearly analytic, an application of the Cartan—Ka&hler theorem yields Lie’s theorem.

This proof is not the most elementary, of course, but it is perhaps the simplest
conceptually. Note that once existence is proved, the Frobenius theorem suffices
to prove that any two solutions 77 on U; and 72 on Us are locally equivalent via
diffeomorphism U; ~ Us.

Example 2.4 (Closed self-dual forms on four-manifolds). Let X* denote an oriented
Riemannian 4-manifold. Let M7 = A% (X)) denote the bundle of self-dual 2-forms on
X. Let ¢ € Q?(M) denote the tautological 2-form on M which satisfies p(vy, v2) =
a(ms(v1), mx(v2)) where v; € T,M, and m : M — X is the projection. Thus
|7, m = (). This form ¢ has the “reproducing” property: If § = %3 is a 2-form
on X, then when we regard § as a section 8 : X — M, we have 5*(¢) = 8. Moreover
B*(dy) = df. Let T be the system algebraically generated by dp € Q3(M). Clearly
T is differentially closed. Let Q = 7*(vol) € Q*M. The integrals of (Z,) are
locally sections of M — X which are the graphs of local closed self-dual 2-forms
on X. We claim that (Z,€) is linearly generated and involutive. To see this, it
suffices to work locally, so let w',w?,w?, w* be an oriented orthonormal coframing
on U C X. Of course M|y =2 U x R? and there exist unique (linear) coordinates
P2, P3, P4 on the R3 factor so that, on M|y, we have

0 =pa(w' N + WP Aw?) + p3(w! Awd +wt Aw?) + pa(w! Awt W AW?).
Now Q = w! A w? A w3 A w?, and we have

do = dps A (W Aw? + w3 Awt) +dps A (W Aw? + wt Aw?)
+dpg A (W Awt + W AW+ T
where T is a 3-form which is cubic in the {w'}. Clearly dp € Q*1(M), so (Z,Q)

is linearly generated. It is not difficult to show that there exist forms mo, 73, m4 On
M|y so that

dp =T A (W AW+ WP Awh) +m3A (W AW F Wt Aw?) F 14 A (W Aw? + 0P Aw?)

where m; = dp; mod w!,...,w*. Given this, and keeping the notations from the

proceeding example, we easily compute that S = 8 on M, and that for any integral
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flag, we have sp = s1 =0, s =1, s3 =2, s4 = 0. Since 8 = s1 + 282 + 353 + 454,
from Proposition 1.15 in Chapter IIT we again see that Cartan’s Test is satisfied and
so the system is involutive. Applying the Cartan—Kéhler theorem then yields the
following result: Suppose that X* is an analytic 4-manifold with an orientation and
an analytic Riemannian metric. Let H> C X* be an analytic imbedded hypersurface
and let o € Q2(H?) be a closed analytic 2-form on H3. Then there exists an open
set U D H® and a closed self-dual 2-form (3 on U so that B|gs = a. We leave
details to the reader. This extension theorem is easily seen to be false if « is not
assumed to be analytic. We note in closing that, as a P.D.E. system, this is four
equations for the three unknown coefficients po, p3, ps.

In order to further motivate our concept of linearity and for later use, we shall
define the linearization Zg of an arbitrary differential system Z at an n-dimensional
integral element £ C T,,M lying over xg € M. The linearization will have the
following properties:

i) it is a differential system (Zg, Qp) with independence condition defined on the
vector space Mg = E @ @ where Q = T,,M/E;

ii) (Zg,QE) is a constant coefficient, linearly generated (and therefore linear)

exterior differential system.
(N.B.: A constant coefficient differential system is an exterior differential system de-
fined on a vector space and which is generated as a differential system by translation-
invariant differential forms. If there is an independence condition, then this should
also be translation invariant. Strictly speaking, in order to construct the full dif-
ferential system we should take the differential ideal in the set of all smooth (or
real-analytic) forms generated by our constant coefficient forms. However, this en-
largement will not affect the calculation of such quantities as polar equations or the
integral manifolds, and so we shall not insist on it.)

iii) if F is an ordinary integral element of Z, then (Zg, Qg) is involutive and has
the same Cartan characters as does E.

(Implicit in (iii) is the assertion that all integral elements of (Zg, 2g) have the same
Cartan characters sy.)

To define Zg, we let E+ C T M be the space of 1-forms that annihilate E and

we denote by
[} € A" (1, 0)

the exterior ideal generated by E+. Then, because E is an integral element of 7
we have Z,, C {E+}. There is a canonical exact sequence

0— {AQEL} — {El} — EtQAE* =0
[
Q" A*E*.

We let P C Q* @ A*E* C A*(Q* @ E*) denote the image of Z,, and define Zg
to be the ideal in A*(Q* ® E*) generated by Pg. Then Zg is an ideal of exterior
forms on E ® Q). We let QO be a volume form on FE.

Definition 2.5. (Zg,Qg) is the linearization of 7 at E.

When expressed in a set of linear coordinates on E @ @, the elements of Zg
have constant coefficients and hence are closed differential forms. Thus, (Zg, Qg)



§3. Tableaux 99

is a constant coefficient differential system with independence condition. In order
to see that it is linearly generated, it is instructive to see what this construc-

tion means in coordinates. For this we choose a local coframe w!(z),...,w"(x),
7(z),...,7(x) on M so that the forms 77 (x¢) span E+-. We then choose linear
coordinates x!,...,2" on E and y!,...,y" on Q such that wi(xg)|p = dz* and

77 (x0)|g = dy”. Finally, we set f = f(zo) for any locally defined function f(z) on
M. Let ¢ € T and write
b(@) = fr(@)w! (2) + for (@)n7 (@) A (@) + fopr (2)77 (2) AP (2) AW (2) + ...
We note that, because of ¥|g = 0, f;r =0 and we define
= foydy’ Ndz? € Q* ® A*E*
(17) N
AN Q" e EY).

Intuitively, v is obtained by setting x = xg—i.e., by freezing coefficients—and by
ignoring quadratic terms in the 77 (zp)—i.e., terms that vanish to second order on
E. Tt is clear that

(18) Pr={¢:y €T}

is the above set of algebraic generators of Zg. Thus (Zg,Qg) is linearly gener-
ated. Moreover, the following proposition is an immediate consequence of Proposi-
tion 1.13 of Chapter III.

Proposition 2.6. Let EP C E be any p-plane, and let H(E?) C T, M be the polar
space of EP as an integral element of T. Then, as an integral element of I the
polar space of EP is E® (H(EP)/E) C E® Q.

We will establish the third property mentioned above of (Zg,{g) following a
general discussion of the concept of tableau in the next section.

§3. Tableaux.
One of the most important concepts in the theory of exterior differential systems
is that of a tableau. This is a purely algebraic concept defined as follows:

Definition 8.1. A tableau is given by a linear subspace
A C Hom(V, W)

where V, W are vector spaces.
We let vy,...,v, and wi,...,ws be bases for V, W respectively and choose a
basis
A = AZw, @ U

for A (we have chosen to use v} instead of v' for the dual basis to v;). Then a
general element of A

A(O = AECE
= AZ,Cw, @ vf
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may be thought of as a matrix
A(C) = [ A4¢

whose entries are linear functions of the coordinates (¢ on A. Therefore, from a
linear algebra point of view, the study of tableaux is the same as studying matrices
whose entries are linear functions. This will be apparent when we introduce the
symbol associated to A.

Example 3.2. Let V and W be vector spaces with coordinates z!,...,z" and
y',...,y° dual to bases vi,...,v, and ws,...,ws for V and W respectively. We
consider a first order linear homogeneous, constant coefficient P.D.E. system

0y ()
i — = =1,...,r.
(19) B; o 0 A N

The linear solutions '
Y (@) = A2

o (19) form a tableau A C Hom(V,W). We shall call A the tableau associated to
P.D.E. system (19). It is clear, conversely, that every tableau is uniquely associated
to such a P.D.E. system.

Definition 3.3. Given a tableau A C Hom(V,W) = W ® V*| the associated symbol
is given by the annihilator
B=AtcW*aV.

Ezample 3.2 (continued). Assuming that the forms
B = BYw:@u e W eV

are linearly independent, the classical definition of the symbol associated to (19)
assigns to each covector ¢ = &;dx’ € V* the matrix

(20) a(&) = 1Byl
In coordinate-free terms
(&)W —-WeV /A= AL
is given by
(21) o(§)(w) =w®& mod A.

From (20) it is clear that giving the symbol of the P.D.E. system (19) is equivalent
to giving the symbol B of the tableau A.

We now consider a tableau A C W ® V*. The (¢ + 1)*" symmetric product
S9T1V* may be considered as the space of homogeneous polynomials of degree
g+ 1 on V, and we have the usual differentiation operators

i D QItly* _ gay,
oxt
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We extend 0/9x% to W ® STHL1V* by treating W as constants, so that by definition

oP°

0/0x" (wa @ P* (7)) = wa @ 5

where the P%(x) are homogeneous polynomials in z!,..., 2™

Definition 3.4. Given a tableau A C W @ V*, the ¢** prolongation
AW cw Sty
is defined inductively by A©®) = A and, for ¢ > 1,

oP
AW ={(p: e e AV for all i}.

It is clear that A(9) is the subspace consisting of all P € W ® S9T1V* satisfying

01P(x)

o oz €4

(22)
for all 41, ..., 1%4.

In case A is the tableau associated to the constant coefficient, linear homogeneous
P.D.E. system (19) it is clear that: A is the set of homogeneous polynomial
solutions of degree g+ 1 to the P.D.E. system (19). What will turn out to be a more
profound interpretation of the first prolongation A™) follows.

First, we consider the exterior differential system (Za,Q4) associated to the
P.D.E. system (19) corresponding to the tableau A C W®V™*. To describe (Z4,4)
we consider as usual the space J*(V, W) of 1-jets of mappings from V to W and let
(z%,y*, p?) be the standard coordinates induced from the coordinate systems z*, y*
on V, W respectively. We then define

M c JYV, W)

by the equations B2p¢ = 0. Then (Za,Qu4) is the exterior differential system
with independence condition Q4 = dz' A --- A dz™ # 0 obtained by restricting the
contact system on J1(V, W) to M. We recall that the contact system is generated
algebraically by the differential forms

{ 0% = dy® — ptda’

(23) .
dg* = —dp§ N dx’.

The restrictions to M of the 1-forms dx?, 6%, dp¢ span the cotangent spaces and
are subject to the relations

(24) BYdpt =0 A=1,...,r

that define T,M C T,J*(V,W) for ¢ € M.

If E C T, M is any integral element of (Z4,$4), then since dz' A---Ada™|g # 0
it follows that the dz‘|g form a basis for E*, and consequently E is defined by a
set of linear equations

(25) {9a=o

dpf = P dz?
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subject to the conditions that df*|p = 0 and that the linear relations (24) are
satisfied on E. Substituting dp$ from (25) into the second equation in (23) gives

p;'lj = p?i;
and then the linear relations (24) give
Bé\ip;'lj =0.
Taken together these two equations are equivalent to the condition that
P =pfiw, @ '’ € AW,
In summary:

(26) For the exterior differential system associated to the
P.D.E. system (19), the space of integral elements over
any fized point is naturally identified with the 15

prolongation AY) of the tableau associated to (19).

This result will be extended to general linear Pfaffian systems in section 5 below.

We now want to explain the concept of involutivity for a tableau A. Although it
is a purely algebraic concept, it will turn out to be equivalent to the condition that
the exterior differential system (Z4,4) associated to the P.D.E. system (19) with
tableau A should be involutive. From Theorem 1.11 of Chapter III we see that this
in turn is expressed by the condition that an inequality between the dimension of
the space of integral elements of (Z4,4) and an expression involving the ranks of
the polar equations should be an equality. This together with (26) above should
help to motivate the following discussion leading up to the definition of involutivity
for a tableau A.

First we need two definitions. If U C W ® S7V* is any subspace we set

oP oP

We note that
(AN, = (A)W

since both sides are equal to {P € W @ S?V* : 9P/dz' € A and §*P/0z'0z7 = 0
for all ¢ and 1 < j < k}. We denote either side of this equality by A;l). Clearly we
have

(28) 8/0x* : AV, — A,y
We observe that the subspaces Ay give a filtration
(29) 0=A,CA,1C---CA CAy=A4,

and that the numbers dim A; are upper-semi-continuous and constant on a dense
open set of coordinate systems for V*.
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Definition 3.5. Let AC W ® V* be a tableau and z',...,2" € V* a generic coor-

dinate system for which the dim Ay are a minimum. We then define the characters
sy, ..., s of the tableau A inductively by

(30) s+ -+ 8, =dim A — dim A4y.
Although it is not immediately obvious, it can be shown that
5’125’22...>5%

(cf. the normal form (90) below).
The following gives an algebraic analogue of the inequality in Cartan’s test:

Proposition 3.6. We have
(31) dim AW < s) 425, + -+ -+ ns,
with equality holding if, and only if, the mappings (28) are surjective.

Proof. We note that

(32) {dimAzs’l—l—---—l—s;L

dim Ay, = sp + -+ s,
From the exact sequence

8/0z"*
R

0— AWM - Al A

we have
dim A, — dim AY < dim 4.

Adding these up and using Aél) =AM gives
dimA® < dim A+ dimA; + -+ dim A,,_;.

Substituting (32) into the right hand side gives the result. O

Definition 3.7. The tableau A is involutive in case the equality
dim AWM = 5| 4255 4+ -+ ns!

n

holds in (31).3

3This formulation of involutivity is due to Matsushima [1954-55]
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Proposition 3.8. The involutivity of the tableau A is equivalent to the involutivity
of the P.D.E. system (19) associated to A.

Proof. Tt follows from the discussion preceeding (26) that the space G(Za,Q4) of
integral elements of (Z4,24) fibers over M with the fibres each being a linear space
naturally isomorphic to the first prolongation A®). In order to apply Theorem 1.11
in Chapter IIT it will thus suffice to work in the space of integral elements lying
over the origin in M.

We next set
(33) { w' = da’|m

m¢ = —dpf|m

so that the structure equations (23) and (24) of (Z4,24) become

do® = 7 A W
(34) { AW

Ni_a _

Blixe = 0.

A substitution '
nf = w8 — p?
PijWa ® zizd € AW

leaves these structure equations unchanged. By means of such a substitution the
integral element (25) in G(Z4,24) is now defined by the equations

(35) { 2 =0

a
my =0

and is subject to the requirement that the df#® = 0 on this n-plane. Calling this
n-plane F, we will determine the circumstances such that E satisfies the conditions
in Theorem 1.11 of Chapter III.

For this we let e1,...,e, € ToM be the basis for E defined by the equations

{ 0% (ex) = 7% (ex) = 0

w(ek) = oi.
Then €4, ..., e, spans a subspace Fy C E and we claim that:
(36) The rank of the polar equations associated to Ey, is

s+ s+ -+ s, where s =dimW.

Proof of (36). The cotangent space Ty M is spanned by the 1-forms w?, 6%, 7¢, of

which the w' and 6 are linearly independent and the 7¢ are subject exactly t(; ,the
second equations in (34). If we define subspaces R, S of Ty M by

R={veToyM : n{(v) =0}

S ={veToM :w'(v) =0=06%0)},
then we have ToM = R @& S. Moreover, the mapping S — W ® V* defined by

(37) v — (V) w, @ 2
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is injective, and by the second equation in (34) the image of this mapping is the
tableau A C W ® V*. We shall identify S with A and denote by Sy the subspace
of S corresponding to Ay. Thus

Sp={veS:niwv)=0forl<i<k}.

We now shall show that the polar equations of Ej, = span{ey, ..., e} are given
by

(38) {9&:0

m =0for 1 <i<k.
This is immediate from (34), since for v € TyM and 1 <i <k
do*(ei,v) = (7§ A w)(eq,v)
= —n2().

Since the rank of the equations 7¢(v) = 0 clearly depends only on the projection
of v € R® S to S, we see that the rank of the equations (38) is given by

s+ dim(S/Sk) = s + dim A — dim A
=s+s8 + -+ 8.

by the definition (39). This completes the proof of (36).

We may now complete the proof of Proposition 3.8. In fact, using (32) and
(36) the inequality in Theorem 1.11 in Chapter IIT is just (31); moreover, the
condition for equality in (31) is just the condition that the integral element defined
by (35) be ordinary. In fact the inequality there is codim{G,(Z) C G, (TM)} >
co+c1+ -+ cn_1. We have shown that

ck=8+8+ -+ s,

dim AW = dim G, .(Z),

and combining these three relations and unwinding the arithmetic gives (31). O

X

§4. Tableaux Associated to an Integral Element.

Let Z be a differential system on a manifold M. Let £ C T, M be an n-
dimensional integral element of Z and set Q = T,,M/E. We will canonically
associate to E a tableau

Agp C Hom(FE, Q)

that has a number of important properties.
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For this we use coordinates x,%° on E,(Q as in the discussion following Def-
inition 2.5 of the linearization (Zg, Qg) of Z at E. Recall that Zg is defined on
Mp = E®(Q and is algebraically generated by constant coefficient differential forms

(39) U = foydy’ Adz’

that are linear in the dy“’s, and that the independence condition is given by Qg =
dr' A---Adx™. Tt follows that integral elements F of (Zg, Qg) lying over the origin
are given by graphs of linear mappings

p:E—Q

satisfying the following conditions:

dy® —pZdat =0
(40) L
fogpfdz* Adzx’ = 0.

Here the first equation expresses p in coordinates, and the second equation expresses
the condition that ¢|z = 0 for all ¢ € Pg, where Pg given by equation (18).

Definition 4.1. The tableau Ap C Hom(E, Q) associated to E € G, (T) is the linear
subspace of Hom(F, Q) defined by the equations (40).

It is clear that Ag is canonically associated to E. One geometric interpretation
is that by definition Ag is canonically identified with the set of integral elements
lying over the origin of the linearization of Z at E. Another geometric interpretation
of Ag is as follows: We set T' = T, M and consider the n-dimensional integral
elements of 7 lying over zg as a subset

Gr.ao(T) C Go(T).
It is well known that there is a canonical isomorphism
T(Gn(T)) = Hom(E, Q),
and we will show that:

(41) If E(t) C Gn(T) is a smooth arc of integral elements
of T lying over xq with E(0) = E, then

E/(O) c Ag.

Proof. Welet vy, ...,v,, wi,...,w, be the basis for T dual to dz', ..., dz", dy, ..., dy°,
and we extend the v; to a smoothly 